JP2021134426A - Manufacturing method of sintered ore - Google Patents

Manufacturing method of sintered ore Download PDF

Info

Publication number
JP2021134426A
JP2021134426A JP2021019588A JP2021019588A JP2021134426A JP 2021134426 A JP2021134426 A JP 2021134426A JP 2021019588 A JP2021019588 A JP 2021019588A JP 2021019588 A JP2021019588 A JP 2021019588A JP 2021134426 A JP2021134426 A JP 2021134426A
Authority
JP
Japan
Prior art keywords
raw material
stage
blended
compounding
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021019588A
Other languages
Japanese (ja)
Inventor
一昭 片山
Kazuaki Katayama
一昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2021134426A publication Critical patent/JP2021134426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To improve productivity by a two-stage ignition sintering method.SOLUTION: A manufacturing method of sintered ore includes: a step for forming a lower-stage raw material packed bed by charging a blended raw material for a lower stage into a sintering machine; a step for forming an upper-stage raw material packed bed by charging a blended raw material for an upper stage onto the lower-stage raw material packed bed; and a step for igniting the surface of the lower-stage raw material packed bed and the upper-stage raw material packed bed individually, and also sucking oxygen-containing gas in the lower-stage raw material packed bed and the upper-stage raw material packed bed downward. In the manufacturing method of sintered ore, the calorific volume of an iron-containing substance having an oxidation heat generation property, blended in the blended raw material for the upper stage, per unit new raw material is made larger than the calorific volume of an iron-containing substance having an oxidation heat generation property, blended in the blended raw material for the lower stage, per unit new raw material.SELECTED DRAWING: Figure 2

Description

本発明は、高炉原料用の焼結鉱を製造する焼結鉱の製造方法に関する。 The present invention relates to a method for producing a sinter for producing a sinter for a blast furnace raw material.

現在、高炉製銑の主原料は、焼結鉱である。焼結鉱は、通常、次のように製造される。まず、焼結鉱製造用の原料として、鉄鉱石(粉)等の鉄原料、スケール・製鉄ダスト等の含鉄雑原料、橄欖岩等のMgO含有副原料、石灰石等のCaO含有副原料、返鉱、燃焼熱によって焼結鉱を焼結(凝結)させる燃料となる炭材(凝結材)などを、所定の割合で混合する。混合した配合原料を造粒して配合原料造粒物とする。次に、配合原料造粒物を、ホッパより、下方吸引式のドワイトロイド(DL)式焼結機のパレット(焼結パレット)上に搭載して、原料充填層を形成する。形成した原料充填層の上部(表面)から、点火炉(点火器)により原料充填層中の炭材に点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引する。吸引により原料充填層内に酸素を供給し、原料充填層中の炭材の燃焼を上部から下部に向けて進行させて、炭材の燃焼熱により原料充填層を順次焼結させる。焼結により得られた焼結部3(シンターケーキ)は、所定の粒度に粉砕、篩分け等により整粒され、高炉の原料である焼結鉱となる。 Currently, the main raw material for blast furnace ironmaking is sinter. Sintered ore is usually produced as follows. First, as raw materials for sinter production, iron raw materials such as iron ore (powder), iron-containing miscellaneous raw materials such as scale and iron-making dust, MgO-containing auxiliary raw materials such as sinter, CaO-containing auxiliary raw materials such as limestone, and return ore. , Carbon material (condensing material), which is a fuel for sintering (coagulating) sinter by heat of combustion, is mixed at a predetermined ratio. The mixed compounded raw material is granulated to obtain a compounded raw material granulated product. Next, the compounded raw material granulated product is mounted on a pallet (sintered pallet) of a downward suction type Dwightroid (DL) type sintering machine from a hopper to form a raw material filling layer. From the upper part (surface) of the formed raw material filling layer, the charcoal material in the raw material filling layer is ignited by an ignition furnace (igniter). Then, air is sucked from below the pallet while continuously moving the pallet. Oxygen is supplied into the raw material filling layer by suction, combustion of the charcoal material in the raw material filling layer proceeds from the upper part to the lower part, and the raw material filling layer is sequentially sintered by the combustion heat of the carbonaceous material. The sintered portion 3 (sinter cake) obtained by sintering is pulverized to a predetermined particle size, sized by sieving, etc., and becomes a sintered ore which is a raw material of a blast furnace.

このようなDL式焼結機による焼結鉱の製造方法において、原料充填層の形成と点火を二段以上の多段で行う多段装入多段点火焼結法が提案されている。多段装入多段点火焼結法は、造粒した配合原料を焼結機の層高方向に順次に装入して多段(二段以上)の原料充填層を形成するとともに各原料充填層の表面に点火し、下方から空気を吸引することにより、各層の焼結反応を同時並行に進行させて焼結する方法である。 In the method for producing a sintered ore by such a DL type sinter, a multi-stage charging multi-stage ignition sintering method in which a raw material packing layer is formed and ignition is performed in multiple stages of two or more stages has been proposed. In the multi-stage charging multi-stage ignition sintering method, the granulated compounded raw materials are sequentially charged in the layer height direction of the sintering machine to form a multi-stage (two or more stages) raw material filling layer and the surface of each raw material filling layer. Is ignited and air is sucked from below, so that the sintering reaction of each layer proceeds in parallel at the same time to sinter.

図1は、多段装入多段点火焼結法の一例である二段装入二段点火焼結法に使用するDL式焼結機の概要図である。図1を参照して、造粒した配合原料を二段に装入して、上段原料充填層(以下、上段層という)と下段原料充填層(以下、下段層という)とを形成し、上段層と下段層のそれぞれに点火して焼結を実施する二段装入二段点火焼結法について説明する。 FIG. 1 is a schematic view of a DL type sintering machine used in a two-stage charging two-stage ignition sintering method, which is an example of a multi-stage charging multi-stage ignition sintering method. With reference to FIG. 1, the granulated compounding raw material is charged in two stages to form an upper raw material filling layer (hereinafter referred to as an upper layer) and a lower raw material filling layer (hereinafter referred to as a lower layer). A two-stage charging two-stage ignition sintering method in which each of the layer and the lower layer is ignited to perform sintering will be described.

図1に示す例では、上段層20を形成する上段用配合原料と、下段層10を形成する下段用配合原料とが別系統(2系統)で準備されて、別系統で焼結機100のパレット(図示は省略)上に装入される。具体的には、下段用の原料は、下段原料槽群1Dの各原料槽(1D〜1D)内に貯留され、必要な種類と量の原料が所定の割合で切り出されて配合される。配合された下段用の原料(下段用配合原料)は、下段用ドラムミキサー1Aに投入されて混合され、水分が加えられて造粒される。また、上段用の原料は、上段原料槽群2Dの各原料槽(2D〜2D)内に貯留され、必要な種類と量の原料が所定の割合で切り出されて配合される。配合された上段用の原料(上段用配合原料)は、上段用ドラムミキサー2Aに投入されて混合され、水分が加えられて造粒される。 In the example shown in FIG. 1, the upper compounding material forming the upper layer 20 and the lower compounding material forming the lower layer 10 are prepared in separate systems (two systems), and the sintering machine 100 is prepared in another system. It is loaded on a pallet (not shown). Specifically, the raw material for the lower stage, stored in each raw material tank of the lower raw material tank group 1D (1D 1 ~1D X) in the required type and amount of the raw material is blended with cut out at a predetermined rate .. The blended raw material for the lower stage (blended raw material for the lower stage) is charged into the drum mixer 1A for the lower stage, mixed, and water is added to granulate. Further, the raw materials for the upper stage are stored in each raw material tank (2D 1 to 2D y ) of the upper raw material tank group 2D, and the required types and amounts of raw materials are cut out at a predetermined ratio and blended. The blended raw material for the upper stage (blended raw material for the upper stage) is charged into the upper drum mixer 2A, mixed, and water is added to granulate.

