JP2021110371A - フライホイールの設計方法 - Google Patents

フライホイールの設計方法 Download PDF

Info

Publication number
JP2021110371A
JP2021110371A JP2020001975A JP2020001975A JP2021110371A JP 2021110371 A JP2021110371 A JP 2021110371A JP 2020001975 A JP2020001975 A JP 2020001975A JP 2020001975 A JP2020001975 A JP 2020001975A JP 2021110371 A JP2021110371 A JP 2021110371A
Authority
JP
Japan
Prior art keywords
flywheel
vibration
resonance
engine
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020001975A
Other languages
English (en)
Inventor
健 巽
Jian Xun
健 巽
和人 酒井
Kazuto Sakai
和人 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020001975A priority Critical patent/JP2021110371A/ja
Publication of JP2021110371A publication Critical patent/JP2021110371A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

【課題】フライホイールおよびエンジンの共振の増幅を回避し、かつ、エンジン・マウント部の振動を低減できるフライホイールの設計方法を提供する。【解決手段】共振周波数が異なる三つの供試フライホイールを用意し、フライホイールの共振、および、エンジンの共振の影響によって前記エンジンのマウント部に生じる第1周波数帯域の振動の振動レベルを前記供試フライホイールごとに求めた結果に基づいて前記第1周波数帯域における第1評価関数を算出し、前記フライホイールの共振、および、前記エンジンの共振の影響によって前記マウント部に生じる第2周波数帯域の振動の振動レベルを前記供試フライホイールごとに求めた結果に基づいて前記第2周波数帯域における第2評価関数を算出し、前記フライホイールの共振周波数を、前記第1評価関数の極小値と前記第2評価関数の極小値との間の値となるように設計する。【選択図】図4

