JP2021117287A - Design method of sound insulation member and manufacturing method of sound insulation wall using design method - Google Patents

Design method of sound insulation member and manufacturing method of sound insulation wall using design method Download PDF

Info

Publication number
JP2021117287A
JP2021117287A JP2020009084A JP2020009084A JP2021117287A JP 2021117287 A JP2021117287 A JP 2021117287A JP 2020009084 A JP2020009084 A JP 2020009084A JP 2020009084 A JP2020009084 A JP 2020009084A JP 2021117287 A JP2021117287 A JP 2021117287A
Authority
JP
Japan
Prior art keywords
sound
interval
sound insulation
wall
apparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020009084A
Other languages
Japanese (ja)
Inventor
育美 栗原
Ikumi Kurihara
育美 栗原
隆 近藤
Takashi Kondo
隆 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020009084A priority Critical patent/JP2021117287A/en
Publication of JP2021117287A publication Critical patent/JP2021117287A/en
Pending legal-status Critical Current

Links

Images

Abstract

To install a sound insulation member in a small space and to improve weight reduction and sound insulation performance.SOLUTION: A design method for designing a sheet-like sound insulation member 10 arranged in a hollow part 13 of a hollow double wall structure 12 to posses prescribed sound insulation performance is provided. Apparent sound speed Cde-ve in the hollow part 13 of a sound wave which is made incident on the hollow double wall structure 12 is calculated as a function with an incident angle θ of the sound wave and a first interval x of a pair of lateral walls 21 and a second interval y of vertical walls as variables, and the first interval x and the second interval y are set so that the apparent sound speed Cde-ve in the hollow part 13 of the sound wave becomes a prescribed target value. Since the apparent sound speed Cde-ve in the hollow part 13 of the sound wave indicates sound insulation performance of the sound insulation member 10, the first interval x and the second interval y for achieving the apparent sound speed Cde-ve in the hollow part 13, which corresponds to required sound insulation performance, can easily be set.SELECTED DRAWING: Figure 4

Description

本開示は、中空二重壁構造体の中空部に配置されるシート状の遮音部材を、所定の遮音性能を有するように設計するための設計方法、この設計方法を用いた遮音壁の製造方法に関する。 The present disclosure relates to a design method for designing a sheet-shaped sound insulation member arranged in a hollow portion of a hollow double wall structure so as to have a predetermined sound insulation performance, and a method for manufacturing a sound insulation wall using this design method. ..

重量増加、コストの上昇を抑えつつ、遮音性を高めるための遮音構造として、パネルに対して間隔を空けて配置された平面形状を有するマス部と、マス部においてパネルに対向する側に複数配置されたばね部と、一端がマス部に接合され、他端が減衰部を介してパネルに接合された脚部とを備えるものが公知である(特許文献1)。この遮音構造のばね部は、気密性及び可撓性を有した中空の膜材と、膜材の内部に封入されたガスとを有している。膜材内に封入するガスとして二酸化炭素を用いることにより、空気中よりも音速(音波の伝搬速度)が下がり、遮音構造の遮音性能を向上させることができる。 As a sound insulation structure for improving sound insulation while suppressing weight increase and cost increase, a mass portion having a planar shape arranged at intervals with respect to the panel and a plurality of mass portions on the side facing the panel in the mass portion are arranged. It is known that the spring portion is provided with a spring portion and a leg portion whose one end is joined to a mass portion and the other end is joined to a panel via a damping portion (Patent Document 1). The spring portion of this sound insulation structure has a hollow membrane material having airtightness and flexibility, and a gas sealed inside the membrane material. By using carbon dioxide as the gas sealed in the membrane material, the speed of sound (propagation speed of sound waves) is lower than in air, and the sound insulation performance of the sound insulation structure can be improved.

一方、中空部が導入通路を介して外部と連通するヘルムホルツ共鳴構造の非貫通孔を有する吸音材と、吸音材の非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材とを有する防音構造体が公知である(特許文献2)。この防音構造体は、空気層の厚さ、吸音材の厚さ、非貫通孔の寸法などが所定の範囲に設定されることにより、その共振透過周波数を人が不快に感じる500〜2000Hzから外れる500Hz未満とし、防音性能を向上させている。 On the other hand, the sound absorbing material having a non-penetrating hole of the Helmholtz resonance structure in which the hollow portion communicates with the outside through the introduction passage faces the surface through which the non-penetrating hole of the sound absorbing material is opened, and is separated by a predetermined distance with an air layer. A soundproof structure having a sound insulating material provided in the above is known (Patent Document 2). In this soundproof structure, the thickness of the air layer, the thickness of the sound absorbing material, the size of the non-through hole, etc. are set within a predetermined range, so that the resonance transmission frequency deviates from 500 to 2000 Hz, which is unpleasant for humans. The soundproofing performance is improved by setting it to less than 500 Hz.

特開2018−205419号公報JP-A-2018-205419 国際公開第2019/008775号公報International Publication No. 2019/008775

しかしながら、特許文献1記載の遮音構造は、遮音性能を向上させるためには、ガスを注入する膜材の中空空間を大きくする必要があり、遮音構造の厚さが大きくなる。また、特許文献2記載の防音構造体は、共振透過周波数を調整するために空気層の厚さ及び吸音材の厚さを所定の範囲に設定する必要があるため、所定の厚さを必要とする。このように、これらの防音構造は、設置のために所定のスペースを確保する必要があり、小スペースに設置することが困難である。 However, in the sound insulation structure described in Patent Document 1, in order to improve the sound insulation performance, it is necessary to increase the hollow space of the membrane material into which the gas is injected, and the thickness of the sound insulation structure becomes large. Further, the soundproof structure described in Patent Document 2 requires a predetermined thickness because it is necessary to set the thickness of the air layer and the thickness of the sound absorbing material within a predetermined range in order to adjust the resonance transmission frequency. do. As described above, these soundproof structures need to secure a predetermined space for installation, and it is difficult to install them in a small space.

本発明は、このような背景に鑑み、遮音部材の小スペースへの設置を可能とし、かつ軽量化と遮音性能の向上とを両立させることを課題とする。 In view of such a background, it is an object of the present invention to enable the sound insulation member to be installed in a small space, and to achieve both weight reduction and improvement of sound insulation performance.

このような課題を解決するために、本発明のある実施形態は、中空二重壁構造体(12)の中空部(13)に配置されるシート状の遮音部材(10)を、所定の遮音性能を有するように設計するための設計方法であって、前記遮音部材は、面内方向に延在し、面直方向に第1間隔(x)をもって対向配置される1対の横壁(21)と、1対の前記横壁の間に、前記面内方向に第2間隔(y)をもって配置される縦壁(22)とを備え、前記中空二重壁構造体に入射する音波の前記中空部での見かけ音速(Cde−ve)を、前記音波の入射角(θ)、前記第1間隔及び前記第2間隔を変数とする関数として算出し、前記遮音部材の前記遮音性能を示す、前記音波の前記中空部での前記見かけ音速が所定の目標値となるように、前記第1間隔及び前記第2間隔を設定する。 In order to solve such a problem, in one embodiment of the present invention, a sheet-shaped sound insulation member (10) arranged in the hollow portion (13) of the hollow double wall structure (12) is provided with a predetermined sound insulation. A design method for designing to have performance, wherein the sound insulation member extends in the in-plane direction and is arranged to face each other with a first interval (x) in the direction perpendicular to the plane (21). And a vertical wall (22) arranged with a second interval (y) in the in-plane direction between the pair of the horizontal walls, and the hollow portion of the sound wave incident on the hollow double wall structure. The apparent sound velocity (C de-ve ) in the above is calculated as a function with the incident angle (θ) of the sound wave, the first interval and the second interval as variables, and the sound insulation performance of the sound insulation member is shown. The first interval and the second interval are set so that the apparent speed of sound in the hollow portion of the sound wave becomes a predetermined target value.

中空二重壁構造体を透過する音波は、中空部に設けられた遮音部材の縦壁及び横壁を通過する際に時間遅れを生じる。これにより、中空部での見かけ音速が小さくなり、中空部での見かけ音速が小さいほど、遮音性能が高いことを本願発明者らは見出した。この構成によれば、中空二重壁構造体に入射する音波の中空部での見かけ音速を、音波の入射角、横壁同士の第1間隔及び縦壁同士の第2間隔を変数とする関数として算出することにより、必要とする遮音性能に対応する中空部での見かけ音速を実現するための第1間隔及び第2間隔を容易に設定することができる。これにより、不必要に壁の枚数を増加させることなく最適な枚数で軽量化と遮音性能の両立が行える。 The sound wave transmitted through the hollow double wall structure causes a time delay when passing through the vertical wall and the horizontal wall of the sound insulating member provided in the hollow portion. As a result, the inventors of the present application have found that the apparent sound velocity in the hollow portion becomes smaller, and the smaller the apparent sound velocity in the hollow portion, the higher the sound insulation performance. According to this configuration, the apparent speed of sound in the hollow portion of the sound wave incident on the hollow double wall structure is used as a function in which the incident angle of the sound wave, the first distance between the horizontal walls and the second distance between the vertical walls are variables. By calculating, the first interval and the second interval for realizing the apparent sound velocity in the hollow portion corresponding to the required sound insulation performance can be easily set. As a result, both weight reduction and sound insulation performance can be achieved with the optimum number of walls without unnecessarily increasing the number of walls.

