JP2021128963A - 磁性基体、コイル部品、及び電子機器 - Google Patents

磁性基体、コイル部品、及び電子機器 Download PDF

Info

Publication number
JP2021128963A
JP2021128963A JP2020020932A JP2020020932A JP2021128963A JP 2021128963 A JP2021128963 A JP 2021128963A JP 2020020932 A JP2020020932 A JP 2020020932A JP 2020020932 A JP2020020932 A JP 2020020932A JP 2021128963 A JP2021128963 A JP 2021128963A
Authority
JP
Japan
Prior art keywords
layer
iron
content
metal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2020020932A
Other languages
English (en)
Inventor
健吾 土屋
Kengo Tsuchiya
健吾 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2020020932A priority Critical patent/JP2021128963A/ja
Publication of JP2021128963A publication Critical patent/JP2021128963A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】磁気特性の低下を抑制しつつ絶縁信頼性を向上させること。【解決手段】鉄を主成分とする粒子である金属磁性粒子と、前記金属磁性粒子を覆う第1層と、前記第1層を覆う第2層と、前記第2層を覆う第3層と、を備え、前記第1層は、金属鉄と鉄酸化物を含み、酸化物としての鉄の量よりも金属としての鉄の量が多く、前記第2層は、鉄酸化物とシリコン酸化物を含み、重量%で表した場合での鉄の含有量はシリコンの含有量よりも多く、前記第1層から前記第3層に向かって鉄の含有量は減少し、前記第3層は、シリコン酸化物を含み、重量%で表した場合でのシリコンの含有量は鉄の含有量よりも多い、磁性基体。【選択図】図6