造粒された下段用配合原料(下段用配合原料造粒物)は、下段用ホッパ1Bから、床敷鉱を敷きつめたパレット上に装入されて、下段層10(下段原料充填層)を形成する。下段層10は、パレットをパレット進行方向5へ移動させることにより、下段用点火器1C下まで移動し、そこで、下段用点火器1Cにより下段層10表面の炭材に点火される。点火後、パレット下の風箱(図示は省略)を介して、下方から空気を吸引する下方吸引6により、下段層10の焼結が開始される。下段層10の焼結は、引き続く下方吸引6により下方に進行し、下段層燃焼帯10Aを形成する。 The granulated lower compound raw material (lower compound raw material granulated product) is charged from the lower hopper 1B onto a pallet lined with bedding ore to form the lower layer 10 (lower raw material filling layer). do. The lower layer 10 moves to the bottom of the lower igniter 1C by moving the pallet in the pallet traveling direction 5, where the carbon material on the surface of the lower layer 10 is ignited by the lower igniter 1C. After ignition, the lower layer 10 is started to be sintered by the lower suction 6 that sucks air from below through the air box (not shown) under the pallet. The sintering of the lower layer 10 proceeds downward by the subsequent downward suction 6, and forms the lower layer combustion zone 10A.

焼結が開始された下段層10が上段用ホッパ2B下まで移動したとき、上段用ドラムミキサー2Aにより造粒された上段用配合原料(上段用配合原料造粒物)は、上段用ホッパ2Bから、点火後の下段層10上に装入されて、上段層20(上段原料充填層)を形成する。上段層20は、パレットをパレット進行方向5へ移動させることにより、上段用点火器2C下まで移動し、そこで、上段用点火器2Cにより上段層20表面の炭材に点火される。点火後、下方吸引6により、上段層20の焼結が開始される。上段層20の焼結は、引き続く下方吸引6により下方に進行し、上段層燃焼帯20Aを形成する。 When the lower layer 10 from which sintering has started moves to the bottom of the upper hopper 2B, the upper compounded raw material (upper compounded raw material granulated product) granulated by the upper drum mixer 2A starts from the upper hopper 2B. , It is charged onto the lower layer 10 after ignition to form the upper layer 20 (upper raw material filling layer). The upper layer 20 moves to the bottom of the upper igniter 2C by moving the pallet in the pallet traveling direction 5, where the carbon material on the surface of the upper layer 20 is ignited by the upper igniter 2C. After ignition, the lower suction 6 starts sintering of the upper layer 20. The sintering of the upper layer 20 proceeds downward by the subsequent downward suction 6, and forms the upper layer combustion zone 20A.

下段層10の下段層燃焼帯10A、および、上段層20の上段層燃焼帯20Aは、その後の更なる下方吸引6により、同時並行で焼結が進行し下降する。下段層燃焼帯10A、上段層燃焼帯20Aがそれぞれの層の最下部まで到達すると、炭材の燃焼による焼結が終了し、下段層10および上段層20は焼結部3となる。最終的に、焼結が完了した焼結部3は、パレット終端より排鉱される。 The lower layer combustion zone 10A of the lower layer 10 and the upper layer combustion zone 20A of the upper layer 20 are simultaneously sintered and lowered by the further downward suction 6. When the lower layer combustion zone 10A and the upper layer combustion zone 20A reach the bottom of each layer, sintering by combustion of the carbonaceous material is completed, and the lower layer 10 and the upper layer 20 become the sintered portion 3. Finally, the sintered portion 3 that has been sintered is discharged from the end of the pallet.

二段装入二段点火焼結法においては、原料充填層を二段にして、二段で同時に焼結を進行させるため、生産量をほぼ倍増させることができる。また、上段層20の焼結に使用された排ガスを、下方吸引により下段層10の焼結に再使用するため、排ガス量を低減(半減)させることができる。 In the two-stage charging two-stage ignition sintering method, the raw material filling layer is made into two stages, and the sintering proceeds simultaneously in the two stages, so that the production amount can be substantially doubled. Further, since the exhaust gas used for sintering the upper layer 20 is reused for sintering the lower layer 10 by downward suction, the amount of exhaust gas can be reduced (halved).

多段装入多段点火焼結法については、特許文献1,2などに開示がある。特許文献1には、多段装入多段点火焼結法は各層の原料の供給比率を変えることができるため、上段層20と下段層10の原料の粒度調整などにより、歩留の向上などが得られることが記載されている。 The multi-stage charging multi-stage ignition sintering method is disclosed in Patent Documents 1 and 2. According to Patent Document 1, since the multi-stage charging multi-stage ignition sintering method can change the supply ratio of the raw materials of each layer, the yield can be improved by adjusting the particle size of the raw materials of the upper layer 20 and the lower layer 10. It is stated that it will be done.

特許文献2には、2段点火式焼結方法における本質的な欠点として、吸気入側層から吸気出側層に流入するガスの酸素濃度が低いために、吸気出側層に配合された燃料が不完全燃焼の状態に陥りやすく、燃焼発熱量が減少するので層内温度が低下し、十分な溶融焼結化ができず、成品焼結鉱の強度劣化を招くことが指摘されている。二段装入二段点火焼結法においては、上段層20の焼結に使用されて酸素分圧が低下したガス(排ガス)が、下方吸引6により下段層10に供給され、下段層10の焼結に使われる。そのため、下段層10では低酸素分圧下での焼結となり、下段層10中の炭材の燃焼が不完全となり、焼結に必要な熱量が不足する。熱量不足により、下段層10の焼結反応の進行が妨げられ、下段層10の焼結鉱の強度が低下する。 In Patent Document 2, as an essential drawback of the two-stage ignition type sintering method, the fuel blended in the intake / output side layer is blended because the oxygen concentration of the gas flowing from the intake inlet side layer to the intake / output side layer is low. However, it has been pointed out that the incomplete combustion state is likely to occur, and the calorific value of combustion is reduced, so that the temperature inside the layer is lowered and sufficient melt sintering cannot be performed, resulting in deterioration of the strength of the product sinter. In the two-stage charging two-stage ignition sintering method, the gas (exhaust gas) used for sintering the upper layer 20 and whose oxygen partial pressure is lowered is supplied to the lower layer 10 by the lower suction 6, and the lower layer 10 is supplied with gas (exhaust gas). Used for sintering. Therefore, the lower layer 10 is sintered under a low oxygen partial pressure, the combustion of the carbonaceous material in the lower layer 10 is incomplete, and the amount of heat required for sintering is insufficient. Due to the insufficient amount of heat, the progress of the sinter reaction of the lower layer 10 is hindered, and the strength of the sinter of the lower layer 10 decreases.

この問題の解決方法として、特許文献2には、2層のうち吸気出側の配合原料層(下段原料充填層)中の固定炭素濃度を0または2wt%以下にし、代わりに、燃料として酸化可能な鉄分含有物質である金属鉄、FeO、Feのいずれか1種または2種以上を含有する原料を配合する技術が開示されている。吸気出側層の配合原料中に酸化熱を発する鉄分含有物質を含有する原料を配合することで、酸素濃度の低いガスによっても溶融焼結化に十分な発熱量を得ることができ、焼結機の生産性を大幅に向上させることができることが記載されている。 As a solution to this problem, Patent Document 2 states that the fixed carbon concentration in the compounding raw material layer (lower raw material filling layer) on the intake side of the two layers is set to 0 or 2 wt% or less, and instead, it can be oxidized as a fuel. A technique for blending a raw material containing any one or more of metallic iron, FeO, and Fe 3 O 4 , which are iron-containing substances, is disclosed. By blending a raw material containing an iron-containing substance that generates heat of oxidation into the blended raw material of the intake outlet side layer, it is possible to obtain a sufficient calorific value for melt sintering even with a gas having a low oxygen concentration, and sintering. It is stated that the productivity of the machine can be significantly improved.

