JP2021122254A - Method for controlling thickness and size of leaf of green leaf vegetable - Google Patents

Method for controlling thickness and size of leaf of green leaf vegetable Download PDF

Info

Publication number
JP2021122254A
JP2021122254A JP2020019516A JP2020019516A JP2021122254A JP 2021122254 A JP2021122254 A JP 2021122254A JP 2020019516 A JP2020019516 A JP 2020019516A JP 2020019516 A JP2020019516 A JP 2020019516A JP 2021122254 A JP2021122254 A JP 2021122254A
Authority
JP
Japan
Prior art keywords
light
leaf
blue light
thickness
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020019516A
Other languages
Japanese (ja)
Other versions
JP7431438B2 (en
Inventor
豊 児玉
Yutaka Kodama
豊 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2020019516A priority Critical patent/JP7431438B2/en
Publication of JP2021122254A publication Critical patent/JP2021122254A/en
Application granted granted Critical
Publication of JP7431438B2 publication Critical patent/JP7431438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for controlling a future lettuce (Lactuca sativa) leaf morphology (thickness and size of a leaf) by using the intracellular arrangement of chloroplasts.SOLUTION: Provided is a method for controlling the thickness and size of a leaf, in which a seedling of a green leaf vegetable, for example, lettuce, is irradiated with blue light with different intensities (weak light with 5 μmol m-2S-1 and strong light with 50 μmol m-2S-1) at a predetermined temperature for a certain period of time, and the intracellular arrangement of chloroplasts is adjusted. In addition to the blue light with different intensities, desirably, the seedling is also irradiated with red light with different intensities simultaneously. It is found that when irradiated with blue light (weak light), the area of the leaf is larger than when irradiated with blue light (strong light), and the wet weight of an above-ground biomass also becomes heavier. On the other hand, it is found that when irradiated with blue light (strong light), the thickness of the leaf becomes larger than when irradiated with blue light (weak light). There is no difference between when irradiated with blue light (weak light) and when irradiated with blue light (strong light) in the dry weight of the biomass.SELECTED DRAWING: None

Description

本発明は、レタス等の緑色葉物野菜の苗に強度の異なる青色光を、所定温度で一定期間照射し、細胞内の葉緑体の配置を調節することを特徴とする葉の厚さ及び大きさを制御する方法に関する。 The present invention is characterized in that the seedlings of green leafy vegetables such as lettuce are irradiated with blue light having different intensities at a predetermined temperature for a certain period of time to adjust the arrangement of intracellular chloroplasts. It relates to a method of controlling the size.

光の情報(強さ,入射方向,波長など)に従って葉緑体が細胞内での配置や存在場所を変える現象は葉緑体光定位運動[chloroplast photo-relocation movement]と呼ばれ、一般的には青色光によって誘導される。弱光(数W m-2 s-1以下)下では葉緑体は葉の表面側に集合し、強光(10 W m-2 s-1以上)下では葉緑体は光を避けて光と平行な細胞壁面に逃避する。前者を集合反応(弱光反応)、後者を逃避反応(強光反応)という。集合反応は光合成の効率を上げ、逃避反応は光傷害を避けるという生理学的意義がある。 The phenomenon in which chloroplasts change their intracellular arrangement and location according to light information (intensity, incident direction, wavelength, etc.) is called chloroplast photo-relocation movement, and is generally called chloroplast photo-relocation movement. Is induced by blue light. Under low light (several W m -2 s -1 or less), chloroplasts gather on the surface side of the leaf, and under strong light (10 W m -2 s -1 or more), chloroplasts avoid light. Escape to the cell wall parallel to the light. The former is called an aggregate reaction (weak light reaction), and the latter is called an escape reaction (strong light reaction). The aggregate reaction has the physiological significance of increasing the efficiency of photosynthesis, and the escape reaction has the physiological significance of avoiding photoinjury.

光合成の最適化のために、葉緑体光定位運動を利用して、植物のサイズを制御し、種子の収量改善の試みがなされている。光合成の最適化のため、葉緑体の細胞内配置は、光や温度などの環境条件に応じて変化する(非特許文献1及び2)。例えば、暖かい条件における強い光の下では、葉緑体は、逃避反応と呼ばれるプロセスで、光から遠ざかることにより、垂層細胞壁に沿って局在化する(非特許文献2)。同様に、寒冷条件下における弱い光の下では、葉緑体は寒冷逃避反応と呼ばれるプロセスによって、垂層細胞壁に沿って局在化する(非特許文献3及び4)。逃避反応及び寒冷逃避反応は、それぞれ暖かい条件及び寒冷条件において、光阻害によって引き起こされる葉緑体の光損傷を軽減する可能性がある(非特許文献5及び6)。さらに、暖かい条件下における弱い光の下では、葉緑体は集合反応と呼ばれるプロセスで光に向かって移動することにより、周辺細胞壁に沿って局在化する。生理学的に、集合反応は光合成を最大化すると考えられている。このことは、葉緑体が異常な位置にあることが示される様々なシロイヌナズナ変異体間の比較を通じて、実験的に最近確認された理論と一致する(非特許文献7)。しかしながら、野菜など経済的に重要な種における野生型の植物の成長に関しては、これらの反応の影響は、いまだ確認されていない。 Attempts have been made to control plant size and improve seed yields using chloroplast photolocalization for photosynthesis optimization. In order to optimize photosynthesis, the intracellular arrangement of chloroplasts changes according to environmental conditions such as light and temperature (Non-Patent Documents 1 and 2). For example, under strong light in warm conditions, chloroplasts are localized along the cell wall of the pituitary gland by moving away from the light in a process called escape reaction (Non-Patent Document 2). Similarly, under low light under cold conditions, chloroplasts are localized along the cell wall of the pituitary gland by a process called the cold escape reaction (Non-Patent Documents 3 and 4). The escape reaction and the cold escape reaction may reduce the photodamage of chloroplasts caused by photoinhibition under warm and cold conditions, respectively (Non-Patent Documents 5 and 6). In addition, under low light under warm conditions, chloroplasts localize along the surrounding cell wall by moving towards the light in a process called the aggregation reaction. Physiologically, collective reactions are thought to maximize photosynthesis. This is consistent with a recently experimentally confirmed theory through comparisons between various Arabidopsis mutants in which chloroplasts have been shown to be in abnormal positions (Non-Patent Document 7). However, the effects of these reactions on the growth of wild-type plants in economically important species such as vegetables have not yet been confirmed.