Description

本発明は、磁性基体、コイル部品、及び電子機器に関する。
フェライトの代わりに直流重畳特性に優れた金属磁性粒子を用いたコイル部品が提案されている。金属磁性粒子は絶縁性が低いことから、金属磁性粒子の絶縁性を確保する方法について多くの検討がなされている。その一つとして、金属磁性粒子の表面に酸化物の層を形成する方法が知られている(例えば特許文献1から4)。
特開2018−11043号公報 特開2018−152381号公報 特開2018−110210号公報 特開2019−160944号公報
金属磁性粒子の表面に酸化物の層を形成して絶縁性を確保する場合、酸化物の層が薄いと絶縁信頼性が低下してしまう。一方、酸化物の層が厚くなり過ぎると、金属磁性粒子の充填率が低下してしまうため磁気特性が低下してしまう。
本発明は、上記課題に鑑みなされたものであり、磁気特性の低下を抑制しつつ絶縁信頼性を向上させることを目的とする。
本発明は、鉄を主成分とする粒子である金属磁性粒子と、前記金属磁性粒子を覆う第1層と、前記第1層を覆う第2層と、前記第2層を覆う第3層と、を備え、前記第1層は、金属鉄と鉄酸化物を含み、酸化物としての鉄の量よりも金属としての鉄の量が多く、前記第2層は、鉄酸化物とシリコン酸化物を含み、重量%で表した場合での鉄の含有量はシリコンの含有量よりも多く、前記第1層から前記第3層に向かって鉄の含有量は減少し、前記第3層は、シリコン酸化物を含み、重量%で表した場合でのシリコンの含有量は鉄の含有量よりも多い、磁性基体である。
上記構成において、前記第2層と前記第3層の合計膜厚は15nm以上40nm以下である構成とすることができる。
上記構成において、前記第2層と前記第3層の合計膜厚に対する前記第2層の膜厚の割合は0.2以上0.95以下である構成とすることができる。
上記構成において、前記第2層と前記第3層の合計膜厚に対する前記第2層の膜厚の割合は0.2以上0.4以下である構成とすることができる。
上記構成において、前記第1層は、鉄とシリコンと酸素の合計含有量を100重量%とした場合においてシリコンの含有量が1重量%以下で且つ鉄の含有量が95重量%以上98重量%以下である構成とすることができる。
上記構成において、鉄とシリコンと酸素の合計量を100重量%とした場合に、前記第2層は前記金属磁性粒子のシリコンの含有量の2倍以上のシリコンを含有する構成とすることができる。
上記構成において、前記金属磁性粒子は、鉄とシリコンと酸素の合計含有量を100重量%とした場合において鉄の含有量が98重量%より多い構成とすることができる。
上記構成において、前記金属磁性粒子は純鉄からなる粒子である構成とすることができる。
本発明は、上記に記載の磁性基体と、前記磁性基体に設けられているコイル導体と、を備える、コイル部品である。
本発明は、上記に記載のコイル部品と、前記コイル部品が実装されている回路基板と、を備える電子機器である。
本発明によれば、磁気特性の低下を抑制しつつ絶縁信頼性を向上させることができる。
図1は、本願発明の第1の実施形態に係る磁性基体を示す断面図である。 図2は、本願発明の第2の実施形態に係る磁性基体を示す断面図である。 図3は、本願発明の第3の実施形態に係るコイル部品を示す側面図である。 図4は、本願発明の第4の実施形態に係るコイル部品を示す透視斜視図である。 図5は、本願発明の第5の実施形態に係る電子機器を示す側面図である。 図6は、実施例4における金属磁性粉末の断面を走査型透過顕微鏡により撮影してエネルギー分散型X線分光器によってライン分析をした結果を示す図である。
以下、図面を適宜参照しながら、本願発明の実施形態について説明する。但し、本願発明は図示された態様に限定される訳ではない。また、複数の図面において共通する構成要素には当該複数の図面を通じて同一の参照符号が付されている。各図面は、説明の便宜上、必ずしも正確な縮尺で記載されているとは限らない点に留意されたい。
[第1の実施形態]
図1は、本願発明の第1の実施形態に係る磁性基体を示す断面図である。図1では、第1の実施形態に係る磁性基体100の一部を拡大して図示している。図1を参照して、金属磁性粒子10を覆って第1層11が形成されている。第1層11を覆って第2層12が形成されている。第2層12を覆って第3層13が形成されている。複数の金属磁性粒子10は第3層13を介して互いに結合され、これにより磁性基体100が形成されている。第1層11、第2層12、及び第3層13の存在は、例えば磁性基体100の断面を透過型電子顕微鏡(TEM)により40万倍程度で撮影した撮影像においてコントラスト(明度)の違いとして認識できる。
金属磁性粒子10は、例えば鉄を主成分とする軟磁性粒子であり、例えば純鉄粒子であってもよい。鉄を主成分とするとは、金属磁性粒子10を構成する元素の合計量に対する鉄の割合が50wt%(重量%)以上の場合であり、90wt%以上の場合でもよく、95wt%以上の場合でもよく、98wt%以上の場合でもよい。例えば、金属磁性粒子10は鉄とシリコンと酸素の合計含有量を100wt%とした場合での鉄の含有量が98wt%より多い場合でもよい。金属磁性粒子10が純鉄粒子である場合であっても、金属磁性粒子10は酸素及び/又は炭素等の意図しない不純物を含んでいてもよい。意図しない不純物の量は2wt%以下であってもよい。金属磁性粒子10の組成は、例えば磁性基体100の断面を走査型電子顕微鏡(SEM)により3000倍から20000倍程度で撮影し、エネルギー分散型X線分析(EDS)によるZAF法で算出することができる。
複数の金属磁性粒子10の平均粒子径は例えば1μm以上10μm以下である。金属磁性粒子10の平均粒子径は、磁性基体100の断面を走査型電子顕微鏡により2000倍から5000倍程度で撮影した撮影像に基づいて粒度分布を求め、この粒度分布の50%での粒径である。平均粒子径を10μm以下とすることで金属磁性粒子10における渦電流損失を抑制できる。平均粒子径を1μm以上とすることで金属磁性粒子10が大気中で自然酸化することを原因とする自然発火を抑制でき、取り扱いの容易性が向上する。
第1層11は、金属鉄と鉄酸化物を含む混合層であり、酸化物としての鉄の量よりも金属としての鉄の量が多い。例えば、金属としての鉄の量は、酸化物としての鉄の量の80倍以上であり、90倍以上でもよく、95倍以上でもよい。鉄酸化物は、FeO、Fe、及びFe等、どのような組成の鉄酸化物であってもよい。金属の様態で存在する鉄の量と酸化物の様態で存在する鉄の量の比率は、第1層11に含まれる酸素の量によって明らかにすることができる。第1層11にはシリコンは含まれないか又は含まれても微量である。例えば、第1層11は、鉄とシリコンと酸素の合計含有量を100wt%とした場合に、シリコンの含有量は1wt%以下であり、鉄の含有量は95wt%以上98wt%以下であり、酸素の含有量は2wt%以上4wt%以下である。
第2層12は、鉄酸化物とシリコン酸化物を含み、wt%で表した場合での鉄の含有量がシリコンの含有量よりも多い。鉄酸化物は、第1層11と同様に、FeO、Fe、及びFe等、どのような組成の鉄酸化物であってもよい。シリコン酸化物は、例えばSiOの組成の酸化物である。第2層12に含まれる鉄の含有量は、第1層11から第3層13に向かって徐々に減少している。例えば、第2層12は、鉄とシリコンと酸素の合計含有量を100wt%とした場合に、シリコンの含有量は1wt%より多く、鉄の含有量は95wt%未満であり、酸素の含有量はシリコンの含有量よりも多く且つ鉄の含有量よりも少ない。また、例えば、鉄とシリコンと酸素の合計量を100wt%とした場合に、第2層12は金属磁性粒子10のシリコンの含有量の2倍以上のシリコンを含有し、3倍以上のシリコンを含有する場合でもよく、4倍以上のシリコンを含有する場合でもよい。