特開昭47−26304号公報Japanese Unexamined Patent Publication No. 47-26304 特開平09−279261号公報Japanese Unexamined Patent Publication No. 09-279261

本発明は、上記の問題に鑑みて新規に創案された焼結鉱の製造方法である。本発明の目的は、二段装入二段点火焼結法(以下、単に二段点火焼結法ともいう。)における生産性(生産率)の更なる向上を可能とする焼結鉱の製造方法を提供することにある。 The present invention is a method for producing a sinter newly devised in view of the above problems. An object of the present invention is the production of a sinter capable of further improving productivity (production rate) in a two-stage charging two-stage ignition sinter method (hereinafter, also simply referred to as a two-stage ignition sintering method). To provide a method.

本発明は、上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。
(1)焼結機内に下段用配合原料を装入することで、下段原料充填層を形成する工程と、
前記下段原料充填層上に上段用配合原料を装入することで、上段原料充填層を形成する工程と、
前記下段原料充填層の表面および前記上段原料充填層の表面をそれぞれ点火するとともに、前記下段原料充填層および前記上段原料充填層中の酸素含有ガスを下方に吸引する工程と、を含み、
前記下段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量よりも、前記上段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量が大きい、
ことを特徴とする焼結鉱の製造方法。
(2)前記上段用配合原料及び前記下段用配合原料に酸化発熱性を有する鉄分含有物質を含有する原料が単数使用される場合において、
前記上段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)が、前記下段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)よりも大きい、
ことを特徴とする(1)に記載の焼結鉱の製造方法。
(3)前記下段用配合原料に配合される炭材の粒度よりも、前記上段用配合原料に配合される炭材の粒度が大きい、
ことを特徴とする(1)又は(2)に記載の焼結鉱の製造方法。
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) The process of forming the lower raw material filling layer by charging the lower raw material into the sintering machine, and
A step of forming an upper raw material filling layer by charging the upper mixed raw material onto the lower raw material filling layer, and a step of forming the upper raw material filling layer.
The steps include igniting the surface of the lower raw material filling layer and the surface of the upper raw material filling layer, respectively, and sucking the oxygen-containing gas in the lower raw material filling layer and the upper raw material filling layer downward.
Unit of iron-containing substance having oxidative heat generation compounded in the lower compounding raw material Unit of iron-containing substance compounded in the upper compounding material Rather than the calorific value per new raw material The amount of heat generated is large,
A method for producing a sinter, which is characterized in that.
(2) When a single raw material containing an iron-containing substance having an oxidative exothermic property is used in the upper compounding material and the lower compounding material.
The blending ratio (mass%) of the raw material containing the iron-containing substance having oxidative heat generating property to be blended in the upper compounding raw material in the new raw material is the iron content having oxidative heat generating property to be blended in the lower compounding raw material. It is larger than the compounding ratio (mass%) of the raw material containing the substance in the new raw material.
The method for producing a sinter according to (1).
(3) The particle size of the charcoal material blended in the upper compounding raw material is larger than the particle size of the charcoal material blended in the lower compounding raw material.
The method for producing a sinter according to (1) or (2).

本発明によれば、酸化発熱性を有する鉄分含有物質の上段層の配合量を、下段層よりも多くすることで、二段点火焼結法による生産性を向上させることができる。 According to the present invention, the productivity of the two-stage ignition sintering method can be improved by increasing the amount of the upper layer of the iron-containing substance having oxidative heat generation to be larger than that of the lower layer.

二段点火焼結法に使用するDL式焼結機の概要図である。It is a schematic diagram of the DL type sintering machine used for the two-stage ignition sintering method. 本発明の一実施形態である二段点火焼結法の原料処理工程を示す図である。It is a figure which shows the raw material processing process of the two-step ignition sintering method which is one Embodiment of this invention.

二段点火焼結法は、上述のように、下段原料充填層(下段層10)における焼結鉱の焼結強度の低下が問題となる。本発明者は、特許文献2とは異なり、下段層焼結鉱の強度低下が問題となる二段点火焼結法に対する新たな視点として、上段層20で、酸素濃度の高い排ガスを下段層10へ供給できる発熱源を使用することを思いついた。 As described above, the two-stage ignition sintering method has a problem of lowering the sintering strength of the sinter in the lower raw material filling layer (lower layer 10). Unlike Patent Document 2, the present inventor presents the exhaust gas having a high oxygen concentration in the upper layer 20 as the lower layer 10 as a new viewpoint for the two-stage ignition sintering method in which the decrease in strength of the lower layer sinter is a problem. I came up with the idea of using a heat source that can be supplied to.

本発明は、二段点火焼結法において、下段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量よりも、上段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量が大きいことに特徴がある。また、上段用配合原料及び前記下段用配合原料に、酸化発熱性を有する鉄分含有物質を含有する原料が単数使用される場合において、上段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)を、下段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)よりも大きくしてもよい。ここで、酸化発熱性を有する鉄分含有物質(以下、鉄分含有物質Fともいう)とは、酸化発熱性を有する鉄分である金属鉄(Fe)、ウスタイト(FeO)、およびマグネタイト(Fe)のうちの少なくとも1つを含有する物質である。酸化発熱性を有する鉄分含有物質Fを含有する原料(以下、適宜、発熱性原料という)とは、還元鉄粉、スケール、転炉ダスト、スチール缶チップなどである。また、鉄鉱石のうち、その成分に酸化発熱性を有する鉄分である金属鉄(Fe)、ウスタイト(FeO)、およびマグネタイト(Fe)のうちの少なくとも1つを含有するものも、鉄分含有物質Fを含有する原料に含まれる。 In the two-stage ignition sintering method, the present invention has an oxidative heat generation property to be blended in the upper compounding raw material rather than the calorific value per unit new raw material of the iron-containing substance having oxidative heat generation property to be blended in the lower step compounding raw material. It is characterized by a large calorific value per unit new raw material of the iron-containing substance having. Further, when a single raw material containing an iron-containing substance having an oxidative heat-generating property is used for the upper-stage compounding raw material and the lower-stage compounding raw material, the iron-containing substance having an oxidative heat-generating property to be blended in the upper-stage compounding raw material. The blending ratio (mass%) of the raw material containing the above in the new raw material is larger than the blending ratio (mass%) of the raw material containing the iron-containing substance having oxidative heat generating property to be blended in the lower blending raw material. It may be increased. Here, the iron-containing substance having oxidative heat-generating property (hereinafter, also referred to as iron-containing substance F) is metallic iron (Fe), wustite (FeO), and magnetite (Fe 3 O 4), which are iron components having oxidative heat-generating property. ) Is a substance containing at least one of. The raw material containing the iron-containing substance F having an oxidative heat-generating property (hereinafter, appropriately referred to as a heat-generating raw material) is reduced iron powder, scale, converter dust, steel can chips and the like. In addition, iron ore containing at least one of metallic iron (Fe), wustite (FeO), and magnetite (Fe 3 O 4), which are iron components having oxidative heat generation properties, also contains iron content. It is contained in the raw material containing the contained substance F.

高温下となる焼結過程において、金属鉄(Fe)、ウスタイト(FeO)、およびマグネタイト(Fe)は酸化され、例えば、金属鉄(Fe)やウスタイト(FeO)はマグネタイト(Fe)やヘマタイト(Fe)に、マグネタイト(Fe)はヘマタイト(Fe)に変化する。これらの酸化反応は発熱反応である。スケールなどの発熱性原料は、従来の焼結鉱の製造方法において、鉄成分の有効利用のために含鉄雑原料として配合原料に配合され、原料充填層全体において均一の濃度で使用されることが一般的である。また、上述のように、鉄分含有物質Fは焼結過程において発熱反応を起こすため、発熱性原料を凝結材に代わる発熱源として使用することもできる。 In the sintering process under high temperature, metallic iron (Fe), wustite (FeO), and magnetite (Fe 3 O 4 ) are oxidized. For example, metallic iron (Fe) and wustite (Fe O) are magnetite (Fe 3 O). 4 ) and hematite (Fe 2 O 3 ), and magnetite (Fe 3 O 4 ) are changed to hematite (Fe 2 O 3). These oxidation reactions are exothermic reactions. In the conventional method for producing a sintered ore, a heat-generating raw material such as scale is blended as an iron-containing miscellaneous raw material in a compounding raw material for effective utilization of an iron component, and is used at a uniform concentration in the entire raw material packing layer. It is common. Further, as described above, since the iron-containing substance F causes an exothermic reaction in the sintering process, a heat-generating raw material can be used as a heat-generating source instead of the coagulant.