葉緑体の逃避反応及び集合反応は、青色光(BL)視細胞フォトトロピン青色光(BL)受容体フォトトロピンを介して行われる(非特許文献8〜10)。最近、本発明者らは、フォトトロピンが寒冷逃避反応を介する温度センサー分子であることを報告した(非特許文献11)。また最近、光の情報(強さ,波長など)を利用した植物の栽培方法や育成方法が多数提案されている。 The escape reaction and aggregation reaction of chloroplasts are carried out via blue light (BL) photoreceptor phototropin blue light (BL) receptor phototropin (Non-Patent Documents 8 to 10). Recently, the present inventors have reported that phototropin is a temperature sensor molecule that mediates a cold escape reaction (Non-Patent Document 11). Recently, many plant cultivation methods and cultivation methods using light information (intensity, wavelength, etc.) have been proposed.

例えば、380nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、前記発光素子からの光により励起されて580nm以上680nm以下の範囲内に少なくとも一つの発光ピーク波長を有する光を発する赤色蛍光体を備え、400nm以上490nm以下の範囲における青色光の光量子束Bに対する620nm以上700nm以下の範囲における赤色光(RL)の光量子束Rの比(R/B)が20を超えて200以下である発光装置を用いた植物の成長を促進可能な植物栽培方法が提案されている(特許文献1)。 For example, a light emitting element having an emission peak wavelength in the range of 380 nm or more and 490 nm, and a red fluorescence that is excited by light from the light emitting element and emits light having at least one emission peak wavelength in the range of 580 nm or more and 680 nm or less. The ratio (R / B) of the photon bundle R of red light (RL) in the range of 620 nm or more and 700 nm or less to the photon bundle B of blue light in the range of 400 nm or more and 490 nm or less is more than 20 and 200 or less. A plant cultivation method capable of promoting the growth of a plant using a light emitting device has been proposed (Patent Document 1).

また、植物苗に人工光を照射して生育を促進させる植物苗の栽培方法であって、青色照明光を連続的に照射する期間(A)を有し、前記青色照明光を連続的に照射する期間(A)を行う時間の30以上80%未満が、青色照明光及び赤色照明光を連続的に照射する期間(A−1)である、徒長が無く、茎の太い、定植後にも生育が良好な苗を栽培できる植物苗の栽培方法が提案されている(特許文献2)。 Further, it is a method of cultivating a plant seedling that promotes growth by irradiating the plant seedling with artificial light, and has a period (A) of continuously irradiating the blue illumination light, and continuously irradiates the blue illumination light. 30 or more and less than 80% of the time during which the planting period (A) is performed is the period (A-1) in which the blue illumination light and the red illumination light are continuously irradiated. A method for cultivating plant seedlings capable of cultivating good seedlings has been proposed (Patent Document 2).

また、果菜類の苗に対して、人工光である赤色照明光と青色照明光とを、交互かつ繰り返し照射して行う育苗方法であって、栽培面に照射する赤色照明光、青色照明光の日積算光合成有効光量子量を、それぞれ10〜25mol/m・day−1、4〜15mol/m・day−1とし、前記赤色照明光、前記青色照明光の一日当たりの照射時間の合計を、16〜24時間とする、定植後に根がよく発達し、均質で活着がよく、生育が良好な高品質の果菜類苗を安価に育苗することが可能な、果菜類苗の育苗方法が提案されている(特許文献3)。 In addition, the seedling raising method is performed by alternately and repeatedly irradiating fruit and vegetable seedlings with artificial light such as red illumination light and blue illumination light. The daily integrated photosynthesis effective photon amount is 10 to 25 mol / m 2 · day -1 and 4 to 15 mol / m 2 · day -1, respectively, and the total of the irradiation time of the red illumination light and the blue illumination light per day is taken. , 16 to 24 hours, a method for raising fruit seedlings is proposed, which enables inexpensive growth of high-quality fruit seedlings with well-developed roots, homogeneity, good survival, and good growth after planting. (Patent Document 3).

そしてまた、赤色光照明光を植物に照射する赤色光照射ステップS1と、青色光照明光を植物に照射する青色光照射ステップS2と、を行う植物栽培方法において、各ステップの照射時間を3時間以上48時間未満とし、赤色光照射ステップと、青色光照射ステップと、からなる照射サイクルC1、C2を一定期間内に少なくとも2サイクル以上行い、かつ照射サイクルにおいて赤色光照射ステップ又は青色光照射ステップのいずれか一つのステップで手順を開始する植物栽培方法であって、簡便で、エネルギー効率が良く、優れた生長促進効果などの植物栽培効果を得ることが可能な人工光照射による植物栽培方法が提案されている(特許文献4)。 Further, in the plant cultivation method in which the red light irradiation step S1 for irradiating the plant with the red light illumination light and the blue light irradiation step S2 for irradiating the plant with the blue light illumination light are performed, the irradiation time of each step is 3 hours or more 48. Irradiation cycles C1 and C2 consisting of a red light irradiation step and a blue light irradiation step are performed for at least two cycles within a certain period, and either the red light irradiation step or the blue light irradiation step is performed in the irradiation cycle. It is a plant cultivation method that starts the procedure in one step, and a plant cultivation method by artificial light irradiation that is simple, energy efficient, and can obtain a plant cultivation effect such as an excellent growth promoting effect has been proposed. (Patent Document 4).

さらに、植物に太陽光を照射する領域と、赤色光および/または青色光を含む人工光を植物に照射する光照射部と、前記光照射部を制御して、赤色光を植物に照射するステップと、青色光を植物に照射するステップとを一定期間内に別個独立に実行する制御部とを備える植物栽培装置を用いる、人工光と太陽光とを植物に照射して生長を促進させることができるとともに、優れたエネルギー効率が得られる植物栽培方法が提案されている(特許文献5)。 Further, a step of irradiating the plant with red light by controlling a region for irradiating the plant with sunlight, a light irradiation unit for irradiating the plant with artificial light including red light and / or blue light, and the light irradiation unit. It is possible to irradiate the plant with artificial light and sunlight to promote growth by using a plant cultivation device equipped with a control unit that separately and independently executes the step of irradiating the plant with blue light within a certain period of time. A plant cultivation method capable of obtaining excellent energy efficiency has been proposed (Patent Document 5).

