JP2021119347A - 診断装置 - Google Patents

診断装置 Download PDF

Info

Publication number
JP2021119347A
JP2021119347A JP2021069200A JP2021069200A JP2021119347A JP 2021119347 A JP2021119347 A JP 2021119347A JP 2021069200 A JP2021069200 A JP 2021069200A JP 2021069200 A JP2021069200 A JP 2021069200A JP 2021119347 A JP2021119347 A JP 2021119347A
Authority
JP
Japan
Prior art keywords
unit
data
measurement data
optical fiber
acquired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021069200A
Other languages
English (en)
Other versions
JP7360415B2 (ja
Inventor
英樹 副島
Hideki Soejima
英樹 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2021069200A priority Critical patent/JP7360415B2/ja
Publication of JP2021119347A publication Critical patent/JP2021119347A/ja
Application granted granted Critical
Publication of JP7360415B2 publication Critical patent/JP7360415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/085Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/14Quality control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】構造健全性診断を容易に行う。【解決手段】診断装置100は、加振部と、加振部が加振しているときの物理量を測定するセンサとが取り付けられた構造体を診断対象とし、構造体を備える製品の出荷時以降における所定のタイミングで、センサから構造体の計測データを取得するデータ取得部132と、データ取得部によって計測データが取得される度に基準データとして記憶部に蓄積して記憶させるデータ記録部134と、データ取得部によって今回取得された計測データと、記憶部に蓄積して記憶された全ての基準データとを比較することで、構造体の健全性の診断を行う健全性診断部136と、を備える。【選択図】図1