Description

この発明は、内燃機関(エンジン)のクランクシャフトに組み付けられて内燃機関の回転を安定させるフライホイールの設計方法に関し、特に、フライホイールの面振動の共振周波数を設定するフライホイールの設計方法に関するものである。
特許文献1には、内燃機関に用いられるフライホイールであって、ねじり振動や曲げ振動に伴う騒音の軽減を目的としたフレキシブルフライホイールに関する発明が記載されている。この特許文献1に記載れたフレキシブルフライホイールは、円板状の弾性板、および、環状の質量体を備えている。弾性板は、内燃機関の出力軸に連結される。質量体は、弾性板の外周側に固定されている。フレキシブルフライホイールは、上記のような質量体に加えて、弾性変形可能な弾性体を設けることにより、質量体の曲げ振動に起因する騒音や振動を低減する。
なお、特許文献2には、内燃機関のロール振動を低減することを目的とした内燃機関の振動低減装置が記載されている。この特許文献2に記載された振動低減装置は、内燃機関のクランクシャフトに連結して一体に回転する主フライホイール系、クランクシャフトとほぼ平行な軸によって内燃機関本体に支持される副フライホイール、および、主フライホイール系によって副フライホイールを増速逆回転させる駆動手段を備えている。そして、この振動低減装置では、副フライホイールの支持軸周りのねじり剛性を“ばね”とし、副フライホイールの慣性モーメントを“マス”とする振動系のねじり振動の共振によって悪化するロール振動レベルが、エンジンの上下振動レベルを下回るように、振動系のねじり振動の共振周波数が設定されている。
また、特許文献3には、製作が容易であり、かつ、良好な振動防止効果を得るためのチューニングが容易なフライホイールを得ることを目的としたフレキシブルフライホイールが記載されている。この特許文献3に記載されたフレキシブルフライホイールは、弾性変形可能なフレキシブルプレート、環状のフライホイールマス、および、弾性変形可能な制振用プレートを備えている。制振プレートには、制振プレートの中心に対して点対称に複数の同形状の貫通孔が形成されている。そして、それら複数の貫通孔の数が、奇数であって、フレキシブルフライホイールを取り付ける内燃機関の気筒数の倍数を除いた数に設定されている。
特開2017−67238号公報 特開2002−122185号公報 特開平11−82632号公報
例えば、ガソリンエンジンやディーゼルエンジンに代表されるエンジンには、通常、フライホイールが組み付けられる。フライホイールは、エンジンのクランクシャフトの一端に組み付けられ、質量体の慣性モーメントを利用してエンジンのトルク変動を抑制もしくは緩和し、クランクシャフトの回転を安定させる。一方、フライホイールが組み付けられる(複数気筒の)エンジンでは、エンジンの各気筒における爆発荷重がフライホイールの面振動(フライホイールのディスク部がフライホイールの回転軸線方向に変位する振動)を誘発することにより、クランクシャフトのクランクジャーナルからエンジンに荷重が伝達し、エンジンのマウント部が振動する。一般に、フライホイールの面振動の共振と、エンジンの曲げ振動(エンジンのクランクケースがクランクシャフトの回転軸線方向と直交する方向に変位する振動)の共振とは、それぞれの共振周波数帯域が重なる。そのため、フライホイールの面振動の共振とエンジンの曲げ振動の共振とが互いに干渉して、共振が増幅してしまう場合がある。その結果、エンジンのマウント部では、例えば、概ね200Hzから300Hzの振動が増大してしまう。
そのような200Hzから300Hzの周波数帯域の振動を低減するための対策の一つとして、上記の特許文献1に記載されているようなフレキシブルフライホイールが用いられる。フレキシブルフライホイールは、エンジンのクランクシャフトの端部とフライホイールとの間に弾性体(フレキシブルプレート)を設けて、フライホイールの面振動に対する剛性を低下させている。それにより、フライホイールの面振動の共振点が変化する。その結果、上記のようなフライホイールの面振動とエンジンの曲げ振動とが干渉してしまうことによる共振の増幅を回避し、上記のような200Hzから300Hzの周波数帯域の振動を低減できる。
しかしながら、フレキシブルフライホイールは、その面振動に対する剛性を低下させていることから、フレキシブルフライホイールが組み付けられるクランクシャフトのジャーナル荷重が増加してしまう。その結果、エンジンのマウント部では、例えば、概ね600Hzから700Hzの振動が増大してしまう。
具体例として、図1に、四つのクランクピン101,102,103,104、および、五つのクランクジャーナル105,106,107,108,109を有する四気筒エンジン用のクランクシャフト100に、フレキシブルフライホイール110を組み付けた従来技術によるフライホイール組立体を示してある。この図1に示す例では、フレキシブルフライホイール110の剛性を低下させていることより、フレキシブルフライホイール110の面振動が大きくなり、それに起因して、クランクシャフト100の曲げ振動の共振が発生している。そして、この場合は、図2に示すように、フレキシブルフライホイール110に最も近いクランクジャーナル109に掛かる荷重(ジャーナル荷重)が、通常の(剛性を低下させていない)フライホイールの構成と比較して、600Hzから700Hzの周波数帯域で増大する。そのようなジャーナル荷重がエンジンのマウント部に伝達されることにより、エンジンのマウント部では、600Hzから700Hzの振動が増大してしまう。
このように、例えば、200Hzから300Hzの周波数帯域で、フライホイールの面振動とエンジンの曲げ振動とが干渉してしまうことによる共振の増幅を抑制しつつ、例えば、600Hzから700Hzの周波数帯域で、クランクシャフトのジャーナル荷重が増加してしまうことに起因する振動の増大を抑制することが可能なフライホイールを設計するには、未だ、改良の余地があった。