第3層13は、シリコン酸化物を含み、wt%で表した場合でのシリコンの含有量が鉄の含有量よりも多い。シリコン酸化物は、第2層12と同様、例えばSiOの組成の酸化物である。第3層13はシリコン酸化物を主成分に含むことから、シリコン酸化物よりも鉄酸化物を多く含む第2層12に比べて電気抵抗率が高い。したがって、第3層13は優れた絶縁性を有する。第2層12は鉄の含有量がシリコンの含有量よりも多く、第3層13はシリコンの含有量が鉄の含有量よりも多いことから、第2層12と第3層13の境界では鉄の含有量とシリコンの含有量は概ね等しくなっている。第3層13のうち第2層12から離れて鉄の含有量が安定した箇所における鉄の含有量は10wt%以下、好ましくは5wt%以下であり、鉄による第3層13の絶縁性の影響は小さい。第3層13は、酸素の含有量が鉄の含有量よりも多く且つシリコンの含有量よりも少ない。
第1層11、第2層12、及び第3層13の組成は、例えば磁性基体100の断面を走査型透過顕微鏡(STEM)により40万倍程度で撮影し、エネルギー分散型X線分光器(EDS)によるライン分析によって算出することができる。複数の金属磁性粒子10は第3層13を介し結合され、第3層13は優れた絶縁性を有することから、磁性基体100は良好な絶縁信頼性を有する。
[製造方法]
第1の実施形態に係る磁性基体の製造方法の一例を説明する。鉄を主成分とする金属磁性粒子10の表面に例えばゾルゲル法等の湿式法によって酸化シリコン膜を形成した後、大気中で100℃以上220℃以下の温度で熱乾燥を行って金属磁性粉末を作製する。この熱乾燥によって金属磁性粒子10を構成する鉄が金属磁性粒子10の表面に形成された酸化シリコン膜に向かって拡散するとともに金属磁性粒子10の表面で鉄の酸化物の生成が進む。これにより、金属磁性粒子10の表面を覆って、金属鉄と鉄酸化物を含む混合層であり酸化物としての鉄の量よりも金属としての鉄の量が多い第1層11が形成される。第1層11の表面を覆って、鉄酸化物とシリコン酸化物を含み、鉄の含有量がシリコンの含有量よりも多く、第1層11から第3層13に向かって鉄の含有量が徐々に減少する第2層12が形成される。第2層12の表面を覆って、シリコン酸化物を含み、シリコンの含有量が鉄の含有量よりも多い第3層13が形成される。次に、金属磁性粉末を金型のキャビティ内に充填してプレス成形することで成形体を形成する。この成形体に対して大気中で150℃、1時間程度の熱処理を行う。これにより、複数の金属磁性粒子10は第3層13を介して互いに結合する。必要に応じて、熱処理された成形体に対し、複数の金属磁性粒子10が第3層13を介して結合した結合部以外の空隙に樹脂等を含侵し硬化してもよい。以上により磁性基体100が形成される。
第1の実施形態によれば、金属磁性粒子10を覆って第1層11が設けられ、第1層11を覆って第2層12が設けられ、第2層12を覆って第3層13が設けられている。第1層11は、金属鉄と鉄酸化物を含み、酸化物としての鉄の量よりも金属としての鉄の量が多い。金属磁性粒子10の表面を第1層11が覆っていることで、金属磁性粒子10の耐酸化性が向上する。第2層12は、鉄酸化物とシリコン酸化物を含み、wt%での鉄の含有量がシリコンの含有量よりも多く、第1層11から第3層13に向かって鉄の含有量が減少している。第3層13は、シリコン酸化物を含み、wt%でのシリコンの含有量が鉄の含有量よりも多い。第3層13はシリコン酸化物が主成分であることから、第3層13は電気抵抗率が高い。第1層11と第3層13の間に位置する第2層12の鉄の含有量が第1層11から第3層13に向かって減少していることで応力の集中するはっきりとした境界面が形成され難くなる。このため、応力が広い範囲に分散され強度が向上することになる。このような第2層12を介することで第1層11と第3層13の密着性が向上し、第3層13が金属磁性粒子10に強固に結着するようになる。このため、金属磁性粒子10の充填率を高めるために第3層13の厚みを薄くした場合でも、第3層13が金属磁性粒子10に強固に結着しているため、磁性基体100を形成する際の圧縮成形等での金属磁性粒子10の変形に伴う第3層13の破壊及び/又は剥離が抑制される。したがって、磁性特性の低下を抑制しつつ絶縁信頼性を向上させることができる。
金属磁性粒子10を覆って第1層11、第2層12、及び第3層13が形成されるように、金属磁性粒子10は、鉄の割合が高い磁性粒子である場合が好ましく、鉄の含有量が90wt%より多い場合が好ましく、93wt%より多い場合がより好ましく、95wt%より多い場合が更に好ましく、純鉄からなる磁性粒子である場合が最も好ましい。
第2層12と第3層13の合計膜厚は15nm以上40nm以下である場合が好ましい。まず、第2層12と第3層13の合計膜厚が15nm以上であれば、金属磁性粒子10を覆う絶縁膜の厚さが確保されるため、絶縁信頼性を向上させることができる。次に、第2層12と第3層13の合計膜厚が40nm以下であれば、金属磁性粒子10の充填率を高めることができるため、磁性特性の低下を抑制できる。
第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合は0.2以上0.95以下である場合が好ましく、0.2以上0.4以下である場合がより好ましい。まず、第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合が0.2以上であれば、第2層12を介した第1層11と第3層13の密着性が高められて、第3層13の金属磁性粒子10への結着が強固になる。このため、絶縁信頼性を向上させることができる。逆に、第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合が0.2未満である場合や、第2層12が存在しない場合では、第2層12の効果である応力の分散による密着強度の向上効果が得られ難くなるため、第3層13の一部の欠損等により絶縁信頼性が損なわれてしまう。次に、第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合が0.95以下であれば、電気抵抗率の高い第3層13の厚さを確保できるため、絶縁信頼性を向上させることができる。第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合が0.4以下であれば、電気抵抗率の高い第3層13の厚さを十分に確保することができるため、絶縁信頼性を更に向上させることができる。
[第2の実施形態]
図2は、本願発明の第2の実施形態に係る磁性基体を示す断面図である。図2では、第2の実施形態に係る磁性基体200の一部を拡大して図示している。図2を参照して、金属磁性粒子10を覆って第1層11が設けられ、第1層11を覆って第2層12が設けられ、第2層12を覆って第3層13が設けられている。金属磁性粒子10を覆う第3層13の外側に樹脂膜20が設けられていて、複数の金属磁性粒子10は樹脂膜20を介して結合され、これにより磁性基体200が形成されている。すなわち、第1の実施形態では複数の金属磁性粒子10が第3層13を介して結合されているのに対し、第2の実施形態では複数の金属磁性粒子10が樹脂膜20を介して結合されていることが差異であり、その他の構成は第1の実施形態と同じであるため説明を省略する。