特開2019−161076号公報Japanese Unexamined Patent Publication No. 2019-161076 特開2018−121589号公報Japanese Unexamined Patent Publication No. 2018-121589 特開2017−169509号公報JP-A-2017-169509 特開2015−142585号公報Japanese Unexamined Patent Publication No. 2015-142585 特開2014−166178号公報Japanese Unexamined Patent Publication No. 2014-166178

Fujii and Kodama、Plant Signaling & Behavior 2018; 13(3): e1411452. (3 pages);Fujii and Kodama, Plant Signaling & Behavior 2018; 13 (3): e1411452. (3 pages); Wada, Plant Sci. 2013;210:177-182Wada, Plant Sci. 2013; 210: 177-182 Kodama et al., J Plant Res. 2008;121:441-8Kodama et al., J Plant Res. 2008; 121: 441-8 Ogasawara et al., Plant Cell Environ. 2013;36:1520-8.Ogasawara et al., Plant Cell Environ. 2013; 36: 1520-8. Fujii et al., Proc Natl Acad Sci U S A. 2017;114:9206-11Fujii et al., Proc Natl Acad Sci U S A. 2017; 114: 9206-11 Kasahara et al., Nature 420: 829-832, 2002Kasahara et al., Nature 420: 829-832, 2002 Gotoh et al. Plant Physiol 178:1358-1369、2018Gotoh et al. Plant Physiol 178: 1358-1369, 2018 Jarillo et al.Nature 410: 952-954,2001Jarillo et al. Nature 410: 952-954,2001 Kagawa et al.,Science 16 Mar: Vol. 291, Issue 5511, pp. 2138-2141,2001Kagawa et al. , Science 16 Mar: Vol. 291, Issue 5511, pp. 2138-2141,2001 Sakai et al,,Proc Natl Acad Sci USA 98: 6969-6974, 2001Sakai et al ,, Proc Natl Acad Sci USA 98: 6969-6974, 2001 Fujii et al., PNAS first published August 7, 2017 https://doi.org/10.1073/pnas.1704462114 2017Fujii et al., PNAS first published August 7, 2017 https://doi.org/10.1073/pnas.1704462114 2017

集合反応では、葉緑体は弱い青色光に向かって移動し、周辺細胞壁に沿って局在する。対照的に、逃避反応では、葉緑体は強い青色光から遠ざかり、垂層細胞壁に沿って局在する。集合反応は光の捕獲を最大化し、逃避反応は光損傷を低減する。葉緑体の細胞内配置は、光合成を最適化するために重要であり、光合成に影響を及ぼす別の要因である葉の形態を決定するレギュレーターと共通のシグナルを有する可能性がある。本発明の課題は、葉緑体の細胞内配置を使用して、レタス(Lactuca sativa)の将来の葉の形態(葉の厚さ及び大きさ)を予測することにある。 In the collective reaction, the chloroplasts move towards the weak blue light and localize along the surrounding cell wall. In contrast, in the escape reaction, the chloroplasts move away from the intense blue light and localize along the pituitary cell wall. The collective reaction maximizes light capture and the escape reaction reduces light damage. The intracellular placement of chloroplasts is important for optimizing photosynthesis and may share a signal with regulators that determine leaf morphology, another factor affecting photosynthesis. An object of the present invention is to predict the future leaf morphology (leaf thickness and size) of lettuce (Lactuca sativa) using the intracellular arrangement of chloroplasts.

本発明者ら上記課題を解決するために鋭意研究した。多くの植物種では、葉緑体配置は青色光(BL)の強度の変化と温度の変化とに応じて変更される。植物成長施設(又は植物工場)のような人工的な条件下では、温度が通常一定に保たれるため、葉緑体配置はBL強度によってのみ影響を受けることになる。本発明者らは、植物工場で栽培される野菜類について、植物の葉緑体配置の影響を調べるために、一定の暖かい温度において、逃避反応を誘導する強いBLの下で育ったレタス(Lactuca sativa)と、集合反応を誘導する弱いBLの下で育ったレタスにおける影響を分析した。 The present inventors have diligently studied to solve the above problems. In many plant species, the chloroplast arrangement changes in response to changes in blue light (BL) intensity and temperature. Under artificial conditions such as plant growth facilities (or plant factories), chloroplast placement will only be affected by BL intensity, as temperatures are usually kept constant. In order to investigate the effect of plant chlorophyll arrangement on vegetables cultivated in a plant factory, the present inventors lettuce (Lactuca) grown under a strong BL that induces an escape reaction at a constant warm temperature. We analyzed the effects of sativa) and lettuce grown under weak BL, which induces aggregate reactions.

すなわち、レタスの苗に適切な強度の青色光を照射することでレタス細胞の集合反応又は逃避反応を誘導し、植物の成長を観察したところ、集合反応を誘発する弱い青色光に応じて葉の面積が増加し、逃避反応を誘発する強い青色光に応じて葉の厚さが増加することを見いだし、本発明を完成するに至った。 That is, when lettuce seedlings were irradiated with blue light of an appropriate intensity to induce a lettuce cell aggregation reaction or escape reaction, and plant growth was observed, the leaves of the leaves responded to the weak blue light that induced the aggregation reaction. We have found that the area increases and the leaf thickness increases in response to the strong blue light that induces the escape reaction, and the present invention has been completed.

本発明は、以下の事項により特定されるものである。
(1)緑色葉物野菜の苗に強度の異なる青色光を、所定温度で一定期間照射し、細胞内の葉緑体の配置を調節することを特徴とする葉の厚さ及び大きさを制御する方法。
(2)緑色葉物野菜がレタスであることを特徴とする上記(1)記載の葉の厚さ及び大きさを制御する方法。
(3)青色光が、青色発光ダイオードに由来する青色光であることを特徴とする上記(1)又は(2)記載の葉の厚さ及び大きさを制御する方法。
(4)強度の異なる青色光に加えて、強度の異なる赤色光を同時に照射することを特徴とする上記(1)〜(3)のいずれか記載の葉の厚さ及び大きさを制御する方法。
(5)赤色光が、赤色発光ダイオードに由来する赤色光であることを特徴とする上記(4)記載の葉の厚さ及び大きさを制御する方法。
(6)強度の異なる青色光が、5又は50μmol・m−2・S−1であることを特徴とする上記(1)〜(5)のいずれか記載の葉の厚さ及び大きさを制御する方法。
(7)強度の異なる赤色光が、125又は250μmol・m−2・S−1であることを特徴とする上記(4)〜(6)のいずれか記載の葉の厚さ及び大きさを制御する方法。
(8)所定の温度が、15〜25℃であることを特徴とする上記(1)〜(7)のいずれか記載の葉の厚さ及び大きさを制御する方法。
(9)一定期間が、14〜28日間であることを特徴とする上記(1)〜(8)のいずれか記載の葉の厚さ及び大きさを制御する方法。
(10)植物工場又は温室内で細胞内の葉緑体の配置を調節することを特徴とする上記(1)〜(9)のいずれか記載の葉の厚さ及び大きさを制御する方法。
The present invention is specified by the following matters.
(1) Controlling leaf thickness and size, which is characterized by irradiating green leafy vegetable seedlings with blue light of different intensities at a predetermined temperature for a certain period of time to adjust the arrangement of intracellular chloroplasts. how to.
(2) The method for controlling the thickness and size of leaves according to (1) above, wherein the green leafy vegetables are lettuce.
(3) The method for controlling the thickness and size of leaves according to (1) or (2) above, wherein the blue light is blue light derived from a blue light emitting diode.
(4) The method for controlling the thickness and size of a leaf according to any one of (1) to (3) above, which comprises simultaneously irradiating red light having different intensities in addition to blue light having different intensities. ..
(5) The method for controlling the thickness and size of leaves according to (4) above, wherein the red light is red light derived from a red light emitting diode.
(6) Controlling the leaf thickness and size according to any one of (1) to (5) above, wherein the blue light having different intensities is 5 or 50 μmol · m -2 · S -1. how to.
(7) Controlling the leaf thickness and size according to any one of (4) to (6) above, wherein the red light having different intensities is 125 or 250 μmol · m -2 · S -1. how to.
(8) The method for controlling the thickness and size of a leaf according to any one of (1) to (7) above, wherein the predetermined temperature is 15 to 25 ° C.
(9) The method for controlling the leaf thickness and size according to any one of (1) to (8) above, wherein the fixed period is 14 to 28 days.
(10) The method for controlling the leaf thickness and size according to any one of (1) to (9) above, which comprises adjusting the arrangement of intracellular chloroplasts in a plant factory or a greenhouse.