好ましくは、前記音波の前記中空部での前記見かけ音速を、式(A)により表される関数として算出する。

Figure 2021117287
ただし、Cde−ve:入射角に応じた音波の中空部13での見かけ音速(m/s)、x':中空部を音波が通過する距離(m)、θ:音波の入射角(rad)、C:中空部での音速(m/s)、t:壁一枚当たりの時間遅れ(s)、x:1対の横壁間の第1間隔(m)、y:面内方向に配置される縦壁同士の第2間隔(m)、a:面直方向に配置される横壁の枚数である。 Preferably, the apparent speed of sound of the sound wave in the hollow portion is calculated as a function represented by the formula (A).
Figure 2021117287
However, C de-ve : the apparent speed of sound (m / s) of the sound wave in the hollow portion 13 according to the incident angle, x': the distance through which the sound wave passes through the hollow portion (m), θ: the incident angle of the sound wave (rad). ), C i: speed of sound in the hollow portion (m / s), t: time delay per single wall (s), x: 1 pair of first spacing between the transverse walls of the (m), y: the in-plane direction Second spacing (m) between the vertically arranged vertical walls, a: The number of horizontal walls arranged in the direction perpendicular to the plane.

好ましくは、前記入射角について所定の角度間隔(θp)ごとに0°から最大値(θH)までの前記入射角に応じた前記見かけ音速を平均することで、前記中空二重壁構造体にランダムに入射するランダム入射音波の前記中空部での平均見かけ音速((Cde−ve)^―)を算出し、前記平均見かけ音速を前記音波の前記中空部での前記見かけ音速とする。 Preferably, the hollow double-walled structure is randomized by averaging the apparent speed of sound corresponding to the incident angle from 0 ° to the maximum value (θH) at predetermined angular intervals (θp) for the incident angle. The average apparent sound velocity ((C de-ve ) ^-) of the randomly incident sound wave incident on the sound wave in the hollow portion is calculated, and the average apparent sound velocity is defined as the apparent sound velocity of the sound wave in the hollow portion.

この構成によれば、ランダム入射音波の中空部での見かけ音速を算出し、ランダム入射音波に対する遮音性能を実現するための第1間隔及び第2間隔を容易に設定することができる。これにより、自然界の音に対する遮音性能に対応する第1間隔及び第2間隔を精度よく設定することができる。 According to this configuration, the apparent sound velocity of the randomly incident sound wave in the hollow portion can be calculated, and the first interval and the second interval for realizing the sound insulation performance for the randomly incident sound wave can be easily set. Thereby, the first interval and the second interval corresponding to the sound insulation performance for the sound in the natural world can be set accurately.

好ましくは、前記入射角の前記最大値(θH)が78°であり、前記入射角の前記角度間隔(θp)が1°であるとよい。 Preferably, the maximum value (θH) of the incident angle is 78 °, and the angle interval (θp) of the incident angle is 1 °.

この構成によれば、現実の環境に近い条件でランダム入射音波の中空部での平均見かけ音速に対応する第1間隔及び第2間隔を設定することができる。 According to this configuration, it is possible to set the first interval and the second interval corresponding to the average apparent speed of sound in the hollow portion of the randomly incident sound wave under the conditions close to the actual environment.

好ましくは、前記見かけ音速の前記目標値が300m/s以下であるとよい。 Preferably, the target value of the apparent speed of sound is 300 m / s or less.

この構成によれば、中空二重壁構造体の遮音性能を確実に向上させることができる。 According to this configuration, the sound insulation performance of the hollow double wall structure can be reliably improved.

また上記課題を解決するために、本発明のある実施形態は、上記設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁(15)の製造方法であって、前記縦壁を、面直方向視にて開かれた所定の形状をなす少なくとも1つの帯状体(23)から構成し、前記帯状体の前記形状が、渦巻き形状、W字形状及びランダム形状を含む。 Further, in order to solve the above problems, in one embodiment of the present invention, the first interval and the second interval are set by using the design method, and a pair of the lateral walls are arranged to face each other with the first interval. , A method of manufacturing a sound insulation wall (15) manufactured by arranging the vertical walls at the second interval, wherein the vertical walls are opened in a plan direction view and have a predetermined shape. It is composed of a body (23), and the shape of the strip-shaped body includes a spiral shape, a W-shape, and a random shape.

この構成によれば、縦壁が面直方向視にて開かれ、閉じていないため、1対の横壁間の気体の熱膨張によって縦壁の位置がずれることが抑制される。 According to this configuration, since the vertical wall is opened and not closed in the direction perpendicular to the plane, the position of the vertical wall is suppressed from being displaced due to the thermal expansion of the gas between the pair of horizontal walls.

本発明のある実施形態は、上記設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁(15)の製造方法であって、前記縦壁を、多数の短冊状体(24)から構成する。 In one embodiment of the present invention, the first interval and the second interval are set by using the design method, a pair of the horizontal walls are arranged facing each other with the first interval, and the vertical wall is arranged with the second interval. It is a manufacturing method of a sound insulation wall (15) manufactured by arranging, and the vertical wall is composed of a large number of strip-shaped bodies (24).

この構成によれば、多数の短冊状体によって第2間隔をもって縦壁を形成することができる。 According to this configuration, a vertical wall can be formed with a second interval by a large number of strips.

本発明のある実施形態は、上記設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁(15)の製造方法であって、1対の前記横壁及び前記縦壁を膜材から構成し、前記縦壁を、面直方向視にて閉じたループをなす多数の筒状体(25)から構成し、1対の前記横壁及び前記縦壁が互いに協働して閉空間を画定する薄膜閉空間構造をなす。 In one embodiment of the present invention, the first interval and the second interval are set by using the design method, a pair of the horizontal walls are arranged facing each other with the first interval, and the vertical wall is arranged with the second interval. Is a method of manufacturing a sound insulation wall (15), in which a pair of the horizontal wall and the vertical wall are made of a film material, and the vertical wall forms a closed loop in a direct view from the plane. It is composed of a large number of tubular bodies (25), and a pair of the horizontal wall and the vertical wall cooperate with each other to form a thin film closed space structure that defines a closed space.

この構成によれば、膜材により画定される薄膜閉空間をばね部として機能させることができる。これにより、中空二重壁構造体の一方の壁構造体をマス部とし、薄膜閉空間をばね部とした遮音構造が構成され、中空二重壁構造体の遮音性能を向上させることができる。 According to this configuration, the thin film closed space defined by the membrane material can function as a spring portion. As a result, a sound insulation structure is configured in which one wall structure of the hollow double wall structure is a mass portion and the thin film closed space is a spring portion, and the sound insulation performance of the hollow double wall structure can be improved.

好ましくは、上記製造方法において、前記遮音部材の前記面直方向の一方に第1パネル部材(4、11)を配置し、前記遮音部材の前記面直方向の他方に第2パネル部材(11、4)を配置し、前記第1パネル部材及び前記第2パネル部材に前記遮音部材を挟持させるとよい。 Preferably, in the above manufacturing method, the first panel member (4, 11) is arranged on one side of the sound insulation member in the direction perpendicular to the surface, and the second panel member (11, 11) is arranged on the other side of the sound insulation member in the direction perpendicular to the surface. 4) may be arranged so that the sound insulating member is sandwiched between the first panel member and the second panel member.

この構成によれば、遮音部材が、マス部となる第2パネル部材又は第1パネル部材を弾性的に支持するばね部をなすことにより、第1パネル部材や第2パネル部材、遮音部材が独立して設けられる場合に比べて遮音性能が高くなる。 According to this configuration, the sound insulating member forms a spring portion that elastically supports the second panel member or the first panel member which is a mass portion, so that the first panel member, the second panel member, and the sound insulating member become independent. The sound insulation performance is higher than that of the case where it is provided.

好ましくは、上記製造方法において、2枚の樹脂シート(26)を圧縮加熱により互いに溶着することにより、1対の前記横壁の一方を前記筒状体ごとに互いに分離した構成とするとよい。 Preferably, in the above manufacturing method, two resin sheets (26) are welded to each other by compression heating so that one of the pair of the lateral walls is separated from each other for each of the tubular bodies.

この構成によれば、2枚の樹脂シートを互いに溶着することによって薄膜閉空間構造を容易に形成することができる。 According to this configuration, a thin film closed space structure can be easily formed by welding two resin sheets to each other.

このように本発明によれば、遮音部材を小スペースに設置可能とし、かつ軽量化と遮音性能の向上とを両立させることができる。 As described above, according to the present invention, the sound insulation member can be installed in a small space, and both weight reduction and improvement of sound insulation performance can be achieved at the same time.

実施形態に係る遮音部材を備えた車体のルーフの斜視図Perspective view of the roof of the vehicle body provided with the sound insulating member according to the embodiment. 図1に示すルーフの縦断面図Longitudinal sectional view of the roof shown in FIG. 図2に示すルーフの拡大断面図Enlarged sectional view of the roof shown in FIG. 図3に示す遮音部材の遮音特性の説明図Explanatory drawing of sound insulation characteristic of sound insulation member shown in FIG. 遮音特性と平均見かけ音速との関係を示すグラフGraph showing the relationship between sound insulation characteristics and average apparent sound velocity 縦壁の例を示す遮音部材の平面図Top view of a sound insulation member showing an example of a vertical wall 縦壁の他の例を示す遮音部材の(A)平面図、(B)断面図(A) plan view, (B) cross-sectional view of the sound insulation member showing another example of the vertical wall. 薄膜閉空間構造の縦壁の例を示す遮音部材の平面図Top view of a sound insulation member showing an example of a vertical wall of a thin film closed space structure 薄膜閉空間構造の他の例を示す遮音部材の断面図Cross-sectional view of a sound insulation member showing another example of a thin film closed space structure 図9に示す薄膜閉空間構造を用いた遮音壁の遮音特性を示すグラフA graph showing the sound insulation characteristics of a sound insulation wall using the thin film closed space structure shown in FIG.