この発明は上記の技術的課題に着目して考え出されたものであり、フライホイールの面振動とエンジンの曲げ振動との干渉による共振の増幅を回避もしくは抑制し、なおかつ、クランクシャフトのジャーナル荷重の増加に起因する振動の増大を抑制できるフライホイールの設計方法を提供することを目的とするものである。
上記の目的を達成するために、この発明は、内燃機関のクランクシャフトに組み付けられて前記クランクシャフトの回転を安定させるフライホイールの設計方法において、供試体として、前記フライホイールのディスク部が前記フライホイールの回転軸線方向に変位して振動する面振動の共振周波数をそれぞれ異ならせた少なくとも三つの供試フライホイールを用意し(第1ステップ)、前記フライホイールの前記面振動の共振、および、前記内燃機関のクランクケースが前記回転軸線方向(すなわち、前記クランクシャフトの回転軸線方向)と直交する方向に変位して振動する曲げ振動の共振の影響によって前記内燃機関のマウント部に生じる所定の第1周波数帯域の振動の振動レベルを、それぞれの前記供試フライホイールごとに求めた結果に基づいて前記第1周波数帯域における前記フライホイールの第1評価関数を算出し(第2ステップ)、前記フライホイールの前記面振動の共振、および、前記内燃機関の前記曲げ振動の共振の影響によって前記マウント部に生じる、前記第1周波数帯域よりも高い方向に異なる所定の第2周波数帯域の振動の振動レベルを、それぞれの前記供試フライホイールごとに求めた結果に基づいて前記第2周波数帯域における前記フライホイールの第2評価関数を算出し(第3ステップ)、前記第1評価関数の極小値、および、前記第2評価関数の極小値をそれぞれ算出するとともに、前記フライホイールの前記面振動の共振周波数が、前記第1評価関数の極小値に対応する周波数と前記第2評価関数の極小値に対応する周波数との間の値となるように、前記フライホイールの諸元を決定する(第4ステップ)ことを特徴とするものである。
この発明のフライホイールの設計方法では、先ず、面振動の共振周波数がそれぞれ異なる少なくとも三つの供試フライホイールが用意される(第1ステップ)。例えば、実際に、少なくとも三つの供試フライホイールが試作される。あるいは、コンピュータシミュレーションによって模擬的に、少なくとも三つの供試フライホイールが設定される。次いで、それら用意された各供試フライホイールに対して、それぞれの供試フライホイールをクランクシャフトに組み付けた場合に内燃機関のマウント部に生じる振動の振動レベルが求められる。供試フライホイールごとに求められた振動レベルの値を基に、第1評価関数および第2評価関数がそれぞれ算出される(第2,第3ステップ)。第1評価関数は、例えば、フライホイールの面振動の共振と内燃機関の曲げ振動の共振との干渉によって増幅される内燃機関の曲げ振動の共振周波数帯域に相当する第1周波数帯域における振動レベルを、内燃機関の曲げ振動の周波数に関連付けた関数で表したものである。第2評価関数は、例えば、フライホイールの剛性を低下させた場合にクランクシャフトのジャーナル荷重が増加することに起因して増大する内燃機関の曲げ振動の共振周波数帯域に相当する第2周波数帯域における振動レベルを、内燃機関の曲げ振動の周波数に関連付けた関数で表したものである。上記のように、三つまたは三つ以上の供試フライホイールが用意されることにより、少なくとも三つ以上のデータを得ることができるので、それらを基に算出される関数は、いずれも、変化の傾向を推定できる。また、上記のような第1周波数帯域および第2周波数帯域における内燃機関の曲げ振動の振動レベルは、いずれも、内燃機関の曲げ振動の共振周波数に対して極小値を有することが分かっている。そのため、第1評価関数および第2評価関数は、いずれも、極小値を有する曲線で表される関数として推定できる。例えば、第1評価関数および第2評価関数は、いずれも、極小値を有する二次関数に近似して表すことができる。そして、この発明のフライホイールの設計方法では、上記のような第1評価関数の極小値に対応する周波数と第2評価関数の極小値に対応する周波数との間に、フライホイールの面振動の共振周波数が収まるように、フライホイールの諸元が設計される(第4ステップ)。例えば、フライホイールの剛性、寸法、および、重量等が決定される。したがって、この発明のフライホイールの設計方法によれば、フライホイールの面振動とエンジンの曲げ振動との干渉による共振の増幅を回避もしくは抑制すると共に、フライホイールの剛性を低下させた場合にクランクシャフトのジャーナル荷重が増加することに起因する振動の増大を抑制できるフライホイールを容易に設計することができる。
〔従来技術〕従来のフライホイールをクランクシャフトに組み付けたフライホイール組立体を示す図であって、フライホイールの剛性を低下させた場合に生じるフライホイールの面振動、および、クランクシャフトの曲げ振動の共振を説明するための図である。 〔従来技術〕図1に示すフライホイールの面振動、および、クランクシャフトの曲げ振動の共振に起因して、600Hzから700Hzの周波数帯域で、クランクシャフトのジャーナル荷重が増加する事象を説明するための図である。 この発明のフライホイールの設計方法で対象にするフライホイールを、内燃機関(エンジン)のクランクシャフトに組み付けたフライホイール組立体の一例を示す図である。 この発明のフライホイールの設計方法によって実行される設計内容の一例を時系列で説明するためのフローチャートである。 この発明のフライホイールの設計方法における「供試フライホイール」を説明するための図であって、(a)は、共振周波数が最も高い供試フライホイール、(b)は、中間の共振周波数を有する供試フライホイール、(c)は、共振周波数が最も低い供試フライホイールを示す図である。 この発明のフライホイールの設計方法における「評価関数」を説明するための図であって、第1周波数帯域(200Hz−300Hz)における「第1評価関数」、および、「第1評価関数の極小値」を示す図である。 この発明のフライホイールの設計方法における「評価関数」を説明するための図であって、第2周波数帯域(600Hz−700Hz)における「第2評価関数」、および、「第2評価関数の極小値」を示す図である。 この発明のフライホイールの設計方法によるフライホイールの設計内容を説明するための図であって、「第1評価関数の極小値」および「第2評価関数の極小値」に基づいてフライホイールの面振動の共振周波数を設計する例を示す図である。