Description

本発明は、診断装置に関する。
構造体の診断方法としては、構造健全性診断が知られている。構造健全性診断では、診断対象となる構造体を模擬して別体に形成され供試体に対してセンサおよび加振部が取り付けられ、加振部によって発生された振動に基づく供試体の歪等の物理量をセンサによって基準データとして取得しておく。
そして、所定のタイミングごとに、構造体にセンサおよび加振部が取り付けられ、加振部によって発生された振動に基づく構造体の歪等の物理量をセンサによって取得する。そして、取得された物理量と、供試体で取得された基準データ(物理量)とを比較することで、構造体の健全性(経年劣化、損傷、欠陥の有無等)を診断する。
特許第5629318号公報
ところで、上記した構造健全性診断では、基準データを取得する場合、供試体を別途作成する必要がある。これは、実際の構造体に対して損傷、欠陥等を意図的につけることができないためである。また、基準データを取得する場合、経年劣化を診断するために、供試体に対して経年劣化をさせ、所定期間毎に物理量を取得する必要がある。また、供試体に対して損傷や欠陥を予め施し、その供試体についての物理量も取得する必要がある。
このように、構造健全性診断では、基準データを取得するために、コストおよび時間が莫大にかかってしまう。これにより、構造健全性診断が容易に行うことができないといった問題があった。
本発明は、このような課題に鑑み、構造健全性診断を容易に行うことが可能な診断装置を提供することを目的としている。
上記課題を解決するために、本発明の診断装置は、加振部と、前記加振部が加振しているときの物理量を測定するセンサとが取り付けられた構造体を診断対象とし、前記構造体を備える製品の出荷時以降における所定のタイミングで、前記センサから前記構造体の計測データを取得するデータ取得部と、前記データ取得部によって前記計測データが取得される度に基準データとして記憶部に蓄積して記憶させるデータ記録部と、前記データ取得部によって今回取得された前記計測データと、前記記憶部に蓄積して記憶された全ての前記基準データとを比較することで、前記構造体の健全性の診断を行う健全性診断部と、を備える。
また、前記データ取得部は、前記構造体を模擬した供試体の計測データを取得することがないとよい。
本発明によれば、構造健全性診断を容易に行うことが可能となる。
診断装置の構成を示すブロック図である。 加振部および光ファイバセンサの説明図である。 比較例の構造健全性診断の流れを示すフローチャートである。 本実施形態の構造健全性診断の流れを示すフローチャートである。 変形例の構造健全性診断の流れを示すフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
図1は、診断装置100の構成を示すブロック図である。図1に示すように、診断装置100は、記憶部110と、操作部112と、表示部114と、加振部116と、光ファイバセンサ118と、スペクトラムアナライザ120と、制御部122とを含んで構成される。
記憶部110は、RAM、フラッシュメモリ、HDD等で構成される。記憶部110には、後述する基準データが記憶される。操作部112は、例えば、キーボードや表示部114に重畳されるタッチパネルで構成される。操作部112は、ユーザの操作入力を受け付ける。表示部114は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等で構成される。
加振部116は、例えば、複数の圧電素子(ピエゾ素子)で構成される。
図2は、加振部116および光ファイバセンサ118の説明図である。図2(a)は、構造体TGに加振部116および光ファイバセンサ118が設けられた様子を示す。図2(b)には、光ファイバセンサ118の内部構造を示す。
構造体TGは、例えば、航空機や建築物などの全部または一部である。加振部116および光ファイバセンサ118は、構造体TGの複数の箇所に設けられる。ここでは、構造体TGが板状の部材である場合を例に挙げて説明する。ただし、構造体TGの形状は問わない。加振部116および光ファイバセンサ118は、構造体TGの形状に合わせて適切な態様で、構造体TGに取り付けられる。
加振部116の圧電素子には、不図示の導線が接続されている。導線から圧電素子に電圧が印加されると、圧電効果により圧電素子の厚みが変化する。複数の圧電素子のうち、任意の圧電素子にパルス電圧を印加することで、構造体TGのうち、電圧が印加された圧電素子近傍に振動が生じる。こうして、加振部116は、構造体TGを振動させる。
光ファイバセンサ118は、例えば、内在型である。すなわち、光ファイバセンサ118は、光ファイバ自体がセンサ素子として機能する。ただし、光ファイバセンサ118は、光ファイバを他のセンサ素子との光の伝送路としてのみ機能させる外部型であってもよい。光ファイバセンサ118は、例えば、接着剤によって構造体TGに接着される。
図2(b)に示すように、光ファイバセンサ118では、コーティングやクラッドの内部にコア118aが設けられる。コア118aには光が通る。コア118aから外側に向う光は、クラッドによって反射されてコア118aに戻される。
コア118aには、光ファイバの軸線方向に離隔して複数のグレーティング部118bが設けられる。グレーティング部118bは、コア118aの他の部位に比べて屈折率が異なる。グレーティング部118bによって、屈折率が周期的に変化する(FBG:Fiber Bragg Grating、ファイバブラッググレーティング)。
広帯域のスペクトルを持った光は、グレーティング部118bにおいて、ブラッグ波長と呼ばれる特定の波長に対して互いに強め合う方向に干渉する。これによって、グレーティング部118bでは、広帯域のスペクトルを持った光のうち、特定の波長成分のみが反射される。それ以外の波長の光は、グレーティング部118bを透過する。
