JP2021105135A - Thermally conductive composition - Google Patents

Thermally conductive composition Download PDF

Info

Publication number
JP2021105135A
JP2021105135A JP2019237497A JP2019237497A JP2021105135A JP 2021105135 A JP2021105135 A JP 2021105135A JP 2019237497 A JP2019237497 A JP 2019237497A JP 2019237497 A JP2019237497 A JP 2019237497A JP 2021105135 A JP2021105135 A JP 2021105135A
Authority
JP
Japan
Prior art keywords
mass
base oil
thermally conductive
conductive composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019237497A
Other languages
Japanese (ja)
Inventor
敏夫 森本
Toshio Morimoto
敏夫 森本
智 柏谷
Satoshi Kashiwatani
智 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019237497A priority Critical patent/JP2021105135A/en
Publication of JP2021105135A publication Critical patent/JP2021105135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a thermally conductive composition excellent in heat stability and heat conductivity, even when using a base oil containing hydrocarbon oil.SOLUTION: There is provided a thermally conductive composition containing a base oil composition and an inorganic powder filler. In the thermally conductive composition, the inorganic powder filler contains silver-coated copper powder, and the base oil composition contains a base oil containing hydrocarbon oil, and a deactivator. The deactivator preferably includes benzotriazol, and further preferably, the deactivator is contained at the ratio of 0.50 pt. mass or more to 100 pts. mass base oil.SELECTED DRAWING: None

Description

本発明は、熱伝導性組成物に関する。 The present invention relates to thermally conductive compositions.

電子機器に使用されている半導体部品の中には、コンピューターのCPUやインバーター、コンバーター等の電源制御用のパワー半導体のように使用中に発熱をともなう部品がある。これらの半導体部品を熱から保護し、正常に機能させるためには、発生した熱をヒートシンク等の放熱部品へ伝導させ放熱する方法がある。熱伝導性グリースは、これら半導体部品と放熱部品を密着させるように両者の間に塗布され、半導体部品の熱を放熱部品に効率よく伝導させるために用いられる。近年、これら半導体部品を用いる電子機器の性能向上や小型・高密度実装化が進んでおり、放熱対策に用いられる熱伝導性組成物にもより高い耐熱性が求められている。 Among the semiconductor parts used in electronic devices, there are parts that generate heat during use, such as power semiconductors for power control such as computer CPUs, inverters, and converters. In order to protect these semiconductor parts from heat and make them function normally, there is a method of conducting the generated heat to heat dissipation parts such as a heat sink to dissipate heat. The heat conductive grease is applied between the semiconductor component and the heat radiating component so as to be in close contact with each other, and is used to efficiently conduct the heat of the semiconductor component to the heat radiating component. In recent years, the performance of electronic devices using these semiconductor components has been improved and compact and high-density mounting has been advanced, and higher heat resistance is required for the heat conductive composition used for heat dissipation measures.

このような熱伝導性組成物としては、シリコーン油をベースとし、酸化亜鉛やアルミナ粉末などの熱伝導性フィラーを含有した熱伝導性組成物が開示されている(特許文献1、2参照)。 As such a heat conductive composition, a heat conductive composition based on silicone oil and containing a heat conductive filler such as zinc oxide or alumina powder is disclosed (see Patent Documents 1 and 2).

また、電子部品の絶縁を必要としない箇所で使用する熱伝導性組成物としては、より熱伝導性を高くするためにシリコーンオイル等の基油に金属粉末であるアルミニウム粉末や銅粉末を混合した熱伝導性組成物が開示されている(特許文献3、4参照)。このように耐熱性が求められる熱伝導性組成物には、従来からシリコーン油などの耐熱性の高い油が使用されている。 Further, as a thermally conductive composition used in a place where insulation of electronic parts is not required, aluminum powder or copper powder which is a metal powder is mixed with a base oil such as silicone oil in order to further increase the thermal conductivity. The thermally conductive composition is disclosed (see Patent Documents 3 and 4). Conventionally, an oil having high heat resistance such as silicone oil has been used for the heat conductive composition required to have heat resistance.