本発明者は、二段点火焼結法の改善手段を種々検討した結果、上段層の発熱源として発熱性原料を用いることにより、下段層の炭材の燃焼性が改善し、生産性の向上が実現できることを見出した。後述する実施例(実験2)に示すように、発熱性原料を発熱源として使用すると、炭材(コークス等)を使用した場合よりも、焼結排ガス中に酸素が高濃度に残留する。上段層において発熱源として発熱性原料を用い、それに含有される鉄分含有物質Fに見合う分の炭材を減じることにより、上段層の焼結排ガスは酸素が高濃度に残留した状態で下段層に供給されて、下段層において焼結に必要な熱量を確保し、生産性を改善することができる。 As a result of various studies on the means for improving the two-stage ignition sintering method, the present inventor has improved the combustibility of the carbonaceous material in the lower layer and improved the productivity by using the heat-generating raw material as the heat generating source in the upper layer. Was found to be feasible. As shown in Example (Experiment 2) described later, when a heat-generating raw material is used as a heat-generating source, oxygen remains in a higher concentration in the sintered exhaust gas than when a charcoal material (coke or the like) is used. By using a heat-generating raw material as a heat-generating source in the upper layer and reducing the amount of carbonaceous material corresponding to the iron-containing substance F contained therein, the sintered exhaust gas in the upper layer is placed in the lower layer with oxygen remaining in a high concentration. When supplied, the amount of heat required for sintering can be secured in the lower layer, and productivity can be improved.

発熱性原料であるスケールなどは、二段点火焼結法に限らず含鉄雑原料として普段から使用されている。従来の二段点火焼結法では、発熱性原料を下段用配合原料の新原料および上段用配合原料の新原料において同一の割合で配合していると見做せる。本発明では、上述のように、下段用配合原料に配合される鉄分含有物質Fの単位新原料あたりの発熱量よりも上段用配合原料に配合される鉄分含有物質Fの単位新原料あたりの発熱量を大きくしたり、下段用配合原料に配合される新原料中の鉄分含有物質Fの配合割合(質量%)を基準として、その配合割合よりも上段用配合原料に配合される鉄分含有物質Fの配合割合(質量%)を大きくしたりすることで、下段層に供給する上段層の焼結排ガス中の酸素濃度を高くする。 Scales, which are heat-generating raw materials, are not limited to the two-stage ignition sintering method, but are usually used as iron-containing miscellaneous raw materials. In the conventional two-stage ignition sintering method, it can be considered that the heat-generating raw material is blended in the same ratio in the new raw material of the lower-stage compounding raw material and the new raw material of the upper-stage compounding raw material. In the present invention, as described above, the amount of heat generated per unit new raw material of the iron-containing substance F blended in the lower-stage compounding raw material is higher than the calorific value per unit new raw material of the iron-containing substance F blended in the upper-stage compounding raw material. Based on the blending ratio (mass%) of the iron-containing substance F in the new raw material to be blended in the lower-stage compounding material, or to increase the amount, the iron-containing substance F to be blended in the upper-stage compounding material is higher than the blending ratio. By increasing the compounding ratio (mass%) of, the oxygen concentration in the sintered exhaust gas of the upper layer supplied to the lower layer is increased.

発熱性原料を複数使用する場合には、新原料中の配合割合に代えて、単位新原料あたりの発熱量を指標に使用する。そして、下段用配合原料に配合される鉄分含有物質Fの単位新原料あたりの発熱量よりも、上段用配合原料に配合される鉄分含有物質Fの単位新原料あたりの発熱量を大きくする。
ここに、上段用配合原料に配合される鉄分含有物質Fの発熱量に基づいて、上段用配合原料に配合される炭材の配合割合を調整するのがよい。
さらに、下段用配合原料の塩基度(CaO/SiO:質量%)に基づいて、上段用配合原料に配合される鉄鉱石およびCaO含有副原料の配合割合を調整することも好ましい。これによって、焼結鉱の品質を安定させることが可能となる。
When a plurality of exothermic raw materials are used, the calorific value per unit new raw material is used as an index instead of the blending ratio in the new raw material. Then, the calorific value per unit new raw material of the iron-containing substance F blended in the upper compound raw material is made larger than the calorific value per unit new raw material of the iron-containing substance F blended in the lower compound raw material.
Here, it is preferable to adjust the blending ratio of the charcoal material to be blended in the upper blended raw material based on the calorific value of the iron-containing substance F blended in the upper blended raw material.
Further, it is also preferable to adjust the blending ratio of the iron ore and the CaO-containing auxiliary raw material to be blended in the upper blended raw material based on the basicity (CaO / SiO 2: mass%) of the lower blended raw material. This makes it possible to stabilize the quality of the sinter.

図2は、本発明の二段装入二段点火焼結法による焼結鉱の製造方法を実施するための、原料処理工程の一例を示す図である。下段用ドラムミキサー1Aへの下段系配合原料の投入および上段用ドラムミキサー2Aへの上段系配合原料の投入後の工程は、図1を用いて上述した焼結鉱の製造工程と同様であり、焼結には図1に示すDL式焼結機100が用いられる。 FIG. 2 is a diagram showing an example of a raw material processing step for carrying out the method for producing a sinter by the two-stage charging two-stage ignition sintering method of the present invention. The steps after charging the lower-stage compounded raw material into the lower-stage drum mixer 1A and charging the upper-stage compounded raw material into the upper-stage drum mixer 2A are the same as the above-mentioned sinter manufacturing process using FIG. The DL type sintering machine 100 shown in FIG. 1 is used for sintering.

図2に示すように、本実施形態においては、鉄分含有物質Fを含む発熱性原料が、下段原料槽群1Dの原料槽1D内と、上段原料槽群2Dの原料槽2D内とに貯留されている。原料槽2D内の発熱性原料が他の上段系配合原料に配合される際に切り出される量、および原料槽1D内の発熱性原料が他の下段系配合原料に配合される際に切り出される量を適宜調整して、上段系配合原料中の鉄分含有物質Fの配合割合、および下段系配合原料中の鉄分含有物質Fの配合割合を所定の配合量とする。 As shown in FIG. 2, in the present embodiment, the heat-generating raw material containing the iron-containing substance F is placed in the raw material tank 1D 1 of the lower raw material tank group 1D and in the raw material tank 2D 1 of the upper raw material tank group 2D. It is stored. The amount cut out when the heat-generating raw material in the raw material tank 2D 1 is mixed with other upper-stage compounding raw materials, and the amount cut out when the heat-generating raw material in the raw material tank 1D 1 is mixed with other lower-stage compounding raw materials. The amount to be blended is appropriately adjusted, and the blending ratio of the iron-containing substance F in the upper-stage blending raw material and the blending ratio of the iron-containing substance F in the lower-stage blending raw material are set to the predetermined blending amounts.

