JP2021134986A - Heat exchange core and manufacturing method for heat exchange core - Google Patents

Heat exchange core and manufacturing method for heat exchange core Download PDF

Info

Publication number
JP2021134986A
JP2021134986A JP2020031525A JP2020031525A JP2021134986A JP 2021134986 A JP2021134986 A JP 2021134986A JP 2020031525 A JP2020031525 A JP 2020031525A JP 2020031525 A JP2020031525 A JP 2020031525A JP 2021134986 A JP2021134986 A JP 2021134986A
Authority
JP
Japan
Prior art keywords
flow path
header
heat exchange
exchange core
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031525A
Other languages
Japanese (ja)
Other versions
JP7437971B2 (en
Inventor
雅哉 畑中
Masaya Hatanaka
雅哉 畑中
博之 中拂
Hiroyuki Nakahara
博之 中拂
伸英 原
Nobuhide Hara
伸英 原
陽一 上藤
Yoichi Kamifuji
陽一 上藤
駿作 江口
Shunsaku Eguchi
駿作 江口
拓央 小田
Takuo Oda
拓央 小田
浩一 谷本
Koichi Tanimoto
浩一 谷本
仁 北村
Hitoshi Kitamura
仁 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020031525A priority Critical patent/JP7437971B2/en
Priority to PCT/JP2021/006793 priority patent/WO2021172331A1/en
Priority to US17/800,665 priority patent/US20230349641A1/en
Priority to CN202180016130.2A priority patent/CN115176121A/en
Publication of JP2021134986A publication Critical patent/JP2021134986A/en
Application granted granted Critical
Publication of JP7437971B2 publication Critical patent/JP7437971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

To provide a heat exchange core that can reduce manufacturing costs by shortening forming time.SOLUTION: A heat exchange core comprises a plurality of internal flow passages, and a header flow passage communicating with the plurality of internal flow passages. An inner wall of the header flow passage has larger surface roughness than that of flow passage walls of the internal flow passages.SELECTED DRAWING: Figure 4

Description

本開示は、熱交換コア及び熱交換コアの製造方法に関する。 The present disclosure relates to a heat exchange core and a method for manufacturing the heat exchange core.

特許文献1には、互いに平行に配置された数枚のプレートと、一次チャネル及び二次チャネルを画定するように、プレート間に延在し、互いに平行に配置されたスペーサとを含む熱交換器が開示されている。かかる熱交換器は、一次チャネルが粗い一次チャネルを含むことも開示されている。 Patent Document 1 includes a heat exchanger including several plates arranged parallel to each other and spacers extending between the plates and arranged parallel to each other so as to define a primary channel and a secondary channel. Is disclosed. It is also disclosed that such heat exchangers include coarse primary channels.

特表2018−511773号公報Special Table 2018-511773

しかしながら、特許文献1が示す従来の構成では、プレートは周知の方法で互いに蝋付けされ、熱交換器(熱交換コア)の製造時間(造形時間)の短縮に寄与するものではない。 However, in the conventional configuration shown in Patent Document 1, the plates are brazed to each other by a well-known method, and do not contribute to shortening the manufacturing time (modeling time) of the heat exchanger (heat exchange core).

本開示の少なくとも一実施形態は、上述する事情に鑑みてなされたもので、造形時間を短くすることで製造コストを低減できる熱交換コア及び熱交換コアの製造方法を提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchange core and a method for manufacturing a heat exchange core, which can reduce the manufacturing cost by shortening the molding time. ..

上記目的を達成するため、本開示に係る熱交換コアは、
複数の内部流路と、
前記複数の内部流路に連通するヘッダ流路と、
を備え、
前記ヘッダ流路の内壁は、前記内部流路の流路壁よりも大きな表面粗さを有する。
In order to achieve the above object, the heat exchange core according to the present disclosure is
With multiple internal channels
A header flow path communicating with the plurality of internal flow paths and
With
The inner wall of the header flow path has a larger surface roughness than the flow path wall of the inner flow path.

また、本開示に係る熱交換コアの製造方法は、互いに平行に延在する複数の内部流路と、前記複数の内部流路と連通するヘッダ流路とを備える熱交換コアの製造方法であって、前記内部流路の延在方向に沿って積層造形を行うことで、前記内部流路を形成するステップと、前記延在方向に沿って積層造形を行うことで、前記ヘッダ流路を形成するステップと、
を備え、前記ヘッダ流路の内壁は、前記内部流路の流路壁よりも大きな表面粗さを有する。
Further, the method for manufacturing a heat exchange core according to the present disclosure is a method for manufacturing a heat exchange core including a plurality of internal flow paths extending in parallel with each other and a header flow path communicating with the plurality of internal flow paths. The header flow path is formed by performing laminating molding along the extending direction of the internal flow path to form the internal flow path and laminating modeling along the extending direction. Steps to do and
The inner wall of the header flow path has a surface roughness larger than that of the flow path wall of the inner flow path.

本開示の熱交換コアによれば、積層造形によって熱交換コアを造形する場合において、ヘッダ流路が設けられる部分の単位体積当たりの造形時間を内部流路が設けられる部分よりも短くできる。よって、熱交換コア全体の造形時間を短くできるので、熱交換コアの製造コストを低減できる。 According to the heat exchange core of the present disclosure, when the heat exchange core is modeled by laminated modeling, the modeling time per unit volume of the portion provided with the header flow path can be made shorter than that of the portion provided with the internal flow path. Therefore, the molding time of the entire heat exchange core can be shortened, and the manufacturing cost of the heat exchange core can be reduced.

また、本開示の熱交換コアの製造方法によれば、ヘッダ流路の内壁は内部流路の流路壁よりも大きな表面粗さを有するので、ヘッダ流路を形成するステップにおける単位体積当たりの造形時間を内部流路が設けられる部分よりも短くできる。よって、熱交換コア全体の造形時間を短くできるので、熱交換コアの製造コストを低減できる。 Further, according to the method for manufacturing a heat exchange core of the present disclosure, since the inner wall of the header flow path has a larger surface roughness than the flow path wall of the inner flow path, per unit volume in the step of forming the header flow path. The molding time can be made shorter than the portion where the internal flow path is provided. Therefore, the molding time of the entire heat exchange core can be shortened, and the manufacturing cost of the heat exchange core can be reduced.

本開示の少なくとも一実施形態による熱交換コアの構成を概略的に示す斜視図である。It is a perspective view which shows typically the structure of the heat exchange core by at least one Embodiment of this disclosure. 図1に示した熱交換コアのII−II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of the heat exchange core shown in FIG. 図1に示した熱交換コアのIII−III線断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of the heat exchange core shown in FIG. 図2に示した熱交換コアのIV−IV線断面図である。FIG. 2 is a sectional view taken along line IV-IV of the heat exchange core shown in FIG. 図2に示した熱交換コアのV−V線断面図である。FIG. 5 is a sectional view taken along line VV of the heat exchange core shown in FIG. 本開示の少なくとも一実施形態による熱交換コアの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the heat exchange core by at least one Embodiment of this disclosure.

以下、添付図面を参照して本開示の実施形態による熱交換コア1及び熱交換コア1の製造方法について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, a method for manufacturing the heat exchange core 1 and the heat exchange core 1 according to the embodiment of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. No.

[熱交換コア1の概略構成]
本開示の実施形態による熱交換コア1は、単独で、又は熱交換器に組み込まれて用いられる構成要素であり、熱交換コア1に供給される第1流体と第2流体との間で熱交換が行われる。熱交換コア1に供給される第1流体及び第2流体はそれぞれ液体であってもよいし気体であってもよいが、通常は両者の温度は異なっている。
[Rough configuration of heat exchange core 1]
The heat exchange core 1 according to the embodiment of the present disclosure is a component used alone or incorporated in a heat exchanger, and heat is supplied between the first fluid and the second fluid supplied to the heat exchange core 1. The exchange will take place. The first fluid and the second fluid supplied to the heat exchange core 1 may be liquid or gas, respectively, but usually the temperatures of the two are different.

図1に示すように、本開示の実施形態による熱交換コア1は、本体部11とヘッダ部12とを備える。例えば、熱交換コア1は直方体形状とすることができるが、これに限定されるものではない。例えば、熱交換コア1が直方体形状である場合、本体部11が直方体の胴部に設けられ、ヘッダ部12が直方体の一端部(上端部)と他端部(下端部)とにそれぞれ一対設けられる。例えば、直方体の一端部と他端部とにそれぞれ一対設けられるヘッダ部12は、直方体の同一平面において四隅に位置する。 As shown in FIG. 1, the heat exchange core 1 according to the embodiment of the present disclosure includes a main body portion 11 and a header portion 12. For example, the heat exchange core 1 can have a rectangular parallelepiped shape, but is not limited to this. For example, when the heat exchange core 1 has a rectangular parallelepiped shape, a main body 11 is provided on the body of the rectangular parallelepiped, and a pair of headers 12 are provided on one end (upper end) and the other end (lower end) of the rectangular parallelepiped. Be done. For example, a pair of header portions 12 provided at one end and the other end of the rectangular parallelepiped are located at four corners on the same plane of the rectangular parallelepiped.