グレーティング部118bに外乱が加えられると、反射光の波長が変動する。反射光の波長の変化を測定することで、グレーティング部118bに加えられた外乱が計測される。
図1に戻り、スペクトラムアナライザ120は、光ファイバセンサ118に接続される。スペクトラムアナライザ120は、光源および受光部を有する。光源から広帯域のスペクトルを持った光が発光し、光ファイバセンサ118に到達する。上記のように、光ファイバセンサ118では、一部の光が反射する。スペクトラムアナライザ120の受光部は、反射光を受光する。
スペクトラムアナライザ120は、受光部で受光した反射光の波長を検出する。スペクトラムアナライザ120によって検出された波長は、不図示のA/D変換器によってA/D変換されて、制御部122に出力される。
制御部122は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路により、診断装置100全体を管理および制御する。また、制御部122は、加振制御部130、データ取得部132、データ記録部134、健全性診断部136としても機能する。
加振制御部130は、加振部116に電圧を印加して、加振部116に構造体TGへ振動を発生させる(加振させる)。
データ取得部132は、光ファイバセンサ118による計測を行う。データ取得部132は、上記のように、スペクトラムアナライザ120に広帯域のスペクトルを持った光を発光させ、反射光の波長を検出させる。データ取得部132は、反射光の波長によって、グレーティング部118bに加えられた外乱の要因となった構造体TGの変化を測定する。
光ファイバセンサ118には、例えば、構造体TGの歪み(応力)や温度など、測定の対象となる物理量が予め設定される。すなわち、歪み測定用の光ファイバセンサ118や温度測定用の光ファイバセンサ118などが設けられる。
データ取得部132は、歪み測定用の光ファイバセンサ118からの反射光から、構造体TGの歪み量を測定する。また、データ取得部132は、温度測定用の光ファイバセンサ118からの反射光から、構造体TGの温度を測定する。
また、加振制御部130が加振部116を制御して構造体TGを加振しているときに、データ取得部132が、歪み測定用の光ファイバセンサ118からの反射光から、構造体TGの歪み量を測定してもよい。加振部116の圧電素子から光ファイバセンサ118までの間に、構造体TGに欠損などがあると、欠損がない場合と比較して、測定される歪み量が異なる。これにより、構造体TGの欠損の検出が可能となる。
こうして、データ取得部132は、光ファイバセンサ118を用いて構造体TGの物理量を計測データとして取得する。データ記録部134は、データ取得部132により取得された計測データを基準データとして、取得した日時に関連付けて記憶部110に記憶させる。
健全性診断部136は、データ取得部132によって取得された測定データと、記憶部110に記憶された基準データとを比較することで、構造体TGの健全性を診断する健全性診断処理を行う。健全性診断処理では、構造体TGの損傷や欠陥が検出されたり、歪み量や温度が異常値を示すと、健全性が低い評価値として算出されたりする。
また、健全性診断部136は、健全性診断処理の結果を表示部114に表示させる。健全性診断処理の結果によっては、作業者による部品点検や部品交換などのメンテナンスが行われる。
図3は、比較例の構造健全性診断の流れを説明する図である。比較例の構造健全性診断では、図3に示すように、まず、構造体TGを模擬した供試体が別体として作成され、作成された供試体を用いて基準データが取得される(S100)。具体的には、健全性診断の対象となる構造体TGを模擬した供試体が作成される。これは、実際の構造体TGに対して損傷等を意図的につけることができないためである。
その後、供試体に加振部116および光ファイバセンサ118が取り付けられる。なお、加振部116および光ファイバセンサ118が取り付けられる位置は、構造体TGに加振部116および光ファイバセンサ118が取り付けられる位置と同一または同一とみなせる位置である。そして、データ取得部132は、加振部116で加振された構造体TGに対して光ファイバセンサ118による計測データの取得を行う。
データ記録部134は、計測データを基準データとして記憶部110に記憶させる。このとき、供試体が経年劣化した場合における計測データ、および、予め想定される損傷や欠陥を供試体に施した場合における計測データが、計測データとして取得される。つまり、S100では、供試体を経年劣化させて、所定期間毎に計測データを取得して基準データとして、取得した日時に関連付けて記憶させる。また、供試体に損傷や欠陥を施した後に計測データを取得して基準データとして記憶させる。
その後、構造体TGを備えた製品(例えば、航空機等)が作成されたとき(出荷時)に(S102におけるYES)、その構造体TGに対して加振部116および光ファイバセンサ118が取り付けられる(S104)。そして、データ取得部132は、加振部116および光ファイバセンサ118を用いて計測データの取得を行う(S106)。
その後、健全性診断部136は、S106において取得された計測データと、基準データとを比較することで、構造体TGの健全性を診断する(S108)。
また、所定の期間(例えば、3ヶ月周期)ごとや部品の交換時等の所定のタイミングで(S102におけるNO)、構造体TGに対して加振部116および光ファイバセンサ118が取り付けられる(S110)。そして、データ取得部132は、加振部116および光ファイバセンサ118を用いて計測データの取得を行う(S112)。
その後、健全性診断部136は、S112において取得された計測データと、基準データとを比較することで、構造体TGの健全性を診断する(S114)。