以下、図面を参照して、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る遮音部材10が適用された車体のルーフ1を車外側から見た斜視図であり、図2は、このルーフ1の縦断面図である。図1及び図2に示すように、ルーフ1は、車体の外殻をなすルーフパネル2と、ルーフパネル2の下方に配置され、車体の内部空間(車室)を画定するルーフライニング3とを備えている。ルーフパネル2は、鋼板からなるアウターパネル4と、アウターパネル4の内面に設けられた複数の補強フレーム5とを備えている。補強フレーム5は、鋼板をプレス成形によってチャンネル断面形状に形成された鋼製補強部材であり、アウターパネル4の長手方向に間隔を空けて配置され、アウターパネル4の短手方向に延在している。 FIG. 1 is a perspective view of the roof 1 of a vehicle body to which the sound insulating member 10 according to the present invention is applied as viewed from the outside of the vehicle, and FIG. 2 is a vertical sectional view of the roof 1. As shown in FIGS. 1 and 2, the roof 1 includes a roof panel 2 forming an outer shell of a vehicle body and a roof flying 3 arranged below the roof panel 2 and defining an internal space (vehicle interior) of the vehicle body. I have. The roof panel 2 includes an outer panel 4 made of a steel plate and a plurality of reinforcing frames 5 provided on the inner surface of the outer panel 4. The reinforcing frame 5 is a steel reinforcing member formed by press forming a steel plate into a channel cross-sectional shape, is arranged at intervals in the longitudinal direction of the outer panel 4, and extends in the lateral direction of the outer panel 4. There is.

アウターパネル4の内面の補強フレーム5が設けられていない部分には、シート状の複数の遮音部材10が設けられている。遮音部材10は補強フレーム5の内面にも設けられてもよい。或いは、遮音部材10はルーフライニング3の外面に設けられてもよい。 A plurality of sheet-shaped sound insulating members 10 are provided on the inner surface of the outer panel 4 where the reinforcing frame 5 is not provided. The sound insulating member 10 may also be provided on the inner surface of the reinforcing frame 5. Alternatively, the sound insulating member 10 may be provided on the outer surface of the roof lining 3.

図3は、図2に示すルーフ1の拡大断面図である。図3に示すように、遮音部材10の下方(車内側)には防音パネル11が配置されている。防音パネル11はアウターパネル4と協働して中空二重壁構造体12を構成する。防音パネル11は、遮音部材10よりも比重が大きく、高い成形性を有している材料で板状に形成されることが好ましく、例えばポリプロピレン(PP)などの合成樹脂から形成された樹脂板であることが好ましい。なお、防音パネル11は全体にわたって板状をなしているものに限らず、少なくとも一部において板状をなす部材であればよい。 FIG. 3 is an enlarged cross-sectional view of the roof 1 shown in FIG. As shown in FIG. 3, a soundproof panel 11 is arranged below the sound insulation member 10 (inside the vehicle). The soundproof panel 11 cooperates with the outer panel 4 to form the hollow double wall structure 12. The soundproof panel 11 is preferably formed in a plate shape with a material having a higher specific gravity than the sound insulation member 10 and having high moldability, and is preferably a resin plate formed of a synthetic resin such as polypropylene (PP). It is preferable to have. The soundproof panel 11 is not limited to the one having a plate shape as a whole, and may be a member having a plate shape at least in a part thereof.

中空二重壁構造体12は、構造壁である1対のパネル部材(すなわち、アウターパネル4及び防音パネル11)が互いに離間して対向配置されることにより、両パネル部材の間に中空部13を形成する構造体である。遮音部材10は中空二重壁構造体12の中空部13に配置される。より具体的には、遮音部材10はアウターパネル4及び防音パネル11に挟持されるように中空部13に配置される。遮音部材10と中空二重壁構造体12(アウターパネル4及び防音パネル11)とにより、遮音壁15が構成される。 In the hollow double wall structure 12, a pair of panel members (that is, an outer panel 4 and a soundproof panel 11), which are structural walls, are arranged so as to be separated from each other so that the hollow portion 13 is between the two panel members. It is a structure that forms. The sound insulating member 10 is arranged in the hollow portion 13 of the hollow double wall structure 12. More specifically, the sound insulating member 10 is arranged in the hollow portion 13 so as to be sandwiched between the outer panel 4 and the soundproof panel 11. The sound insulation wall 15 is composed of the sound insulation member 10 and the hollow double wall structure 12 (outer panel 4 and soundproof panel 11).

遮音部材10は、面内方向に延在し、面直方向(面外方向ともいう)に第1間隔xをもって対向配置される1対の横壁21と、1対の横壁21の間に、面内方向に第2間隔yをもって配置される縦壁22とを備える。遮音部材10の横壁21及び縦壁22以外の部分は空気層である。1対の横壁21及び縦壁22は膜材(薄膜)からなり、防音パネル11よりも積極的に弾性変形するよう、防音パネル11を形成する材料よりもヤング率が低い材料で形成することが好ましい。このような膜材を形成する材料としては、例えば、エチレン−ビニルアルコール共重合体を用いることが好ましい。横壁21は横膜と呼ぶことができ、縦壁22は縦膜と呼ぶことができる。 The sound insulating member 10 extends in the in-plane direction and is arranged between a pair of side walls 21 and a pair of side walls 21 which are arranged so as to face each other with a first interval x in the direction perpendicular to the surface (also referred to as the out-of-plane direction). It includes a vertical wall 22 arranged inward with a second interval y. The portion of the sound insulating member 10 other than the horizontal wall 21 and the vertical wall 22 is an air layer. The pair of horizontal wall 21 and vertical wall 22 are made of a film material (thin film), and may be formed of a material having a Young's modulus lower than that of the material forming the soundproof panel 11 so as to be elastically deformed more positively than the soundproof panel 11. preferable. As a material for forming such a film material, for example, an ethylene-vinyl alcohol copolymer is preferably used. The horizontal wall 21 can be called a diaphragm, and the vertical wall 22 can be called a vertical membrane.

これより、防音パネル11がマス部となり、遮音部材10がばね部となって、ルーフ1を透過する音波の振動エネルギーが吸収される。吸収された振動エネルギーはばね部において熱エネルギーに変換される。アウターパネル4、遮音部材10及び防音パネル11により中空二重壁構造の遮音壁15が構成され、これによりルーフ1の防音性能が向上する。 As a result, the soundproof panel 11 serves as a mass portion, and the sound insulation member 10 serves as a spring portion, and the vibration energy of the sound wave transmitted through the roof 1 is absorbed. The absorbed vibration energy is converted into heat energy in the spring portion. The outer panel 4, the sound insulation member 10, and the sound insulation panel 11 form a sound insulation wall 15 having a hollow double wall structure, whereby the sound insulation performance of the roof 1 is improved.

遮音部材10はアウターパネル4や防音パネル11に接着されていてもよく、これらに接着させていなくてもよい。本実施形態では、遮音部材10は防音パネル11に接着され、防音パネル11が図示しない取付部材によってアウターパネル4に取り付けられることによりアウターパネル4に当接している。取付部材は、金属製又は樹脂製とされ、高い剛性を有するとよく、例えば断面視略クランク状をなしてよい。アウターパネル4及び防音パネル11の少なくとも一方と取付部材との間には弾性部材が設けられることが好ましい。これにより、防音パネル11の全体がアウターパネル4に対して変位可能になる。弾性部材は防音パネル11のアウターパネル4に対する振動を減衰する減衰部として機能する。弾性部材は、例えば可撓性及び粘性を有する接着剤であってよい。 The sound insulating member 10 may or may not be adhered to the outer panel 4 or the soundproof panel 11. In the present embodiment, the sound insulation member 10 is adhered to the soundproof panel 11, and the soundproof panel 11 is attached to the outer panel 4 by an attachment member (not shown) so as to be in contact with the outer panel 4. The mounting member may be made of metal or resin and may have high rigidity, for example, may have a substantially crank shape in cross section. It is preferable that an elastic member is provided between at least one of the outer panel 4 and the soundproof panel 11 and the mounting member. As a result, the entire soundproof panel 11 can be displaced with respect to the outer panel 4. The elastic member functions as a damping portion that attenuates the vibration of the soundproof panel 11 with respect to the outer panel 4. The elastic member may be, for example, a flexible and viscous adhesive.

遮音部材10は、上記のようにばね部として機能する他、ルーフ1を透過する音波を遮断する遮音材としても機能する。発明者らは、遮音部材10の遮音材としての特性が、遮音部材10を透過する音波の速度、すなわち遮音部材10での音速(後述する、ランダム入射音波の見かけ音速Cde−ve)に関連することを見出した。また発明者らは、遮音部材10の遮音性能が遮音部材10での音速の低下に応じて向上することを確認した。以下、具体的に説明する。 In addition to functioning as a spring portion as described above, the sound insulating member 10 also functions as a sound insulating material that blocks sound waves that pass through the roof 1. The inventors have found that the characteristics of the sound insulation member 10 as a sound insulation material are related to the speed of sound waves transmitted through the sound insulation member 10, that is, the speed of sound at the sound insulation member 10 (the apparent sound velocity C de-ve of randomly incident sound waves, which will be described later). I found out to do. Further, the inventors have confirmed that the sound insulation performance of the sound insulation member 10 improves as the sound velocity of the sound insulation member 10 decreases. Hereinafter, a specific description will be given.