例えば、熱交換コア1が直方体形状である場合、ヘッダ部12は直方体の外側に設けることができるが、これに限られるものではない。例えば、直方体の一端部と他端部とにそれぞれ一対設けられるヘッダ部12が直方体の外側に設ける場合、直方体の幅方向外側に張り出すように設けられる。そして、直方体の一端部に設けられるヘッダ部121,122がそれぞれ第1ヘッダ部121,第2ヘッダ部122となり、他端部に設けられるヘッダ部123,124がそれぞれ第3ヘッダ部123,第4ヘッダ部124となる。 For example, when the heat exchange core 1 has a rectangular parallelepiped shape, the header portion 12 can be provided on the outside of the rectangular parallelepiped, but the present invention is not limited to this. For example, when a pair of header portions 12 provided at one end and the other end of the rectangular parallelepiped are provided outside the rectangular parallelepiped, they are provided so as to project outward in the width direction of the rectangular parallelepiped. The header portions 121 and 122 provided at one end of the rectangular parallelepiped are the first header portion 121 and the second header portion 122, respectively, and the header portions 123 and 124 provided at the other end are the third header portions 123 and fourth, respectively. It becomes the header part 124.

ヘッダ部12にはヘッダ流路3が設けられる。上述したように、例えば、熱交換コア1が直方体形状であり、直方体の一端部と他端部とにそれぞれ一対設けられるヘッダ部12が直方体の幅方向外側に張り出すように設けられる場合、直方体の一端部と他端部とにそれぞれ設けられる一対のヘッダ部12にそれぞれヘッダ流路3が設けられる。そして、第1ヘッダ部121に設けられるヘッダ流路31が第1ヘッダ流路31となり、第2ヘッダ部122に設けられるヘッダ流路32が第2ヘッダ流路32となる。また、第3ヘッダ部123に設けられるヘッダ流路33が第3ヘッダ流路33となり、第4ヘッダ部124に設けられるヘッダ流路34が第4ヘッダ流路34となる。 The header section 12 is provided with a header flow path 3. As described above, for example, when the heat exchange core 1 has a rectangular parallelepiped shape and a pair of header portions 12 provided at one end and the other end of the rectangular parallelepiped are provided so as to project outward in the width direction of the rectangular parallelepiped, the rectangular parallelepiped. The header flow path 3 is provided in each of the pair of header portions 12 provided at one end portion and the other end portion of the above. The header flow path 31 provided in the first header section 121 becomes the first header flow path 31, and the header flow path 32 provided in the second header section 122 becomes the second header flow path 32. Further, the header flow path 33 provided in the third header section 123 becomes the third header flow path 33, and the header flow path 34 provided in the fourth header section 124 becomes the fourth header flow path 34.

そして、第1流体と第2流体とが互いに向かい合う方向に流れる熱交換コア1(以下「対向流の熱交換コア1」という)では、第1ヘッダ流路31が第1流体を本体部11に供給するための流路となり、第2ヘッダ流路32が第2流体を本体部11から排出するための流路となる。また、第3ヘッダ流路33が第1流体を本体部11から排出するための流路となり、第4ヘッダ流路34が第2流体を本体部11に供給するための流路となる。尚、第1流体と第2流体とが同じ方向に流れる熱交換コア1(以下「並流の熱交換コア1」という)では第2ヘッダ流路32が第2流体を本体部11に供給するための流路となり、第4ヘッダ流路34が第2流体を本体部11から排出するための流路となる。 Then, in the heat exchange core 1 in which the first fluid and the second fluid flow in the directions facing each other (hereinafter referred to as "countercurrent heat exchange core 1"), the first header flow path 31 sends the first fluid to the main body 11. It serves as a flow path for supplying, and the second header flow path 32 serves as a flow path for discharging the second fluid from the main body 11. Further, the third header flow path 33 serves as a flow path for discharging the first fluid from the main body portion 11, and the fourth header flow path 34 serves as a flow path for supplying the second fluid to the main body portion 11. In the heat exchange core 1 in which the first fluid and the second fluid flow in the same direction (hereinafter referred to as "parallel flow heat exchange core 1"), the second header flow path 32 supplies the second fluid to the main body 11. The fourth header flow path 34 serves as a flow path for discharging the second fluid from the main body 11.

図2に示すように、本開示の実施形態による熱交換コア1は、本体部11に複数の内部流路2を有する。複数の内部流路2は互いに平行に延在する流路であって、複数の内部流路2の延在方向における内部流路2の端部において該複数の内部流路2が上述したヘッダ流路3に連通する。例えば、熱交換コア1が直方体形状である場合、複数の内部流路2は直方体の長手方向に沿って設けられ、直方体の長手方向と直交する方向に沿って上述したヘッダ流路3が設けられる。そして、内部流路2の一端部と他端部とにおいて該複数の内部流路2が上述したヘッダ流路3に連通する。 As shown in FIG. 2, the heat exchange core 1 according to the embodiment of the present disclosure has a plurality of internal flow paths 2 in the main body 11. The plurality of internal flow paths 2 are flow paths extending in parallel with each other, and the plurality of internal flow paths 2 form the header flow described above at the ends of the internal flow paths 2 in the extending direction of the plurality of internal flow paths 2. Communicate with Road 3. For example, when the heat exchange core 1 has a rectangular parallelepiped shape, the plurality of internal flow paths 2 are provided along the longitudinal direction of the rectangular parallelepiped, and the header flow paths 3 described above are provided along the direction orthogonal to the longitudinal direction of the rectangular parallelepiped. .. Then, at one end and the other end of the internal flow path 2, the plurality of internal flow paths 2 communicate with the header flow path 3 described above.

図3に示すように、複数の内部流路2は、第1流体が流通する複数の第1流路21と第2流体が流通する複数の第2流路22とを構成する。複数の第1流路21のそれぞれと複数の第2流路22のそれぞれは直方体の長手方向と直交する断面において奥行き方向(図3においてY方向)に交互に配置され、互いに隣り合う第1流路21と第2流路22とは隔壁23によって隔てられている。尚、複数の第1流路21及び複数の第2流路22の数、すなわち、隔壁23の数は、図3に示す数に限定されるものではなく、任意の数とすることができる。 As shown in FIG. 3, the plurality of internal flow paths 2 constitute a plurality of first flow paths 21 through which the first fluid flows and a plurality of second flow paths 22 through which the second fluid flows. Each of the plurality of first flow paths 21 and each of the plurality of second flow paths 22 are alternately arranged in the depth direction (Y direction in FIG. 3) in a cross section orthogonal to the longitudinal direction of the rectangular parallelepiped, and are adjacent to each other. The road 21 and the second flow path 22 are separated by a partition wall 23. The number of the plurality of first flow paths 21 and the plurality of second flow paths 22, that is, the number of partition walls 23 is not limited to the number shown in FIG. 3, and may be any number.

例えば、複数の第1流路21と複数の第2流路22はそれぞれ複数の分割流路211,221に区画されるが、これに限定されものではない。複数の第1流路21と複数の第2流路22とがそれぞれ複数の分割流路211,221に区画される場合、複数の第1流路21と複数の第2流路22のそれぞれ複数の分割流路211,221は直方体と直交する断面において幅方向(図3においてX方向)に沿って配置され、互いに隣り合う分割流路211(221)と分割流路211(221)とは区画壁24によって隔てられている。尚、複数の第1流路21と複数の第2流路22のそれぞれの分割流路211,221の数、すなわち、複数の第1流路21と複数の第2流路22とにそれぞれ設けられる区画壁24の数は、図3に示す数に限定されるものではなく、任意の数とすることができる。 For example, the plurality of first flow paths 21 and the plurality of second flow paths 22 are divided into a plurality of divided flow paths 211 and 221 respectively, but the present invention is not limited thereto. When the plurality of first flow paths 21 and the plurality of second flow paths 22 are partitioned into a plurality of divided flow paths 211 and 221 respectively, the plurality of first flow paths 21 and the plurality of second flow paths 22 are each plurality of. The divided flow paths 211 and 221 are arranged along the width direction (X direction in FIG. 3) in a cross section orthogonal to the rectangular parallelepiped, and the divided flow paths 211 (221) and the divided flow paths 211 (221) adjacent to each other are separated from each other. Separated by a wall 24. The number of divided flow paths 211 and 221 of the plurality of first flow paths 21 and the plurality of second flow paths 22, that is, the plurality of first flow paths 21 and the plurality of second flow paths 22 are provided, respectively. The number of partition walls 24 to be used is not limited to the number shown in FIG. 3, and can be any number.