この発明の実施形態を、図を参照して説明する。なお、以下に示す実施形態は、この発明を具体化した場合の一例に過ぎず、この発明を限定するものではない。
この発明の実施形態で対象にするフライホイールは、内燃機関のクランクシャフトに組み付けられて、内燃機関の回転を安定させる。内燃機関は、燃料の燃焼が機関の内部で行われる熱機関であり、特に、この発明の実施形態で対象にする内燃機関は、ピストンの往復運動をクランク機構を用いて回転運動に変換する原動機である。例えば、ガソリンエンジンやディーゼルエンジンで代表されるエンジンであり、クランク機構を構成するクランクシャフトを有している。フライホイールは、内燃機関(以下、エンジン)のクランクシャフトの端部に組み付けられ、クランクシャフトの回転を安定させる。すなわち、エンジンの回転を安定させる。特に、エンジンのアイドリング回転数を安定させる。
例えば、図3に示すように、この発明の実施形態で対象にするフライホイール1は、四気筒エンジン(図示せず)に用いられるクランクシャフト2に組み付けられて、クランクシャフト2と共に、フライホイール組立体3を構成する。フライホイール組立体3は、ダンパプーリ4(あるいは、クランクシャフトプーリ)等を介して、エンジンのクランクケース(図示せず)に支持される。
フライホイール1は、ディスク部5、および、ボス部6を有している。フライホイール1は、ボス部6で、後述するクランクシャフト2の一端(図3の右側の端部)のクランクフランジ16に組み付けられる。また、後述するように、フライホイール1は、その設計の段階で、特に面振動に対する剛性をそれぞれ異ならせた三種類以上の供試フライホイール21,22,23が用意される。
クランクシャフト2は、図3に示す例では、四気筒のエンジンに用いられるものであり、四つのクランクピン7,8,9,10、および、五つのクランクジャーナル11,12,13,14,15を有している。五つのクランクジャーナル11,12,13,14,15のうち、最もフライホイール1側(図3の右側)に位置するクランクジャーナル15には、クランクフランジ16が一体に形成されている。そのクランクフランジ16に、フライホイール1が組み付けられることにより、フライホイール1とクランクシャフト2が一体となったフライホイール組立体3が構成される。
前述したように、フライホイール1が組み付けられるエンジンでは、フライホイール1の面振動(フライホイール1のディスク部5がフライホイール1の回転軸線方向ALに変位する振動)と、エンジンの曲げ振動(エンジンのクランクケースがクランクシャフト2の回転軸線方向ALと直交する方向に変位する振動)とが同じ共振周波数帯域で干渉することにより、その特定の共振周波数帯域の振動が増大する。例えば、図3に示すフライホイール組立体3が用いられる四気筒のエンジンでは、概ね200Hzから300Hzの振動が増大する。それに対して、例えば、前述した特許文献1に記載されているようなフレキシブルフライホイールを用いてフライホイール1の剛性を低下させ、フライホイール1の共振点をずらすことにより、上記のような200Hzから300Hzの振動を低減できる。その反面、フライホイール1の剛性を低下させると、フライホイール1の面振動が大きくなり、それに起因して、クランクシャフト2の曲げ振動の共振が発生してしまう。その結果、概ね600Hzから700Hzの振動が増大してしまう。
そこで、この発明の実施形態におけるフライホイールの設計方法では、例えば、200Hzから300Hzの周波数帯域で、フライホイールの面振動とエンジンの曲げ振動とが干渉してしまうことによる共振の増幅を抑制しつつ、例えば、600Hzから700Hzの周波数帯域で、クランクシャフトのジャーナル荷重が増加してしまうことに起因する振動の増大を抑制することができるように、以下に示すステップでフライホイール1の設計を実行する。
この発明の実施形態におけるフライホイールの設計方法は、例えば、図4のフローチャートで示すように、大別して四つのステップで、フライホイール1を設計する。なお、この発明の実施形態におけるフライホイールの設計方法におけるフライホイール1の設計工程(ステップ)は、図4のフローチャートに示す設計内容と時系列的に一致していればよく、五つ以上のステップに設計内容が細分化されていてもよい。あるいは、三つ以下のステップに設計内容がまとめられていてもよい。
第1ステップS1では、フライホイール1の供試体として、フライホイール1の面振動の共振周波数をそれぞれ異ならせた少なくとも三つの供試フライホイールを用意する。例えば、実際に、少なくとも三つの供試フライホイールを試作する。あるいは、コンピュータシミュレーションによって模擬的に、少なくとも三つの供試フライホイールを設定する。図5に示す例では、供試フライホイール21、供試フライホイール22、および、供試フライホイール23の、面振動に対する共振周波数がそれぞれ異なる三種類が用意されている。
供試フライホイール21,22,23は、それぞれ、面振動に対する剛性が異なっている。具体的には、供試フライホイール21,22,23のそれぞれのディスク部24,25,26の剛性が、互いに異なっている。供試フライホイール21は、三種類の供試フライホイール21,22,23の中で、最も剛性が高い。したがって、供試フライホイール21は、三種類の供試フライホイール21,22,23の中で、面振動に対する共振周波数が最も高くなる。供試フライホイール22は、三種類の供試フライホイール21,22,23の中で、最も剛性が低い。したがって、供試フライホイール22は、三種類の供試フライホイール21,22,23の中で、面振動に対する共振周波数が最も低くなる。供試フライホイール23は、供試フライホイール21の剛性と供試フライホイール22の剛性との中間の剛性を有している。したがって、供試フライホイール23は、面振動に対する共振周波数が、供試フライホイール21の面振動に対する共振周波数と供試フライホイール22の面振動に対する共振周波数との中間の値になる。