特開昭51−055870号公報Japanese Unexamined Patent Publication No. 51-055870 特開昭50−105573号公報Japanese Unexamined Patent Publication No. 50-105573 特開2000−063873号公報Japanese Unexamined Patent Publication No. 2000-063873 特開2006−137930号公報Japanese Unexamined Patent Publication No. 2006-137930

さて、熱伝導性組成物に含有される基油としてシリコーン油を用いた場合、シリコーン油に含まれている、又はシリコーン油が熱分解されることで発生する、遊離シロキサンによって、その接点部分で通電障害を引き起こす懸念がある。そのため、熱伝導性組成物に含有される基油として、シリコーン油以外の高耐熱性の基油が求められることがある。シリコーン油以外の耐熱性を有する基油としては、例えば炭化水素油を含有する基油が挙げられる。 When silicone oil is used as the base oil contained in the heat conductive composition, the free siloxane contained in the silicone oil or generated by thermal decomposition of the silicone oil causes the contact portion thereof. There is a concern that it may cause a power failure. Therefore, as the base oil contained in the thermally conductive composition, a highly heat-resistant base oil other than the silicone oil may be required. Examples of the base oil having heat resistance other than the silicone oil include a base oil containing a hydrocarbon oil.

ここで、熱伝導性組成物に含有される熱伝導性フィラーとしては、金属粉末である銅粉末が挙げられる。特に銅は極めて熱伝導率の高い材料であり、熱伝導性組成物中の銅粉末の含有量が比較的少量でも熱伝導性組成物に高い熱伝導率を付与することが可能である。 Here, as the heat conductive filler contained in the heat conductive composition, copper powder which is a metal powder can be mentioned. In particular, copper is a material having extremely high thermal conductivity, and even if the content of copper powder in the thermally conductive composition is relatively small, it is possible to impart high thermal conductivity to the thermally conductive composition.

しかしながら、銅粉末を炭化水素油に含有すると、高熱環境下では銅粉末による触媒作用で炭化水素油が経時的に酸化することが本発明者らによって明らかにされた。このため、銅粉末と炭化水素油とを含有する熱伝導性組成物は、高熱環境下で炭化水素油が酸化して熱伝導性組成物が硬化することがある。このように銅粉末と炭化水素油とを含有する熱伝導性組成物は熱安定性が低い。 However, the present inventors have clarified that when copper powder is contained in a hydrocarbon oil, the hydrocarbon oil is oxidized over time by the catalytic action of the copper powder in a high thermal environment. Therefore, in the thermally conductive composition containing the copper powder and the hydrocarbon oil, the hydrocarbon oil may be oxidized in a high thermal environment to cure the thermally conductive composition. As described above, the thermally conductive composition containing the copper powder and the hydrocarbon oil has low thermal stability.

また、熱伝導性フィラーとして銅粉末の代わりにアルミナやシリカを炭化水素油に含有させると、炭化水素油の経時的な酸化は抑制できるが、これらの熱伝導性フィラーは銅粉末と比較して熱伝導率は低く、熱伝導性組成物に高い熱伝導率を付与することができない。また、熱伝導性組成物として高い熱伝導率を得るように熱伝導性フィラー量を増加させると相対的に基油成分等の他の成分の含有量が減少して、例えばちょう度の制御が困難になるなど、ハンドリング性が低下する。 Further, if alumina or silica is contained in the hydrocarbon oil instead of the copper powder as the heat conductive filler, the oxidation of the hydrocarbon oil over time can be suppressed, but these heat conductive fillers are compared with the copper powder. The thermal conductivity is low, and it is not possible to impart high thermal conductivity to the thermally conductive composition. Further, when the amount of the heat conductive filler is increased so as to obtain high heat conductivity as the heat conductive composition, the content of other components such as the base oil component is relatively reduced, and for example, the consistency can be controlled. Handleability is reduced, such as becoming difficult.

本発明は、このような課題に鑑みてなされたものであり、炭化水素油を含有する基油を用いる場合であっても、熱安定性及び熱伝導率に優れ、ハンドリング性が良好な熱伝導性組成物を提供することを目的とする。 The present invention has been made in view of such a problem, and even when a base oil containing a hydrocarbon oil is used, the present invention has excellent thermal stability and thermal conductivity, and has good handleability. It is an object of the present invention to provide a sex composition.

本発明者らは、上記課題を解決すべく、鋭意検討を行った結果、熱伝導性フィラーとして銀が被覆された銅粉末を含有し、さらに特定の不活性化剤を含有することにより上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above-mentioned problems, the present inventors have made the above-mentioned problems by containing a copper powder coated with silver as a heat conductive filler and further containing a specific inactivating agent. We have found that we can solve the problem, and have completed the present invention.