図4は、後述するように、第1ヘッダ流路31と第1流路21とを連通する中間流路41を示す図であり、図5は、後述するように、第1ヘッダ流路31と第2流路22とを連通しない中間流路42を示す図である。
図4及び図5に示すように、複数の第1流路21と複数の第2流路22がそれぞれ複数の分割流路211,221に区画される場合、複数の第1流路21と複数の第2流路22のそれぞれの一端部と他端部にそれぞれ中間流路4を備える。
FIG. 4 is a diagram showing an intermediate flow path 41 communicating the first header flow path 31 and the first flow path 21 as described later, and FIG. 5 is a diagram showing the first header flow path 31 as described later. It is a figure which shows the intermediate flow path 42 which does not communicate with a 2nd flow path 22.
As shown in FIGS. 4 and 5, when a plurality of first flow paths 21 and a plurality of second flow paths 22 are partitioned into a plurality of divided flow paths 211 and 221 respectively, a plurality of first flow paths 21 and a plurality of first flow paths 21 An intermediate flow path 4 is provided at one end and the other end of the second flow path 22 of the above.

図4に示すように、第1流路21の一端部(上端部)に設けられた中間流路41(以下「第1中間流路41」という)は、第1流路21に区画された複数の分割流路211の延在方向(第1流路21の延在方向)における分割流路211の一端部(上端部)において該複数の分割流路211に連通する。そして、第1中間流路41は第1流路21の一端部(上端部)に開口する一方、外壁(上壁)116によって外部から隔てられている。図5に示すように、第2流路22の一端部(上端部)に設けられた中間流路42(以下「第2中間流路42」という)は第2流路22に区画された分割流路221の延在方向(第2流路22の延在方向)における分割流路221の一端部(上端部)において該複数の分割流路221に連通する。そして、第2中間流路42は第2流路22の一端部(上端部)に開口する一方、外壁(上壁)116によって外部から隔てられている。図示しないが、第1流路21の他端部(下端部)に設けられた中間流路(以下「第3中間流路」という)は、第1流路21に区画された複数の分割流路211の延在方向(第1流路21の延在方向)における分割流路211の他端部(下端部)において該複数の分割流路211に連通する。そして、第3中間流路は第1流路21の他端部(下端部)に開口する一方、外壁(底壁)111によって外部から隔てられている。第2流路22の他端部(下端部)に設けられた中間流路(以下「第4中間流路」という)は、第2流路22に区画された複数の分割流路221の延在方向(第2流路22の延在方向)における分割流路221の他端部(下端部)において該複数の分割流路221に連通する。そして、第4中間流路は第2流路22の他端部(下端部)に開口する一方、外壁(底壁)111によって外部から隔てられている。 As shown in FIG. 4, the intermediate flow path 41 (hereinafter referred to as “first intermediate flow path 41”) provided at one end (upper end) of the first flow path 21 is partitioned into the first flow path 21. It communicates with the plurality of divided flow paths 211 at one end (upper end) of the divided flow paths 211 in the extending direction of the plurality of divided flow paths 211 (the extending direction of the first flow path 21). The first intermediate flow path 41 opens at one end (upper end) of the first flow path 21, while being separated from the outside by an outer wall (upper wall) 116. As shown in FIG. 5, the intermediate flow path 42 (hereinafter referred to as “second intermediate flow path 42”) provided at one end (upper end) of the second flow path 22 is divided into the second flow path 22. It communicates with the plurality of divided flow paths 221 at one end (upper end) of the divided flow path 221 in the extending direction of the flow path 221 (extending direction of the second flow path 22). The second intermediate flow path 42 opens at one end (upper end) of the second flow path 22, while being separated from the outside by an outer wall (upper wall) 116. Although not shown, the intermediate flow path (hereinafter referred to as "third intermediate flow path") provided at the other end (lower end) of the first flow path 21 is a plurality of divided flows partitioned in the first flow path 21. The other end (lower end) of the divided flow path 211 in the extending direction of the road 211 (extending direction of the first flow path 21) communicates with the plurality of divided flow paths 211. The third intermediate flow path opens to the other end (lower end) of the first flow path 21, while being separated from the outside by an outer wall (bottom wall) 111. The intermediate flow path (hereinafter referred to as “fourth intermediate flow path”) provided at the other end (lower end) of the second flow path 22 is an extension of a plurality of divided flow paths 221 partitioned in the second flow path 22. The other end (lower end) of the divided flow path 221 in the existing direction (extending direction of the second flow path 22) communicates with the plurality of divided flow paths 221. The fourth intermediate flow path opens to the other end (lower end) of the second flow path 22, while being separated from the outside by an outer wall (bottom wall) 111.

図4に示すように、第1ヘッダ流路31は、第1流路21の延在方向における第1流路21の一端部(上端部)において、第1流路21の延在方向と直交する方向に延在し、第1中間流路41を介して第1流路21に連通する。図5に示すように、第2ヘッダ流路32は、第2流路22の延在方向における第2流路22の一端部(上端部)において、第2流路22の延在方向と直交する方向に延在し、第2中間流路42を介して第2流路22に連通する。図示しないが、第3ヘッダ流路33は、第1流路21の延在方向における第1流路21の他端部(下端部)において、第1流路21の延在方向と直交する方向に延在し、第3中間流路を介して第1流路21に連通する。第4ヘッダ流路34は、第2流路22の延在方向における第2流路22の他端部(下端部)において、第2流路22の延在方向と直交する方向に延在し、第4中間流路を介して第2流路22に連通する。 As shown in FIG. 4, the first header flow path 31 is orthogonal to the extending direction of the first flow path 21 at one end (upper end) of the first flow path 21 in the extending direction of the first flow path 21. It extends in the direction of the above and communicates with the first flow path 21 via the first intermediate flow path 41. As shown in FIG. 5, the second header flow path 32 is orthogonal to the extending direction of the second flow path 22 at one end (upper end) of the second flow path 22 in the extending direction of the second flow path 22. It extends in the direction of the surface and communicates with the second flow path 22 via the second intermediate flow path 42. Although not shown, the third header flow path 33 is a direction orthogonal to the extending direction of the first flow path 21 at the other end (lower end) of the first flow path 21 in the extending direction of the first flow path 21. It extends to the first flow path 21 and communicates with the first flow path 21 via the third intermediate flow path. The fourth header flow path 34 extends in a direction orthogonal to the extending direction of the second flow path 22 at the other end (lower end) of the second flow path 22 in the extending direction of the second flow path 22. , Communicates with the second flow path 22 via the fourth intermediate flow path.

[ヘッダ流路3の内壁3a]
ヘッダ流路3の内壁3aは、内部流路2の流路壁2aよりも大きな表面粗さを有する。例えば、第1ヘッダ流路31、第2ヘッダ流路32、第3ヘッダ流路33及び第4ヘッダ流路34を直方体の外側に設けた場合にこれらの第1ヘッダ流路31、第2ヘッダ流路32、第3ヘッダ流路33及び第4ヘッダ流路34の内壁31a,32a,33a,34aは、第1流路21及び第2流路22の流路壁21a,22aよりも大きな表面粗さを有する。
[Inner wall 3a of header flow path 3]
The inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2. For example, when the first header flow path 31, the second header flow path 32, the third header flow path 33, and the fourth header flow path 34 are provided outside the rectangular parallelepiped, the first header flow path 31, the second header, and the like are provided. The inner walls 31a, 32a, 33a, 34a of the flow path 32, the third header flow path 33, and the fourth header flow path 34 have surfaces larger than the flow path walls 21a, 22a of the first flow path 21 and the second flow path 22. Has roughness.

例えば、日本工業規格(JIS)には、表面粗さを表すパラメータとして、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、凹凸の平均間隔(Sm)、局部山頂の平均間隔(S)及び負荷長さ率(tp)の定義並びに表示について規定されており、表面粗さは、対象物の表面からランダムに抜き取った各部分におけるそれぞれの算術平均値である、とされている。 For example, in the Japanese Industrial Standards (JIS), arithmetic average roughness (Ra), maximum height (Ry), ten-point average roughness (Rz), and average spacing of irregularities (Sm) are used as parameters representing surface roughness. , The definition and display of the average interval (S) and load length ratio (tp) of the local peaks are specified, and the surface roughness is the arithmetic mean value of each part randomly extracted from the surface of the object. It is said that there is.

このようなヘッダ流路3の内壁3aを有する熱交換コア1によれば、ヘッダ流路3の内壁3aは内部流路2の流路壁2aよりも大きな表面粗さを有するので、積層造形によって熱交換コア1を造形する場合において、ヘッダ流路3が設けられる部分の単位体積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1は全体でも造形時間が短くできるので、熱交換コア1の製造コストを低減できる。 According to the heat exchange core 1 having the inner wall 3a of the header flow path 3, the inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2, and thus the surface roughness is larger than that of the flow path wall 2a of the inner flow path 2. When modeling the heat exchange core 1, the modeling time per unit volume of the portion where the header flow path 3 is provided can be made shorter than the portion where the internal flow path 2 is provided. Therefore, since the molding time of the heat exchange core 1 can be shortened as a whole, the manufacturing cost of the heat exchange core 1 can be reduced.