[製造方法]
第2の実施形態に係る磁性基体の製造方法の一例を説明する。まず、第1の実施形態と同じく、鉄を主成分とする金属磁性粒子10の表面に例えばゾルゲル法等の湿式法によって酸化シリコン膜を形成した後、大気中で100℃以上220℃以下の温度で熱乾燥を行って金属磁性粉末を作製する。次に、金属磁性粉末と樹脂を混合させた複合磁性材料を金型のキャビティ内に充填してプレス成形した後、150℃、1時間程度の熱処理をして樹脂を硬化させる。樹脂は絶縁性に優れた熱硬化性樹脂であってもよい。樹脂として、例えばエポキシ樹脂、ポリイミド樹脂、ポリスチレン(PS)樹脂、高密度ポリエチレン(HDPE)樹脂、ポリオキシメチレン(POM)樹脂、ポリカーボネート(PC)樹脂、ポリフッ化ビニルデン(PVDF)樹脂、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリベンゾオキサゾール(PBO)樹脂、又はこれらの混合物を用いることができる。以上により磁性基体200が形成される。
第1の実施形態では、複数の金属磁性粒子10は各々を覆う第3層13を介して結合する場合を例に示したが、第2の実施形態のように、複数の金属磁性粒子10は樹脂膜20を介して結合する場合でもよい。この場合でも、金属磁性粒子10を覆って第1層11、第2層12、第3層13が設けられていることで、磁気特性の低下を抑制しつつ絶縁信頼性を向上させることができる。
[第3の実施形態]
図3は、本願発明の第3の実施形態に係るコイル部品を示す側面図である。第3の実施形態に係るコイル部品は、第1の実施形態である磁性基体100、もしくは第2の実施形態である磁性基体200を備えるが、以下の説明では第1の実施形態である磁性基体100を備える場合を例に説明する。図3を参照して、コイル部品300は、磁性基体100と、コイル周回部30と、外部電極40、41と、を備える。磁性基体100の形状は、ドラムコア、Tコア、Iコア等であってもよく、特に限定されない。磁性基体100の形状の例としてドラムコアの場合を例示する。磁性基体100は、巻芯部50と、巻芯部50の軸方向の一方の端部に設けられた鍔部51と、巻芯部50の他方の端部に設けられた鍔部52と、を備える。なお、磁性基体100の形状によって鍔部51及び鍔部52の一方もしくは両方がない場合がある。巻芯部50は、例えば断面形状が略長方形形状をしているが、六角形又は八角形等の多角形形状であってもよいし、円形状又は楕円形状等であってもよい。コイル部品300の「長さ」方向、「幅」方向、及び「厚さ」方向をそれぞれ、図3において「L」方向、「W」方向、及び「T」方向と図示している。コイル部品300は、例えば、長さ寸法(L軸方向の寸法)が3.2mm、幅寸法(W軸方向の寸法)が2.5mm、厚さ寸法(T軸方向の寸法)が2.5mmである。
コイル周回部30は、被覆導線31が巻芯部50に巻回されて形成されている。外部電極40は、金属板からなり、鍔部51に設けられている。外部電極41は、金属板からなり、鍔部52に設けられている。外部電極40及び外部電極41は導電性金属よりなれば、その形状は板状でなくてもよく、また鍔部51、鍔部52以外の場所に設けることもできる。被覆導線31の一端であるコイルの引出部32は外部電極40に電気的に接続され、他端であるコイルの引出部33は外部電極41に電気的に接続されている。被覆導線31は、例えば銅からなる芯線の周面がポリアミドイミドからなる絶縁被膜で覆われた構造をしている。芯線は、銅以外の金属で形成されていてもよく、例えば銀、パラジウム、又は銀パラジウム合金で形成されていてもよい。絶縁被膜は、ポリアミドイミド以外の絶縁材料で形成されていてもよく、例えばポリエステルイミド又はポリウレタン等の樹脂材料で形成されていてもよい。
[製造方法]
第3の実施形態に係るコイル部品の製造方法の一例を説明する。まず、第1の実施形態と同じく、鉄を主成分とする金属磁性粒子10の表面に例えばゾルゲル法等の湿式法によって酸化シリコン膜を形成した後、大気中で100℃以上220℃以下の温度で熱乾燥を行って、金属磁性粒子10を覆って第1層11が設けられ、第1層11を覆って第2層12が設けられ、第2層12を覆って第3層13が設けられた金属磁性粉末を作製する。次に、金属磁性粉末を金型のキャビティ内に充填してプレス成形することでドラム型をした成形体を形成する。この成形体に対して大気中で150℃、1時間程度の熱処理を行う。これにより、複数の金属磁性粒子10が第3層13を介して互いに結合したドラムコアである磁性基体100が形成される。必要に応じて、熱処理後の磁性基体100に対し、複数の金属磁性粒子10が第3層13を介して結合した結合部以外の空隙に樹脂等を含侵し硬化してもよい。その後、ドラムコアである磁性基体100に被覆導線31を巻回してコイル周回部30を形成し、被覆導線31の両端部の被覆を剥離する。その後、例えばペースト印刷、めっき、又はスパッタリング等の薄膜プロセスで用いられる方法によって、磁性基体100に被覆導線31に接続される外部電極40、41を形成する。なお、第3の実施形態に係るコイル部品が第2の実施形態に係る磁性基体200を用いる場合は、磁性基体の製造方法が異なるのみで、他は上記と同じ製造方法を用いることができる。
第3の実施形態によれば、磁気特性の低下が抑制されつつ絶縁信頼性が向上した磁性基体100又は磁性基体200を備えるコイル部品300が得られる。
[第4の実施形態]
図4は、本願発明の第4の実施形態に係るコイル部品を示す透視斜視図である。図4を参照して、コイル部品400は、第2の実施形態による磁性基体200と、磁性基体200に内蔵されたコイル周回部60と、磁性基体200の表面に設けられた外部電極42、43と、を備える。磁性基体200は概ね直方体の形状に形成されている。コイル部品400の「長さ」方向、「幅」方向、及び「厚さ」方向をそれぞれ、図4において「L」方向、「W」方向、及び「T」方向と図示している。コイル部品400は、例えば、長さ寸法(L軸方向の寸法)が1.0mm〜50mm、幅寸法(W軸方向の寸法)が1.0mm〜40mm、厚さ寸法(T軸方向の寸法)が0.8mm〜40mmである。
コイル周回部60は被覆導線61が巻回して形成されている。被覆導線61の一端であるコイルの引出部62は外部電極42に電気的に接続され、他端であるコイルの引出部63は外部電極43に電気的に接続されている。被覆導線61は、例えば銅からなる芯線の周面がポリアミドイミドからなる絶縁被膜で覆われた構造をしている。芯線は、銅以外の金属で形成されていてもよく、例えば銀、パラジウム、又は銀パラジウム合金で形成されていてもよい。絶縁被膜は、ポリアミドイミド以外の絶縁材料で形成されていてもよく、例えばポリエステルイミド又はポリウレタン等の樹脂材料で形成されていてもよい。
[製造方法]
第4の実施形態に係るコイル部品の製造方法の一例を説明する。まず、第1の実施形態と同じく、鉄を主成分とする金属磁性粒子10の表面に例えばゾルゲル法等の湿式法によって酸化シリコン膜を形成した後、大気中で100℃以上220℃以下の温度で熱乾燥を行って、金属磁性粒子10を覆って第1層11が設けられ、第1層11を覆って第2層12が設けられ、第2層12を覆って第3層13が設けられた金属磁性粉末を作製する。次に、被覆導線61によって形成されたコイル周回部60とコイル周回部60の両端に繋がるコイルの引出部62、63とを金型のキャビティ内に配置する。次に、金属磁性粉末と樹脂を混合させた複合磁性材料を、コイル周回部60及び引出部62、63が配置された金型のキャビティ内に充填してプレス成形した後、150℃、1時間程度の熱処理をして樹脂を硬化させる。これにより、コイル周回部60が内蔵され、複数の金属磁性粒子10が樹脂膜20を介して結合された磁性基体200が得られる。その後、例えばペースト印刷、めっき、又はスパッタリング等の薄膜プロセスで用いられる方法によって、磁性基体200の表面にコイルの引出部62、63に接続される外部電極42、43を形成する。