図4は、図3に示す遮音部材10の遮音特性の説明図である。図4(A)は、所定の入射角θをもって遮音部材10を斜めに透過する音波が、外側の横壁21、縦壁22、下側の縦壁22を順に透過し、合わせて3枚の膜材を透過する場合を示している。図4(B)は、所定の入射角θをもって遮音部材10を斜めに透過する音波が、外側の横壁21、3枚の縦壁22、下側の縦壁22を順に透過し、合わせて5枚の膜材を透過する場合を示している。 FIG. 4 is an explanatory diagram of the sound insulation characteristic of the sound insulation member 10 shown in FIG. In FIG. 4A, sound waves obliquely transmitted through the sound insulating member 10 at a predetermined incident angle θ are transmitted through the outer horizontal wall 21, the vertical wall 22, and the lower vertical wall 22 in this order, and a total of three films are formed. The case where the material is transmitted is shown. In FIG. 4B, sound waves obliquely transmitted through the sound insulating member 10 at a predetermined incident angle θ are transmitted through the outer horizontal wall 21, the three vertical walls 22, and the lower vertical wall 22 in this order, for a total of 5 The case where a sheet of film material is transmitted is shown.

遮音部材10の面直方向に対向配置される1対の横壁21の間隔を第1間隔x、1対の横壁21の間に、面内方向に配置される縦壁22同士の間隔を第2間隔yとする。横壁21、縦壁22及び空気によって構成される遮音部材10と接着剤とにより満たされる中空部13(図3参照)は、ここでは一様とみなし、接着剤、横壁21及び縦壁22の厚みは考慮しないものとする。中空部13での音速Cは空気中の音速(すなわち、入射音波の音速)C(=340m/s)と同一とする。中空部13を音波が通過する距離x'は式(1)で表され、その際にかかる時間Tは式(2)で表される。

Figure 2021117287
ただし、x':中空部13を音波が通過する距離(m)、x:1対の横壁21間の第1間隔(m)、θ:音波の入射角(rad)である。
Figure 2021117287
ただし、T:中空部13を音波が通過するのにかかる時間(s)、C:中空部13での音速(ここでは、340m/sとする)、n:膜材(壁)透過枚数、t:膜材(壁)一枚当たりの時間遅れ(ここでは、0.000032sとする)である。なお、t=0.000032sは、音波が膜材を透過する際にかかる時間を計測により得た測定値である。膜材を透過する際に音波に時間遅れが生じる要因は、膜材から加振される気体の粘性抵抗や、膜材の振動が気体を加振する際の波の干渉などが考えられる。 The distance between the pair of horizontal walls 21 arranged so as to face each other in the direction perpendicular to the surface of the sound insulating member 10 is the first distance x, and the distance between the pair of horizontal walls 21 and the vertical walls 22 arranged in the in-plane direction is the second. Let the interval y be. The hollow portion 13 (see FIG. 3) filled with the adhesive, the sound insulating member 10 composed of the horizontal wall 21, the vertical wall 22, and air is regarded as uniform here, and the thickness of the adhesive, the horizontal wall 21, and the vertical wall 22 is considered to be uniform. Should not be considered. Acoustic velocity C i is the speed of sound in air at the hollow portion 13 (i.e., the acoustic velocity of the incident wave) C (= 340m / s) and the same. The distance x'that the sound wave passes through the hollow portion 13 is represented by the formula (1), and the time T required at that time is represented by the formula (2).
Figure 2021117287
However, x': the distance (m) through which the sound wave passes through the hollow portion 13, x: the first interval (m) between the pair of side walls 21, and θ: the incident angle (rad) of the sound wave.
Figure 2021117287
However, T: the time it takes a hollow portion 13 waves passes (s), C i: speed of sound (in this case, and 340m / s) in the hollow portion 13, n: film material (walls) transmitting number, t: Time delay per film material (wall) (here, 0.000032s). Note that t = 0.000032s is a measured value obtained by measuring the time required for the sound wave to pass through the membrane material. Factors that cause a time delay in sound waves when passing through the membrane material are considered to be the viscous resistance of the gas vibrated from the membrane material and the interference of waves when the vibration of the membrane material vibrates the gas.

式(2)に示される膜材透過枚数nは式(3)で表される。

Figure 2021117287
ただし、a:面直方向に配置される横壁21の枚数(本実施形態では2枚)、y:面内方向に配置される縦壁22同士の第2間隔(m)である。 The number of permeated membrane materials n represented by the formula (2) is represented by the formula (3).
Figure 2021117287
However, a: the number of horizontal walls 21 arranged in the direction perpendicular to the plane (two in the present embodiment), y: the second spacing (m) between the vertical walls 22 arranged in the in-plane direction.

よって中空部13を通過する音波の時間遅れによる見かけ音速Cdeは式(4)で表される。

Figure 2021117287
ただし、Cde:中空部13を通過する音波の時間遅れによる見かけ音速(m/s)である。 Therefore, the apparent speed of sound C de due to the time delay of the sound wave passing through the hollow portion 13 is expressed by the equation (4).
Figure 2021117287
However, C de : The apparent speed of sound (m / s) due to the time delay of the sound wave passing through the hollow portion 13.

中空二重壁構造体12では、入射角θ、音速Cで入射する音波は中空部13を放射状に伝播し、最短である面直方向に伝達する成分を含む。したがって、この音波の中空部13での音速Cは、式(5)で表され、入射角θが大きいほど見かけ上大きくなる。この見かけ上の値を、面直成分による見かけ音速Cveとする。中空部13で見かけ音速Cveが大きくなる現象は中空部13に設けられる部材の材料によらず発生する。

Figure 2021117287
ただし、Cve:中空部13での面直成分による見かけ音速(m/s)である。 In the hollow double wall structure 12, sound waves incident at an incident angle θ and a sound velocity C include a component that propagates radially through the hollow portion 13 and is transmitted in the shortest direction perpendicular to the plane. Thus, sound velocity C i of a hollow portion 13 of the acoustic waves is represented by the formula (5), it increases the apparent higher incidence angle θ is large. This apparent value is defined as the apparent sound velocity Cve due to the surface-to-plane component. The phenomenon that the apparent sound velocity Cve increases in the hollow portion 13 occurs regardless of the material of the member provided in the hollow portion 13.
Figure 2021117287
However, C ve : is the apparent speed of sound (m / s) due to the surface-to-plane component in the hollow portion 13.

このように中空部13での見かけ音速Cveは入射角θに応じて大きくなるので、式(5)より見かけ音速Cde−veは式(6)となる。

Figure 2021117287
ただし、Cde−ve:入射角θに応じた音波の中空部13での見かけ音速(m/s)、である。 As described above, the apparent sound velocity Cve in the hollow portion 13 increases according to the incident angle θ, so that the apparent sound velocity Cve-ve becomes the equation (6) from the equation (5).
Figure 2021117287
However, C de-ve : the apparent speed of sound (m / s) in the hollow portion 13 of the sound wave according to the incident angle θ.

式(6)に式(4)を代入し、その式に式(2)及び(1)を代入し、更に式(3)を代入することにより、式(7)が得られる。

Figure 2021117287
Equation (7) is obtained by substituting equation (4) into equation (6), substituting equations (2) and (1) into the equation, and further substituting equation (3).
Figure 2021117287

この式(7)により表されるように、中空二重壁構造体12に入射する音波の中空部13での見かけ音速Cde−veは、音波の入射角θ、1対の横壁21の第1間隔x及び縦壁同士の第2間隔yを変数とする関数として算出することができる。そして、音波の中空部13での見かけ音速Cde−veが所定の目標値となるように第1間隔x及び第2間隔yを設定することで、必要とする遮音性能に対応する第1間隔x及び第2間隔yを容易に設定することができる。これにより、不必要に薄膜の枚数を増加させることなく最適な枚数で軽量化と遮音性能の両立が行える。 As represented by this equation (7), the apparent speed of sound C de-ve in the hollow portion 13 of the sound wave incident on the hollow double wall structure 12 is the incident angle θ of the sound wave θ, and the first of the pair of side walls 21. It can be calculated as a function with one interval x and the second interval y between vertical walls as variables. Then, by setting the first interval x and the second interval y so that the apparent sound velocity C de-ve in the hollow portion 13 of the sound wave becomes a predetermined target value, the first interval corresponding to the required sound insulation performance is obtained. The x and the second interval y can be easily set. As a result, both weight reduction and sound insulation performance can be achieved with the optimum number of thin films without unnecessarily increasing the number of thin films.

ただし、中空二重壁構造体12に入射する自然界の音波はランダムな入射角θをもって様々な方向から入射するランダム入射である。よって、入射角θについて角度間隔θpごとに0°から最大値θHまでの見かけ音速Cde−veを平均することで、ランダム入射音波の平均見かけ音速(Cde−ve)^―を算出し、これを音波の中空部13での見かけ音速Cde−veとする。ランダム入射音波の平均見かけ音速(Cde−ve)^―は式(8)で表される。なお、平均値を示す記号は、数式中では文字の上に記されるが、本文中では文字の後に「^―」と記される。

Figure 2021117287
ただし、(Cde−ve)^―:ランダム入射音波の平均見かけ音速、θH:ランダム入射音波の入射角θの最大値、θp:積算のための入射角θの角度間隔である。 However, the sound waves in the natural world incident on the hollow double wall structure 12 are random incidents incident from various directions with a random incident angle θ. Therefore, by averaging the apparent sound velocity C de-ve from 0 ° to the maximum value θH for each angle interval θp with respect to the incident angle θ, the average apparent sound velocity (C de-ve ) ^-of the randomly incident sound wave is calculated. This is defined as the apparent speed of sound C de-ve in the hollow portion 13 of the sound wave. The average apparent speed of sound (C de-ve ) ^-of a random incident sound wave is expressed by Eq. (8). The symbol indicating the average value is written above the character in the mathematical formula, but is written as "^-" after the character in the text.
Figure 2021117287
However, (C de-ve ) ^-: average apparent sound velocity of the random incident sound wave, θH: maximum value of the incident angle θ of the random incident sound wave, θp: angular interval of the incident angle θ for integration.