(1)本発明の第1は、基油組成物と、無機粉末充填剤と、を含有する熱伝導性組成物であって、前記無機粉末充填剤は、銀が被覆された銅粉末を含有し、前記基油組成物は、炭化水素油を含有する基油と、不活性化剤と、を含有する熱伝導性組成物である。 (1) The first aspect of the present invention is a thermally conductive composition containing a base oil composition and an inorganic powder filler, wherein the inorganic powder filler contains a silver-coated copper powder. However, the base oil composition is a heat conductive composition containing a base oil containing a hydrocarbon oil and an inactivating agent.

(2)本発明の第2は、第1の発明において、前記不活性化剤は、ベンゾトリアゾールを含有する熱伝導性組成物である。 (2) The second aspect of the present invention is that, in the first invention, the inactivating agent is a thermally conductive composition containing benzotriazole.

(3)本発明の第3は、第1又は第2の発明において、前記不活性化剤は、前記基油100質量部に対して0.50質量部以上の割合で含有する熱伝導性組成物である。 (3) The third aspect of the present invention is the thermal conductive composition in which the inactivating agent is contained in a proportion of 0.50 parts by mass or more with respect to 100 parts by mass of the base oil in the first or second invention. It is a thing.

(4)本発明の第4は、第3の発明において、前記不活性化剤は、前記基油100質量部に対して0.50質量部以上5.00質量部以下の割合で含有する熱伝導性組成物である。 (4) The fourth aspect of the present invention is that in the third aspect, the heat contained in the inactivating agent at a ratio of 0.50 parts by mass or more and 5.00 parts by mass or less with respect to 100 parts by mass of the base oil. It is a conductive composition.

(5)本発明の第5は、第1から第4のいずれかの発明において、前記銅粉末における前記銀の被覆量は、前記銅粉末100質量部に対して5.0質量部以上の割合である熱伝導性組成物である。 (5) Fifth of the present invention, in any one of the first to fourth inventions, the amount of silver coated on the copper powder is 5.0 parts by mass or more with respect to 100 parts by mass of the copper powder. Is a thermally conductive composition.

本発明によれば、炭化水素油を含有する基油を用いる場合であっても、熱安定性及び熱伝導率に優れ、ハンドリング性が良好な熱伝導性組成物を提供できる。 According to the present invention, it is possible to provide a thermally conductive composition having excellent thermal stability and thermal conductivity and good handleability even when a base oil containing a hydrocarbon oil is used.

以下、本発明の実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and may be carried out with appropriate modifications within the scope of the object of the present invention. can.

≪熱伝導性組成物≫
本実施の形態に係る熱伝導性組成物は、基油組成物と、無機粉末充填剤と、を含有する。そして、無機粉末充填剤は、銀が被覆された銅粉末を含有し、基油組成物は、炭化水素油を含有する基油と、不活性化剤と、を含有することを特徴としている。
≪Thermal conductive composition≫
The thermally conductive composition according to the present embodiment contains a base oil composition and an inorganic powder filler. The inorganic powder filler contains a silver-coated copper powder, and the base oil composition is characterized by containing a base oil containing a hydrocarbon oil and an inactivating agent.

熱伝導性フィラーとして銀が被覆された銅粉末(以下、銀被覆銅粉末と表記することがある。)を含有する無機粉末充填剤を使用することで、銅粉末の表面と炭化水素油との接触を防ぐことが可能となる。そして、このような状態で基油組成物に特定の不活性化剤を含有させることで、高熱環境下での銅粉末による触媒作用による炭化水素油の経時的な酸化を効果的に抑制することが可能となる。しかも、銅や銀は極めて熱伝導率が高く、銀被覆銅粉末を含有することにより、熱伝導性組成物に高い熱伝導率を付与することができる。このように、本実施の形態に係る熱伝導性組成物は、熱伝導率及び熱安定性に優れる。 By using an inorganic powder filler containing silver-coated copper powder (hereinafter, may be referred to as silver-coated copper powder) as a heat conductive filler, the surface of the copper powder and the hydrocarbon oil can be brought into contact with each other. It is possible to prevent contact. Then, by incorporating a specific inactivating agent into the base oil composition in such a state, it is possible to effectively suppress the temporal oxidation of the hydrocarbon oil due to the catalytic action of the copper powder in a high thermal environment. Is possible. Moreover, copper and silver have extremely high thermal conductivity, and by containing the silver-coated copper powder, high thermal conductivity can be imparted to the thermally conductive composition. As described above, the thermally conductive composition according to the present embodiment is excellent in thermal conductivity and thermal stability.