第4の実施形態によれば、磁気特性の低下が抑制されつつ絶縁信頼性が向上した磁性基体200を備えるコイル部品400が得られる。
[第5の実施形態]
図5は、本願発明の第5の実施形態に係る電子機器を示す側面図である。図5を参照して、電子機器500は、回路基板70と、回路基板70に実装された第3の実施形態のコイル部品300と、を備える。コイル部品300は、外部電極40、41が半田72によって回路基板70の電極71に接合されることで、回路基板70に実装されている。これにより、磁気特性の低下が抑制されつつ絶縁信頼性が向上したコイル部品300を備えた電子機器500が得られる。
第5の実施形態では、第3の実施形態に係るコイル部品300が回路基板70に実装されている場合を例に示したが、第4の実施形態に係るコイル部品400が回路基板70に実装された場合でもよい。
以下、本願発明を実施例及び比較例によってより具体的に説明するが、本願発明はこれらの実施例に記載された態様に限定されるわけではない。
[実施例1]
実施例1の磁性基体を以下の方法により作製した。原料粒子として純鉄粒子である金属磁性粒子を用い、この金属磁性粒子の表面にゾルゲル法により厚さ15nmの酸化シリコン(SiO)膜を形成した後、大気中で100℃、16時間の熱乾燥を行って金属磁性粉末を作製した。次に、金属磁性粉末を金型のキャビティ内に充填して8ton/cmの圧力でプレス成形することで成形体を形成した。この成形体から外径8mmの円板試料と、外径10mm、内径5mmのトロイダル試料と、を打ち抜いて作製し、これら試料に対して大気中で150℃、1時間の熱処理を行った。これにより、円板形状の磁性基体とトロイダル形状の磁性基体を得た。
[実施例2]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例3]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ15nmの酸化シリコン(SiO)膜を形成した後、大気中で150℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例4]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で150℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例5]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ25nmの酸化シリコン(SiO)膜を形成した後、大気中で150℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例6]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ40nmの酸化シリコン(SiO)膜を形成した後、大気中で150℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例7]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で200℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例8]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で210℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[実施例9]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で220℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例1]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ15nmの酸化シリコン(SiO)膜を形成した後、大気中で80℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例2]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で80℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例3]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ25nmの酸化シリコン(SiO)膜を形成した後、大気中で80℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例4]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ40nmの酸化シリコン(SiO)膜を形成した後、大気中で80℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例5]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で225℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例6]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で300℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
[比較例7]
原料粒子として用いた純鉄粒子である金属磁性粒子の表面にゾルゲル法により厚さ20nmの酸化シリコン(SiO)膜を形成した後、大気中で400℃、16時間の熱乾燥を行って金属磁性粉末を作製した点以外は、実施例1と同じ方法で各形状の磁性基体を作製した。
実施例1から実施例9及び比較例1から比較例7に対して、金属磁性粒子10を覆う各層の有無の確認及び各層の厚さの測定、測定体積抵抗率及び比透磁率の評価を行った。
[金属磁性粒子を覆う各層の有無の確認及び各層の厚さ測定]
表面に酸化シリコン膜を形成した後に熱乾燥をした状態での金属磁性粉末の断面を透過型電子顕微鏡(TEM)で40万倍にて観察することで、金属磁性粒子10の表面を覆う第1層11、第2層12、及び第3層13の有無を確認した。第1層11、第2層12、及び第3層13が存在する場合は、第2層12及び第3層13の厚さを測定した。
[体積抵抗率の評価]
円板形状の磁性基体の上面及び下面に銀ペーストを塗布して乾燥させることで電極を形成した。この電極を用いて測定した電気抵抗と、実際に採寸して求めた体積と、から体積抵抗率を算出した。
[比透磁率の評価]
キーサイト・テクノロジー社製のRFインピーダンス/マテリアル・アナライザE4991Aを用い、トロイダル形状の磁性基体の透磁率を測定することで比透磁率を算出した。