このように式(8)を用いることにより、ランダム入射音波の中空部13での見かけ音速Cde−veを算出し、ランダム入射音波に対する遮音性能を実現するための第1間隔x及び第2間隔yを容易に設定することができる。これにより、自然界の音に対する遮音性能に対応する第1間隔x及び第2間隔yを精度よく設定することができる。 By using the equation (8) in this way, the apparent sound velocity C de-ve in the hollow portion 13 of the randomly incident sound wave is calculated, and the first interval x and the second interval for realizing the sound insulation performance for the randomly incident sound wave are achieved. y can be easily set. Thereby, the first interval x and the second interval y corresponding to the sound insulation performance for the sound in the natural world can be set accurately.

本実施形態では、現実の環境に近い条件とされる入射角θの最大値θH=78°を用い、角度間隔θpを1°とする。よって、式(8)は、式(9)となる。

Figure 2021117287
In the present embodiment, the maximum value θH = 78 ° of the incident angle θ, which is a condition close to the actual environment, is used, and the angle interval θp is set to 1 °. Therefore, the equation (8) becomes the equation (9).
Figure 2021117287

これにより、現実の環境に近い条件でランダム入射音波の中空部13での平均見かけ音速(Cde−ve)^―に対応する第1間隔x及び第2間隔yを設定することができる。 Thereby, the first interval x and the second interval y corresponding to the average apparent speed of sound (C de-ve ) ^-in the hollow portion 13 of the randomly incident sound wave can be set under the condition close to the actual environment.

次に、中空二重壁構造体12とその中空部13に設けられた遮音部材10とにより構成される遮音壁15の遮音特性について説明する。入射角θについての遮音壁15の透過損失TL(θ)は、入射角θで入射する音波の透過率τを用いて、式(10)で表すことができる。

Figure 2021117287
ただし、TL(θ):入射角θについての遮音壁15の透過損失(dB)、τ(θ):入射角θで入射する音波の透過率である。 Next, the sound insulation characteristics of the sound insulation wall 15 composed of the hollow double wall structure 12 and the sound insulation member 10 provided in the hollow portion 13 will be described. The transmission loss TL (θ) of the sound insulation wall 15 with respect to the incident angle θ can be expressed by the equation (10) using the transmittance τ of the sound wave incident at the incident angle θ.
Figure 2021117287
However, TL (θ): the transmission loss (dB) of the sound insulation wall 15 with respect to the incident angle θ, and τ (θ): the transmittance of the sound wave incident at the incident angle θ.

中空二重壁構造体12に入射する音波は上記のようにランダム入射音波であるため、θL〜θHの入射角θの範囲で入射するランダム入射音波の透過率の平均値である平均透過率τ^―は、半球積分を用いて式(11)で表すことができる。

Figure 2021117287
ただし、τ^―:ランダム入射音波の平均透過率、θL:ランダム入射音波の入射角θの最小値である。ここでも、入射角θの最小値θL及び最大値θHは、現実の場に近い条件とされる0°及び78°を用いるとよい。式(10)及び(11)より、遮音壁15の透過損失TLは、式(12)で表すことができる。
Figure 2021117287
ただし、TL:ランダム入射音波の遮音壁15での透過損失(dB)である。 Since the sound wave incident on the hollow double wall structure 12 is a random incident sound wave as described above, the average transmittance τ which is the average value of the transmittance of the randomly incident sound wave incident in the range of the incident angle θ of θL to θH. ^-Can be expressed by Eq. (11) using hemispherical integration.
Figure 2021117287
However, τ ^ −: the average transmittance of the randomly incident sound wave, θL: the minimum value of the incident angle θ of the randomly incident sound wave. Here, too, the minimum value θL and the maximum value θH of the incident angle θ may be 0 ° and 78 °, which are conditions close to the actual field. From the formulas (10) and (11), the transmission loss TL of the sound insulation wall 15 can be expressed by the formula (12).
Figure 2021117287
However, TL: transmission loss (dB) of randomly incident sound waves at the sound insulation wall 15.

式(12)を用いて算出した遮音壁15の遮音特性と平均見かけ音速(Cde−ve)^―との関係性及び従来の多孔質材を用いた遮音壁15の遮音特性(実測値)は、図5に示されるとおりである。図5より、平均見かけ音速(Cde−ve)^―が200m/s程度となると、人が騒音として感じやすい500Hz〜2000Hzの音について、従来の多孔質材と同等の遮音特性となることが確認できる。平均見かけ音速(Cde−ve)^―が300m/s程度まで低下すると、340m/sのときに比べて遮音性能が明らかに向上することが確認できる。 The relationship between the sound insulation characteristics of the sound insulation wall 15 calculated using the equation (12) and the average apparent sound velocity (C de-ve ) ^-and the sound insulation characteristics (actual measurement values) of the sound insulation wall 15 using the conventional porous material are as follows. As shown in FIG. From FIG. 5, when the average apparent sound velocity (C de-ve ) ^-is about 200 m / s, the sound insulation characteristics of 500 Hz to 2000 Hz, which are easily perceived by humans as noise, are equivalent to those of the conventional porous material. You can check. It can be confirmed that when the average apparent sound velocity (C de-ve ) ^-decreases to about 300 m / s, the sound insulation performance is clearly improved as compared with the case of 340 m / s.

本実施形態のように遮音部材10が車体に適用される場合、遮音部材10の厚みは車のレイアウト上大きさが限られる。そこで、1対の横壁21の第1間隔xを、例えば0.010mに固定とする。透過損失TLは式(12)で表されることから、式(12)を用いれば、面内方向の縦壁22配置間隔である第2間隔yをパラメータとして、ねらいの平均見かけ音速(Cde−ve)^―となるように縦壁22の第2間隔yを設計することができる。第1間隔xを0.010mに固定した場合に、例えば平均見かけ音速(Cde−ve)^―が200m/sになる縦壁同士の第2間隔yは0.012mである。つまり、面内方向に縦壁22を0.012m間隔で配置することにより、中空二重壁構造体12の中空部13でのランダム入射音波の平均見かけ音速(Cde−ve)^―は200m/sとなる。 When the sound insulating member 10 is applied to the vehicle body as in the present embodiment, the thickness of the sound insulating member 10 is limited due to the layout of the car. Therefore, the first interval x of the pair of lateral walls 21 is fixed to, for example, 0.010 m. Since the transmission loss TL is expressed by the equation (12), if the equation (12) is used, the target average apparent sound velocity (C de) is set with the second interval y, which is the interval of the vertical wall 22 in the in-plane direction, as a parameter. The second interval y of the vertical wall 22 can be designed so as to be −ve) ^ −. When the first interval x is fixed at 0.010 m, for example, the average apparent speed of sound (C de-ve ) ^-is 200 m / s, and the second interval y between the vertical walls is 0.012 m. That is, by arranging the vertical walls 22 in the in-plane direction at intervals of 0.012 m, the average apparent speed of sound (C de-ve ) ^-of the randomly incident sound waves in the hollow portion 13 of the hollow double wall structure 12 is 200 m. It becomes / s.

このように、ランダム入射音波の中空部13での平均見かけ音速(Cde−ve)^―は遮音部材10の遮音特性に関連している。したがって、式(7)及び式(8)を用いて、ランダム入射音波の中空部13での平均見かけ音速(Cde−ve)^―が所定の目標値となるように、第1間隔x及び第2間隔yを設定することにより、必要とする遮音性能に対応する中空部13での平均見かけ音速(Cde−ve)^―を実現するための第1間隔x及び第2間隔yを容易に設定することができる。 As described above, the average apparent sound velocity (C de-ve ) ^-in the hollow portion 13 of the randomly incident sound wave is related to the sound insulation characteristic of the sound insulation member 10. Therefore, using the equations (7) and (8), the first interval x and the first interval x and so that the average apparent sound velocity (C de-ve) ^-in the hollow portion 13 of the randomly incident sound wave becomes a predetermined target value. By setting the second interval y, the first interval x and the second interval y for realizing the average apparent sound velocity (C de-ve ) ^-in the hollow portion 13 corresponding to the required sound insulation performance can be easily set. Can be set to.

例えば、上記のようにランダム入射音波の中空部13での平均見かけ音速(Cde−ve)^―の目標値を300m/s以下とすることにより、中空二重壁構造体12の遮音性能を確実に向上させることができる。また、入射角θの最大値θHを78°とし、入射角θの角度間隔θpを1°とすることにより、現実の環境に近い条件でランダム入射音波の中空部13での平均見かけ音速(Cde−ve)^―に対応する第1間隔x及び第2間隔yを設定することができる。 For example, by setting the target value of the average apparent sound velocity (C de-ve ) ^-in the hollow portion 13 of the randomly incident sound wave to 300 m / s or less as described above, the sound insulation performance of the hollow double wall structure 12 can be improved. It can be definitely improved. Further, by setting the maximum value θH of the incident angle θ to 78 ° and the angle interval θp of the incident angle θ to 1 °, the average apparent speed of sound (C) in the hollow portion 13 of the random incident sound wave under conditions close to the actual environment. The first interval x and the second interval y corresponding to de-ve) ^-can be set.