なお、上段系配合原料および下段系配合原料の発熱性原料の貯留は、上述の形態に限らず、上段系配合原料中の鉄分含有物質Fの配合割合と、下段系配合原料中の鉄分含有物質Fの配合割合とが所定の量となるように構成されていればよい。例えば、上段系配合原料として複数種類の発熱性原料を配合する場合には、種類ごとに分けて原料槽2Dn(1≦n≦y)にそれぞれ貯留し、種類ごとに原料槽2Dnからの切出し量を調整してもよいし、あらかじめ複数種類の発熱性原料を所定の割合で混合した混合原料を1つの原料槽2Dm(1≦m≦y)に貯留し、原料槽2Dmからの混合原料の切出し量を調整してもよい。下段系配合原料についても同様である。また、下段系配合原料には、発熱性原料を貯留する原料槽1Dn(1≦n≦x)や原料槽2Dm(1≦m≦y)を設けなくてもよい。下段系配合原料には、発熱性原料を配合しなくてもよいからである。 The storage of the heat-generating raw materials of the upper-stage compounding raw material and the lower-stage compounding raw material is not limited to the above-mentioned form, and the compounding ratio of the iron-containing substance F in the upper-stage compounding raw material and the iron-containing substance in the lower-stage compounding raw material are not limited to the above-mentioned forms. It suffices that the blending ratio of F is configured to be a predetermined amount. For example, when a plurality of types of heat-generating raw materials are blended as the upper-stage compounding raw material, each type is separately stored in the raw material tank 2Dn (1 ≦ n ≦ y), and the amount cut out from the raw material tank 2Dn for each type. May be adjusted, or a mixed raw material in which a plurality of types of heat-generating raw materials are mixed in a predetermined ratio is stored in one raw material tank 2Dm (1 ≦ m ≦ y), and the mixed raw material is cut out from the raw material tank 2Dm. The amount may be adjusted. The same applies to the lower compounding raw materials. Further, the lower-stage compounding raw material does not have to be provided with a raw material tank 1Dn (1 ≦ n ≦ x) or a raw material tank 2Dm (1 ≦ m ≦ y) for storing the heat-generating raw material. This is because it is not necessary to add a heat-generating raw material to the lower-stage compounding raw material.

また、図2に示した実施形態では、上段原料槽群2Dと下段原料槽群1Dとを備え、上段用配合原料と下段用配合原料とを別系統で準備して、パレット上に装入する二段点火焼結法により焼結鉱を製造しているが、所定の配合割合で原料を混合したのちに、上段用の原料と下段用の原料とに分け、下段用の原料には発熱性原料を後添加して下段用配合原料とし、上段用の原料はそのまま上段用配合原料として、それぞれを造粒し、焼結機に装入してもよい。 Further, in the embodiment shown in FIG. 2, the upper raw material tank group 2D and the lower raw material tank group 1D are provided, and the upper mixed raw material and the lower mixed raw material are prepared in separate systems and charged on the pallet. Sintered ore is manufactured by the two-stage ignition sintering method. After mixing the raw materials at a predetermined mixing ratio, the raw materials are divided into the upper raw material and the lower raw material, and the lower raw material is heat-generating. The raw material may be post-added to obtain a compounding raw material for the lower stage, and the raw material for the upper stage may be used as it is as a compounding raw material for the upper stage, and each of them may be granulated and charged into a sintering machine.

配合原料に配合される炭材については、下段用配合原料に配合される炭材の粒度よりも、上段用配合原料に配合される炭材の粒度が大きいものが好ましい。粗粒の炭材は単位吸引空気量あたりの酸素消費量が少ない。上段用配合原料に配合される炭材の粒度を下段用配合原料よりも大きくすることにより、上段層での酸素消費量が減少する。下段層へ供給されるガス中の酸素濃度が高くなり、さらに下段層における焼結鉱の歩留が改善する効果が得られる。
ここで、炭材とは、炭素を含む固体燃料であり、例えば、粉コークス、無煙炭、カーボン含有ダストなどが挙げられる。揮発分を有していてもよいが、その含有量が少ない方が好ましい。
As for the charcoal material to be blended in the blending raw material, it is preferable that the particle size of the charcoal material blended in the upper blending raw material is larger than the particle size of the charcoal material blended in the lower blending raw material. Coarse-grained carbonaceous material consumes less oxygen per unit suction air amount. By making the particle size of the carbonaceous material mixed in the upper compounding raw material larger than that in the lower compounding material, the oxygen consumption in the upper layer is reduced. The oxygen concentration in the gas supplied to the lower layer is increased, and the effect of improving the yield of the sinter in the lower layer can be obtained.
Here, the carbonaceous material is a solid fuel containing carbon, and examples thereof include coke breeze, anthracite, and carbon-containing dust. It may have a volatile content, but it is preferable that the content is small.

炭材は、粒度が5mm未満のコークスを使用することが好ましい。ここで、炭材の粒度は、直径3mm以上の粒子の質量比率(以下、粒径3mm以上の質量比率ともいう)で定義する。例えば、粒径3mm以上の質量比率は、炭材を3mmの篩(JIS標準篩(JIS Z 8801)の篩目2.8mmの篩)で分級して篩上、篩下それぞれの質量を測定し、炭材全体に対する篩上の質量比率を計算する。さらに、下段用配合原料に配合される炭材は粒径が3mm以上5mm未満の質量比率が10質量%以下であり、上段用配合原料に配合される炭材は粒径が3mm以上5mm未満の質量比率が10質量%以上25質量%以下とするのが好ましく、より好ましくは10質量%以上22質量%以下である。ここで、粒径が3mm以上5mm未満とは、JIS標準篩(JIS Z 8801)である篩目2.8mm、および4.75mmの篩で分級した際の、篩2.8mmの篩上かつ篩4.75mmの篩下の部分を指す。なお、通常、粒度を区分する際の記載、呼称は、篩目2.8mm、および4.75mmについて、3mm、および5mmの近似値が使用される。炭材の粒度は、粉砕時間の短縮および延長、もしくは篩目の変更によって調整することができる。 As the charcoal material, it is preferable to use coke having a particle size of less than 5 mm. Here, the particle size of the carbonaceous material is defined by the mass ratio of particles having a diameter of 3 mm or more (hereinafter, also referred to as a mass ratio having a particle size of 3 mm or more). For example, for a mass ratio of a particle size of 3 mm or more, the carbonaceous material is classified with a 3 mm sieve (a sieve having a mesh size of 2.8 mm of a JIS standard sieve (JIS Z 8801)), and the masses of the upper and lower sieves are measured. , Calculate the mass ratio on the sieve to the entire carbonaceous material. Further, the carbonaceous material blended in the lower compounding raw material has a particle size of 3 mm or more and less than 5 mm in a mass ratio of 10% by mass or less, and the charcoal material blended in the upper compounding raw material has a particle size of 3 mm or more and less than 5 mm. The mass ratio is preferably 10% by mass or more and 25% by mass or less, and more preferably 10% by mass or more and 22% by mass or less. Here, the particle size of 3 mm or more and less than 5 mm means that the sieve is on a sieve of 2.8 mm and is sieved when classified by a sieve having a mesh size of 2.8 mm and a sieve of 4.75 mm, which are JIS standard sieves (JIS Z 8801). Refers to the portion under the sieve of 4.75 mm. Normally, as the description and designation when classifying the particle size, approximate values of 3 mm and 5 mm are used for the sieve meshes of 2.8 mm and 4.75 mm. The particle size of the carbonaceous material can be adjusted by shortening and extending the grinding time or changing the sieve mesh.

二段装入二段点火焼結法では、上層と下層の層厚は、上層と下層とが概ね同時に焼結を完了するように調整される。その結果、上層と下層の層厚は概ね等しくなる。ただし、上層と下層で異なる原料を使用する場合や、上下層の焼結完了時点の同時性を重要としない場合には、より広い上層対下層の層厚比を選択できる。図2に示した二段装入二段点火焼結法の実施形態では、層厚比1:2から2:1まで設備効率を損なうことなく採択可能である。 In the two-stage charging two-stage ignition sintering method, the layer thicknesses of the upper layer and the lower layer are adjusted so that the upper layer and the lower layer complete the sintering substantially at the same time. As a result, the layer thicknesses of the upper layer and the lower layer are almost equal. However, when different raw materials are used for the upper layer and the lower layer, or when the simultaneity at the completion of sintering of the upper and lower layers is not important, a wider layer thickness ratio of the upper layer to the lower layer can be selected. In the embodiment of the two-stage charging two-stage ignition sintering method shown in FIG. 2, the layer thickness ratio of 1: 2 to 2: 1 can be adopted without impairing the equipment efficiency.