さらに、銀被覆銅粉末は比較的少量の含有量でも熱伝導性組成物に高い熱伝導率を付与することが可能であり、高い熱伝導率を得るように銀被覆銅粉末の含有量を増加させる必要はない。このため、相対的に基油成分等の他の成分の含有量を増加させることが可能となり、ハンドリング性が良好である。 Furthermore, the silver-coated copper powder can impart high thermal conductivity to the thermally conductive composition even with a relatively small content, and the content of the silver-coated copper powder is increased so as to obtain high thermal conductivity. You don't have to let it. Therefore, it is possible to relatively increase the content of other components such as the base oil component, and the handleability is good.

以下、熱伝導性組成物に含有される各成分について説明する。 Hereinafter, each component contained in the heat conductive composition will be described.

[各成分について]
(無機粉末充填剤)
本実施の形態に係る熱伝導性組成物に用いられる無機粉末充填剤は、銀が被覆された銅粉末(銀被覆銅粉末)を含有する。これにより、高熱環境下での銅粉末と接触することによる炭化水素油の劣化を抑制する。
[About each ingredient]
(Inorganic powder filler)
The inorganic powder filler used in the thermally conductive composition according to the present embodiment contains silver-coated copper powder (silver-coated copper powder). As a result, deterioration of the hydrocarbon oil due to contact with the copper powder in a high thermal environment is suppressed.

銀被覆銅粉末は、銅粉末の表面の少なくとも一部に銀が存在していればよいが、銀が銅粉末の表面の全面に被覆されていることが好ましい。銅粉末の表面と炭化水素油との接触を確実に防ぐことが可能となり、炭化水素油の劣化をより効果的に抑制することが可能となる。 The silver-coated copper powder may have silver present on at least a part of the surface of the copper powder, but it is preferable that the silver is coated on the entire surface of the copper powder. It is possible to reliably prevent contact between the surface of the copper powder and the hydrocarbon oil, and it is possible to more effectively suppress the deterioration of the hydrocarbon oil.

銀被覆銅粉末における銀の被覆量は特に限定されるものではないが、銅粉末100質量部に対して3.0質量部以上の割合であることが好ましく、5.0質量部以上の割合であることが好ましい。銀の被覆量が3.0質量部以上の割合であることにより、銅表面に均一な銀の被膜が形成されるため、銅粉末の表面と炭化水素油との接触をより効果的に防ぐことが可能となる。銀の被覆量は、銅粉末100質量部に対して20.0質量部以下の割合であることが好ましく、15.0質量部以下の割合であることがより好ましい。銅粉末100質量部に対して20.0質量部以下の割合であることで、銀被覆によるコスト増加を抑制することができる。さらに、銀の被膜が摩耗することを抑制することができる。 The amount of silver coated in the silver-coated copper powder is not particularly limited, but is preferably 3.0 parts by mass or more, preferably 5.0 parts by mass or more with respect to 100 parts by mass of the copper powder. It is preferable to have. When the amount of silver coated is 3.0 parts by mass or more, a uniform silver film is formed on the copper surface, so that contact between the surface of the copper powder and the hydrocarbon oil can be prevented more effectively. Is possible. The amount of silver coated is preferably 20.0 parts by mass or less with respect to 100 parts by mass of copper powder, and more preferably 15.0 parts by mass or less. When the ratio is 20.0 parts by mass or less with respect to 100 parts by mass of the copper powder, the cost increase due to the silver coating can be suppressed. Further, it is possible to prevent the silver film from being worn.

銀被覆銅粉末の平均粒子径は特に限定されるものではないが、0.4μm以上であることが好ましく1.0μm以上であることが好ましい。平均粒子径が0.4μm以上であることにより、熱伝導性組成物の塗布性を向上させてことができ、塗布後の熱伝導性組成物の膜厚を安定化させることができる。また、平均粒子径が異なる複数種の銀被覆銅粉末を混合させてもよい。銀被覆銅粉末の粒子間の隙間に入り込む基油を減らすことが可能となり、熱伝導性組成物に含有される銀被覆銅粉末の含有量を増やすことが可能となる。 The average particle size of the silver-coated copper powder is not particularly limited, but is preferably 0.4 μm or more, and preferably 1.0 μm or more. When the average particle size is 0.4 μm or more, the coatability of the heat conductive composition can be improved, and the film thickness of the heat conductive composition after coating can be stabilized. Further, a plurality of types of silver-coated copper powder having different average particle sizes may be mixed. It is possible to reduce the amount of base oil that enters the gaps between the particles of the silver-coated copper powder, and it is possible to increase the content of the silver-coated copper powder contained in the heat conductive composition.