本発明によると、緑色葉物野菜の苗に照射する青色光の強度を変えるだけで、細胞内の葉緑体の配置を調節することにより、緑色葉物野菜の葉の厚さ及び大きさを制御することが可能となる。 According to the present invention, the thickness and size of leaves of green leafy vegetables can be adjusted by adjusting the arrangement of intracellular chloroplasts only by changing the intensity of blue light irradiating the seedlings of green leafy vegetables. It becomes possible to control.

図1A(TopとBottom)は、BL5を3時間照射したレタス細胞における葉緑体の配置を示す。図1B(TopとBottom)は、BL50を3時間照射したレタス細胞における葉緑体の配置を示す。FIG. 1A (Top and Bottom) shows the arrangement of chloroplasts in lettuce cells irradiated with BL5 for 3 hours. FIG. 1B (Top and Bottom) shows the arrangement of chloroplasts in lettuce cells irradiated with BL50 for 3 hours. 種々の波長の組合せの照射条件下で、栽培したレタスの写真である。図2Aは、BL5とRL125を照射したレタス、図2Bは、BL50とRL125を照射したレタス、図2Cは、BL5とRL250を照射したレタス、図2Dは、BL50とRL250を照射したレタスである。白いバーは10cmを示す。It is a photograph of lettuce cultivated under irradiation conditions of various wavelength combinations. 2A is lettuce irradiated with BL5 and RL125, FIG. 2B is lettuce irradiated with BL50 and RL125, FIG. 2C is lettuce irradiated with BL5 and RL250, and FIG. 2D is lettuce irradiated with BL50 and RL250. The white bar indicates 10 cm. BL5又はBL50と、RL125とを組み合わせて照射した場合(図3A)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図3B)の葉の面積のグラフである。BL5又はBL50と、RL125とを組み合わせて照射した場合(図3C)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図3D)の葉の厚さのグラフである。It is a graph of the leaf area when BL5 or BL50 and RL125 are irradiated in combination (FIG. 3A), and when BL5 or BL50 and RL250 are irradiated in combination (FIG. 3B). It is a graph of leaf thickness when BL5 or BL50 and RL125 are irradiated in combination (FIG. 3C), and when BL5 or BL50 and RL250 are irradiated in combination (FIG. 3D). BL5又はBL50と、RL125とを組み合わせて照射した場合(図4A)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図4B)の地上部バイオマスの生重量(新鮮重量)のグラフである。BL5又はBL50と、RL125とを組み合わせて照射した場合(図4C)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図4D)の地上部バイオマスの乾燥重量のグラフである。It is a graph of the raw weight (fresh weight) of the above-ground biomass when the BL5 or BL50 and the RL125 are irradiated in combination (FIG. 4A), and when the BL5 or BL50 and the RL250 are irradiated in combination (FIG. 4B). .. It is a graph of the dry weight of the above-ground biomass when the BL5 or BL50 and the RL125 are irradiated in combination (FIG. 4C), and when the BL5 or BL50 and the RL250 are irradiated in combination (FIG. 4D).

本発明の緑色葉物野菜の葉の厚さ及び大きさの制御方法は、緑色葉物野菜の苗に強度の異なる青色光、例えば5μmol・m−2・S−1の青色光と50μmol・m−2・S−1の青色光を、所定温度で一定期間照射し、細胞内の葉緑体の配置を調節することを特徴とする。上記青色光としては、青色発光ダイオードに由来する青色光を好適に挙げることができ、例えばピークを波長480nm付近に有する波長440〜520nm範囲の青色光を具体的に示すことができる。 The method for controlling the leaf thickness and size of green leafy vegetables of the present invention is to control the leaf thickness and size of green leafy vegetables with blue light having different intensities, for example, 5 μmol · m- 2 · S- 1 blue light and 50 μmol · m. It is characterized in that the arrangement of chloroplasts in cells is adjusted by irradiating with blue light of -2 · S- 1 at a predetermined temperature for a certain period of time. As the blue light, blue light derived from a blue light emitting diode can be preferably mentioned, and for example, blue light having a peak in the vicinity of a wavelength of 480 nm and having a wavelength in the wavelength range of 440 to 520 nm can be specifically shown.

上記強度の異なる青色光(BL)としては、4〜6μmol・m−2・S−1、好ましくは5μmol・m−2・S−1の青色光(弱光)と、40〜60μmol・m−2・S−1、好ましくは50μmol・m−2・S−1の青色光(強光)を挙げることができる。青色光(弱光)下では葉緑体は葉の表面側に集合し(集合反応)、青色光(強光)下では葉緑体は光を避けて光と平行な細胞壁面に逃避する(逃避反応)。また、青色光(弱光)を照射した場合、青色光(強光)を照射した場合に比べて、葉の面積が大きく、かつ地上部バイオマスの生重量も重くなることがわかった。他方、青色光(強光)を照射した場合、青色光(弱光)を照射した場合に比べて、葉の厚さが大きくなることがわかった。バイオマスの乾燥重量は、青色光(弱光)を照射した場合と、青色光(強光)を照射した場合とで、差異はなかった。 As the intensity of different blue light (BL), 4~6μmol · m -2 · S -1, preferably blue light 5μmol · m -2 · S -1 and (low light), 40~60μmol · m - 2. S -1 , preferably 50 μmol · m -2 · S -1 , blue light (strong light) can be mentioned. Under blue light (weak light), chloroplasts gather on the surface side of the leaf (aggregate reaction), and under blue light (strong light), chloroplasts avoid light and escape to the cell wall parallel to the light (aggregation reaction). Escape reaction). It was also found that when the blue light (weak light) was irradiated, the leaf area was larger and the raw weight of the above-ground biomass was heavier than when the blue light (strong light) was irradiated. On the other hand, it was found that the leaf thickness was larger when the blue light (strong light) was irradiated than when the blue light (weak light) was irradiated. There was no difference in the dry weight of the biomass between the case of irradiating with blue light (weak light) and the case of irradiating with blue light (strong light).