複数の内部流路2は互いに平行に延在し、ヘッダ流路3は第1領域3a1と第2領域3a2とを含む。第1領域3a1は、複数の内部流路2の延在方向における一方側に位置するオーバハング領域であり、第1表面粗さを有する。第2領域3a2は、複数の内部流路2における他方側に位置する非オーバハング領域であり、第1表面粗さ以下の第2表面粗さを有する。そして、ヘッダ流路3の内壁3aの第2表面粗さは、内部流路2の流路壁2aの表面粗さよりも大きい。 The plurality of internal flow paths 2 extend in parallel with each other, and the header flow path 3 includes a first region 3a1 and a second region 3a2. The first region 3a1 is an overhang region located on one side in the extending direction of the plurality of internal flow paths 2 and has a first surface roughness. The second region 3a2 is a non-overhang region located on the other side of the plurality of internal flow paths 2 and has a second surface roughness equal to or lower than the first surface roughness. The second surface roughness of the inner wall 3a of the header flow path 3 is larger than the surface roughness of the flow path wall 2a of the inner flow path 2.

このような第1領域3a1と第2領域3a2とを含むヘッダ流路3を有する熱交換コア1によれば、ヘッダ流路3の第2領域(非オーバハング領域)3a2の第2表面粗さは第1領域(オーバハング領域)3a1の第1表面粗さ以下であり、ヘッダ流路3の第2領域(非オーバハング領域)3a2は内部流路2の流路壁2aの表面粗さよりも大きい。
よって、
第1領域3a1の第1表面粗さ≧第2領域3a2の表面粗さ>内部流路2の流路壁の表面粗さ
となる。
すなわち、第2領域(非オーバハング領域)3a2の表面粗さは第1領域(オーバハング領域)3a1の表面粗さと同等以下であり、第2領域3a2が設けられる部分の単位面積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1は全体でも造形時間が短くできるので、熱交換コア1の製造コストを低減できる。
According to the heat exchange core 1 having the header flow path 3 including the first region 3a1 and the second region 3a2, the second surface roughness of the second region (non-overhang region) 3a2 of the header flow path 3 is It is equal to or less than the first surface roughness of the first region (overhang region) 3a1, and the second region (non-overhang region) 3a2 of the header flow path 3 is larger than the surface roughness of the flow path wall 2a of the internal flow path 2.
Therefore,
The first surface roughness of the first region 3a1 ≧ the surface roughness of the second region 3a2> the surface roughness of the flow path wall of the internal flow path 2.
That is, the surface roughness of the second region (non-overhang region) 3a2 is equal to or less than the surface roughness of the first region (overhang region) 3a1, and the modeling time per unit area of the portion where the second region 3a2 is provided is internally included. It can be made shorter than the portion where the flow path 2 is provided. Therefore, since the molding time of the heat exchange core 1 can be shortened as a whole, the manufacturing cost of the heat exchange core 1 can be reduced.

[ヘッダ流路3の配置]
図4に示すように、ヘッダ流路3は、少なくとも部分的に複数の内部流路2の延在方向における複数の内部流路2の形成範囲2A内に配置される。例えば、第1ヘッダ流路31は、少なくとも部分的に第1流路21の延在方向における第1流路21の形成範囲2Aに配置される。これにより、第1ヘッダ流路31は第1流路21の延在方向において第1流路21とオーバラップする。図示しないが、例えば、第2ヘッダ流路32は、少なくとも部分的に第2流路22の延在方向における第2流路22の形成範囲2A内に配置される。これにより、第2ヘッダ流路32は第2流路22の延在方向において第2流路22とオーバラップする。例えば、第3ヘッダ流路33は、少なくとも部分的に第1流路21の延在方向における第1流路21の形成範囲に配置される。これにより、第3ヘッダ流路33は第1流路21の延在方向において第1流路21とオーバラップする。例えば、第4ヘッダ流路34は少なくとも部分的に第2流路22の延在方向における第2流路22の形成範囲内に配置される。これにより、第4ヘッダ流路34は第2流路22の延在方向において第2流路22とオーバラップする。
[Arrangement of header flow path 3]
As shown in FIG. 4, the header flow path 3 is at least partially arranged within the formation range 2A of the plurality of internal flow paths 2 in the extending direction of the plurality of internal flow paths 2. For example, the first header flow path 31 is at least partially arranged in the formation range 2A of the first flow path 21 in the extending direction of the first flow path 21. As a result, the first header flow path 31 overlaps with the first flow path 21 in the extending direction of the first flow path 21. Although not shown, for example, the second header flow path 32 is at least partially arranged within the formation range 2A of the second flow path 22 in the extending direction of the second flow path 22. As a result, the second header flow path 32 overlaps with the second flow path 22 in the extending direction of the second flow path 22. For example, the third header flow path 33 is at least partially arranged in the formation range of the first flow path 21 in the extending direction of the first flow path 21. As a result, the third header flow path 33 overlaps with the first flow path 21 in the extending direction of the first flow path 21. For example, the fourth header flow path 34 is at least partially arranged within the formation range of the second flow path 22 in the extending direction of the second flow path 22. As a result, the fourth header flow path 34 overlaps with the second flow path 22 in the extending direction of the second flow path 22.

このようなヘッダ流路3の配置の熱交換コア1によれば、ヘッダ流路3は内部流路2の延在方向の形成範囲2A内に配置されるので、内部流路2の延在方向における熱交換コア1の寸法を抑制し、熱交換コア1のコンパクト化を図ることができる。 According to the heat exchange core 1 in which the header flow path 3 is arranged in this way, the header flow path 3 is arranged within the formation range 2A in the extension direction of the internal flow path 2, so that the extension direction of the internal flow path 2 is reached. The size of the heat exchange core 1 in the above can be suppressed, and the heat exchange core 1 can be made compact.

[ヘッダ流路3と中間流路4との間の隔壁4a]
図2に示すように、ヘッダ流路3と他方の流体が流れる中間流路との間には隔壁4aが設けられている。隔壁4aは、異種流体を隔てるものであり、例えば、第1ヘッダ流路31と第2中間流路42との間には第2流体を隔てるための隔壁42aが設けられ、第2ヘッダ流路32と第1中間流路41との間には第1流体を隔てるための隔壁42bが設けられている。また、図示はしないが、例えば、第3ヘッダ流路33と第4中間流路との間には第2流体を隔てるための隔壁が設けられ、第4ヘッダ流路34と第3中間流路との間には第1流体を隔てるための隔壁が設けられている。ヘッダ流路3と他方の流体が流れる中間流路4との間の隔壁4aは、内部流路2の延在方向に沿っている(図5参照)。例えば、第1ヘッダ流路31と第2流体が流れる第2中間流路42との間の隔壁42aは、第2流路22の延在方向に沿っている。また、例えば、第2ヘッダ流路32と第1流体が流れる第1中間流路41との間の隔壁41aは、第1流路21の延在方向に沿っている。また、図示はしないが、例えば、第3ヘッダ流路33と第2流体が流れる第4中間流路との間の隔壁は、第2流路22の延在方向に沿っている。また、例えば、第4ヘッダ流路34と第1流体が流れる第1流路21との間の隔壁は、第1流路21の延在方向に沿っている。
[Partition wall 4a between header flow path 3 and intermediate flow path 4]
As shown in FIG. 2, a partition wall 4a is provided between the header flow path 3 and the intermediate flow path through which the other fluid flows. The partition wall 4a separates different fluids. For example, a partition wall 42a for separating the second fluid is provided between the first header flow path 31 and the second intermediate flow path 42, and the second header flow path is provided. A partition wall 42b for separating the first fluid is provided between the 32 and the first intermediate flow path 41. Further, although not shown, for example, a partition wall for separating the second fluid is provided between the third header flow path 33 and the fourth intermediate flow path, and the fourth header flow path 34 and the third intermediate flow path are provided. A partition wall is provided between the two and the first fluid. The partition wall 4a between the header flow path 3 and the intermediate flow path 4 through which the other fluid flows is along the extending direction of the internal flow path 2 (see FIG. 5). For example, the partition wall 42a between the first header flow path 31 and the second intermediate flow path 42 through which the second fluid flows is along the extending direction of the second flow path 22. Further, for example, the partition wall 41a between the second header flow path 32 and the first intermediate flow path 41 through which the first fluid flows is along the extending direction of the first flow path 21. Although not shown, for example, the partition wall between the third header flow path 33 and the fourth intermediate flow path through which the second fluid flows is along the extending direction of the second flow path 22. Further, for example, the partition wall between the fourth header flow path 34 and the first flow path 21 through which the first fluid flows is along the extending direction of the first flow path 21.

図5に示すように、このように内部流路2の延在方向に沿った隔壁4aを有する熱交換コア1によれば、異種流体を隔てる隔壁4aがオーバハング形状とならないので隔壁を薄肉化できる。このため、ヘッダ流路3を内部流路2配置領域側へと内側に寄せることができ、熱交換コア1のコンパクト化を実現できる。 As shown in FIG. 5, according to the heat exchange core 1 having the partition wall 4a along the extending direction of the internal flow path 2 in this way, the partition wall 4a that separates different fluids does not have an overhang shape, so that the partition wall can be thinned. .. Therefore, the header flow path 3 can be moved inward toward the internal flow path 2 arrangement region side, and the heat exchange core 1 can be made compact.

