JP2021121144A - 回転電機のロータ - Google Patents

回転電機のロータ Download PDF

Info

Publication number
JP2021121144A
JP2021121144A JP2020013845A JP2020013845A JP2021121144A JP 2021121144 A JP2021121144 A JP 2021121144A JP 2020013845 A JP2020013845 A JP 2020013845A JP 2020013845 A JP2020013845 A JP 2020013845A JP 2021121144 A JP2021121144 A JP 2021121144A
Authority
JP
Japan
Prior art keywords
rotor
rotor core
coolant
shaft
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020013845A
Other languages
English (en)
Inventor
堅大 田渕
Kenta Tabuchi
堅大 田渕
隆志 松本
Takashi Matsumoto
隆志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020013845A priority Critical patent/JP2021121144A/ja
Publication of JP2021121144A publication Critical patent/JP2021121144A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】ロータコアの外周面からステータに向けて冷却液を流出させる流量と軸方向に延びる磁石冷却用の通路を流れてロータコアの軸方向端面から流出させる流量との配分の変動を抑制する。【解決手段】ロータシャフト3には、ロータシャフト3の軸方向端面からロータシャフト3の外周面に設けられた第1開口31及び第2開口32まで冷却液が流れるシャフト内冷却液通路33が形成され、ロータコア4には、ロータコア4を軸方向に貫通し内部に永久磁石が挿入された磁石挿入孔41と、第1開口31からロータコア4の外周面まで径方向に貫通し磁石挿入孔41とはロータコア4内で接続しないように独立して設けられたロータコア内冷却液通路42と、が形成され、エンドプレート5とロータコア4との間には、第2開口32から磁石挿入孔41まで冷却液が流れる磁石冷却用通路51が形成されている。【選択図】図1