得られた結果を表1に示す。表1では、体積抵抗率の評価として、1.0×10[Ω・cm]以上である場合を「◎」、1.0×10[Ω・cm]以上である場合を「〇」、1.0×10[Ω・cm]未満の場合を「×」とした。比透磁率の評価として、30以上である場合を「◎」、25以上である場合を「〇」、25未満である場合を「×」とした。また、表1では第4層の有無についても表記している。第4層は、第3層の代わりに第2層を覆って設けられ、鉄酸化物を含み、シリコンをほとんど含まない層である。なお、表1において、第2層12と第3層13の厚さは金属磁性粉末の段階での厚さであるが、磁性基体を形成した後も厚さは変化しない。
Figure 2021128963
表1のように、金属磁性粒子10の表面に酸化シリコン膜を形成した後、大気中で100℃以上220℃以下の温度で熱乾燥させた場合は、金属磁性粒子10を覆って第1層11、第2層12、及び第3層13が形成された結果が得られた。
図6は、実施例4における金属磁性粉末の断面を走査型透過顕微鏡(STEM)により撮影してエネルギー分散型X線分光器(EDS)によってライン分析をした結果を示す図である。図6を参照して、鉄(Fe)とシリコン(Si)と酸素(O)の合計含有量を100wt%とした場合に、Feの含有量が98wt%より多く、Siの含有量が1wt%以下である範囲Aが形成されていた。この範囲Aは、金属磁性粒子10に相当する。範囲Aの外側には、FeとSiとOの合計含有量を100wt%とした場合に、Feの含有量が95wt%以上98wt%以下であり、Siの含有量が1wt%以下であり、Oの含有量が2wt%以上4wt%以下である範囲Bが形成されていた。この範囲Bは、金属鉄と鉄酸化物を含み、酸化物としての鉄の量よりも金属としての鉄の量が多い第1層11に相当する。
範囲Bの外側には、Feの含有量がSiの含有量よりも多く、Oの含有量がSiの含有量とFeの含有量の間に位置し、内側から外側に向かってFeの含有量が徐々に減少し且つSiの含有量が徐々に増加する範囲Cが形成されていた。鉄とシリコンと酸素の合計量を100wt%とした場合に、範囲Cは範囲Aでのシリコンの含有量の2倍以上のシリコンを含有している。この範囲Cは、鉄酸化物とシリコン酸化物を含み、鉄の含有量がシリコンの含有量よりも多く、第1層11から第3層13に向かって鉄の含有量が徐々に減少する第2層12に相当する。範囲Cの外側には、Siの含有量がFeの含有量よりも多く、Oの含有量がSiの含有量とFeの含有量の間に位置する範囲Dが形成されていた。この範囲Dは、シリコン酸化物を含み、シリコンの含有量が鉄の含有量よりも多い第3層13に相当する。
表1を参照して、熱乾燥の温度を80℃とした比較例1から比較例4では第1層11と第2層12の存在を確認できなかった。これは、熱乾燥の温度が低かったために、金属磁性粒子10を構成する鉄が金属磁性粒子10の表面に形成した酸化シリコン膜に向かって拡散することが抑制されたためと考えられる。一方、熱乾燥を225℃以上とした比較例5から比較例7では、第3層13の存在が確認できず、代わりに、鉄酸化物を含み、シリコンをほとんど含まない第4層が第2層12を覆って設けられていた。これは、熱乾燥の温度が高かったために、金属磁性粒子10を構成する鉄が金属磁性粒子10の表面に形成した酸化シリコン膜に向かって多量に拡散し、その結果、シリコン酸化物を主成分とする第3層13に代わって、鉄酸化物を主成分としてシリコンをほとんど含まない第4層が形成されたものと考えられる。
比較例1から比較例3では体積抵抗率が小さい結果であった。これは、金属磁性粒子10の表面に第2層12が設けられていないため、第3層13と金属磁性粒子10の結着が弱く、圧縮成形時等において第3層13に破壊及び/又は剥離が生じたためと考えられる。比較例4のように、第3層13を厚くすることで体積抵抗率を高くできたが、この場合では金属磁性粒子10の充填率が低下するため比透磁率が低下してしまった。
比較例5から比較例7では、シリコン酸化物を主成分とする第3層13の代わりに鉄酸化物を主成分とする第4層が形成されており、鉄酸化物はシリコン酸化物に比べて電気抵抗率が低いことから、体積抵抗率が低い結果となった。このことから、熱乾燥は、金属磁性粒子10を構成する鉄が金属磁性粒子10の表面に形成された酸化シリコン膜よりも外側に拡散しない条件で行うことが好ましいことが分かる。また、比較例5から比較例7では、熱乾燥の温度が高いことで金属磁性粒子10の酸化が進むと考えられるため、比透磁率が低い結果となった。
一方、実施例1から実施例9では、体積抵抗率が1.0×10[Ω・cm]から6.6×10[Ω・cm]、比透磁率が25.1から39.2となり、比較例1から比較例7に比べて、体積抵抗率の向上と比透磁率の低下抑制とが両立した結果が得られた。実施例1から実施例9では、金属磁性粒子10を覆って第1層11、第2層12、及び第3層13が形成されていることで、第3層13が第2層12によって金属磁性粒子10に強固に結着するため、圧縮成形時等においても第3層13の破壊及び/又は剥離が抑制された結果、体積抵抗率が高くなったと考えられる。比透磁率については、比較例1から比較例4に比べて、金属磁性粒子10の表面の酸化により若干の減少が見られたが、減少量は小さく抑えられている。これらのことから、金属磁性粒子10を覆って第1層11、第2層12、及び第3層13が形成されることで、磁性特性の低下を抑制しつつ絶縁信頼性を向上できることが確認された。金属磁性粒子10を覆って形成される第1層11、第2層12、及び第3層13に含まれる鉄及びシリコンの含有量は図6で説明したように規定してもよい。
実施例1から実施例9のように、第2層12と第3層13の合計膜厚を15nm以上40nm以下にすることで、磁性特性の低下を抑制しつつ絶縁信頼性を向上できることが確認された。磁性特性の低下を抑制しつつ絶縁信頼性を向上させる点から、第2層12と第3層13の合計膜厚は20nm以上40nm以下の場合が好ましく、20nm以上25nm以下の場合がより好ましい。
実施例1から実施例9のように、第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合である膜厚比率を0.2以上0.95以下にすることで、磁性特性の低下を抑制しつつ絶縁信頼性を向上できることが確認された。実施例7から実施例9のように熱乾燥の温度が200℃以上の場合では、熱乾燥時において金属磁性粒子10を構成する鉄が金属磁性粒子10の表面に形成された酸化シリコン膜に向かって多く拡散するようになり、第2層12が厚くなり且つ第3層13が薄くなる。この場合、電気抵抗率の高いシリコン酸化物を主成分とする第3層13が薄くなることから、体積抵抗率が低くなる。したがって、磁性特性の低下を抑制しつつ絶縁信頼性を向上させる点から、第2層12と第3層13の合計膜厚に対する第2層の膜厚の割合である膜厚比率を0.2以上0.4以下とすることが好ましく、0.3以上0.4以下とすることがより好ましいことが確認された。
以上、本願発明の実施形態について詳述したが、本願発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本願発明の要旨の範囲内において、種々の変形・変更が可能である。
10 金属磁性粒子
11 第1層
12 第2層
13 第3層
20 樹脂膜
30 コイル周回部
31 被覆導線
32、33 引出部
40〜43 外部電極
50 巻芯部
51、52 鍔部
60 コイル周回部
61 被覆導線
62、63 引出部
70 回路基板
71 電極
72 半田
100、200 磁性基体
300、400 コイル部品
500 電子機器