例えば、図5に示す例では、ヘッダ流路3と中間流路4との間の隔壁4aは薄肉化され、中間流路4をヘッダ流路3に近づけている。また、隔壁4aの中間流路側は中間流路4と直交する方向から視て矩形断面で構成されるが、中間流路側に傾斜する、例えば45度の傾斜面を設けてもよい。 For example, in the example shown in FIG. 5, the partition wall 4a between the header flow path 3 and the intermediate flow path 4 is thinned so that the intermediate flow path 4 is brought closer to the header flow path 3. Further, although the intermediate flow path side of the partition wall 4a has a rectangular cross section when viewed from a direction orthogonal to the intermediate flow path 4, an inclined surface of, for example, 45 degrees may be provided which is inclined toward the intermediate flow path side.

[ヘッダ流路3の内壁湾曲面]
図4及び図5に示すように、熱交換コア1は内部流路2の端部に隣接する中間流路4を備える。ヘッダ流路3の内壁3aは、円弧形状を有する湾曲面3a3を含んでいて、隔壁4aは湾曲面3a3の一部を表面に有している。そして、湾曲面3a3の曲率中心3a31は、内部流路2の延在方向において、中間流路4の形成範囲4A内に位置する。
[Curved surface of inner wall of header flow path 3]
As shown in FIGS. 4 and 5, the heat exchange core 1 includes an intermediate flow path 4 adjacent to the end of the internal flow path 2. The inner wall 3a of the header flow path 3 includes a curved surface 3a3 having an arc shape, and the partition wall 4a has a part of the curved surface 3a3 on the surface. The center of curvature 3a31 of the curved surface 3a3 is located within the formation range 4A of the intermediate flow path 4 in the extending direction of the internal flow path 2.

このような内壁湾曲面のヘッダ流路3を有する熱交換コア1によれば、円弧形状の湾曲面3a3を有するヘッダ流路3の内壁3aにおいて、円弧形状の接線方向を内部流路2の延在方向に沿わせることができ、隔壁4aの薄肉化を簡素なヘッダ流路形状により実現できる。 According to the heat exchange core 1 having the header flow path 3 of the curved surface of the inner wall, the tangential direction of the arc shape extends in the tangential direction of the inner flow path 2 in the inner wall 3a of the header flow path 3 having the curved surface 3a3 of the arc shape. It can be aligned in the existing direction, and the wall wall 4a can be thinned by a simple header flow path shape.

[熱交換コア1の製造方法]
本開示の実施形態による熱交換コア1の製造方法は、互いに平行に延在する複数の内部流路2と、複数の内部流路2と連通するヘッダ流路3とを備える熱交換コア1の製造方法である。熱交換コア1の製造方法は、内部流路2の延在方向に沿って積層造形を行うことで、内部流路2を形成するステップと、内部流路2の延在方向に沿って積層造形を行うことで、ヘッダ流路3を形成するステップと、を備える。この熱交換コア1の製造方法においてヘッダ流路3の内壁4sは内部流路2の流路壁2aよりも大きな表面粗さを有する。
[Manufacturing method of heat exchange core 1]
The method for manufacturing the heat exchange core 1 according to the embodiment of the present disclosure is a heat exchange core 1 including a plurality of internal flow paths 2 extending in parallel with each other and a header flow path 3 communicating with the plurality of internal flow paths 2. It is a manufacturing method. The heat exchange core 1 is manufactured by laminating and modeling along the extending direction of the internal flow path 2 to form the internal flow path 2 and laminating along the extending direction of the internal flow path 2. A step of forming the header flow path 3 is provided. In this method of manufacturing the heat exchange core 1, the inner wall 4s of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2.

このような熱交換コア1の製造方法によれば、ヘッダ流路3の内壁3aは内部流路2の流路壁2aよりも大きな表面粗さを有するので、ヘッダ流路3を形成するステップにおける単位体積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1全体の造形時間を短くできるので、熱交換コア1の製造コストを低減できる。 According to such a method of manufacturing the heat exchange core 1, the inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2, and therefore, in the step of forming the header flow path 3. The molding time per unit volume can be made shorter than the portion where the internal flow path 2 is provided. Therefore, since the molding time of the entire heat exchange core 1 can be shortened, the manufacturing cost of the heat exchange core 1 can be reduced.

[内部流路2とヘッダ流路3の積層造形]
内部流路2とヘッダ流路3の積層造形は、金属粉末を敷き詰めるステップと金属粉末にエネルギを付与して金属粉末を溶融凝固する一連のサイクルとする繰り返しを含む。図6に示すように、この積層造形において、ヘッダ流路3は、少なくとも部分的に、複数の内部流路2の延在方向における複数の内部流路2の形成範囲2A内に配置され、ヘッダ流路3が設けられる部分(ヘッダ部)と複数の内部流路2が設けられる部分(本体部)とが一連のサイクルによって造形される。
[Laminate modeling of internal flow path 2 and header flow path 3]
The laminated molding of the internal flow path 2 and the header flow path 3 includes a step of spreading the metal powder and a series of cycles of applying energy to the metal powder to melt and solidify the metal powder. As shown in FIG. 6, in this laminated molding, the header flow path 3 is at least partially arranged within the formation range 2A of the plurality of internal flow paths 2 in the extending direction of the plurality of internal flow paths 2, and the header. The portion where the flow path 3 is provided (header portion) and the portion where the plurality of internal flow paths 2 are provided (main body portion) are formed by a series of cycles.

このような熱交換コア1の製造方法によれば、ヘッダ流路3は内部流路2の延在方向の形成範囲2A内に配置され、ヘッダ流路3が設けられる部分と複数の内部流路2が設けられる部分が一連のサイクルによって造形されるので、内部流路2の延在方向における熱交換コア1の寸法を抑制し、熱交換コア1のコンパクト化を図ることができ、熱交換コア1の造形時間を短くできる。 According to such a method of manufacturing the heat exchange core 1, the header flow path 3 is arranged within the formation range 2A of the internal flow path 2 in the extending direction, and the portion where the header flow path 3 is provided and a plurality of internal flow paths are provided. Since the portion where 2 is provided is formed by a series of cycles, the size of the heat exchange core 1 in the extending direction of the internal flow path 2 can be suppressed, the heat exchange core 1 can be made compact, and the heat exchange core can be made compact. The modeling time of 1 can be shortened.

[エネルギの付与頻度]
金属粉末を溶融凝固するステップにおいてヘッダ流路3が設けられる部分(ヘッダ部12)に付与されるエネルギの付与頻度が複数の内部流路2が設けられる部分(本体部11)よりも少ない。例えば、上述した内部流路2とヘッダ流路3の積層造形において金属粉末をレーザ照射により溶融凝固する場合に、内部流路2が設けられる部分(本体部11)の積層造形において金属粉末にレーザを照射する回数を金属粉末を敷き詰める回数と同じにする一方、ヘッダ流路3が設けられる部分(ヘッダ部12)の積層造形において金属粉末にレーザを照射する回数を、金属粉末を敷き詰める回数の半分にする。すなわち、本体部11の積層造形では金属粉末を敷き詰める回数1回に対してレーザを照射する回数を1回にする一方、ヘッダ部12の積層造形では金属粉末を敷き詰める回数2回に対してレーザを照射する回数を1回にする。言い換えると、本体部11の積層造形では金属粉末を敷き詰めるごとにレーザを照射する一方、ヘッダ部12の積層造形ではレーザの照射を2回に1回スキップする。
[Frequency of energy application]
In the step of melting and solidifying the metal powder, the frequency of applying energy to the portion where the header flow path 3 is provided (header portion 12) is lower than that of the portion where the plurality of internal flow paths 2 are provided (main body portion 11). For example, when the metal powder is melt-solidified by laser irradiation in the laminated molding of the internal flow path 2 and the header flow path 3 described above, the laser is applied to the metal powder in the laminated molding of the portion (main body portion 11) where the internal flow path 2 is provided. The number of times of irradiating the metal powder is the same as the number of times of laying the metal powder, while the number of times of irradiating the metal powder with the laser in the laminated molding of the portion where the header flow path 3 is provided (header portion 12) is half the number of times of laying the metal powder. To. That is, in the laminated molding of the main body portion 11, the number of times of irradiating the laser is set to 1 for each number of times of spreading the metal powder, while in the laminated molding of the header portion 12, the laser is applied for the number of times of spreading the metal powder twice. The number of irradiations is set to 1. In other words, in the laminated molding of the main body portion 11, the laser is irradiated every time the metal powder is spread, while in the laminated molding of the header portion 12, the laser irradiation is skipped once every two times.