本発明の効果を実証する実施例について説明する。なお、本発明は、以下の実施例に限定されるものではない。 Examples of demonstrating the effect of the present invention will be described. The present invention is not limited to the following examples.

≪実験1≫
発明者は、DL焼結機による焼結を模擬できる焼結鍋試験(直径300mm)により、本発明の効果を確認した。焼結鍋試験装置は、DL焼結機のようにパレットによる原料充填層の移動こそないが、所定の大きさの容器に配合原料を装入して、上面から着火して下方吸引により焼結を進行させる試験装置である。後述する表3に示すように、比較例、参考例、および実施例1〜3の5つの試験を行った。
Experiment 1≫
The inventor confirmed the effect of the present invention by a sintering pot test (diameter 300 mm) capable of simulating sintering with a DL sintering machine. Unlike the DL sintering machine, the sintering pot tester does not move the raw material filling layer by the pallet, but the compounded raw material is charged in a container of a predetermined size, ignited from the upper surface, and sintered by downward suction. It is a test device for advancing. As shown in Table 3 described later, five tests of Comparative Examples, Reference Examples, and Examples 1 to 3 were performed.

(原料配合)
発熱性原料にはスケール(FeO:65.9質量%、M-Fe(金属鉄Fe):3.98質量%)を用いた。表1は、配合原料として使用した原料の配合割合を示す。表1に示すように、スケールを配合しない配合原料1と、スケールを配合した配合原料2との2種類の配合原料を準備した。配合原料2には、配合原料1とSiO含有量を合わせるために珪石を使用した。石灰石の配合量は焼結鉱の目標塩基度が1.8となるように、いずれも12質量%とした。鉄鉱石A〜Dは発熱性原料ではなく、またそれぞれ産地が異なる。
(Ingredient combination)
A scale (FeO: 65.9% by mass, M-Fe (metal iron Fe): 3.98% by mass) was used as the heat-generating raw material. Table 1 shows the blending ratio of the raw materials used as the blending raw materials. As shown in Table 1, two types of compounding raw materials, a compounding raw material 1 without scale and a compounding material 2 with scale, were prepared. As the compounding raw material 2, silica stone was used to match the contents of the compounding material 1 and SiO 2. The blending amount of limestone was set to 12% by mass so that the target basicity of the sinter was 1.8. Iron ores A to D are not heat-generating raw materials, and their production areas are different.

スケールを配合した配合原料2については、スケールを配合しない配合原料1を基準として、両配合原料中の推定発熱量が同一となるように、炭材の配合量(配合割合)をスケール配合相当分、減量調整した。具体的には、スケールの配合量(配合割合40質量%)とその化学成分とからスケール中の鉄分含有物質Fの酸化発熱量を計算し、この酸化発熱量相当分の炭材の配合量を求めた。配合原料2の炭材の配合量は、配合原料1の炭材の配合量(配合割合4.5質量%)から、求められた酸化発熱量相当分の炭材の配合量(配合割合2.2質量%)を減じた量(配合割合2.3質量%)とした。
炭材(凝結材)にはコークスを用いた。配合原料1および配合原料2に配合したコークスの配合割合は、新原料を100質量%として、それぞれ外数で4.5質量%および2.3質量%とした。
For the blended raw material 2 containing the scale, the blended amount (blending ratio) of the carbonaceous material is set to the equivalent amount of the scale blended so that the estimated calorific value in both blended raw materials is the same based on the blended raw material 1 not blended with the scale. , Weight loss adjusted. Specifically, the calorific value of oxidation of the iron-containing substance F in the scale is calculated from the blending amount of the scale (blending ratio 40% by mass) and its chemical composition, and the blending amount of the carbonaceous material corresponding to the calorific value of oxidation is calculated. I asked. The blending amount of the carbonaceous material of the blending raw material 2 is the blending amount of the carbonaceous material corresponding to the calorific value of oxidation obtained from the blending amount of the carbonaceous material of the blending raw material 1 (blending ratio 4.5% by mass) (blending ratio 2. 2% by mass) was subtracted to obtain an amount (blending ratio 2.3% by mass).
Coke was used as the charcoal material (condensing material). The blending ratio of the coke blended in the blended raw material 1 and the blended raw material 2 was 4.5% by mass and 2.3% by mass, respectively, with the new raw material as 100% by mass.

Figure 2021134426
Figure 2021134426

コークスは、粒度分布の異なる3種類(コークス1〜コークス3)を使用した。表2は、3種類のコークスの粒度分布を示す。表2に示すように、コークス1〜コークス3は、いずれも粒度が−5mm(5mm未満)のコークスであり、例えば、コークス1は、3mm未満の粒径のコークスの割合が90質量%であり、3mm以上5mm未満の粒径のコークスの割合が10質量%である。なお、コークスの粒度は、篩を用いた分級により調整した。 As coke, three types (coke 1 to coke 3) having different particle size distributions were used. Table 2 shows the particle size distribution of three types of coke. As shown in Table 2, coke 1 to coke 3 are all cokes having a particle size of -5 mm (less than 5 mm). For example, coke 1 has a coke having a particle size of less than 3 mm in an amount of 90% by mass. The proportion of coke having a particle size of 3 mm or more and less than 5 mm is 10% by mass. The particle size of coke was adjusted by classification using a sieve.

Figure 2021134426
Figure 2021134426

(試験ケース)
以下に、試験条件を示す(表3の上段参照)。表3に示すように、二段装入二段点火焼結法を模した比較例、参考例、および実施例1〜3の5試験を行った。
比較例(二段装入二段点火の基準条件)
:上段層も下段層もスケールを含まない原料(配合原料1)を使用。
コークスはコークス1を使用。
参考例:下段層のみスケールを含む原料(配合原料2)を使用。
コークスは基準条件に同じ。
実施例1:上段層のみスケールを含む原料(配合原料2)を使用。
コークスは基準条件に同じ。
実施例2:上段層のみスケールを含む原料(配合原料2)を使用。
コークスは上段層のみコークス2を使用。
実施例3:上段層のみスケールを含む原料(配合原料2)を使用。
コークスは上段層のみコークス3を使用。
(Test case)
The test conditions are shown below (see the upper part of Table 3). As shown in Table 3, 5 tests of Comparative Examples, Reference Examples, and Examples 1 to 3 simulating the two-stage charging two-stage ignition sintering method were carried out.
Comparative example (reference conditions for two-stage charging and two-stage ignition)
: Both the upper layer and the lower layer use raw materials that do not contain scale (blended raw material 1).
Coke 1 is used for coke.
Reference example: Only the lower layer uses a raw material containing scale (blended raw material 2).
Coke is the same as the standard condition.
Example 1: A raw material containing scale (blended raw material 2) is used only in the upper layer.
Coke is the same as the standard condition.
Example 2: A raw material containing scale only in the upper layer (blended raw material 2) is used.
As for coke, coke 2 is used only in the upper layer.
Example 3: A raw material containing scale (blended raw material 2) is used only in the upper layer.
As for coke, coke 3 is used only in the upper layer.

Figure 2021134426
Figure 2021134426

(造粒方法)
配合原料1と配合原料2のそれぞれを、一括して造粒した。造粒は、試験用ドラムミキサー(直径600mm、回転数25rpm)で4分間混合後、配合原料に対して6.5質量%の水分を添加し、さらに4分間処理した。
(Granulation method)
Each of the compounding raw material 1 and the compounding raw material 2 was granulated collectively. Granulation was carried out by mixing with a test drum mixer (diameter 600 mm, rotation speed 25 rpm) for 4 minutes, adding 6.5% by mass of water to the compounding raw material, and further treating for 4 minutes.