Description

本発明は、冷却液が流れる通路を備える回転電機のロータに関する。
特許文献1には、回転軸となるロータシャフトとロータシャフトが中心を貫通するロータコアとを備える回転電機のロータが開示されている。ロータシャフト内には、冷却液が流れるシャフト内冷却液通路が形成されている。ロータコア内には、冷却液をシャフト内冷却液通路から流入させてロータコアの外周面からステータの内周面に向けて冷却液を流出させるロータコア内冷却液通路と、ロータコア内冷却液通路から軸方向に延びて磁石挿入孔と平行に冷却液が流れるように設けられた磁石冷却用の通路が形成されている。
また、特許文献2には、特許文献1と同様に、回転軸となるロータシャフトとロータシャフトが中心を貫通するロータコアとを備え、ロータシャフト内にシャフト内冷却液通路が形成されている回転電機のロータが開示されている。このロータのロータコア内には、シャフト内冷却液通路から径方向に延びてロータコアの外周面まで到達するロータコア内冷却液通路が形成され、更にロータコア内冷却液通路から軸方向に分岐してロータコアの軸方向端面まで到達する磁石冷却用の通路が形成されている。
特開2016−054608号公報 特開2016−096611号公報
しかし、特許文献2に示すように、径方向に延びるロータコア内冷却液通路から、軸方向に延びる磁石冷却用の通路を分岐するロータでは、以下の問題がある。すなわち、ロータの回転速度やシャフト内冷却液通路に流入させる冷却液の単位時間当たりの流量など回転電機の運転条件や動作環境の変化によって、ロータコア内冷却液通路を流れる冷却液に作用する遠心力やロータコア内冷却液通路を冷却液が径方向に流れる流速が変動する。すると、その影響により、ロータコアの外周面から冷却液を流出させる流量と磁石冷却用の通路を流れてロータコアの軸方向端面から流出させる流量との配分が変動し、ステータコアのティースに巻回されたコイルとロータコアの磁石挿入孔に挿入された永久磁石とを狙い通りに冷却する冷却性能を確保することが困難となる可能性がある。
また、特許文献1及び2に示すように、ロータコアを軸方向に貫通し内部に永久磁石が挿入される磁石挿入孔とは別に、ロータコア内に磁石挿入孔と平行に磁石冷却用の通路が形成されるロータでは、以下の問題もある。すなわち、永久磁石を冷却液で直に冷却することができず、ロータコア製造時に磁石挿入孔とは別に磁石冷却用の通路を形成する加工が必要となり、ロータコアの強度も低下する。
そこで、本発明は、回転電機の運転条件や動作環境の変化によって生じるロータコアの外周面から冷却液を流出させる流量と磁石冷却用の通路を流れてロータコアの軸方向端面から流出させる流量との配分の変動を抑制することと、冷却液を永久磁石に沿って流して永久磁石を直に冷却することを可能として、ロータコア製造時の加工工数を減らすと共にロータコアの強度の低下を抑制することを目的とする。
本発明に係る回転電機のロータは、ステータの径方向内側に配置され、回転軸となるロータシャフトと、前記ロータシャフトが中心を貫通するロータコアと、前記ロータコアの軸方向端面に取り付けられて前記ロータシャフトが貫通するエンドプレートと、を備える回転電機のロータであって、前記ロータシャフトには、前記ロータシャフトの軸方向端面から前記ロータシャフトの外周面に設けられた第1開口及び第2開口まで冷却液が流れるシャフト内冷却液通路が形成され、前記ロータコアには、前記ロータコアを軸方向に貫通し内部に永久磁石が挿入された磁石挿入孔と、前記第1開口から前記ロータコアの外周面まで径方向に貫通し前記磁石挿入孔とは前記ロータコア内で接続しないように独立して設けられたロータコア内冷却液通路と、が形成され、前記エンドプレートと前記ロータコアとの間には、前記第2開口から前記磁石挿入孔まで前記冷却液が流れる磁石冷却用通路が形成されていること、を特徴とする。
本発明は、シャフト内冷却液通路の第1開口からロータコアの外周面までロータコアを径方向に貫通するロータコア内冷却液通路が磁石挿入孔とはロータコア内で接続しないように独立して設けられており、磁石挿入孔及びロータコア内冷却液通路がそれぞれ独立して流量の大きいシャフト内冷却液通路に連通しているため、回転電機の運転条件や動作環境の変化によって生じるロータコアの外周面から冷却液を流出させる流量と磁石冷却用の通路を流れてロータコアの軸方向端面から流出させる流量との配分の変動を抑制することができる。
また、本発明は、内部に永久磁石が挿入された磁石挿入孔に冷却液を流入させるため、冷却液を永久磁石に沿って流して永久磁石を直に冷却することを可能としており、更に、磁石挿入孔とは別に磁石冷却用の通路をロータコア内に形成する必要がないため、ロータコア製造時の加工工数を減らすと共にロータコアの強度の低下を抑制することができる。
本実施形態の回転電機の断面図である。 本実施形態の回転電機のロータの図1におけるA−A線断面図である。 本実施形態の回転電機のロータの図1におけるB−B線断面図である。 図1に示す回転電機のステータコアの1つのティースを示す斜視図である。 比較例1の回転電機の断面図である。
以下、図面を参照しながら、本開示の実施形態の回転電機10のロータ1について説明する。図1に示すように、回転電機10は、ステータ2と、ステータ2の径方向内側に隙間を空けて同軸配置されたロータ1を備える。ロータ1は、ロータ1の回転軸となるロータシャフト3と、ロータシャフト3が中心を貫通する略円筒形状のロータコア4と、ロータコア4の軸方向端面に取り付けられて中心をロータシャフト3が貫通する2枚のエンドプレート5,6を備える。ロータコア4は、複数の略円板形状の電磁鋼板を軸方向に積層して形成されている。
図2及び図3に示すように、ロータコア4の外周面近傍には16個の永久磁石7が配置されている。回転電機10では、径方向外側に向けて開いたV字を形成する2個の永久磁石7で1つの磁極が形成されている。そのため、ロータ1の磁極の数は8である。