Claims (10)

  1. 鉄を主成分とする粒子である金属磁性粒子と、
    前記金属磁性粒子を覆う第1層と、
    前記第1層を覆う第2層と、
    前記第2層を覆う第3層と、を備え、
    前記第1層は、金属鉄と鉄酸化物を含み、酸化物としての鉄の量よりも金属としての鉄の量が多く、
    前記第2層は、鉄酸化物とシリコン酸化物を含み、重量%で表した場合での鉄の含有量はシリコンの含有量よりも多く、前記第1層から前記第3層に向かって鉄の含有量は減少し、
    前記第3層は、シリコン酸化物を含み、重量%で表した場合でのシリコンの含有量は鉄の含有量よりも多い、磁性基体。
  2. 前記第2層と前記第3層の合計膜厚は15nm以上40nm以下である、請求項1に記載の磁性基体。
  3. 前記第2層と前記第3層の合計膜厚に対する前記第2層の膜厚の割合は0.2以上0.95以下である、請求項1または2に記載の磁性基体。
  4. 前記第2層と前記第3層の合計膜厚に対する前記第2層の膜厚の割合は0.2以上0.4以下である、請求項1または2に記載の磁性基体。
  5. 前記第1層は、鉄とシリコンと酸素の合計含有量を100重量%とした場合においてシリコンの含有量が1重量%以下で且つ鉄の含有量が95重量%以上98重量%以下である、請求項1から4のいずれか一項に記載の磁性基体。
  6. 鉄とシリコンと酸素の合計量を100重量%とした場合に、前記第2層は前記金属磁性粒子のシリコンの含有量の2倍以上のシリコンを含有する、請求項1から5のいずれか一項記載の磁性基体。
  7. 前記金属磁性粒子は、鉄とシリコンと酸素の合計含有量を100重量%とした場合において鉄の含有量が98重量%より多い、請求項1から6のいずれか一項に記載の磁性基体。
  8. 前記金属磁性粒子は純鉄からなる粒子である、請求項1から7のいずれか一項に記載の磁性基体。
  9. 請求項1から8のいずれか一項に記載の磁性基体と、
    前記磁性基体に設けられているコイル導体と、を備える、コイル部品。
  10. 請求項9に記載のコイル部品と、
    前記コイル部品が実装されている回路基板と、を備える電子機器。
JP2020020932A 2020-02-10 2020-02-10 磁性基体、コイル部品、及び電子機器 Abandoned JP2021128963A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020020932A JP2021128963A (ja) 2020-02-10 2020-02-10 磁性基体、コイル部品、及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020932A JP2021128963A (ja) 2020-02-10 2020-02-10 磁性基体、コイル部品、及び電子機器