また、強度の異なる青色光に加えて、強度の異なる赤色光(RL)を同時に照射することが好ましい。前記青色光は葉緑体の配置の調節に寄与するが、赤色光は葉緑体の配置の調節に関与せず、光合成に寄与する。かかる赤色光としては赤色発光ダイオードに由来する赤色光を好適に挙げることができ、例えばピークを波長660nm付近に有する波長620〜680nm範囲の赤色光を具体的に示すことができる。 Further, it is preferable to simultaneously irradiate red light (RL) having different intensities in addition to blue light having different intensities. The blue light contributes to the regulation of chloroplast arrangement, while the red light does not participate in the regulation of chloroplast arrangement and contributes to photosynthesis. As such red light, red light derived from a red light emitting diode can be preferably mentioned, and for example, red light having a peak in the vicinity of a wavelength of 660 nm and having a wavelength in the wavelength range of 620 to 680 nm can be specifically shown.

上記強度の異なる赤色光としては、例えば120〜130μmol・m−2・S−1、好ましくは125μmol・m−2・S−1の赤色光(弱光)と、240〜260μmol・m−2・S−1、好ましくは250μmol・m−2・S−1の赤色光(強光)を挙げることができる。 Examples of the red light having different intensities include 120 to 130 μmol · m -2 · S -1 , preferably 125 μmol · m -2 · S -1 red light (weak light) and 240 to 260 μmol · m -2 ·. S -1 , preferably 250 μmol · m -2 · S -1 red light (strong light) can be mentioned.

上記緑色葉物野菜としては、レタス(キク科)、シュンギク(キク科)、モロヘイヤ(アオイ科)、キャベツ(アブラナ科)、ハクサイ(アブラナ科)、コマツナ(アブラナ科)、チンゲンサイ(アブラナ科)、ミズナ(アブラナ科)、ルッコラ(アブラナ科)、クレソン(アブラナ科)、エゴマ(シソ科)、バジル(シソ科)、シソ(シソ科)、ツルムラサキ(ツルムラサキ科)、ホウレンソウ(ヒユ科)、ニラ(ユリ科)などを挙げることができるが、中でもレタスを好適に例示することができる。 Examples of the above green leafy vegetables include lettuce (Lamiaceae), Shungiku (Lamiaceae), Moroheiya (Brassicaceae), cabbage (Brassicaceae), Hakusai (Brassicaceae), Komatsuna (Brassicaceae), Chingensai (Brassicaceae), Mizuna (Brassicaceae), Luccola (Brassicaceae), Cresson (Brassicaceae), Egoma (Lamiaceae), Basil (Lamiaceae), Labiatae (Lamiaceae), Tsurumurasaki (Brassicaceae), Horensou (Brassicaceae), Nira ( (Brassicaceae) and the like can be mentioned, but lettuce can be preferably exemplified.

上記所定の温度としては、緑色葉物野菜の種類によって異なるが、概ね15〜25℃、好ましくは20℃を挙げることができる。各緑色葉物野菜の生育適温を以下例示する。レタス(15〜20℃)、シュンギク(15〜20℃)、モロヘイヤ(20〜30℃)、キャベツ(15〜20℃)、ハクサイ(18〜20℃)、コマツナ(15〜25℃)、チンゲンサイ(18〜20℃)、ミズナ(15〜20℃)、ルッコラ(15〜25℃)、クレソン(15〜20℃)、エゴマ(20〜25℃)、バジル(20〜25℃)、シソ(20〜23℃)、ツルムラサキ(20〜30℃)、ホウレンソウ(15〜20℃)、ニラ(15〜25℃)である。 The predetermined temperature varies depending on the type of green leafy vegetables, but may be generally 15 to 25 ° C, preferably 20 ° C. The optimum temperature for growth of each green leafy vegetable is illustrated below. Lettuce (15-20 ° C), Shungiku (15-20 ° C), Moroheiya (20-30 ° C), Cabbage (15-20 ° C), Chinese cabbage (18-20 ° C), Komatsuna (15-25 ° C), Bok choy (15-25 ° C) 18-20 ° C), Mizuna (15-20 ° C), Arugula (15-25 ° C), Creson (15-20 ° C), Perilla frutescens (20-25 ° C), Basil (20-25 ° C), Perilla (20-25 ° C) 23 ° C.), Tsurumurasaki (20 to 30 ° C.), Spinach (15 to 20 ° C.), and Garlic chives (15 to 25 ° C.).

上記一定の期間としては、14〜28日間、好ましくは21日間を挙げることができる。栽培期間が14日未満であると本発明の効果が奏しえない可能性があるが、28日を超えても本発明の効果を奏する可能性がある。 The fixed period may be 14 to 28 days, preferably 21 days. If the cultivation period is less than 14 days, the effect of the present invention may not be exhibited, but if it exceeds 28 days, the effect of the present invention may be exhibited.

このように緑色葉物野菜は、所定の温度で一定の期間栽培されるが、栽培は光と温度のコントロールが可能な植物工場や温室内で行われる。植物工場や温室内など内部環境をコントロールした閉鎖的又は半閉鎖的な空間で緑色葉物野菜を計画的に栽培することにより、緑色葉物野菜の葉の厚さや大きさを効率よく制御することができる。また、植物工場や温室内などでの還流式水耕栽培も有利に実施することができる。 In this way, green leafy vegetables are cultivated at a predetermined temperature for a certain period of time, but the cultivation is carried out in a plant factory or a greenhouse where the light and temperature can be controlled. Efficiently control the leaf thickness and size of green leafy vegetables by systematically cultivating green leafy vegetables in a closed or semi-closed space where the internal environment is controlled, such as in a plant factory or greenhouse. Can be done. In addition, reflux hydroponics can be advantageously carried out in a plant factory or a greenhouse.

以下実施例により本発明を説明するが、本発明の技術的範囲はかかる実施例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the technical scope of the present invention is not limited to such examples.

1.材料と方法
1−1 植物材料と成長条件
レタス(Lactuca sativa)種子(No. 03503、株式会社トーホク、栃木、日本)を使用した。 種子は土壌に植えられ栽培された。苗はインキュベーター(IJ101、ヤマト科学株式会社. 東京、日本)内で20°Cにて21日間、青色発光ダイオード(LED)及び赤色LED(ISL-150x150-H4RB、CCS Inc.、京都、日本)の光の下で成長した。
1. 1. Materials and methods 1-1 Plant materials and growth conditions Lettuce (Lactuca sativa) seeds (No. 03503, Tohoku Co., Ltd., Tochigi, Japan) were used. Seeds were planted and cultivated in the soil. Seedlings are in an incubator (IJ101, Yamato Scientific Co., Ltd., Tokyo, Japan) at 20 ° C for 21 days with blue light emitting diodes (LEDs) and red LEDs (ISL-150x150-H4RB, CCS Inc., Kyoto, Japan). Growing up in the light.