図1に示すように、ステータ2は、ステータコア21とコイル22を備える。図4に示すように、ステータコア21は、略円環形状のヨーク23と、ヨーク23の内周面から径方向内側に突出した複数のティース24を備える。ティース24は、ヨーク23の内周面に、周方向に沿って間隔を空けて配列されている。周方向に隣接するティース24の間の空間をスロットと呼ぶ。図1に示すように、コイル22はティース24に巻回されている。ステータコア21は、所定の形状に加工した電磁鋼板を軸方向に積層して形成されている。
図4に示すように、ステータコア21のティース24は軸方向に2つに分割されており、分割された部分をティースセグメント24A及びティースセグメント24Bとする。ティースセグメント24Aとティースセグメント24Bとの間にはステータコア内冷却液通路25が形成されている。図1及び図4に示すように、ステータコア内冷却液通路25は、ステータコア21のヨーク23も径方向に貫通しステータコア21の外周面まで到達している。
図1に示すように、ロータシャフト3は中空シャフトであって、ロータシャフト3の中空空間は、一方の軸方向端面は開口しているが、他方の軸方向端面は栓8によって塞がれている。そして、図1、図2及び図3に示すように、ロータシャフト3には、ロータシャフト3の一方の軸方向端面からロータシャフト3の外周面に設けられた第1開口31及び第2開口32まで冷却液が流れるシャフト内冷却液通路33が形成されている。第1開口31は、ロータシャフト3の軸方向中央部に8箇所、周方向に並ぶように形成されている。第2開口32は、ロータコア4の一方の軸方向端面に向けて開口しており、8箇所の第2開口32が周方向に並ぶように形成されている。
図1、図2及び図3に示すように、ロータコア4には、ロータコア4を軸方向に貫通する16箇所の磁石挿入孔41が形成されており、それぞれの磁石挿入孔41には、軸方向に延びる永久磁石7が1本ずつ挿入されている。図2及び図3に示すように、磁石挿入孔41の断面積は永久磁石7の断面積よりも大きく、永久磁石7の両端にはフラックスバリア41Aとしてロータコア4を軸方向に貫通する空間が形成されている。このフラックスバリア41Aの空間は、磁石磁束が隣の磁極に流れるのを防ぎ、磁力を効率よくトルクに変換することを目的として設けられている。
また、図1及び図2に示すように、ロータコア4の一方の軸方向端面とエンドプレート5との間には、第2開口32から磁石挿入孔41まで冷却液が流れる8つの磁石冷却用通路51が形成されている。磁石冷却用通路51は、第2開口32からエンドプレート5内を径方向外側に向かって延びており、1つの磁石冷却用通路51にそれぞれ2つの磁石挿入孔41が連通している。そして、ロータコア4の他方の軸方向端面に取り付けられているエンドプレート6には、磁石挿入孔41のフラックスバリア41Aの空間と連通しエンドプレート6を軸方向に貫通するように32個の磁石冷却液排出路61が形成されている。そのため、シャフト内冷却液通路33から第2開口32へ流れ出た冷却液は、磁石冷却用通路51を経由して、ロータコア4の一方の軸方向端面から磁石挿入孔41のフラックスバリア41Aの空間に流入し、ロータコア4の他方の軸方向端面に到達してエンドプレート6の磁石冷却液排出路61から排出される。
図1及び図3に示すように、ロータコア4には、第1開口31からロータコア4の外周面まで径方向に貫通し、磁石挿入孔41とはロータコア4内で接続しないように独立して設けられた8本のロータコア内冷却液通路42が形成されている。そのため、シャフト内冷却液通路33から第1開口31へ流れ出た冷却液は、ロータコア内冷却液通路42を径方向外側に向かって流れてロータ1の外周面からステータ2の内周面に向かって流出する。
ロータコア内冷却液通路42を流れてロータ1の外周面から冷却液を流出する位置は、ロータ1の回転に伴って移動する。そのため、ロータ1を回転させると、ロータ1の外周面からステータ2の内周面に向けて、円周に沿って満遍なく冷却液が流出する。そして、ロータ1の外周面から流出した冷却液の一部がステータ2のスロット内に入りコイル22を冷却し、その他の一部はステータコア内冷却液通路25に入る。ステータコア内冷却液通路25に入った冷却液は、後から送り込まれてくる冷却液に押されて径方向外側に向かって流れてステータ2の外周面から吐き出される。ステータコア内冷却液通路25は、ステータコア21のスロット内に配置されたコイル22に向けて開放している。そのため、ステータコア内冷却液通路25を流れる冷却液はコイル22に接触し、コイル22を効率よく冷却することができる。
本実施形態の回転電機10のロータ1では、既に述べたように、ロータコア4を径方向に貫通するロータコア内冷却液通路42が磁石挿入孔41とはロータコア4内で接続しないように独立して設けられている。そして、図1、図2及び図3に示すように、磁石挿入孔41及びロータコア内冷却液通路42がそれぞれ独立して流量の大きいシャフト内冷却液通路33に連通している。そのため、ロータコア内冷却液通路42を流れる冷却液に作用する遠心力やロータコア内冷却液通路42を冷却液が径方向に流れる流速が変化しても、それらの変化により磁石挿入孔41のフラックスバリア41Aを冷却液が流れる流量へ与える影響は小さい。したがって、本実施形態の回転電機10のロータ1では、ロータ1の回転速度やシャフト内冷却液通路33に流入させる冷却液の単位時間当たりの流量など回転電機10の運転条件や動作環境の変化によって生じるロータコア4の外周面から冷却液を流出させる流量と磁石挿入孔41のフラックスバリア41Aを流れてロータコア4の軸方向端面から流出させる流量との配分の変動を抑制することができる。
また、本実施形態の回転電機10のロータ1では、内部に永久磁石7が挿入された磁石挿入孔41のフラックスバリア41Aに冷却液を流入させるため、冷却液を永久磁石7に沿って流して永久磁石7を直に冷却することを可能としている。このように本実施形態の回転電機10のロータ1では、冷却液を永久磁石7に沿って流して永久磁石7を直に冷却するため、特許文献2に開示されているように磁石挿入孔とは別に磁石挿入孔と平行に磁石冷却用の通路をロータコア内に形成した形態と比較して、永久磁石7を冷却するために流れる冷却液の流量を低減させることができる。