このような熱交換コア1の製造方法によれば、ヘッダ流路3が設けられる部分に付与されるエネルギの付与頻度が内部流路2が設けられる部分よりも少ないので、ヘッダ流路3が設けられる部分の単位面積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1全体の造形時間を短くできるので、熱交換コア1の製造コストを低減できる。すなわち、上述した例では、本体部11の積層造形では金属粉末を敷き詰めるごとにレーザを照射する一方、ヘッダ部12の積層造形ではレーザの照射を2回に1回スキップするので、1回スキップする分だけ造形時間を短くでき、熱交換コア1の製造コストを低減できる。 According to such a method of manufacturing the heat exchange core 1, the frequency of applying energy to the portion where the header flow path 3 is provided is lower than that of the portion where the internal flow path 2 is provided, so that the header flow path 3 is provided. The molding time per unit area of the portion to be formed can be made shorter than that of the portion where the internal flow path 2 is provided. Therefore, since the molding time of the entire heat exchange core 1 can be shortened, the manufacturing cost of the heat exchange core 1 can be reduced. That is, in the above-mentioned example, in the laminated molding of the main body portion 11, the laser is irradiated every time the metal powder is spread, while in the laminated molding of the header portion 12, the laser irradiation is skipped once every two times, so that the laser irradiation is skipped once. The molding time can be shortened by the amount, and the manufacturing cost of the heat exchange core 1 can be reduced.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.

上記各実施形態に記載の内容は、例えば、以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

(1)一の態様に係る熱交換コア1は、
複数の内部流路2と、
前記複数の内部流路2に連通するヘッダ流路3と、
を備え、
前記ヘッダ流路3の内壁3aは、前記内部流路2の流路壁2aよりも大きな表面粗さを有する。
(1) The heat exchange core 1 according to one aspect is
A plurality of internal flow paths 2 and
A header flow path 3 communicating with the plurality of internal flow paths 2 and
With
The inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2.

例えば、日本工業規格(JIS)には、表面粗さを表すパラメータとして、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、凹凸の平均間隔(Sm)、局部山頂の平均間隔(S)及び負荷長さ率(tp)の定義並びに表示について規定されており、表面粗さは、対象物の表面からランダムに抜き取った各部分におけるそれぞれの算術平均値である、とされている。 For example, in the Japanese Industrial Standards (JIS), arithmetic average roughness (Ra), maximum height (Ry), ten-point average roughness (Rz), and average spacing of irregularities (Sm) are used as parameters representing surface roughness. , The definition and display of the average interval (S) and load length ratio (tp) of the local peaks are specified, and the surface roughness is the arithmetic mean value of each part randomly extracted from the surface of the object. It is said that there is.

本開示に係る熱交換コア1によれば、ヘッダ流路3の内壁3aは内部流路2の流路壁2aよりも大きな表面粗さを有するので、積層造形によって熱交換コア1を造形する場合において、ヘッダ流路3が設けられる部分の単位体積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1全体でも造形時間が短くできるので、熱交換コア1の製造コストを低減できる。 According to the heat exchange core 1 according to the present disclosure, the inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2. Therefore, when the heat exchange core 1 is formed by laminated molding. In the above, the molding time per unit volume of the portion where the header flow path 3 is provided can be made shorter than the portion where the internal flow path 2 is provided. Therefore, since the molding time can be shortened for the entire heat exchange core 1, the manufacturing cost of the heat exchange core 1 can be reduced.

(2)別の態様に係る熱交換コア1は、(1)に記載の熱交換コア1であって、
前記複数の内部流路2は、互いに平行に延在し、
前記ヘッダ流路3は、
前記複数の内部流路2の前記延在方向における一方側に位置し、第1表面粗さを有する第1領域(オーバハング領域)2a1と、
前記延在方向における他方側に位置し、前記第1表面粗さ以下の第2表面粗さを有する第2領域(非オーバハング領域)2a2と、
を含み、
前記ヘッダ流路3の前記内壁3aの前記第2表面粗さは、前記内部流路2の前記流路壁2aの表面粗さよりも大きい。
(2) The heat exchange core 1 according to another aspect is the heat exchange core 1 according to (1).
The plurality of internal flow paths 2 extend in parallel with each other, and the plurality of internal flow paths 2 extend in parallel with each other.
The header flow path 3 is
A first region (overhang region) 2a1 located on one side of the plurality of internal flow paths 2 in the extending direction and having a first surface roughness,
A second region (non-overhang region) 2a2 located on the other side in the extending direction and having a second surface roughness equal to or lower than the first surface roughness.
Including
The second surface roughness of the inner wall 3a of the header flow path 3 is larger than the surface roughness of the flow path wall 2a of the inner flow path 2.

このような構成によれば、ヘッダ流路3の第2領域(非オーバハング領域)3a2の第2表面粗さは第1領域(オーバハング領域)3a1の第1表面粗さ以下であり、ヘッダ流路3の第2領域(非オーバハング領域)3a2は内部流路2の流路壁2aの表面粗さよりも大きい。
よって、
第1領域3a1の第1表面粗さ≧第2領域3a2の表面粗さ>内部流路2の流路壁2aの表面粗さ
となる。
すなわち、第2領域(非オーバハング領域)3a2の表面粗さは第1領域(オーバハング領域)3a1の表面粗さと同等以下であり、第2領域3a2が設けられる部分の単位面積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1は全体でも造形時間が短くできるので、熱交換コア1の製造コストを低減できる。
According to such a configuration, the second surface roughness of the second region (non-overhang region) 3a2 of the header flow path 3 is equal to or less than the first surface roughness of the first region (overhang region) 3a1. The second region (non-overhang region) 3a2 of 3 is larger than the surface roughness of the flow path wall 2a of the internal flow path 2.
Therefore,
The first surface roughness of the first region 3a1 ≧ the surface roughness of the second region 3a2> the surface roughness of the flow path wall 2a of the internal flow path 2.
That is, the surface roughness of the second region (non-overhang region) 3a2 is equal to or less than the surface roughness of the first region (overhang region) 3a1, and the modeling time per unit area of the portion where the second region 3a2 is provided is internally included. It can be made shorter than the portion where the flow path 2 is provided. Therefore, since the molding time of the heat exchange core 1 can be shortened as a whole, the manufacturing cost of the heat exchange core 1 can be reduced.

(3)さらに別の態様に係る熱交換コア1は、(1)又は(2)に記載の熱交換コア1であって、
前記ヘッダ流路3は、少なくとも部分的に、前記複数の内部流路2の延在方向における前記複数の内部流路2の形成範囲2Aに配置される。
(3) The heat exchange core 1 according to still another aspect is the heat exchange core 1 according to (1) or (2).
The header flow path 3 is at least partially arranged in the formation range 2A of the plurality of internal flow paths 2 in the extending direction of the plurality of internal flow paths 2.

このような構成によれば、ヘッダ流路3は内部流路2の延在方向の形成範囲2A内に配置されるので、内部流路2の延在方向における熱交換コア1の寸法を抑制し、熱交換コア1のコンパクト化を図ることができる。 According to such a configuration, since the header flow path 3 is arranged within the formation range 2A of the internal flow path 2 in the extending direction, the dimension of the heat exchange core 1 in the extending direction of the internal flow path 2 is suppressed. , The heat exchange core 1 can be made compact.

(4)また別の態様に係る熱交換コア1は、(1)から(3)のいずれか一つに記載の熱交換コア1であって、
ヘッダ流路3と他方の流体が流れる中間流路4との間の隔壁4aは、内部流路2の延在方向に沿っている。
(4) The heat exchange core 1 according to another aspect is the heat exchange core 1 according to any one of (1) to (3).
The partition wall 4a between the header flow path 3 and the intermediate flow path 4 through which the other fluid flows is along the extending direction of the internal flow path 2.

このような構成によれば、異種流体を隔てる隔壁4aがオーバハング形状とならないので隔壁4aを薄肉化できる。このため、ヘッダ流路3を内部流路2配置領域側へと内側に寄せることができ、熱交換コア1のコンパクト化を実現できる。 According to such a configuration, the partition wall 4a that separates different fluids does not have an overhang shape, so that the partition wall 4a can be thinned. Therefore, the header flow path 3 can be moved inward toward the internal flow path 2 arrangement region side, and the heat exchange core 1 can be made compact.

(5)また別の態様に係る熱交換コア1は、(1)から(4)のいずれか一つに記載の熱交換コア1であって、
前記内部流路2の端部に隣接して設けられる中間流路4を備え、
ヘッダ流路3の内壁3aは、円弧形状を有する湾曲面3a3を含んでいて、隔壁4aは湾曲面3a3の一部を表面に持っており、
前記湾曲面3a3の曲率中心3a31は、内部流路2の延在方向において、中間流路4の形成範囲4A内に位置する。
(5) The heat exchange core 1 according to another aspect is the heat exchange core 1 according to any one of (1) to (4).
An intermediate flow path 4 provided adjacent to the end of the internal flow path 2 is provided.
The inner wall 3a of the header flow path 3 includes a curved surface 3a3 having an arc shape, and the partition wall 4a has a part of the curved surface 3a3 on the surface.
The center of curvature 3a31 of the curved surface 3a3 is located within the formation range 4A of the intermediate flow path 4 in the extending direction of the internal flow path 2.