次に、上記設計方法を用いて製造する遮音部材10及びその製造方法について説明する。図6は、縦壁22の例を示す遮音部材10の平面図である。図6(A)に示す例では、縦壁22は面直方向視にて開かれた渦巻き形状をなす帯状体23から構成されている。ここで、「開かれた」とは、帯状体23の端部同士が閉じていないことを意味する。縦壁22は、渦巻き形状をなす帯状体23からなることにより、面内方向の全ての方向について第2間隔yをもって配置可能である。 Next, the sound insulation member 10 manufactured by using the above design method and the manufacturing method thereof will be described. FIG. 6 is a plan view of the sound insulating member 10 showing an example of the vertical wall 22. In the example shown in FIG. 6 (A), the vertical wall 22 is composed of a band-shaped body 23 having a spiral shape that is open when viewed in the direction perpendicular to the plane. Here, "opened" means that the ends of the strip 23 are not closed to each other. Since the vertical wall 22 is made of a band-shaped body 23 having a spiral shape, the vertical wall 22 can be arranged with a second interval y in all directions in the in-plane direction.

図6(B)に示す例では、縦壁22は面直方向視にて開かれたW字形状、或いはジグザグ形状をなす帯状体23から構成されている。縦壁22は、W字形状、或いはジグザグ形状をなす帯状体23からなることにより、面内方向のある1方向について第2間隔yの平均値をもって配置可能である。 In the example shown in FIG. 6B, the vertical wall 22 is composed of a strip-shaped body 23 having a W-shape or a zigzag shape that is open when viewed in the direction perpendicular to the plane. Since the vertical wall 22 is formed of a strip-shaped body 23 having a W-shape or a zigzag shape, the vertical wall 22 can be arranged with an average value of the second interval y in one direction in the in-plane direction.

図6(C)に示す例では、縦壁22は面直方向視にて開かれたランダム形状をなす帯状体23から構成されている。縦壁22は、帯状体23が所定の密度に配置されることにより、面内方向の全ての方向について第2間隔yの平均値をもって配置可能である。 In the example shown in FIG. 6C, the vertical wall 22 is composed of a band-shaped body 23 having a random shape opened in a plane-direct view. The vertical wall 22 can be arranged with the average value of the second interval y in all the in-plane directions by arranging the strips 23 at a predetermined density.

このように縦壁22が面直方向視にて開かれ、閉じていないため、1対の横壁21間の気体の熱膨張によって縦壁22の位置がずれることが抑制される。 Since the vertical wall 22 is opened and not closed in the direction perpendicular to the plane in this way, the position of the vertical wall 22 is suppressed from being displaced due to the thermal expansion of the gas between the pair of horizontal walls 21.

図7は、縦壁22の他の例を示す遮音部材10の(A)平面図、(B)断面図である。図7に示すように、この例では、縦壁22は多数の短冊状体24から構成されている。このように縦壁22を、多数の短冊状体24から構成することによっても、第2間隔yをもって縦壁22を形成することができる。 FIG. 7 is a plan view (A) and a cross-sectional view (B) of the sound insulating member 10 showing another example of the vertical wall 22. As shown in FIG. 7, in this example, the vertical wall 22 is composed of a large number of strips 24. By forming the vertical wall 22 from a large number of strips 24 in this way, the vertical wall 22 can be formed with a second interval y.

図8は、薄膜閉空間構造の縦壁22の例を示す遮音部材10の平面図である。図8(A)に示す例では、縦壁22は、面直方向視にて閉じたループをなす多数の筒状体25によって構成されている。筒状体25は、それぞれ円筒形をなしており、互いに離間するように面直方向視で分散配置されている。図示例では複数の筒状体25が千鳥状に整列して配置されている。各筒状体25は、1対の横壁21に対して上縁及び下縁にて接合されており、1対の横壁21と協働してそれぞれ単独で閉空間を内部に画定する薄膜閉空間構造をなしている。 FIG. 8 is a plan view of the sound insulating member 10 showing an example of the vertical wall 22 having a thin film closed space structure. In the example shown in FIG. 8A, the vertical wall 22 is composed of a large number of tubular bodies 25 forming a closed loop when viewed in the direction perpendicular to the plane. The tubular bodies 25 each have a cylindrical shape, and are dispersedly arranged in a plane-directed direction so as to be separated from each other. In the illustrated example, a plurality of tubular bodies 25 are arranged in a staggered pattern. Each tubular body 25 is joined to a pair of lateral walls 21 at an upper edge and a lower edge, and is a thin film closed space that independently defines a closed space internally in cooperation with the pair of lateral walls 21. It has a structure.

図8(B)に示す例でも、縦壁22は、面直方向視にて閉じたループをなす多数の筒状体25によって構成されている。筒状体25は、多角形(図示例では六角形)をなしており、互いに連結してハニカム構造をなしている。各筒状体25は、1対の横壁21に対して上縁及び下縁にて接合されており、1対の横壁21と協働してそれぞれ単独で閉空間を内部に画定する薄膜閉空間構造をなしている。 In the example shown in FIG. 8B, the vertical wall 22 is also composed of a large number of tubular bodies 25 forming a closed loop when viewed in the direction perpendicular to the plane. The tubular body 25 has a polygonal shape (hexagon in the illustrated example) and is connected to each other to form a honeycomb structure. Each tubular body 25 is joined to a pair of lateral walls 21 at an upper edge and a lower edge, and is a thin film closed space that independently defines a closed space internally in cooperation with the pair of lateral walls 21. It has a structure.

図8に示した例では、各筒状体25が1対の横壁21と協働して閉空間を内部に画定しており、各筒状体25の内部にはガスが封入されている。なお、図8に示した閉空間は、気密に密閉されてもよく、薄膜閉空間がばね部として機能する程度の多少の空気の出入りを許容するものであってもよい。ガスは、少なくとも膜材の弛みがなくなるように予め設定した圧力以上の圧力をもって中空の膜材の内部に充填されている。このようなガスとして、例えば、空気を用いることができる。また、ガスとして、二酸化炭素やヘリウムを用いることもできる。膜材内に封入するガスとして二酸化炭素を用いれば、音速Cを空気中の値よりも低下させ、これにより遮音性能を向上させることができる。 In the example shown in FIG. 8, each tubular body 25 cooperates with a pair of side walls 21 to define a closed space inside, and gas is sealed inside each tubular body 25. The closed space shown in FIG. 8 may be hermetically sealed, and may allow some air to enter and exit to the extent that the thin film closed space functions as a spring portion. The gas is filled inside the hollow membrane material with a pressure equal to or higher than a preset pressure so that the membrane material does not loosen at least. As such a gas, for example, air can be used. Further, carbon dioxide or helium can be used as the gas. If carbon dioxide is used as the gas to be sealed in the membrane material, the sound velocity C can be made lower than the value in the air, thereby improving the sound insulation performance.

遮音部材10は次のようにしてルーフパネル2(図1、図2参照)に取り付けられる。まず、遮音部材10の面直方向の一方(一方の面)に防音パネル11(図3参照)が接着剤などを用いて接合する。この遮音部材10を、防音パネル11が接合された側と相反する側(他方の面)をアウターパネル4(図3参照)の内面に向けて配置し、上記の取付部材を用いて防音パネル11をアウターパネル4に取り付ける。防音パネル11がアウターパネル4に取り付けられた状態で、遮音部材10は防音パネル11及びアウターパネル4により挟持される。 The sound insulating member 10 is attached to the roof panel 2 (see FIGS. 1 and 2) as follows. First, the soundproof panel 11 (see FIG. 3) is joined to one (one surface) of the sound insulation member 10 in the direction perpendicular to the surface by using an adhesive or the like. The soundproofing member 10 is arranged so that the side (the other surface) opposite to the side to which the soundproofing panel 11 is joined faces the inner surface of the outer panel 4 (see FIG. 3), and the soundproofing panel 11 is used by using the above mounting member. Is attached to the outer panel 4. With the soundproof panel 11 attached to the outer panel 4, the soundproof member 10 is sandwiched between the soundproof panel 11 and the outer panel 4.

このように防音パネル11及びアウターパネル4に遮音部材10を挟持させることにより、遮音部材10が、マス部となる防音パネル11を弾性的に支持するばね部をなすため、これらの部材が独立して設けられる場合に比べて遮音性能が高くなる。 By sandwiching the sound insulation member 10 between the sound insulation panel 11 and the outer panel 4 in this way, the sound insulation member 10 forms a spring portion that elastically supports the sound insulation panel 11 as a mass portion, so that these members become independent. The sound insulation performance is higher than when it is provided.

また、マス部をなす防音パネル11の質量及び、ばね部をなす遮音部材10のばね定数を適宜調整することで、遮音部材10が騒音に対して共振する周波数を調整し、目的の周波数域の騒音を効率良く抑えることができる。 Further, by appropriately adjusting the mass of the soundproof panel 11 forming the mass portion and the spring constant of the sound insulating member 10 forming the spring portion, the frequency at which the sound insulating member 10 resonates with noise is adjusted, and the frequency of the target frequency range is adjusted. Noise can be suppressed efficiently.

このように1対の横壁21及び筒状体25からなる縦壁22が互いに協働して閉空間を画定する薄膜閉空間構造をなすことにより、膜材により画定される薄膜閉空間をばね部として機能させることができる。これにより、防音パネル11をマス部とし、薄膜閉空間をばね部とした遮音構造が構成され、中空二重壁構造体12の遮音性能を向上させることができる。 In this way, the pair of horizontal walls 21 and the vertical wall 22 composed of the tubular body 25 cooperate with each other to form a thin film closed space structure that defines the closed space, so that the thin film closed space defined by the membrane material is formed as a spring portion. Can function as. As a result, a sound insulation structure is formed in which the soundproof panel 11 is a mass portion and the thin film closed space is a spring portion, and the sound insulation performance of the hollow double wall structure 12 can be improved.