また、本実施形態の回転電機10のロータ1では、磁石挿入孔41とは別に磁石冷却用の通路をロータコア4に形成する必要がないため、特許文献1及び2に開示されているように磁石挿入孔とは別に磁石挿入孔と平行に磁石冷却用の通路をロータコア内に形成した形態と比較して、ロータコア4製造時の加工工数を減らすと共にロータコア4の強度の低下を抑制することができる。
次に、本発明の効果について分かり易く説明するため、本実施形態の回転電機10のロータ1とは形状が異なる比較例1の回転電機20のロータ1aについて、図5を参照しながら以下に述べる。回転電機20は、ステータ2については本実施形態の回転電機10と同一の構成を有するため、同一の符号を付して説明を省略する。また、比較例1の回転電機20のロータ1aにおいて、本実施形態の回転電機10のロータ1と同一の構成には同一の符号を付して説明を省略する。
図5に示すように、比較例1の回転電機20のロータ1aでは、ロータシャフト3aは中空シャフトであって、ロータシャフト3aの中空空間は、一方の軸方向端面は開口しているが、他方の軸方向端面は栓8によって塞がれている。そして、ロータシャフト3aには、ロータシャフト3aの一方の軸方向端面からロータシャフト3aの外周面に設けられた第1開口31まで冷却液が流れるシャフト内冷却液通路33aが形成されている。
ロータ1aのロータコア4aには、ロータコア4aを軸方向に貫通する16箇所の磁石挿入孔41が形成されており、それぞれの磁石挿入孔41には、軸方向に延びる永久磁石7が1本ずつ挿入されている。また、ロータコア4aには、第1開口31からロータコア4aの外周面まで径方向に貫通する8本のロータコア内冷却液通路42aが形成されている。そして、ロータコア内冷却液通路42aは、磁石挿入孔41とロータコア4a内で連通している。つまり、径方向に延びるロータコア内冷却液通路42aは、軸方向に延びる磁石挿入孔41にロータコア4a内で分岐している。また、ロータコア4aの軸方向端面に取り付けられている2枚のエンドプレート6には、磁石挿入孔41のフラックスバリア41Aの空間と連通しエンドプレート6を軸方向に貫通するようにそれぞれ32個の磁石冷却液排出路61が形成されている。
そのため、シャフト内冷却液通路33aから第1開口31へ流れ出た冷却液は、ロータコア内冷却液通路42aを径方向外側に向かって流れて、一部がロータ1aの外周面からステータ2の内周面に向かって流出し、その一部以外は磁石挿入孔41のフラックスバリア41Aの空間に流入し、ロータコア4aの軸方向端面に到達してエンドプレート6の磁石冷却液排出路61から排出される。
このように比較例1の回転電機20のロータ1aでは、径方向に延びるロータコア内冷却液通路42aから軸方向に延びる磁石挿入孔41にロータコア4a内で分岐している。そのため、ロータコア内冷却液通路42aを流れる冷却液に作用する遠心力やロータコア内冷却液通路42aを冷却液が径方向に流れる流速が変化すると、それらの変化により磁石挿入孔41内を冷却液が流れる流量が変動する。また、ロータ1aの回転速度やシャフト内冷却液通路33aに流入させる冷却液の単位時間当たりの流量など回転電機20の運転条件や動作環境の変化によって、ロータコア内冷却液通路42aを流れる冷却液に作用する遠心力やロータコア内冷却液通路42aを冷却液が径方向に流れる流速が変動する。したがって、ロータ1aの回転速度やシャフト内冷却液通路33aに流入させる冷却液の単位時間当たりの流量など回転電機20の運転条件や動作環境の変化によって、ロータコア4aの外周面から冷却液を流出させる流量と磁石挿入孔41を流れてロータコア4aの軸方向端面から流出させる流量との配分が変動し、コイル22及び永久磁石7を狙い通りに冷却する冷却性能を確保することが困難となる可能性がある。
これに対して、本実施形態の回転電機10のロータ1では、既に述べたように、磁石挿入孔41及びロータコア内冷却液通路42がそれぞれ独立して流量の大きいシャフト内冷却液通路33に連通している。そのため、本実施形態の回転電機10のロータ1では、ロータ1の回転速度やシャフト内冷却液通路33に流入させる冷却液の単位時間当たりの流量など回転電機10の運転条件や動作環境の変化によって生じるロータコア4の外周面から冷却液を流出させる流量と軸方向に延びる磁石挿入孔41のフラックスバリア41Aを流れる流量との配分の変動を抑制することができる。
また、比較例1の回転電機20のロータ1aは、径方向に延びるロータコア内冷却液通路42aから軸方向に延びる磁石挿入孔41にロータコア4a内で分岐する構造を有するため、ロータ1aの回転による遠心力で分岐部分の付近に応力集中し、回転電機20を高い回転速度で使用するとロータコア4aの強度が不足するおそれがある。
これに対して、本実施形態の回転電機10のロータ1では、ロータコア4を径方向に貫通するロータコア内冷却液通路42が磁石挿入孔41とはロータコア4内で接続しないように独立して設けられており、ロータコア内冷却液通路42はロータコア4内で分岐せず、応力集中する分岐部分が存在しないため、回転電機10の高回転におけるロータコア4の強度不足を抑制することができる。
<実施形態の補足>
本開示の回転電機のロータは、上述した形態に限定されず、本開示の要旨の範囲内において種々の形態にて実施できる。例えば、永久磁石及び磁石挿入孔の数は16以外であってもよい。また、ロータコア内冷却液通路の数は8以外であってもよい。また、磁石冷却用通路の数は8以外であってもよく、磁石冷却用通路の形状は他の形状であってもよい。また、ステータコア内冷却液通路は、全てのティースに形成されている必要はなく、ステータコア内冷却液通路の断面の形状は他の形状であってもよい。また、ロータコア及びステータコアは電磁鋼板を積層した構造でなくてもよく、例えば、圧粉磁心であってもよい。
1,1a ロータ、2 ステータ、3,3a ロータシャフト、4,4a ロータコア、5,6 エンドプレート、7 永久磁石、8 栓、10,20 回転電機、21 ステータコア、22 コイル、23 ヨーク、24 ティース、24A,24B ティースセグメント、25 ステータコア内冷却液通路、31 第1開口、32 第2開口、33,33a シャフト内冷却液通路、41 磁石挿入孔、41A フラックスバリア、42,42a ロータコア内冷却液通路、51 磁石冷却用通路、61 磁石冷却液排出路。