図4は、本実施形態における構造健全性診断の流れを説明する図である。上記した比較例の構造健全性診断では、供試体を用いて基準データを取得するため、基準データのデータ量が膨大になってしまうとともに、コストおよび時間が莫大にかかってしまう。そのため、構造健全性診断を容易に行うことが困難であった。
そこで、本実施形態における構造健全性診断では、図4に示すように、供試体を作成することなく、また、データ取得部132が供試体を用いた基準データを取得することもない。そして、構造体TGを備えた製品(例えば、航空機等)が作成されたときに(S200におけるYES)、その構造体TGに対して加振部116および光ファイバセンサ118が取り付けられる(S202)。データ取得部132は、加振部116を用いた光ファイバセンサ118による計測データの取得を行う(S204)。
ここで、構造体TGを備えた製品が作成されたときには、構造体TGに経年劣化が発生していることはなく、また、損傷や欠陥もないことが予め確認されているため、構造体TGには、これらの異常が発生していないものと推定される。そこで、データ記録部134は、S200で導出された物理量を、最初の基準データとして記憶部110に記憶させる(S206)。
その後、所定の期間(例えば、3ヶ月周期)ごとや部品の交換時等の所定のタイミングで(S200におけるNO)、構造体TGに対して加振部116および光ファイバセンサ118が取り付けられる(S208)。そして、データ取得部132は、加振部116および光ファイバセンサ118を用いて計測データの取得を行う(S210)。
その後、健全性診断部136は、S210において取得された計測データと、記憶部110に記憶されている基準データとを比較することで、構造体TGの健全性を診断する(S212)。そして、データ記録部134は、S210において導出された計測データを、新たな基準データとして記憶部110に上書きして記憶する(S214)。
したがって、S210では、出荷後に初めて構造健全性診断を行う場合、記憶部110には、出荷時の計測データが基準データとして記憶されている。そして、S210において取得された計測データと、出荷時の基準データとの比較によって健全性診断が行われることになる。
また、例えば、出荷後の2回目の構造健全性診断を行う場合、記憶部110には、出荷後の1回目に取得された計測データが基準データとして記憶されている。そして、S210において取得された計測データと、1回目に取得された計測データ(基準データ)との比較によって健全性診断処理が行われることになる。
つまり、本実施形態における構造健全性診断では、今回取得された計測データと、前回取得された計測データ(基準データ)とを比較することで、構造体TGの損傷および欠陥等の異常の有無が判定されることになる。なお、本実施形態における健全性診断では、構造体TGの経年劣化を診断することはできないが、今回および前回に取得された計測データの差分が、経年劣化により生じるであろう差分よりも大きい場合に、構造体TGの損傷または欠陥等の異常があると判定されることになる。
このように、本実施形態における診断装置100では、予め供試体を用いて基準データを取得しておく必要がなく、データ量を削減できるとともに、コストおよび時間が低減することができる。そのため、構造健全性診断を容易に行うことができる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上述した実施形態では、ファイバブラッググレーティング方式の光ファイバセンサ118を例に挙げて説明したが、計測データを計測するセンサは光ファイバセンサ118に限らず、他のセンサであってもよい。
また、上述した実施形態では、加振部116を備える場合について説明したが、加振部116は必須構成ではない。ただし、加振部116を備えることで、健全性診断処理では、欠損の検出が可能となる。
また、上述した実施形態では、加振部116および光ファイバセンサ118を構造体TGに対して診断毎に取り付けるようにした。しかしながら、加振部116および光ファイバセンサ118の一方または双方を構造体TGに対して取り付けたままにしてもよい。
また、上述した実施形態では、今回取得された計測データと、前回取得された計測データ(基準データ)とを比較することで、構造体TGの損傷および欠陥等の異常の有無が判定される場合について説明した。しかしながら、今回取得された計測データと、前回以前に取得された複数の計測データ(基準データ)とを比較することで、構造体TGの損傷および欠陥等の異常の有無が判定されるようにしてもよい。
図5は、変形例の構造健全性診断の流れを説明する図である。なお、図4と同一の処理に同一符号を付し、その説明は省略する。図5に示す変形例の健全性診断では、図4に示した構造健全性診断におけるS212およびS214の処理に代えて、S312およびS314の処理が設けられている。
S312において、健全性診断部136は、S210で取得された計測データと、記憶部110に蓄積して記憶された全ての基準データとを比較することで、構造体TGの健全性を診断する。また、S314において、データ記録部134は、S210で取得された計測データを、それ以前に記憶部110に記憶された計測データ(基準データ)に上書きすることなく、日時に関連付けて新たに記憶させる。つまり、S314では、S204およびS210で取得された計測データが蓄積して基準データとして記憶部110に記憶される。
これにより、S312の健全性診断処理において、今回取得された計測データと、前回以前に取得された1または複数の計測データ(基準データ)とを比較することができ、診断精度を向上させることができる。
TG 構造体
100 診断装置
116 加振部
118 光ファイバセンサ
132 データ取得部
134 データ記録部
136 健全性診断部