Publications (1)

Publication Number Publication Date
JP2021128963A true JP2021128963A (ja) 2021-09-02

Family

ID=77488936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020932A Abandoned JP2021128963A (ja) 2020-02-10 2020-02-10 磁性基体、コイル部品、及び電子機器

Country Status (1)

Country Link
JP (1) JP2021128963A (ja)

Similar Documents

Publication Publication Date Title
CN109545493B (zh) 复合磁性材料及使用了该复合磁性材料的线圈部件
KR101779836B1 (ko) 코일 부품 및 그 제조 방법, 전자 기기
TWI732210B (zh) 磁性材料及電子零件
TWI452580B (zh) Magnetic materials and coil parts using them
US10811188B2 (en) Metal matrix composite wire, power inductor, and preparation methods for same
JP2012238841A (ja) 磁性材料及びコイル部品
TW201703067A (zh) 線圈零件
US11495396B2 (en) Surface mount inductor
JP7281319B2 (ja) 積層コイル部品及びその製造方法、並びに積層コイル部品を載せた回路基板
JP6760500B2 (ja) コイル部品
US20210193362A1 (en) Magnetic base body containing metal magnetic particles and electronic component including the same
JP2021128963A (ja) 磁性基体、コイル部品、及び電子機器
US20220375675A1 (en) Coil-embedded magnetic core and coil device
JP6686979B2 (ja) 積層インダクタ
US20220189676A1 (en) Coil electronic component
JP2020161760A (ja) 巻線型コイル部品及びその製造方法、並びに巻線型コイル部品を載せた回路基板
JP7438783B2 (ja) 磁性基体、コイル部品、及び電子機器
JP2020161718A (ja) コイル部品
US20220277884A1 (en) Coil component, circuit board, electronic device, and method of manufacturing coil component
JP2021125486A (ja) コイル部品及び電子機器
US11742141B2 (en) Metal magnetic particle, inductor, method for manufacturing metal magnetic particle, and method for manufacturing metal magnetic core
US11600426B2 (en) DC-DC converter multilayer coil array and DC-DC converter
JP2022096248A (ja) コイル部品及びその製造方法
JP2022116787A (ja) コイル部品及びコイル部品の製造方法
US11964325B2 (en) Metal magnetic material and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20231006