Claims (1)

  1. ステータの径方向内側に配置され、
    回転軸となるロータシャフトと、前記ロータシャフトが中心を貫通するロータコアと、前記ロータコアの軸方向端面に取り付けられて前記ロータシャフトが貫通するエンドプレートと、を備える回転電機のロータであって、
    前記ロータシャフトには、前記ロータシャフトの軸方向端面から前記ロータシャフトの外周面に設けられた第1開口及び第2開口まで冷却液が流れるシャフト内冷却液通路が形成され、
    前記ロータコアには、前記ロータコアを軸方向に貫通し内部に永久磁石が挿入された磁石挿入孔と、前記第1開口から前記ロータコアの外周面まで径方向に貫通し前記磁石挿入孔とは前記ロータコア内で接続しないように独立して設けられたロータコア内冷却液通路と、が形成され、
    前記エンドプレートと前記ロータコアとの間には、前記第2開口から前記磁石挿入孔まで前記冷却液が流れる磁石冷却用通路が形成されていること、を特徴とする回転電機のロータ。
JP2020013845A 2020-01-30 2020-01-30 回転電機のロータ Pending JP2021121144A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013845A JP2021121144A (ja) 2020-01-30 2020-01-30 回転電機のロータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013845A JP2021121144A (ja) 2020-01-30 2020-01-30 回転電機のロータ