図9は、薄膜閉空間構造の他の例を示す遮音部材10の断面図である。図9に示すように、この例では、遮音部材10が2枚の樹脂シート26を圧縮加熱により互いに溶着することによって形成されている。遮音部材10は、公知の気泡緩衝材の製造方法と同様の方法により製造され、気泡緩衝材を同様の構造を有するように形成される。具体的には、一方の樹脂シート26が1対の横壁21の一方と複数の円筒形状の筒状体25とを形成し、この一方の横壁21が筒状体25ごとに互いに分離した構成とされる。 FIG. 9 is a cross-sectional view of the sound insulating member 10 showing another example of the thin film closed space structure. As shown in FIG. 9, in this example, the sound insulating member 10 is formed by welding two resin sheets 26 to each other by compression heating. The sound insulating member 10 is manufactured by a method similar to a known method for manufacturing a bubble wrap material, and the bubble wrap material is formed so as to have a similar structure. Specifically, one resin sheet 26 forms one of a pair of lateral walls 21 and a plurality of cylindrical tubular bodies 25, and the one lateral wall 21 is separated from each other for each tubular body 25. Will be done.

このように2枚の樹脂シート26を圧縮加熱により互いに溶着し、1対の横壁21の一方が筒状体25ごとに互いに分離した構成とすることにより、薄膜閉空間構造の形成が容易である。 In this way, the two resin sheets 26 are welded to each other by compression heating, and one of the pair of side walls 21 is separated from each other for each tubular body 25, so that a thin film closed space structure can be easily formed. ..

図10は、図9に示す薄膜閉空間構造を用いて平均見かけ音速(Cde−ve)^―を216m/sとした場合の遮音壁15の遮音特性を示すグラフである。なお、グラフには、アウターパネル4のみの遮音特性(「パネルのみ」と記されている)と、中空二重壁構造体12の中空部13に多孔質材が設けられた比較例(二重壁構造+多孔質材)と、本発明(二重壁構造+薄膜閉空間構造体)の実測値及び予測値とが示されている。本発明の遮音壁15の薄膜閉空間を形成する筒状体25は、直径が30mm、高さが10mm、厚さが100μmの寸法とされ、4mm間隔で並べられる。アウターパネル4は厚さ0.8mmの鉄板である。本発明の透過損失TLの予測値は、式(12)を使って求めた値であり、図10からわかるように、実測値と略同等である。よって、遮音部材10の遮音性能が平均見かけ音速(Cde−ve)^―の低下に応じて向上することが確認できた。 FIG. 10 is a graph showing the sound insulation characteristics of the sound insulation wall 15 when the average apparent sound velocity (C de-ve ) ^-is 216 m / s using the thin film closed space structure shown in FIG. In the graph, the sound insulation characteristic of only the outer panel 4 (described as "panel only") and the comparative example in which the hollow portion 13 of the hollow double wall structure 12 is provided with the porous material (double). Wall structure + porous material) and measured and predicted values of the present invention (double wall structure + thin film closed space structure) are shown. The tubular body 25 forming the thin film closed space of the sound insulation wall 15 of the present invention has dimensions of 30 mm in diameter, 10 mm in height, and 100 μm in thickness, and is arranged at intervals of 4 mm. The outer panel 4 is an iron plate having a thickness of 0.8 mm. The predicted value of the transmission loss TL of the present invention is a value obtained by using the equation (12), and as can be seen from FIG. 10, it is substantially the same as the measured value. Therefore, it was confirmed that the sound insulation performance of the sound insulation member 10 improves as the average apparent sound velocity (C de-ve) ^-decreases.

図10に示すように、本発明と比較例とは互いに同等の遮音性能を示している。一方、本発明の遮音部材10は、比較例の多孔質材よりも33%(0.5kg/m)軽量になる。このように本発明に係る遮音壁15は、式(7)及び式(8)を用いて、必要とする遮音性能に対応する中空部13での平均見かけ音速(Cde−ve)^―を実現するための第1間隔x及び第2間隔yを容易に設定することができる。これにより、不必要に縦壁22の枚数を増加させることなく最適な枚数で軽量化と遮音性能の両立が行える。 As shown in FIG. 10, the present invention and the comparative example show the same sound insulation performance as each other. On the other hand, the sound insulating member 10 of the present invention is 33% (0.5 kg / m 2 ) lighter than the porous material of the comparative example. As described above, the sound insulation wall 15 according to the present invention realizes the average apparent sound velocity (C de-ve ) ^-in the hollow portion 13 corresponding to the required sound insulation performance by using the equations (7) and (8). The first interval x and the second interval y can be easily set. As a result, both weight reduction and sound insulation performance can be achieved with an optimum number of vertical walls 22 without unnecessarily increasing the number of vertical walls 22.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態では、遮音部材10を車体のルーフ1に設ける例を説明したが、遮音部材10は、車体のドア、ピラー、ボンネットやトランク、ボディパネル等、他の部位に設けられてもよい。また、遮音部材10は、自動車に限らず、建物の天井、壁、床、各種装置のカバー等、他の構造体に設けるようにしてもよい。この他、各部材や部位の具体的構成や配置、数量、角度、素材、手順など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。一方、上記実施形態に示した各構成要素は必ずしも全てが必須ではなく、適宜選択することができる。 Although the description of the specific embodiment is completed above, the present invention can be widely modified without being limited to the above embodiment. For example, in the above embodiment, the example in which the sound insulating member 10 is provided on the roof 1 of the vehicle body has been described, but the sound insulating member 10 may be provided on other parts such as the door, pillar, bonnet, trunk, and body panel of the vehicle body. good. Further, the sound insulating member 10 may be provided not only in an automobile but also in another structure such as a ceiling, a wall, a floor of a building, a cover of various devices, and the like. In addition, the specific configuration and arrangement of each member and portion, quantity, angle, material, procedure, and the like can be appropriately changed as long as they do not deviate from the gist of the present invention. On the other hand, not all of the components shown in the above embodiments are indispensable, and they can be appropriately selected.

1 ルーフ(車体)
2 ルーフパネル
3 ルーフライニング
4 アウターパネル(パネル部材)
5 補強フレーム
10 遮音部材
11 防音パネル(パネル部材)
12 中空二重壁構造体
13 中空部
15 遮音壁
21 横壁
22 縦壁
23 帯状体
24 短冊状体
25 筒状体
26 樹脂シート
a 面直方向に配置される横壁21の枚数
C 空気中の音速(m/s)
de 中空部13を通過する音波の時間遅れによる見かけ音速(m/s)
中空部13での音速(m/s)
ve 中空部13での面直成分による見かけ音速(m/s)
de−ve 入射角θに応じた音波の中空部13での見かけ音速(m/s)
(Cde−ve)^― ランダム入射音波の中空部13での平均見かけ音速(m/s)
T 中空部13を音波が通過するのにかかる時間(s)
TL ランダム入射音波の遮音壁15での透過損失(dB)
TL(θ) 入射角θについての遮音壁15の透過損失(dB)
t 膜材(壁)一枚当たりの時間遅れ(s)
n 膜材(壁)透過枚数
x 第1間隔(1対の横壁21の間隔)
x' 中空部13を音波が通過する距離(m)
y 第2間隔(縦壁22同士の間隔)
θ 音波の入射角(rad)
θH ランダム入射音波の入射角θの最大値
θL ランダム入射音波の入射角θの最小値
θp 積算のための入射角θの角度間隔
τ(θ) 入射角θで入射する音波の透過率
τ^― ランダム入射音波の平均透過率
1 Roof (body)
2 Roof panel 3 Roof lining 4 Outer panel (panel member)
5 Reinforcement frame 10 Sound insulation member 11 Sound insulation panel (panel member)
12 Hollow double wall structure 13 Hollow part 15 Sound insulation wall 21 Horizontal wall 22 Vertical wall 23 Band-shaped body 24 Strip-shaped body 25 Cylindrical body 26 Resin sheet a Number of horizontal walls 21 arranged in the direction perpendicular to the plane C Sound velocity in the air (m) / S)
Apparent speed of sound (m / s) due to time delay of sound waves passing through the C de hollow portion 13.
Speed of sound in C i hollow portion 13 (m / s)
Apparent speed of sound (m / s) due to the surface-to-plane component in the Cve hollow portion 13.
Apparent speed of sound (m / s) in the hollow portion 13 of the sound wave according to the C de-ve incident angle θ
(C de-ve ) ^ ― Average apparent speed of sound (m / s) in the hollow portion 13 of the randomly incident sound wave
Time required for sound waves to pass through the T hollow portion 13 (s)
Transmission loss (dB) of TL random incident sound waves at the sound insulation wall 15.
TL (θ) Transmission loss (dB) of the sound insulation wall 15 with respect to the incident angle θ
t Time delay per film material (wall) (s)
n Number of membrane materials (walls) transmitted x 1st interval (interval between a pair of side walls 21)
x'Distance through which sound waves pass through the hollow portion 13 (m)
y Second interval (interval between vertical walls 22)
θ Sound wave incident angle (rad)
θH Maximum value of incident angle θ of random incident sound wave θL Minimum value of incident angle θ of random incident sound wave θp Angle interval of incident angle θ for integration τ (θ) Transmittance of sound wave incident at incident angle θ τ ^ ― Average transmittance of randomly incident sound waves

Claims (10)