Claims (2)

  1. 加振部と、前記加振部が加振しているときの物理量を測定するセンサとが取り付けられた構造体を診断対象とし、
    前記構造体を備える製品の出荷時以降における所定のタイミングで、前記センサから前記構造体の計測データを取得するデータ取得部と、
    前記データ取得部によって前記計測データが取得される度に基準データとして記憶部に蓄積して記憶させるデータ記録部と、
    前記データ取得部によって今回取得された前記計測データと、前記記憶部に蓄積して記憶された全ての前記基準データとを比較することで、前記構造体の健全性の診断を行う健全性診断部と、
    を備える診断装置。
  2. 前記データ取得部は、
    前記構造体を模擬した供試体の計測データを取得することがない請求項1に記載の診断装置。
JP2021069200A 2018-04-09 2021-04-15 診断装置 Active JP7360415B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069200A JP7360415B2 (ja) 2018-04-09 2021-04-15 診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018074549A JP2019184389A (ja) 2018-04-09 2018-04-09 診断装置
JP2021069200A JP7360415B2 (ja) 2018-04-09 2021-04-15 診断装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018074549A Division JP2019184389A (ja) 2018-04-09 2018-04-09 診断装置

Publications (2)

Publication Number Publication Date
JP2021119347A true JP2021119347A (ja) 2021-08-12
JP7360415B2 JP7360415B2 (ja) 2023-10-12

Family

ID=66049066

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018074549A Pending JP2019184389A (ja) 2018-04-09 2018-04-09 診断装置
JP2021069200A Active JP7360415B2 (ja) 2018-04-09 2021-04-15 診断装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018074549A Pending JP2019184389A (ja) 2018-04-09 2018-04-09 診断装置

Country Status (4)