このようにすれば、円弧形状の湾曲面3a3を有するヘッダ流路3の内壁において、円弧形状の接線方向を内部流路2延在方向に沿わせることができ、隔壁の薄肉化を簡素なヘッダ流路形状により実現できる。 By doing so, in the inner wall of the header flow path 3 having the arc-shaped curved surface 3a3, the tangential direction of the arc shape can be made along the extension direction of the internal flow path 2, and the thinning of the partition wall can be simplified. This can be achieved by the shape of the flow path.

(6)一の態様に係る熱交換コア1の製造方法は、
互いに平行に延在する複数の内部流路2と、前記複数の内部流路2と連通するヘッダ流路3とを備える熱交換コア1の製造方法であって、
前記内部流路2の延在方向に沿って積層造形を行うことで、前記内部流路2を形成するステップと、
前記延在方向に沿って積層造形を行うことで、前記ヘッダ流路3を形成するステップと、
を備え、
前記ヘッダ流路3の内壁3aは、
前記内部流路2の流路壁2aよりも大きな表面粗さを有する。
(6) The method for manufacturing the heat exchange core 1 according to one aspect is as follows.
A method for manufacturing a heat exchange core 1 including a plurality of internal flow paths 2 extending in parallel with each other and a header flow path 3 communicating with the plurality of internal flow paths 2.
A step of forming the internal flow path 2 by performing laminated modeling along the extending direction of the internal flow path 2 and a step of forming the internal flow path 2.
A step of forming the header flow path 3 by performing laminated modeling along the extending direction, and a step of forming the header flow path 3.
With
The inner wall 3a of the header flow path 3 is
It has a surface roughness larger than that of the flow path wall 2a of the internal flow path 2.

本開示に係る熱交換コア1の製造方法によれば、ヘッダ流路3の内壁3aは内部流路2の流路壁2aよりも大きな表面粗さを有するので、ヘッダ流路3を形成するステップにおける単位体積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1は全体の造形時間を短くできるので、熱交換コア1の製造コストを低減できる。 According to the method for manufacturing the heat exchange core 1 according to the present disclosure, since the inner wall 3a of the header flow path 3 has a surface roughness larger than that of the flow path wall 2a of the inner flow path 2, the step of forming the header flow path 3 The molding time per unit volume in the above can be made shorter than the portion where the internal flow path 2 is provided. Therefore, since the heat exchange core 1 can shorten the entire molding time, the manufacturing cost of the heat exchange core 1 can be reduced.

(7)別の態様に係る熱交換コア1の製造方法は、(6)の熱交換コア1の製造方法であって、
前記積層造形は、
金属粉末を敷き詰めるステップと前記金属粉末にエネルギを付与して前記金属粉末を溶融凝固するステップを一連のサイクルとする繰り返しを含み、
前記ヘッダ流路3は、少なくとも部分的に、前記延在方向における前記複数の内部流路2の形成範囲2Aに配置され、
前記ヘッダ流路3が設けられる部分と前記複数の内部流路2が設けられる部分が前記一連のサイクルによって造形される。
(7) The method for manufacturing the heat exchange core 1 according to another aspect is the method for manufacturing the heat exchange core 1 according to (6).
The laminated modeling is
It includes a repetition of a series of cycles consisting of a step of spreading the metal powder and a step of applying energy to the metal powder to melt and solidify the metal powder.
The header flow path 3 is at least partially arranged in the formation range 2A of the plurality of internal flow paths 2 in the extending direction.
The portion where the header flow path 3 is provided and the portion where the plurality of internal flow paths 2 are provided are formed by the series of cycles.

このような方法によれば、ヘッダ流路3は内部流路2の延在方向の形成範囲2A内に配置され、ヘッダ流路3が設けられる部分と複数の内部流路2が設けられる部分が一連のサイクルによって造形されるので、内部流路2の延在方向における熱交換コア1の寸法を抑制し、熱交換コア1のコンパクト化を図ることができ、熱交換コア1の造形時間を短くできる。 According to such a method, the header flow path 3 is arranged within the formation range 2A in the extending direction of the internal flow path 2, and the portion where the header flow path 3 is provided and the portion where the plurality of internal flow paths 2 are provided are provided. Since the molding is performed by a series of cycles, the dimensions of the heat exchange core 1 in the extending direction of the internal flow path 2 can be suppressed, the heat exchange core 1 can be made compact, and the molding time of the heat exchange core 1 can be shortened. can.

(8)さらに別の態様に係る熱交換コア1の製造方法は、(7)の熱交換コア1の製造方法であって、
前記金属粉末を溶融凝固するステップにおいて前記ヘッダ流路3が設けられる部分に付与されるエネルギの付与頻度が前記複数の内部流路2が設けられる部分よりも少ない。
(8) The method for manufacturing the heat exchange core 1 according to still another aspect is the method for manufacturing the heat exchange core 1 according to (7).
In the step of melting and solidifying the metal powder, the frequency of applying energy to the portion where the header flow path 3 is provided is lower than that of the portion where the plurality of internal flow paths 2 are provided.

このような方法によれば、ヘッダ流路3が設けられる部分に付与されるエネルギの付与頻度が内部流路2が設けられる部分よりも少ないので、ヘッダ流路3が設けられる部分の単位面積当たりの造形時間を内部流路2が設けられる部分よりも短くできる。よって、熱交換コア1全体の造形時間を短くできるので、熱交換コア1の製造コストを低減できる。 According to such a method, since the frequency of applying energy to the portion where the header flow path 3 is provided is lower than that of the portion where the internal flow path 2 is provided, per unit area of the portion where the header flow path 3 is provided. The modeling time of the above can be made shorter than that of the portion where the internal flow path 2 is provided. Therefore, since the molding time of the entire heat exchange core 1 can be shortened, the manufacturing cost of the heat exchange core 1 can be reduced.

1 熱交換コア
11 本体部
111 外壁(底壁)
112 外壁(側壁)
116 外壁(上壁)
12 ヘッダ部
121 第1ヘッダ部
122 第2ヘッダ部
123 第3ヘッダ部
124 第4ヘッダ部
2 内部流路
2A 内部流路の形成範囲
2a 流路壁
21 第1流路
21a 流路壁
211 分割流路
22 第2流路
22a 流路壁
221 分割流路
23 隔壁
24 区画壁
3 ヘッダ流路
3a ヘッダ流路の内壁
3a1 第1領域
3a2 第2領域
3a3 湾曲面
3a31 曲率中心
31 第1ヘッダ流路
31a 内壁
32 第2ヘッダ流路
32a 内壁
33 第3ヘッダ流路
33a 内壁
34 第4ヘッダ流路
34a 内壁
4 中間流路
4A 形成範囲
4a 隔壁
41 第1中間流路
42 第2中間流路
42a 隔壁
1 Heat exchange core 11 Main body 111 Outer wall (bottom wall)
112 Outer wall (side wall)
116 Outer wall (upper wall)
12 Header part 121 1st header part 122 2nd header part 123 3rd header part 124 4th header part 2 Internal flow path 2A Internal flow path formation range 2a Flow path wall 21 1st flow path 21a Flow path wall 211 Divided flow Road 22 Second flow path 22a Flow path wall 221 Divided flow path 23 Partition wall 24 Partition wall 3 Header flow path 3a Inner wall of header flow path 3a1 First area 3a2 Second area 3a3 Curved surface 3a31 Curvature center 31 First header flow path 31a Inner wall 32 Second header flow path 32a Inner wall 33 Third header flow path 33a Inner wall 34 Fourth header flow path 34a Inner wall 4 Intermediate flow path 4A Formation range 4a Partition 41 First intermediate flow path 42 Second intermediate flow path 42a Partition

Claims (8)