第2ステップS2では、フライホイール1の面振動の共振、および、エンジンのクランクケースが回転軸線方向ALと直交する方向に変位して振動する曲げ振動の共振の影響によってエンジンのマウント部に生じる第1周波数帯域の振動の振動レベルを、それぞれの供試フライホイール21,22,23ごとに求める。それとともに、それら供試フライホイール21,22,23ごとに求めた結果に基づいて、第1周波数帯域におけるフライホイール1の第1評価関数を算出する。
第1周波数帯域は、例えば、フライホイール1の面振動の共振とエンジンの曲げ振動の共振との干渉によって増幅されるエンジンの曲げ振動の共振周波数帯域に相当する周波数帯域である。第1評価関数は、第1周波数帯域における振動レベルを、エンジンの曲げ振動の周波数に関連付けた関数で表したものである。
上記のように、少なくとも三つの供試フライホイール21,22,23が用意されることにより、少なくとも三つのデータを得ることができる。図6に示す例では、評価値A1、評価値B1、および、評価値C1の三つのデータが得られている。そのため、それら三つのデータを基に算出される関数は、変化の傾向を推定できる。また、上記のような第1周波数帯域におけるエンジンの曲げ振動の振動レベルは、エンジンの曲げ振動の共振周波数に対して極小値を有することが分かっている。そのため、第1評価関数は、極小値を有する曲線で表される関数として推定できる。例えば、図6に示すように、第1評価関数は、極小値を有する二次関数に近似して表すことができる。
第3ステップS2では、フライホイール1の面振動の共振、および、エンジンの曲げ振動の共振の影響によってエンジンのマウント部に生じる第2周波数帯域の振動の振動レベルを、それぞれの供試フライホイール21,22,23ごとに求める。それとともに、それら供試フライホイール21,22,23ごとに求めた結果に基づいて、第2周波数帯域におけるフライホイール1の第2評価関数を算出する。
第2周波数帯域は、例えば、フライホイール1の剛性を低下させた場合にクランクシャフト2のジャーナル荷重が増加することに起因して増大するエンジンの曲げ振動の周波数帯域に相当する周波数帯域である。第2評価関数は、第2周波数帯域における振動レベルを、エンジンの曲げ振動の周波数に関連付けた関数で表したものである。
上記のように、少なくとも三つの供試フライホイール21,22,23が用意されることにより、少なくとも三つのデータを得ることができる。図7に示す例では、評価値A2、評価値B2、および、評価値C2の三つのデータが得られている。そのため、それら三つのデータを基に算出される関数は、変化の傾向を推定できる。また、上記のような第2周波数帯域におけるエンジンの曲げ振動の振動レベルは、エンジンの曲げ振動の共振周波数に対して極小値を有することが分かっている。そのため、第2評価関数は、極小値を有する曲線で表される関数として推定できる。例えば、図7に示すように、第2評価関数は、極小値を有する二次関数に近似して表すことができる。
第4ステップS4では、第1評価関数の極小値、および、第2評価関数の極小値をそれぞれ算出するとともに、第1評価関数の極小値に対応する周波数と第2評価関数の極小値に対応する周波数との間に、フライホイール1の面振動の共振周波数が収まるように、フライホイール1の諸元を決定する。例えば、フライホイール1の剛性、寸法、および、重量等を決定する。
具体的には、図8に示すように、エンジンの曲げ振動の共振周波数RFから第1評価関数の極小値に対応する周波数を引いた周波数F1と、共振周波数RFから、第2評価関数の極小値に対応する周波数を引いた周波数F2との間の周波数帯域に、フライホイール1の面振動の共振周波数が収まるように、フライホイール1が設計される。
このようにして設計されるフライホイール1は、エンジンの曲げ振動の共振周波数RFを基準に、第1周波数帯域(上記の例では、200Hzから300Hzの周波数帯域)のエンジン・マウント部の振動で極小となる周波数F1から、第2周波数帯域(上記の例では、600Hzから700Hzの周波数帯域)のエンジン・マウント部の振動で極小となる周波数F2の間に面振動の共振周波数が設定される。これにより、第2周波数帯域におけるエンジン・マウント部の振動を悪化させることなく、フライホイール1の面振動とエンジンの曲げ振動との共振の増幅を回避もしくは抑制して、第1周波数帯域におけるエンジン・マウント部の振動を低減できる。
したがって、この発明の実施形態におけるフライホイールの設計方法によれば、フライホイール1の面振動とエンジンの曲げ振動との干渉による共振の増幅を回避もしくは抑制すると共に、剛性を低下させた場合にクランクシャフト2のジャーナル荷重が増加することに起因する振動の増大を抑制できるフライホイール1を容易に設計することができる。
1 フライホイール
2 クランクシャフト
3 フライホイール組立体
4 ダンパプーリ(クランクシャフトプーリ)
5 (フライホイールの)ディスク部
6 (フライホイールの)ボス部
7,8,9,10 (クランクシャフトの)クランクピン
11,12,13,14,15 (クランクシャフトの)クランクジャーナル
16 (クランクシャフトの)クランクフランジ
21,22,23 供試フライホイール
24,25,26 (試作フライホイールの)ディスク部
100 〔従来技術〕クランクシャフト
101,102,103,104 〔従来技術〕(クランクシャフトの)クランクピン
105,106,107,108,109 〔従来技術〕(クランクシャフトの)クランクジャーナル
110 〔従来技術〕フレキシブルフライホイール
AL (フライホイールおよびクランクシャフトの)回転軸線方向