(装入・点火方法)
鍋は、高さ500mmの円柱形の下段用鍋(φ300mm)と、高さ300mmの円柱形の上段用鍋(φ300mm)の2本を準備した。まず、下段用鍋および上段用鍋に造粒した下段用配合原料および上段用配合原料を装入して、下段層の層高を500mm、上段層の層高を300mmとした。そして、層高500mmの下段用鍋をセットして、下段層の表面に1分間点火した。その後、下段用鍋の上に、層高300mmの上段用鍋をセットして、上下二段での焼結の進行を実現するために、下段層の下面から290mm位置の温度上昇確認後に、上段層の表面に1分間点火した。吸引圧は、点火開始から1500mmAq(14.7kPa)一定とし、下段用鍋下方から排気された焼結排ガス中の酸素濃度の測定も実施した。なお、酸素濃度は、ガス分析計(磁気風式分析計)によって測定した値であり、焼結完了までの平均値である。
(Charging / ignition method)
Two pots were prepared, a cylindrical lower pot (φ300 mm) having a height of 500 mm and a cylindrical upper pot (φ300 mm) having a height of 300 mm. First, the lower pot and the upper pot were charged with the granulated lower compound raw material and the upper compound raw material, and the layer height of the lower layer was set to 500 mm and the layer height of the upper layer was set to 300 mm. Then, a lower pot having a layer height of 500 mm was set, and the surface of the lower layer was ignited for 1 minute. After that, the upper pot with a layer height of 300 mm is set on the lower pot, and in order to realize the progress of sintering in the upper and lower two stages, after confirming the temperature rise at the position of 290 mm from the lower surface of the lower layer, the upper stage The surface of the layer was ignited for 1 minute. The suction pressure was kept constant at 1500 mmAq (14.7 kPa) from the start of ignition, and the oxygen concentration in the sintered exhaust gas exhausted from below the lower pan was also measured. The oxygen concentration is a value measured by a gas analyzer (magnetic wind analyzer) and is an average value until sintering is completed.

(焼結時間)
焼結時間は以下のように測定した。熱電対を下段用鍋の下面から380mm、風箱の位置にそれぞれ挿入し、層内温度を測定した。上段層の焼結完了と下段層の焼結完了の遅い方を、原料充填層全体(上段層および下段層)としての焼結完了とみなすため、380mm位置の熱電対の2回目の温度上昇開始時刻(上段層の焼結完了)までの所要時間と、風箱位置の熱電対の1回目のピーク時刻(下段層の焼結完了)までの所要時間の2つのうち長い方を、原料充填層全体の焼結時間とした。焼結完了となった時刻から3分後に吸引を停止し、焼結終了とした。
(Sintering time)
The sintering time was measured as follows. A thermocouple was inserted 380 mm from the lower surface of the lower pan and at the position of the air box, and the temperature inside the layer was measured. Since the later one of the completion of sintering of the upper layer and the completion of sintering of the lower layer is regarded as the completion of sintering of the entire raw material filling layer (upper layer and lower layer), the second temperature rise of the thermocouple at the 380 mm position is started. The longer of the time required to reach the time (sintering of the upper layer) and the time required to reach the first peak time of the thermocouple at the airbox position (sintering of the lower layer) is the raw material filling layer. It was taken as the total sintering time. Suction was stopped 3 minutes after the time when the sintering was completed, and the sintering was completed.

(歩留)
歩留は、以下のように測定した。焼結後、得られた焼結ケーキを、2mの高さから4回落下処理を行い、粒径+5mm(5mm以上)を焼結成品として質量を求めた。シンターケーキの総質量に対するこの焼結成品の割合(質量%)を、ここでの成品歩留(+5mm%)と定義した。
(Yield)
Yield was measured as follows. After sintering, the obtained sintered cake was dropped four times from a height of 2 m, and the mass was determined with a particle size of +5 mm (5 mm or more) as a sintered product. The ratio (mass%) of this sintered product to the total mass of the sinter cake was defined here as the product yield (+ 5 mm%).

(生産率)
生産率は、上述のように測定した焼結時間に基づいて、以下の式(5)により求めた。
生産率=成品量(t)/焼結面積(0.07m)/焼結時間(日) ・・・(5)
(Productivity rate)
The production rate was determined by the following formula (5) based on the sintering time measured as described above.
Production rate = product quantity (t) / sintering area (0.07m 2 ) / sintering time (day) ・ ・ ・ (5)

(試験結果)
表3の下段に、試験結果を示す。
表3に示すように、実施例では、比較例に比べて歩留および生産率(生産性)が改善した。なお、参考例でもスケールを配合した配合原料2を使用しているが、上段層に配合原料2を使用した実施例の方が、生産率がより改善された。また、実施例1および実施例2においては、歩留も改善した。これは、表3に示すように、実施例では排ガス酸素濃度が低く、下方吸引される酸素含有ガス中の酸素を有効に焼結に利用されたためであると考えられる。
(Test results)
The test results are shown in the lower part of Table 3.
As shown in Table 3, in the examples, the yield and the productivity (productivity) were improved as compared with the comparative examples. Although the compounded raw material 2 containing the scale is also used in the reference example, the productivity was further improved in the example in which the compounded raw material 2 was used in the upper layer. In addition, in Examples 1 and 2, the yield was also improved. It is considered that this is because, as shown in Table 3, the exhaust gas oxygen concentration was low in the examples, and the oxygen in the oxygen-containing gas sucked downward was effectively used for sintering.

また、表3に示すように、実施例2では上段層にコークス2(粒径3mm以上の質量比率が22質量%)を使用した。使用するコークスの粒度を大きくすることによって、実施例1(粒径3mm以上の質量比率が10質量%のコークス1を使用)よりも歩留および生産率が改善した。これは、下段層へ供給される排ガス中の酸素濃度が高くなったためと考えられる。実施例2よりもさらに上段層に使用するコークスの粒度を大きくした実施例3の場合、なおも比較例より高い歩留および生産性が得られているものの、実施例2に比較して歩留および生産性が低下した。これは、極端に大きなコークスが存在することで未燃の粒子が残存し、上段層の歩留を低下させたためと考えられる。 Further, as shown in Table 3, in Example 2, coke 2 (mass ratio of particle size 3 mm or more is 22 mass%) was used for the upper layer. By increasing the particle size of the coke used, the yield and the productivity were improved as compared with Example 1 (using coke 1 having a particle size of 3 mm or more and a mass ratio of 10% by mass). It is considered that this is because the oxygen concentration in the exhaust gas supplied to the lower layer has increased. In the case of Example 3 in which the particle size of the coke used in the upper layer was larger than that of Example 2, the yield and productivity were still higher than those of Comparative Example, but the yield was higher than that of Example 2. And productivity declined. It is considered that this is because unburned particles remain due to the presence of extremely large coke, which reduces the yield of the upper layer.

≪実験2≫
上記試験を補足するため、コークスおよびスケールについて、焼結過程における酸素含有ガス中の酸素利用率を比較する焼結鍋試験を実施した。
≪Experiment 2≫
To supplement the above test, a sintering pot test was performed on coke and scale to compare the oxygen utilization in oxygen-containing gas during the sintering process.

表1に示した配合原料1および配合原料2を、上述の実験例と同様に造粒して準備し、一段装入一段点火法による焼成実験を実施した。各配合原料を、それぞれ高さ500mmの円柱形の下段用鍋(φ300mm)に層高500mmまで装入し、1分間の点火を行った。吸引圧力は、点火開始から1500mmAq一定とした。焼成排ガス中の酸素濃度(排ガス酸素濃度)を測定し、配合原料条件との関係を調べた。その結果、スケールを配合していない配合原料1では、排ガス酸素濃度が9.5%であった。一方、スケールを配合した配合原料2では、排ガス酸素濃度が11.9%と、配合原料1よりも高くなった。つまり、焼成工程における発熱源として、凝結材である炭材のみを用いるよりも、その一部に発熱性原料(本実施例では、スケールを使用)を用いた方が、消費される酸素量(酸素消費量)が少ないという結果となった。 The compounded raw material 1 and the compounded raw material 2 shown in Table 1 were granulated and prepared in the same manner as in the above-mentioned experimental example, and a firing experiment was carried out by a one-stage charging and one-stage ignition method. Each compounded raw material was charged into a cylindrical lower pan (φ300 mm) having a height of 500 mm up to a layer height of 500 mm, and ignited for 1 minute. The suction pressure was constant at 1500 mmAq from the start of ignition. The oxygen concentration in the calcined exhaust gas (exhaust gas oxygen concentration) was measured, and the relationship with the compounding raw material conditions was investigated. As a result, the exhaust gas oxygen concentration was 9.5% in the compounded raw material 1 in which the scale was not compounded. On the other hand, the exhaust gas oxygen concentration of the compounded raw material 2 containing the scale was 11.9%, which was higher than that of the compounded raw material 1. That is, the amount of oxygen consumed (in this embodiment, the scale is used) is consumed when a heat-generating raw material (scale is used in this embodiment) is used as a part of the heat-generating raw material (in this embodiment, a scale is used) rather than using only the carbonaceous material which is a coagulant as the heat-generating source in the firing process. The result was that (oxygen consumption) was low.