Publications (1)

Publication Number Publication Date
JP2021121144A true JP2021121144A (ja) 2021-08-19

Family

ID=77270004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013845A Pending JP2021121144A (ja) 2020-01-30 2020-01-30 回転電機のロータ

Country Status (1)

Country Link
JP (1) JP2021121144A (ja)

Similar Documents

Publication Publication Date Title
US9793783B2 (en) Rotor of rotary electric machine
CN106257801B (zh) 旋转电机的转子
JP6079733B2 (ja) 回転電機のロータ
US9906103B2 (en) Rotary electrical machine cooling apparatus
JP7055668B2 (ja) 回転電機のロータ
EP3404802B1 (en) Generator with enhanced stator cooling and reduced windage loss
JP2017046545A (ja) 回転電機用ロータ
WO2019049820A1 (ja) ロータ
JP2013258889A (ja) 誘導電動機
JP2019161999A (ja) 回転電機
JP2021121144A (ja) 回転電機のロータ
US20160079820A1 (en) Rotating electrical machine
CN114448126B (zh) 旋转电机的转子
US20230246501A1 (en) Cooled rotor of an electric machine
JP7031619B2 (ja) 回転電機
US11146128B1 (en) Squirrel-cage rotor and rotating electric machine
CN111082569B (zh) 旋转电机
JP7331625B2 (ja) 回転電機
JP2013192339A (ja) 誘導電動機
CN111446794A (zh) 旋转电机
US9973069B2 (en) Rotor for synchronous reluctance motor with reduced flux leakage and residual stress
US20230336040A1 (en) Rotating electric machine
JP6372139B2 (ja) 回転電機
JP2019022257A (ja) 回転電機
TWI714408B (zh) 內轉子及馬達