Claims (1)

  1. 内燃機関のクランクシャフトに組み付けられて前記クランクシャフトの回転を安定させるフライホイールの設計方法において、
    供試体として、前記フライホイールのディスク部が前記フライホイールの回転軸線方向に変位して振動する面振動の共振周波数をそれぞれ異ならせた少なくとも三つの供試フライホイールを用意し、
    前記フライホイールの前記面振動の共振、および、前記内燃機関のクランクケースが前記回転軸線方向と直交する方向に変位して振動する曲げ振動の共振の影響によって前記内燃機関のマウント部に生じる所定の第1周波数帯域の振動の振動レベルを、それぞれの前記供試フライホイールごとに求めた結果に基づいて前記第1周波数帯域における前記フライホイールの第1評価関数を算出し、
    前記フライホイールの前記面振動の共振、および、前記内燃機関の前記曲げ振動の共振の影響によって前記マウント部に生じる、前記第1周波数帯域よりも高い方向に異なる所定の第2周波数帯域の振動の振動レベルを、それぞれの前記供試フライホイールごとに求めた結果に基づいて前記第2周波数帯域における前記フライホイールの第2評価関数を算出し、
    前記第1評価関数の極小値、および、前記第2評価関数の極小値をそれぞれ算出するとともに、前記フライホイールの前記面振動の共振周波数が、前記第1評価関数の極小値に対応する周波数と前記第2評価関数の極小値に対応する周波数との間の値となるように、前記フライホイールの諸元を決定する
    ことを特徴とするフライホイールの設計方法。
JP2020001975A 2020-01-09 2020-01-09 フライホイールの設計方法 Pending JP2021110371A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020001975A JP2021110371A (ja) 2020-01-09 2020-01-09 フライホイールの設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020001975A JP2021110371A (ja) 2020-01-09 2020-01-09 フライホイールの設計方法