1−2 葉緑体の配置決定の観察
葉緑体を観察するために、温度と照度の切り替えができる人工気象器(LH-240SP、株式会社日本医化器械製作所、大阪、日本、)内で、レタスの苗を、蛍光灯の白色光の下で18日間成長させた後、弱いBL(5μmolm−2−1:BL5)又は強いBL(50μmolm−2−1:BL50)下に移行した。葉肉細胞を明確に観察するために、切り離したレタスの葉を脱気し、水を浸透させた。 葉肉細胞は、光学顕微鏡(BX60、オリンパス、東京、日本)を用いて、100倍の油浸対物レンズ(UPlanApo、100×/1.35オイル)の下で観察した。cellSensソフトウェア(オリンパス)を搭載したデジタルカメラ(DP72;オリンパス)を使用して画像を撮影した。
1-2 Observation of chloroplast placement determination In an artificial meteorological instrument (LH-240SP, Nippon Medical Instruments Mfg. Co., Ltd., Osaka, Japan) that can switch between temperature and illuminance to observe chloroplasts. , Lettuce seedlings were grown under fluorescent white light for 18 days and then transferred to weak BL ( 5 μmolm -2 s -1 : BL 5) or strong BL (50 μmol m -2 s -1 : BL 50). .. In order to clearly observe the mesophyll cells, the detached lettuce leaves were degassed and infiltrated with water. The mesophyll cells were observed using an optical microscope (BX60, Olympus, Tokyo, Japan) under a 100x oil immersion objective lens (UPlanApo, 100 × / 1.35 oil). Images were taken using a digital camera (DP72; Olympus) equipped with cellSens software (Olympus).

レタス細胞の葉緑体配置を光学的に制御するために、弱いBLとして5μmol m−2−1(BL5)を使用し、強いBLとして50μmolm−2−1(BL50)を使用して、レタスの成長を比較した。レタス細胞にBL5を3時間照射すると、葉緑体は葉肉細胞の上部の細胞周辺に局在し、細胞の底部の周辺細胞壁に沿って集合した(図1A Bottom)。レタス細胞において、BL5が誘導する葉緑体配置は、強い日光の下で成長する植物種において、弱い光によって誘導される配置(Higa and Wada、Plant Cell Environ. 2016, 39:871-82; Ishishita et al. J Plant Res. 2016, 129:175-87.)と類似する。レタス細胞にBL50を3時間照射すると、葉緑体が周辺位置から脱出した(図1B)。以下、BL5を集合条件と呼び、BL50を逃避条件と呼ぶこととする。なお、15及び20℃においては、葉緑体はBL5で集合し、BL50及びBL500で逃避し、10℃においては、BL5、BL50及びBL500のいずれも逃避することを確かめた。 To optically control the chloroplast arrangement of lettuce cells, use 5 μmol m-2 s -1 (BL5) as the weak BL and 50 μmol m-2 s -1 (BL50) as the strong BL. The growth of lettuce was compared. When lettuce cells were irradiated with BL5 for 3 hours, chloroplasts were localized around the cells at the top of the mesophyll cells and aggregated along the peripheral cell wall at the bottom of the cells (Fig. 1A Bottom). In lettuce cells, BL5-induced chloroplast arrangement is a weak light-induced arrangement in plant species growing in strong sunlight (Higa and Wada, Plant Cell Environ. 2016, 39: 871-82; Ishishita et al. J Plant Res. 2016, 129: 175-87.). When lettuce cells were irradiated with BL50 for 3 hours, chloroplasts escaped from the peripheral position (Fig. 1B). Hereinafter, BL5 will be referred to as a set condition, and BL50 will be referred to as an escape condition. It was confirmed that at 15 and 20 ° C., the chloroplasts aggregated at BL5 and escaped at BL50 and BL500, and at 10 ° C., all of BL5, BL50 and BL500 escaped.

レタスについて、より長期に栽培する場合には、光合成に十分な光エネルギーを提供する必要があるため、赤色光125μmol−2−1(RL125)又は250μmol−2−1(RL250)を、BL5とBL50とにそれぞれ追加して、レタスの苗を、20℃にて3週間栽培した。 なお、BL5とRL62.5では胚軸が徒長する異常形態となった。 For lettuce, when cultivated longer, since it is necessary to provide sufficient light energy for photosynthesis, red light 125μmol -2 s -1 (RL125) or 250μmol -2 s -1 to (RL250), BL5 And BL50, respectively, and lettuce seedlings were cultivated at 20 ° C. for 3 weeks. In BL5 and RL62.5, the hypocotyl became an abnormal morphology.

(結果)
図2から明らかなとおり、BL5とRL125を照射したレタス(図2A)と、BL5とRL250を照射したレタス(図2C)が、BL50とRL125を照射したレタス(図2B)と、BL50とRL250を照射したレタス(図2D)よりも、成長が促進しているように思われたので、結果を定量的に評価するために、葉の面積、厚さ、及びバイオマスについて測定を行った。
(result)
As is clear from FIG. 2, lettuce irradiated with BL5 and RL125 (FIG. 2A), lettuce irradiated with BL5 and RL250 (FIG. 2C), lettuce irradiated with BL50 and RL125 (FIG. 2B), and lettuce irradiated with BL50 and RL125 (FIG. 2B). Since the growth seemed to be promoted more than the irradiated lettuce (Fig. 2D), leaf area, thickness, and biomass were measured to quantitatively evaluate the results.

葉の面積を測定するために、レタスの葉を透明なプラスチックフォルダーに挟んで平らにし、スキャナー(imageRUNNER ADVANCE C5045、キャノン株式会社)を使用して画像を撮影した。 画像から、ImageJによって葉の面積を測定し、平均値と標準偏差とを計算した。 葉の厚さは、デジタルノギス(MonotaRO Co.、Ltd.、日本)を使用して、平均値と標準偏差とを計算した。 バイオマスを測定するために、収穫されたレタスの、地上のバイオマスを生重量として測定し、その後、乾燥重量の測定のために105℃にてオーブン乾燥した。 重量の平均値と標準偏差とを計算した。葉の面積の測定結果を図3A及びBに示す。葉の厚さの測定結果を図3C及びDに示す。 To measure the area of the leaves, lettuce leaves were sandwiched between transparent plastic folders, flattened, and images were taken using a scanner (imageRUNNER ADVANCE C5045, Canon Inc.). From the image, the leaf area was measured by ImageJ, and the average value and standard deviation were calculated. For leaf thickness, a digital caliper (MonotaRO Co., Ltd., Japan) was used to calculate the mean and standard deviation. To measure the biomass, the above-ground biomass of the harvested lettuce was measured as raw weight and then oven-dried at 105 ° C. to measure the dry weight. The mean weight and standard deviation were calculated. The measurement results of the leaf area are shown in FIGS. 3A and 3B. The measurement results of leaf thickness are shown in FIGS. 3C and 3D.