中空二重壁構造体の中空部に配置されるシート状の遮音部材を、所定の遮音性能を有するように設計するための設計方法であって、
前記遮音部材は、面内方向に延在し、面直方向に第1間隔をもって対向配置される1対の横壁と、1対の前記横壁の間に、前記面内方向に第2間隔をもって配置される縦壁とを備え、
前記中空二重壁構造体に入射する音波の前記中空部での見かけ音速を、前記音波の入射角、前記第1間隔及び前記第2間隔を変数とする関数として算出し、前記遮音部材の前記遮音性能を示す、前記音波の前記中空部での前記見かけ音速が所定の目標値となるように、前記第1間隔及び前記第2間隔を設定することを特徴とする前記遮音部材の設計方法。
It is a design method for designing a sheet-shaped sound insulation member arranged in a hollow portion of a hollow double wall structure so as to have a predetermined sound insulation performance.
The sound insulation member extends in the in-plane direction and is arranged between a pair of lateral walls and a pair of the lateral walls facing each other with a first interval in the direction perpendicular to the in-plane direction with a second interval in the in-plane direction. With vertical walls to be
The apparent sound velocity of the sound wave incident on the hollow double wall structure in the hollow portion is calculated as a function with the incident angle of the sound wave, the first interval and the second interval as variables, and the sound insulation member is said to have the same speed of sound. A method for designing a sound insulation member, which comprises setting the first interval and the second interval so that the apparent sound velocity of the sound wave in the hollow portion, which exhibits sound insulation performance, becomes a predetermined target value.
前記音波の前記中空部での前記見かけ音速を、式(A)により表される関数として算出することを特徴とする請求項1に記載の設計方法。
Figure 2021117287
ただし、Cde−ve:前記入射角に応じた前記音波の前記中空部での前記見かけ音速(m/s)、x':前記中空部を前記音波が通過する距離(m)、θ:前記音波の前記入射角(rad)、C:前記中空部での音速(m/s)、t:壁一枚当たりの時間遅れ(s)、x:1対の前記横壁間の前記第1間隔(m)、y:前記面内方向に配置される前記縦壁同士の前記第2間隔(m)、a:前記面直方向に配置される前記横壁の枚数である。
The design method according to claim 1, wherein the apparent speed of sound in the hollow portion of the sound wave is calculated as a function represented by the formula (A).
Figure 2021117287
However, C de-ve : the apparent speed of sound (m / s) of the sound wave in the hollow portion according to the incident angle, x': the distance (m) through which the sound wave passes through the hollow portion, θ: the said. the incident angle of the sound wave (rad), C i: speed of sound in the hollow portion (m / s), t: time delay per single wall (s), x: 1 to said first distance between the lateral wall of (M), y: The second distance (m) between the vertical walls arranged in the in-plane direction, a: the number of the horizontal walls arranged in the plane perpendicular direction.
前記入射角について所定の角度間隔ごとに0°から最大値までの前記入射角に応じた前記見かけ音速を平均することで、前記中空二重壁構造体にランダムに入射するランダム入射音波の前記中空部での平均見かけ音速を算出し、前記平均見かけ音速を前記音波の前記中空部での前記見かけ音速とすることを特徴とする請求項2に記載の設計方法。 By averaging the apparent speed of sound according to the incident angle from 0 ° to the maximum value at predetermined angle intervals with respect to the incident angle, the hollow of the randomly incident sound wave randomly incident on the hollow double wall structure. The design method according to claim 2, wherein the average apparent sound velocity in the unit is calculated, and the average apparent sound velocity is set as the apparent sound velocity in the hollow portion of the sound wave. 前記入射角の前記最大値が78°であり、前記入射角の前記角度間隔が1°であることを特徴とする請求項3に記載の設計方法。 The design method according to claim 3, wherein the maximum value of the incident angle is 78 °, and the angle interval between the incident angles is 1 °. 前記見かけ音速の前記目標値が300m/s以下であることを特徴とする請求項1〜請求項4のいずれかに記載の設計方法。 The design method according to any one of claims 1 to 4, wherein the target value of the apparent sound velocity is 300 m / s or less. 請求項1〜請求項5のいずれかに記載の設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁の製造方法であって、
前記縦壁を、面直方向視にて開かれた所定の形状をなす少なくとも1つの帯状体から構成し、前記帯状体の前記形状が、渦巻き形状、W字形状及びランダム形状を含むことを特徴とする製造方法。
The first interval and the second interval are set by using the design method according to any one of claims 1 to 5, and a pair of the lateral walls are arranged to face each other with the first interval, and the second interval is used. It is a manufacturing method of a sound insulation wall manufactured by arranging the vertical wall.
The vertical wall is composed of at least one strip-shaped body having a predetermined shape opened in a plane-direct view, and the shape of the strip-shaped body includes a spiral shape, a W-shape, and a random shape. Manufacturing method.
請求項1〜請求項5のいずれかに記載の設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁の製造方法であって、
前記縦壁を、多数の短冊状体から構成することを特徴とする製造方法。
The first interval and the second interval are set by using the design method according to any one of claims 1 to 5, and a pair of the lateral walls are arranged to face each other with the first interval, and the second interval is used. It is a manufacturing method of a sound insulation wall manufactured by arranging the vertical wall.
A manufacturing method characterized in that the vertical wall is composed of a large number of strips.
請求項1〜請求項5のいずれかに記載の設計方法を用いて前記第1間隔及び前記第2間隔を設定し、前記第1間隔をもって1対の前記横壁を対向配置し、前記第2間隔をもって前記縦壁を配置して製造される遮音壁の製造方法であって、
1対の前記横壁及び前記縦壁を膜材から構成し、前記縦壁を、面直方向視にて閉じたループをなす多数の筒状体から構成し、1対の前記横壁及び前記縦壁が互いに協働して閉空間を画定する薄膜閉空間構造をなすことを特徴とする製造方法。
The first interval and the second interval are set by using the design method according to any one of claims 1 to 5, and a pair of the lateral walls are arranged to face each other with the first interval, and the second interval is used. It is a manufacturing method of a sound insulation wall manufactured by arranging the vertical wall.
The horizontal wall and the vertical wall are composed of a film material, and the vertical wall is composed of a large number of tubular bodies forming a closed loop when viewed in the direction perpendicular to the plane. The horizontal wall and the vertical wall are paired. A manufacturing method characterized in that they cooperate with each other to form a thin film closed space structure that defines a closed space.
前記遮音部材の前記面直方向の一方に第1パネル部材を配置し、
前記遮音部材の前記面直方向の他方に第2パネル部材を配置し、
前記第1パネル部材及び前記第2パネル部材に前記遮音部材を挟持させることを特徴とする請求項6〜請求項8のいずれかに記載の製造方法。
The first panel member is arranged on one side of the sound insulation member in the direction perpendicular to the surface.
A second panel member is arranged on the other side of the sound insulation member in the direction perpendicular to the surface.
The manufacturing method according to any one of claims 6 to 8, wherein the sound insulating member is sandwiched between the first panel member and the second panel member.
2枚の樹脂シートを圧縮加熱により互いに溶着することにより、1対の前記横壁の一方を前記筒状体ごとに互いに分離した構成とすることを特徴とする請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein one of the pair of the lateral walls is separated from each other for each of the tubular bodies by welding the two resin sheets to each other by compression heating.
JP2020009084A 2020-01-23 2020-01-23 Design method of sound insulation member and manufacturing method of sound insulation wall using design method Pending JP2021117287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020009084A JP2021117287A (en) 2020-01-23 2020-01-23 Design method of sound insulation member and manufacturing method of sound insulation wall using design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020009084A JP2021117287A (en) 2020-01-23 2020-01-23 Design method of sound insulation member and manufacturing method of sound insulation wall using design method

Publications (1)

Publication Number Publication Date
JP2021117287A true JP2021117287A (en) 2021-08-10

Family

ID=77175489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020009084A Pending JP2021117287A (en) 2020-01-23 2020-01-23 Design method of sound insulation member and manufacturing method of sound insulation wall using design method

Country Status (1)

Country Link
JP (1) JP2021117287A (en)

Similar Documents

Publication Publication Date Title
JP2007069816A (en) Double-wall structure
US8360201B2 (en) Sound absorbing structure and sound chamber
KR100787297B1 (en) Sound absorbing structure and method of producing the same
JP3553614B2 (en) Sound absorption and / or attenuation device
US5633067A (en) Engine compartment casing element with perforated foam layer
JP4754836B2 (en) Double wall structure
US20050189165A1 (en) Method and apparatus for reducing acoustic noise
US10510331B2 (en) Sound absorbing structure for anechoic chamber and anechoic chamber including the same
WO2005043509A1 (en) Sound absorbing structure
WO2006027936A1 (en) Double wall structure
WO2008007447A1 (en) Translucent perforated laminate acoustical board and translucent acoustical panel
CN216388742U (en) Acoustic insulation panel and assembly comprising an acoustic insulation panel
JP2005099789A (en) Sound absorbing structure and method of producing the same
US8434591B2 (en) Acoustic barrier
JP2021117287A (en) Design method of sound insulation member and manufacturing method of sound insulation wall using design method
JP6614584B2 (en) Sound insulation structure
JP5286949B2 (en) Sound absorption structure
JP2018202931A (en) Sound insulation structure
JP5219976B2 (en) Noise reduction structure
JP2015132743A (en) Upside-improved translucent-type film vibration sound absorption/insulation wall
JP7197862B2 (en) How to adjust the sound absorbing structure
JP5066680B2 (en) Sound absorbing structure
JP4303183B2 (en) Double wall structure
JP4680963B2 (en) Double wall structure with frame
JP6929532B2 (en) Soundproof panel