Country Link
US (1) US11474082B2 (ja)
EP (1) EP3553754A1 (ja)
JP (2) JP2019184389A (ja)
CN (1) CN110361447A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184389A (ja) 2018-04-09 2019-10-24 株式会社Subaru 診断装置
US20200209103A1 (en) * 2018-12-31 2020-07-02 Eyal BARMAIMON Structural health monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098921A (ja) * 2003-09-26 2005-04-14 Fuji Heavy Ind Ltd 構造用複合材料の損傷探知システム及び構造用複合材料の損傷探知方法
JP2009229070A (ja) * 2008-03-19 2009-10-08 Railway Technical Res Inst 構造物のモニタリングシステム
US20160116366A1 (en) * 2014-10-28 2016-04-28 Paulo Anchieta da Silva Method and system for structural health monitoring with frequency synchronization
WO2018042616A1 (ja) * 2016-09-02 2018-03-08 株式会社日立製作所 診断装置、診断方法及び診断プログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728730B2 (ja) * 2005-07-29 2011-07-20 財団法人電力中央研究所 常時微動計測に基づく建物の健全性診断法並びに健全性診断プログラム
JP2008107198A (ja) * 2006-10-25 2008-05-08 Sankyo Eng Kk コンクリート構造物の自主管理支援システム、自主管理支援サーバ及び自主管理支援プログラム
JP2009210511A (ja) * 2008-03-06 2009-09-17 Saishori Kiki Kk 自動帳票作成プログラムと自動帳票作成システム
JP2010025810A (ja) * 2008-07-22 2010-02-04 Fujikura Ltd ヘルスモニタリング用振動予測装置およびヘルスモニタリング用振動予測方法
US8386118B2 (en) 2009-08-04 2013-02-26 The Boeing Company System and method for detecting an anomaly in a hidden layer of a multi-layer structure
JP2011247700A (ja) * 2010-05-25 2011-12-08 Central Res Inst Of Electric Power Ind コンクリート部材の健全性診断方法、健全性診断装置及び健全性診断プログラム
CN104066382B (zh) * 2012-01-12 2016-11-16 株式会社日立制作所 图像诊断装置以及图像显示方法
FR2992063B1 (fr) * 2012-06-18 2014-07-18 Commissariat Energie Atomique Dispositif de mesure de la corrosion dans une structure metallique ou comprenant au moins une armature metallique, utilisations et procede associes
JP6240561B2 (ja) * 2014-06-04 2017-11-29 公益財団法人鉄道総合技術研究所 状態監視システム、情報処理装置、状態監視方法、プログラム、記録媒体
US9233763B1 (en) * 2014-08-19 2016-01-12 Gulfstream Aerospace Corporation Methods and systems for aircraft systems health trend monitoring
EP3237833A4 (en) * 2014-12-22 2018-06-13 Sikorsky Aircraft Corporation Fiber optic weight sensor optimization for landing gear
JP6655244B2 (ja) * 2015-11-02 2020-02-26 学校法人日本大学 道路劣化判定システムおよび道路劣化判定プログラム
JP6585482B2 (ja) * 2015-11-26 2019-10-02 株式会社日立製作所 機器診断装置及びシステム及び方法
JP2019184389A (ja) 2018-04-09 2019-10-24 株式会社Subaru 診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098921A (ja) * 2003-09-26 2005-04-14 Fuji Heavy Ind Ltd 構造用複合材料の損傷探知システム及び構造用複合材料の損傷探知方法
JP2009229070A (ja) * 2008-03-19 2009-10-08 Railway Technical Res Inst 構造物のモニタリングシステム
US20160116366A1 (en) * 2014-10-28 2016-04-28 Paulo Anchieta da Silva Method and system for structural health monitoring with frequency synchronization
WO2018042616A1 (ja) * 2016-09-02 2018-03-08 株式会社日立製作所 診断装置、診断方法及び診断プログラム

Also Published As

Publication number Publication date
JP2019184389A (ja) 2019-10-24
US20190310232A1 (en) 2019-10-10
CN110361447A (zh) 2019-10-22
US11474082B2 (en) 2022-10-18
JP7360415B2 (ja) 2023-10-12
EP3553754A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US9451709B2 (en) Damage index predicting system and method for predicting damage-related index
JP2010048680A (ja) 振動試験方法および装置
JP7360415B2 (ja) 診断装置
KR20190118110A (ko) 항공기 구조 분석 및 건전성 모니터링을 위한 스트레인 민감성 표면들
EP3575767B1 (en) Optical inspection system, optical inspection method, and aircraft structure
US11155365B2 (en) Aircraft management system
CN110196072B (zh) 诊断装置
JP2021032822A (ja) 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法
US20200005250A1 (en) Aircraft management system
JP6568486B2 (ja) 温度変化予測解析装置および温度変化予測解析方法
JP5197054B2 (ja) ひずみ計測装置及びその計測方法
JP7359378B2 (ja) 情報板の異常検出システム
KR20200103341A (ko) 기계 설비의 유지 보수 평가 방법
JP5788856B2 (ja) ルーズコンタクト試験システム、及びルーズコンタクト試験用加速度センサ校正装置
Berger et al. Onboard-SHM System Using Fibre Optical Sensor and LAMB Wave Technology for Life Time Prediction and Damage Detection on Aircraft Structure
Klusacek et al. Experimental methods for testing active element of piezoelectric knock sensors by using temperature dependences
JP2005098907A (ja) 部材の損傷評価方法およびこの方法を用いた部材損傷評価システム
CN112182832A (zh) 用于非破坏性检查的计算机实现的方法和系统
SE527268C2 (sv) Förfarande för att bedöma rimligheten i en signal från en trycksensor i ett fordon, samt ett fordon med sådan sensor
KR20100067986A (ko) 고유진동수 기반 구조물 손상탐지 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221228

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230127

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230929

R150 Certificate of patent or registration of utility model

Ref document number: 7360415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150