[結果]
(葉面積)
BL5又はBL50と、RL125とを組み合わせて照射した場合(図3A)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図3B)のいずれにおいても、葉面積は、BL5が、BL50よりも有意に大きかった。
[result]
(Leaf area)
In both cases of irradiation in combination with BL5 or BL50 and RL125 (FIG. 3A) and irradiation in combination with BL5 or BL50 and RL250 (FIG. 3B), the leaf area of BL5 was larger than that of BL50. It was significantly larger.

(葉の厚さ)
BL5又はBL50と、RL125とを組み合わせて照射した場合(図3C)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図3D)のいずれにおいても、葉の厚さは、BL50が、BL5よりも有意に大きかった。なお、すべてのパネルで、アスタリスクは条件間の静的な有意差を示した(生徒のt検定、P<0.01)。バーは標準偏差を示す。
(Leaf thickness)
In both cases of irradiation in combination with BL5 or BL50 and RL125 (FIG. 3C) and irradiation in combination with BL5 or BL50 and RL250 (FIG. 3D), the leaf thickness was determined by BL50 to BL5. Was significantly larger than. In all panels, the asterisk showed a static and significant difference between the conditions (student's t-test, P <0.01). Bars indicate standard deviation.

以上の結果は、BL5は葉の面積を大きくし、BL50は葉の厚さを厚くすることを示すものであった。 The above results indicate that BL5 increases the leaf area and BL50 increases the leaf thickness.

(バイオマスの測定)
BL5又はBL50と、RL125とを組み合わせて照射した場合(図4A)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図4B)のいずれにおいても、地上部バイオマスの生重量は、BL5が、BL50よりも有意に重かった。すなわち、アスタリスクは、有意差を示す(スチューデントt検定、P <0.01)。
(Measurement of biomass)
In both cases of irradiation in combination with BL5 or BL50 and RL125 (FIG. 4A) and irradiation in combination with BL5 or BL50 and RL250 (FIG. 4B), the raw weight of above-ground biomass is determined by BL5. , It was significantly heavier than BL50. That is, the asterisk shows a significant difference (Student's t-test, P <0.01).

しかし、バイオマスの乾燥重量については、BL5又はBL50と、RL125とを組み合わせて照射した場合(図4C)、BL5又はBL50と、RL250とを組み合わせて照射した場合(図4D)のいずれにおいても、BL5とBL50の値はほぼ同じであり、集合条件(BL5)及び逃避条件(BL50)下において、正味のバイオマス生産量は同等であることが示された。すなわち、スチューデントt検定は、2つのサンプル間に有意差がないことを示した(図4(C)でP=0.86、図4(D)でP=0.63)。なお、BL500とRL250、及びBL50とRL500では、乾燥重量でばらつき(標準偏差)が大きかった(20℃)。 However, regarding the dry weight of biomass, BL5 is used in both cases of irradiation in combination with BL5 or BL50 and RL125 (FIG. 4C) and irradiation in combination with BL5 or BL50 and RL250 (FIG. 4D). And BL50 values were about the same, indicating that the net biomass production was comparable under the set condition (BL5) and the escape condition (BL50). That is, the Student's t-test showed that there was no significant difference between the two samples (P = 0.86 in FIG. 4 (C), P = 0.63 in FIG. 4 (D)). In BL500 and RL250, and BL50 and RL500, there was a large variation (standard deviation) in dry weight (20 ° C.).

今回の結果は、野生型植物と葉緑体の配置に関する突然変異を有するシロイヌナズナを使用した以前の研究で、集合反応を誘発する条件で葉面積とバイオマス(新鮮及び乾燥重量)が増加したという研究(非特許文献7)とは異なる結果が出たが、BL5とBL50という光の条件のみで比較した結果として重要と考えらえる。 Our results show that previous studies using Arabidopsis thaliana with mutations in wild-type plants and chloroplast placement increased leaf area and biomass (fresh and dry weight) under conditions that elicit aggregate reactions. Although the result was different from that of (Non-Patent Document 7), it is considered to be important as a result of comparison only under the light conditions of BL5 and BL50.

2つのBL条件下で成長した植物の新鮮な重量(生重量)を比較すると、BL5で成長した植物の重量はBL50で成長した植物の重量よりも顕著に重かった(図4A及びB)。
2つの条件下での乾燥重量が同等であったことを考えると(図4C及びD)、これはBL5で成長したレタスの水分含有量が高いことを意味する。BLの強度が高いほど気孔の開き具合が大きくなるため(Kinoshita et al.Nature 2001, 414:656-60.)、BL50の状態では気孔がさらに開き、気孔からの蒸散が大きくなり、水分量が少なくなると考えられる。
Comparing the fresh weights (raw weights) of the plants grown under the two BL conditions, the weights of the plants grown on BL5 were significantly heavier than the weights of the plants grown on BL50 (FIGS. 4A and B).
Considering that the dry weights under the two conditions were equivalent (FIGS. 4C and D), this means that the lettuce grown on BL5 has a high water content. The higher the strength of BL, the greater the degree of stomata opening (Kinoshita et al. Nature 2001, 414: 656-60.). It is expected to decrease.

葉の形態は、集合条件(BL5)下のレタスと、逃避条件(BL50)下のレタスとで大きく異なったが、乾燥重量は同程度であった(図4C及びD)。したがって、2つの条件下での植物の光合成生産は同じように思われ、BL50と比較してBL5の下では、レタスに何らかの形の代償成長が起こることを示唆している(つまり、恒常性)。この代償的な成長は、レタスの成長中に葉の光を取り込むための様々な戦略に基づいている可能性がある。 The leaf morphology was significantly different between the lettuce under the assembly condition (BL5) and the lettuce under the escape condition (BL50), but the dry weights were similar (FIGS. 4C and D). Therefore, the photosynthetic production of plants under the two conditions appears to be similar, suggesting that under BL5, some form of compensatory growth occurs in lettuce compared to BL50 (ie, homeostasis). .. This compensatory growth may be based on various strategies for capturing leaf light during lettuce growth.

これらの結果は、葉緑体の配置がレタスの葉の形態を制御するシグナルに応答することを示唆するものである。集合反応は葉の面積を拡げるシグナルとして機能し、逃避反応は、葉の厚さを厚くするシグナルとして機能する。かかる結果に基づくと、葉緑体の配置を観察することにより、一定条件下におけるレタスの将来の葉の形態を予測できるとともに、光の条件を変えることにより葉の形態を調節できることになる。葉の形態は多くの食用作物にとって重要であることを考えると、このような制御方法は、経済的に重要な野菜等の栽培に有用である。 These results suggest that chloroplast placement responds to signals that control lettuce leaf morphology. The aggregation reaction functions as a signal to expand the area of the leaf, and the escape reaction functions as a signal to increase the thickness of the leaf. Based on these results, it is possible to predict the future leaf morphology of lettuce under certain conditions by observing the arrangement of chloroplasts, and to adjust the leaf morphology by changing the light conditions. Given that leaf morphology is important for many food crops, such control methods are useful for the cultivation of economically important vegetables and the like.