実験1においては、表3に示すように、配合原料2(スケール配合)を上段層のみに用いた実施例1の方が、下段層のみに用いた参考例よりも排ガス酸素濃度が小さく、実施例1の方が上下段層全体において下方吸引される酸素含有ガス中の酸素を有効に焼結に利用している。また、実験2の結果から、上段層での酸素消費量は、実施例1の方が参考例よりも少なかったと考えられる。よって、参考例では、下段層において、上段層からの排ガス中の酸素を有効に焼結に利用することができなかったことが想定される。一方、実施例1では、上段層からの比較的酸素濃度の高い排ガスが下段層に供給され、下段層において、排ガス中の酸素を有効に焼結に利用されて、歩留および生産率がより改善されたことが想定される。 In Experiment 1, as shown in Table 3, Example 1 in which the compounding raw material 2 (scale compounding) was used only in the upper layer had a smaller exhaust gas oxygen concentration than the reference example in which only the lower layer was used. In Example 1, oxygen in the oxygen-containing gas sucked downward in the entire upper and lower layers is effectively used for sintering. Further, from the results of Experiment 2, it is considered that the oxygen consumption in the upper layer was smaller in Example 1 than in Reference Example. Therefore, in the reference example, it is assumed that oxygen in the exhaust gas from the upper layer could not be effectively used for sintering in the lower layer. On the other hand, in Example 1, the exhaust gas having a relatively high oxygen concentration from the upper layer is supplied to the lower layer, and the oxygen in the exhaust gas is effectively used for sintering in the lower layer, so that the yield and the production rate are higher. It is expected that it has been improved.

100…焼結機、1A…下段用ドラムミキサー、1B…下段用ホッパ、1C…下段用点火器、1D…下段用原料槽群(下段原料槽1D〜1D)、2A…上段用ドラムミキサー、2B…上段用ホッパ、2C…上段用点火器、2D…上段用原料槽群(上段原料槽2D〜2D)、3…焼結部、5…パレット進行方向、6…下方吸引、10…下段層、10A…下段層燃焼帯、20…上段層、20A…上段層燃焼帯 100 ... sintering machine, 1A ... lower drum mixer, 1B ... lower hoppers, 1C ... lower stage igniter, 1D ... lower raw material tank group (the lower raw material tank 1D 1 ~1D X), 2A ... upper drum mixer , 2B ... upper hoppers, 2C ... upper ignition device, 2D ... upper raw material tank group (the upper feed tank 2D 1 ~2D y), 3 ... sintered part, 5 ... pallet advancing direction, 6 ... lower suction, 10 ... Lower layer, 10A ... Lower layer combustion zone, 20 ... Upper layer, 20A ... Upper layer combustion zone

Claims (3)

焼結機内に下段用配合原料を装入することで、下段原料充填層を形成する工程と、
前記下段原料充填層上に上段用配合原料を装入することで、上段原料充填層を形成する工程と、
前記下段原料充填層の表面および前記上段原料充填層の表面をそれぞれ点火するとともに、前記下段原料充填層および前記上段原料充填層中の酸素含有ガスを下方に吸引する工程と、を含み、
前記下段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量よりも、前記上段用配合原料に配合される酸化発熱性を有する鉄分含有物質の単位新原料あたりの発熱量が大きい、
ことを特徴とする焼結鉱の製造方法。
The process of forming the lower raw material filling layer by charging the lower raw material into the sintering machine, and
A step of forming an upper raw material filling layer by charging the upper mixed raw material onto the lower raw material filling layer, and a step of forming the upper raw material filling layer.
The steps include igniting the surface of the lower raw material filling layer and the surface of the upper raw material filling layer, respectively, and sucking the oxygen-containing gas in the lower raw material filling layer and the upper raw material filling layer downward.
Unit of iron-containing substance having oxidative heat generation compounded in the lower compounding raw material Unit of iron-containing substance compounded in the upper compounding material Rather than the calorific value per new raw material The amount of heat generated is large,
A method for producing a sinter, which is characterized in that.
前記上段用配合原料及び前記下段用配合原料に酸化発熱性を有する鉄分含有物質を含有する原料が単数使用される場合において、
前記上段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)が、前記下段用配合原料に配合される酸化発熱性を有する鉄分含有物質を含有する原料の新原料中の配合割合(質量%)よりも大きい、
ことを特徴とする請求項1に記載の焼結鉱の製造方法。
When a single raw material containing an iron-containing substance having oxidative heat generation is used in the upper compounding raw material and the lower compounding material,
The blending ratio (mass%) of the raw material containing the iron-containing substance having oxidative heat generating property to be blended in the upper compounding raw material in the new raw material is the iron content having oxidative heat generating property to be blended in the lower compounding raw material. It is larger than the compounding ratio (mass%) of the raw material containing the substance in the new raw material.
The method for producing a sinter according to claim 1.
前記下段用配合原料に配合される炭材の粒度よりも、前記上段用配合原料に配合される炭材の粒度が大きい、
ことを特徴とする請求項1又は2に記載の焼結鉱の製造方法。
The particle size of the charcoal material blended in the upper compounding raw material is larger than the particle size of the charcoal material blended in the lower compounding raw material.
The method for producing a sinter according to claim 1 or 2, wherein the sinter is produced.
JP2021019588A 2020-02-21 2021-02-10 Manufacturing method of sintered ore Pending JP2021134426A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027695 2020-02-21
JP2020027695 2020-02-21

Publications (1)

Publication Number Publication Date
JP2021134426A true JP2021134426A (en) 2021-09-13

Family

ID=77660390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019588A Pending JP2021134426A (en) 2020-02-21 2021-02-10 Manufacturing method of sintered ore

Country Status (1)

Country Link
JP (1) JP2021134426A (en)

Similar Documents

Publication Publication Date Title
JP6540359B2 (en) Modified carbon material for producing sintered ore and method for producing sintered ore using the same
JP2021120479A (en) Method for producing sintered ore and sintering machine
JP5194378B2 (en) Method for producing sintered ore
JP5786795B2 (en) Sinter ore production method using oil palm core shell coal
JP7207147B2 (en) Method for producing sintered ore
JP2015193930A (en) Method for producing sintered ore
JP6870439B2 (en) Sintered ore manufacturing method
JP2014214334A (en) Method for manufacturing sintered ore
KR20090066683A (en) Method for manufacturing binderless briquettes and apparatus for manufacturing the same
CN102300965B (en) Carbonaceous material for sintering iron ore
JP2021134426A (en) Manufacturing method of sintered ore
JP4830728B2 (en) Method for producing sintered ore
WO1994005817A1 (en) Method for producing sintered ore
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP7328537B2 (en) Method for producing sintered ore
JP2008019455A (en) Method for producing half-reduced sintered ore
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP2022033594A (en) Method for manufacturing sintered ore
JPH01147023A (en) Manufacture of sintered ore
JP7095446B2 (en) Sintered ore manufacturing method
JP2005097645A (en) Method of producing semi-reduced sintered ore
JP7043994B2 (en) Sintered ore manufacturing method
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP7180406B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231019