複数の内部流路と、
前記複数の内部流路に連通するヘッダ流路と、
を備え、
前記ヘッダ流路の内壁は、前記内部流路の流路壁よりも大きな表面粗さを有する、
熱交換コア。
With multiple internal channels
A header flow path communicating with the plurality of internal flow paths and
With
The inner wall of the header flow path has a larger surface roughness than the flow path wall of the inner flow path.
Heat exchange core.
前記複数の内部流路は、互いに平行に延在し、
前記ヘッダ流路は、
前記複数の内部流路の延在方向における一方側に位置し、第1表面粗さを有する第1領域と、
前記延在方向における他方側に位置し、前記第1表面粗さ以下の第2表面粗さを有する第2領域と、
を含み、
前記ヘッダ流路の前記内壁の前記第2表面粗さは、前記内部流路の前記流路壁の表面粗さよりも大きい
請求項1に記載の熱交換コア。
The plurality of internal flow paths extend parallel to each other, and the plurality of internal flow paths extend in parallel with each other.
The header flow path is
A first region located on one side of the plurality of internal flow paths in the extending direction and having a first surface roughness,
A second region located on the other side in the extending direction and having a second surface roughness equal to or lower than the first surface roughness,
Including
The heat exchange core according to claim 1, wherein the second surface roughness of the inner wall of the header flow path is larger than the surface roughness of the flow path wall of the inner flow path.
前記ヘッダ流路は、少なくとも部分的に、前記複数の内部流路の延在方向における前記複数の内部流路の形成範囲に配置される、
請求項1又は2に記載の熱交換コア。
The header flow path is at least partially arranged in the formation range of the plurality of internal flow paths in the extending direction of the plurality of internal flow paths.
The heat exchange core according to claim 1 or 2.
ヘッダ流路と他方の流体が流れる中間流路との間の隔壁は、内部流路の延在方向に沿っている、
請求項1から3のいずれか一項に記載の熱交換コア。
The partition wall between the header flow path and the other intermediate flow path through which the fluid flows is along the extending direction of the internal flow path.
The heat exchange core according to any one of claims 1 to 3.
前記内部流路の端部に隣接して設けられる中間流路を備え、
ヘッダ流路の内壁は、円弧形状を有する湾曲面を含み、隔壁は湾曲面の一部を表面に有し、
前記湾曲面の曲率中心は、内部流路の延在方向において、中間流路の形成範囲内に位置する、
請求項1から4のいずれか一項に記載の熱交換コア。
An intermediate flow path provided adjacent to the end of the internal flow path is provided.
The inner wall of the header flow path includes a curved surface having an arc shape, and the partition wall has a part of the curved surface on the surface.
The center of curvature of the curved surface is located within the formation range of the intermediate flow path in the extending direction of the internal flow path.
The heat exchange core according to any one of claims 1 to 4.
互いに平行に延在する複数の内部流路と、前記複数の内部流路と連通するヘッダ流路とを備える熱交換コアの製造方法であって、
前記内部流路の延在方向に沿って積層造形を行うことで、前記内部流路を形成するステップと、
前記延在方向に沿って積層造形を行うことで、前記ヘッダ流路を形成するステップと、
を備え、
前記ヘッダ流路の内壁は、
前記内部流路の流路壁よりも大きな表面粗さを有する、
熱交換コアの製造方法。
A method for manufacturing a heat exchange core including a plurality of internal flow paths extending in parallel with each other and a header flow path communicating with the plurality of internal flow paths.
A step of forming the internal flow path by performing laminated modeling along the extending direction of the internal flow path, and a step of forming the internal flow path.
The step of forming the header flow path by performing laminated modeling along the extending direction, and
With
The inner wall of the header flow path is
It has a surface roughness larger than that of the flow path wall of the internal flow path.
How to manufacture a heat exchange core.
前記積層造形は、
金属粉末を敷き詰めるステップと前記金属粉末にエネルギを付与して前記金属粉末を溶融凝固するステップを一連のサイクルとする繰り返しを含み、
前記ヘッダ流路は、少なくとも部分的に、前記延在方向における前記複数の内部流路の形成範囲に配置され、
前記ヘッダ流路が設けられる部分と前記複数の内部流路が設けられる部分が前記一連のサイクルによって造形される、
請求項6に記載の熱交換コアの製造方法。
The laminated modeling is
It includes a repetition of a series of cycles consisting of a step of spreading the metal powder and a step of applying energy to the metal powder to melt and solidify the metal powder.
The header flow path is at least partially arranged in the formation range of the plurality of internal flow paths in the extending direction.
The portion provided with the header flow path and the portion provided with the plurality of internal flow paths are formed by the series of cycles.
The method for manufacturing a heat exchange core according to claim 6.
前記金属粉末を溶融凝固するステップにおいて前記ヘッダ流路が設けられる部分に付与されるエネルギの付与頻度が前記複数の内部流路が設けられる部分よりも少ない、
請求項7に記載の熱交換コアの製造方法。
In the step of melting and solidifying the metal powder, the frequency of applying energy to the portion provided with the header flow path is lower than that of the portion provided with the plurality of internal flow paths.
The method for manufacturing a heat exchange core according to claim 7.
JP2020031525A 2020-02-27 2020-02-27 Method of manufacturing heat exchange core Active JP7437971B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020031525A JP7437971B2 (en) 2020-02-27 2020-02-27 Method of manufacturing heat exchange core
PCT/JP2021/006793 WO2021172331A1 (en) 2020-02-27 2021-02-24 Heat exchange core, heat exchanger, and method for manufacturing heat exchange core
US17/800,665 US20230349641A1 (en) 2020-02-27 2021-02-24 Heat exchanger core, heat exchanger, and method of producing heat exchanger core
CN202180016130.2A CN115176121A (en) 2020-02-27 2021-02-24 Heat exchange core, heat exchanger, and method for manufacturing heat exchange core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031525A JP7437971B2 (en) 2020-02-27 2020-02-27 Method of manufacturing heat exchange core

Publications (2)

Publication Number Publication Date
JP2021134986A true JP2021134986A (en) 2021-09-13
JP7437971B2 JP7437971B2 (en) 2024-02-26

Family

ID=77660967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031525A Active JP7437971B2 (en) 2020-02-27 2020-02-27 Method of manufacturing heat exchange core

Country Status (1)

Country Link
JP (1) JP7437971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116214152A (en) * 2022-12-30 2023-06-06 绍兴百立杰环保科技有限公司 Assembling device for total heat exchange core

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309637A (en) * 1992-10-13 1994-05-10 Rockwell International Corporation Method of manufacturing a micro-passage plate fin heat exchanger
US20050133527A1 (en) * 1999-07-07 2005-06-23 Optomec Design Company Powder feeder for material deposition systems
JP2010127604A (en) * 2008-12-01 2010-06-10 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
WO2010098479A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
CN204830955U (en) * 2015-07-14 2015-12-02 成都三鼎日新激光科技有限公司 Novel microchannel plate formula heat exchanger based on 3D printing technique
US20180283810A1 (en) * 2017-04-04 2018-10-04 Hamilton Sundstrand Corporation Heat exchanger
JP2018204861A (en) * 2017-06-02 2018-12-27 サンデンホールディングス株式会社 Heat exchanger
CN110662393A (en) * 2018-06-29 2020-01-07 波音公司 Additive manufactured heat transfer device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309637A (en) * 1992-10-13 1994-05-10 Rockwell International Corporation Method of manufacturing a micro-passage plate fin heat exchanger
US20050133527A1 (en) * 1999-07-07 2005-06-23 Optomec Design Company Powder feeder for material deposition systems
JP2010127604A (en) * 2008-12-01 2010-06-10 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
WO2010098479A1 (en) * 2009-02-24 2010-09-02 パナソニック電工株式会社 Process for producing three-dimensional shape and three-dimensional shape obtained thereby
CN204830955U (en) * 2015-07-14 2015-12-02 成都三鼎日新激光科技有限公司 Novel microchannel plate formula heat exchanger based on 3D printing technique
US20180283810A1 (en) * 2017-04-04 2018-10-04 Hamilton Sundstrand Corporation Heat exchanger
JP2018204861A (en) * 2017-06-02 2018-12-27 サンデンホールディングス株式会社 Heat exchanger
CN110662393A (en) * 2018-06-29 2020-01-07 波音公司 Additive manufactured heat transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116214152A (en) * 2022-12-30 2023-06-06 绍兴百立杰环保科技有限公司 Assembling device for total heat exchange core

Also Published As

Publication number Publication date
JP7437971B2 (en) 2024-02-26

Similar Documents

Publication Publication Date Title
JP4445384B2 (en) Stacked plate heat transfer body
JP5985471B2 (en) Plate heat exchanger and method for manufacturing plate heat exchanger
JP5486239B2 (en) Header plateless heat exchanger
US20160305718A1 (en) Hybrid heat exchanger structures
US11109511B2 (en) Cooling device and method of manufacturing cooling device
JP2022008275A (en) Heat exchanger
KR102587020B1 (en) Diffusion bonded heat exchanger
JP2021134986A (en) Heat exchange core and manufacturing method for heat exchange core
GB2552956A (en) Heat exchanger device
JPH02306097A (en) Heat sink
CA2978795A1 (en) Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same
JPWO2017159880A1 (en) Plate stack heat exchanger
WO2021172331A1 (en) Heat exchange core, heat exchanger, and method for manufacturing heat exchange core
KR100238602B1 (en) A lamination type heat exchanger
JP2021135038A (en) Heat exchange core, heat exchanger, and manufacturing method of heat exchange core
JP7505400B2 (en) Heat exchanger
JP2005188787A (en) Header tank for heat exchanger
JP7472564B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP2014066411A (en) Plate type heat exchanger
JP7505401B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP7499719B2 (en) Additive manufacturing
JP6343183B2 (en) Flat tube for header plateless heat exchanger
JP2005233454A (en) Heat exchanger
JPH0335992Y2 (en)
JP2000320986A (en) Plate type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7437971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150