緑色葉物野菜の葉の厚さ及び大きさを制御することができる本発明は、野菜の栽培・育成という農業の分野で有用である。 The present invention capable of controlling the leaf thickness and size of green leafy vegetables is useful in the field of agriculture of growing and growing vegetables.

Claims (10)

緑色葉物野菜の苗に強度の異なる青色光を、所定温度で一定期間照射し、細胞内の葉緑体の配置を調節することを特徴とする葉の厚さ及び大きさを制御する方法。 A method for controlling the thickness and size of leaves, which comprises irradiating seedlings of green leafy vegetables with blue light having different intensities at a predetermined temperature for a certain period of time to adjust the arrangement of intracellular chloroplasts. 緑色葉物野菜がレタスであることを特徴とする請求項1記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of leaves according to claim 1, wherein the green leafy vegetable is lettuce. 青色光が、青色発光ダイオードに由来する青色光であることを特徴とする請求項1又は2記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of a leaf according to claim 1 or 2, wherein the blue light is blue light derived from a blue light emitting diode. 強度の異なる青色光に加えて、強度の異なる赤色光を同時に照射することを特徴とする請求項1〜3のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of a leaf according to any one of claims 1 to 3, wherein in addition to blue light having different intensities, red light having different intensities is simultaneously irradiated. 赤色光が、赤色発光ダイオードに由来する赤色光であることを特徴とする請求項4記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of a leaf according to claim 4, wherein the red light is red light derived from a red light emitting diode. 強度の異なる青色光が、5又は50μmol・m−2・S−1であることを特徴とする請求項1〜5のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of leaves according to any one of claims 1 to 5, wherein the blue light having different intensities is 5 or 50 μmol · m- 2 · S- 1. 強度の異なる赤色光が、125又は250μmol・m−2・S−1であることを特徴とする請求項4〜6のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of leaves according to any one of claims 4 to 6, wherein the red light having different intensities is 125 or 250 μmol · m- 2 · S- 1. 所定の温度が、15〜25℃であることを特徴とする請求項1〜7のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of a leaf according to any one of claims 1 to 7, wherein the predetermined temperature is 15 to 25 ° C. 一定期間が、14〜28日間であることを特徴とする請求項1〜8のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling the thickness and size of a leaf according to any one of claims 1 to 8, wherein the fixed period is 14 to 28 days. 植物工場又は温室内で細胞内の葉緑体の配置を調節することを特徴とする請求項1〜9のいずれか記載の葉の厚さ及び大きさを制御する方法。 The method for controlling leaf thickness and size according to any one of claims 1 to 9, wherein the arrangement of intracellular chloroplasts is regulated in a plant factory or a greenhouse.
JP2020019516A 2020-02-07 2020-02-07 Method for controlling leaf thickness and size of green leafy vegetables Active JP7431438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020019516A JP7431438B2 (en) 2020-02-07 2020-02-07 Method for controlling leaf thickness and size of green leafy vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019516A JP7431438B2 (en) 2020-02-07 2020-02-07 Method for controlling leaf thickness and size of green leafy vegetables

Publications (2)

Publication Number Publication Date
JP2021122254A true JP2021122254A (en) 2021-08-30
JP7431438B2 JP7431438B2 (en) 2024-02-15

Family

ID=77457804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019516A Active JP7431438B2 (en) 2020-02-07 2020-02-07 Method for controlling leaf thickness and size of green leafy vegetables

Country Status (1)

Country Link
JP (1) JP7431438B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125007A (en) 2007-11-25 2009-06-11 Seiichi Okazaki Method for raising, method for production, and lighting apparatus
FI20095967A (en) 2009-09-18 2011-03-19 Valoya Oy ILLUMINATOR
PL2934089T3 (en) 2012-12-21 2017-08-31 Philips Lighting Holding B.V. A horticulture lighting interface for interfacing at least one lighting system
JP5723900B2 (en) 2013-02-04 2015-05-27 昭和電工株式会社 Plant cultivation method
JP5779678B2 (en) 2013-02-04 2015-09-16 昭和電工株式会社 Lamp for plant cultivation and plant cultivation method using the same
JP2019216663A (en) 2018-06-20 2019-12-26 一般財団法人電力中央研究所 Plant cultivation method and illumination device for plant cultivation

Also Published As

Publication number Publication date
JP7431438B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
Särkkä et al. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield
Sabzalian et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production
WO2012108365A1 (en) Lighting device, strawberry cultivation system and strawberry cultivation method
CN101889531B (en) Method for controlling indoor seedling raising of upland cotton
Jokinen et al. Improving sweet pepper productivity by LED interlighting
Bergstrand et al. Growth, development and photosynthesis of some horticultural plants as affected by different supplementary lighting technologies
CN103222420A (en) Small vegetable indoor cultivation technique based on LED energy saving light source
CN110521566A (en) A kind of luminous environment regulation method of regulation plant metabolism substance
JP2015526070A (en) Method for stimulating plant growth, apparatus and method for calculating cumulative light quantity
JP2022518259A (en) Light irradiation method that promotes plant growth, plant lamps and their applications
Lalge et al. The effects of red, blue and white light on the growth and development of Cannabis sativa L
JP2014207875A (en) Strawberry cultivation method
Llewellyn et al. Light-emitting diodes can replace high-pressure sodium lighting for cut gerbera production
Lee et al. Growth and physiological responses of Panax ginseng seedlings as affected by light intensity and photoperiod
JP2011000118A (en) Hydroponics method of leaf vegetable
JP2021122254A (en) Method for controlling thickness and size of leaf of green leaf vegetable
Chua et al. Effect of artificial night lighting on the growth of loose head lettuce in hydroponic system
KR101449131B1 (en) Method for growing Ixeris dentata Nakai in closed-type plant factory system
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
Hikawa et al. Prediction of prospective leaf morphology in lettuce based on intracellular chloroplast position
Goto et al. Effects of using LED supplementary lighting to improve photosynthesis on growth and yield of strawberry forcing culture
JP2001258389A (en) Method for cultivating plant
Heo et al. Supplementary blue and red radiation at sunrise and sunset influences growth of Ageratum, African Marigold, and Salvia plants
CN103250646B (en) Method for controlling rapid propagation of platycodon grandiflorum by virtue of light source
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240126

R150 Certificate of patent or registration of utility model

Ref document number: 7431438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150