Publications (1)

Publication Number Publication Date
JP2021110371A true JP2021110371A (ja) 2021-08-02

Family

ID=77059539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001975A Pending JP2021110371A (ja) 2020-01-09 2020-01-09 フライホイールの設計方法

Country Status (1)

Country Link
JP (1) JP2021110371A (ja)

Similar Documents

Publication Publication Date Title
US6688272B2 (en) Crankshaft assembly for enabling engine cylinder deactivation
US8839924B2 (en) Fluid transmission apparatus
US8621957B2 (en) Hybrid drive train with torsional vibration damper
US20060032717A1 (en) Torsional vibration damper
WO2005088162A1 (en) Torsional vibration damper of a rotating shaft
CN104565195B (zh) 扭振减振器以及用于机动车动力总成系统的扭振缓冲器
JP5231788B2 (ja) 自動車のエンジンにおけるカウンターウエイトの配置構造
JP2009115184A (ja) デュアルマスフライホイール
KR101770063B1 (ko) 밀봉형 펜듈럼을 갖춘 듀얼 매스 플라이휠
JP2003014048A (ja) フライホイール及びその取付方法
JP7060760B2 (ja) フレキシブルフライホイール
JP2021110371A (ja) フライホイールの設計方法
US6044727A (en) Flywheel assembly
JPS60192145A (ja) 往復動内燃機関のバランサ装置
CN115182963A (zh) 由辐条弹簧缓冲器构成的减振器
JP6650765B2 (ja) エンジン
JP2019015316A (ja) 内燃機関の振動低減装置
CN110195740B (zh) V型6汽缸发动机的曲轴
Kulkarni et al. NVH refinement of small gasoline engine through digital and experimental approach
JP4016801B2 (ja) トーショナルダンパ
JP4088409B2 (ja) 動力伝達系のギア機構
JP2018028345A (ja) 遠心振子動吸振装置
JP4742459B2 (ja) フライホイール
CN109707844B (zh) 发动机的往复旋转机构及其制造方法
JP4639539B2 (ja) フライホイール