なお、銀被覆銅粉末の平均粒子径は、レーザー回折法で得られる体積基準の粒度分布より求めた算術平均径である。 The average particle size of the silver-coated copper powder is an arithmetic mean diameter obtained from a volume-based particle size distribution obtained by a laser diffraction method.

銅粉末に銀を被覆する方法は特に限定されず、従来公知の方法を使用することができる。例えば外部電源を用いて銅粉末の表面に銀イオンの還元反応を生じさせて銀を析出させるような電気めっきであっても、化学薬品の還元作用によって銀を析出させる無電解めっきであっても、乾式めっきにより銀を被覆する方法であってもよい。均一な銀の被膜が形成できるという観点から乾式めっきにより銀を被覆する方法であることが好ましい。なお、乾式めっきとは、真空蒸着、スパッタリング、イオンプレーティング等が挙げられる。 The method of coating the copper powder with silver is not particularly limited, and a conventionally known method can be used. For example, electroplating that causes a reduction reaction of silver ions on the surface of copper powder using an external power source to precipitate silver, or electroplating that precipitates silver by the reducing action of chemicals. , The method of coating silver by dry plating may be used. From the viewpoint that a uniform silver film can be formed, a method of coating silver by dry plating is preferable. Examples of the dry plating include vacuum deposition, sputtering, ion plating and the like.

なお、無機粉末充填剤には、銀被覆銅粉末以外の無機粉末充填剤が含有されていてもよい。銀被覆銅粉末以外の無機粉末充填剤としては、基油より高い熱伝導率を有するものであれば特に限定されず、例えば、金属酸化物、無機窒化物、金属(合金も含む)、ケイ素化合物、カーボン材料などの粉末が挙げられる。 The inorganic powder filler may contain an inorganic powder filler other than the silver-coated copper powder. The inorganic powder filler other than the silver-coated copper powder is not particularly limited as long as it has a higher thermal conductivity than the base oil, and is, for example, a metal oxide, an inorganic nitride, a metal (including an alloy), and a silicon compound. , Carbon material and other powders.

(基油組成物)
基油組成物は、炭化水素油を含有する基油と、不活性化剤と、を含有する。以下、基油組成物に含有される各成分について説明する。
(Base oil composition)
The base oil composition contains a base oil containing a hydrocarbon oil and an inactivating agent. Hereinafter, each component contained in the base oil composition will be described.

(1)基油
基油は、熱伝導性組成物に含有されることにより、熱伝導性組成物に潤滑性を付与する。
(1) Base oil The base oil imparts lubricity to the heat conductive composition by being contained in the heat conductive composition.

炭化水素油は、鉱油、合成炭化水素油、エステル系基油、エーテル系基油などが挙げられる。 Examples of the hydrocarbon oil include mineral oil, synthetic hydrocarbon oil, ester-based base oil, and ether-based base oil.

鉱油は、例えば、鉱油系潤滑油留分を溶剤抽出、溶剤脱ロウ、水素化精製、水素化分解、ワックス異性化などの精製手法を適宜組み合わせて精製したもので、150ニュートラル油、500ニュートラル油、ブライトストック、高粘度指数基油などを用いることができる。基油に用いられる鉱油は、高度に水素化精製された高粘度指数基油が好ましい。 Mineral oil is, for example, a mineral oil-based lubricating oil distillate refined by appropriately combining refining methods such as solvent extraction, solvent dewaxing, hydrorefining, hydrocracking, and wax isomerization. , Brightstock, high viscosity index base oil and the like can be used. The mineral oil used as the base oil is preferably a highly hydrorefined high viscosity index base oil.

合成炭化水素油とは、例えば、エチレンやプロピレン、ブテン、及びこれらの誘導体などを原料として製造されたアルファオレフィンを、単独又は2種以上混合して重合したものが挙げられる。アルファオレフィンは、炭素数6以上14以下のものが好ましく挙げられる。 Examples of the synthetic hydrocarbon oil include those obtained by polymerizing alpha olefins produced from ethylene, propylene, butene, and derivatives thereof as raw materials, alone or in combination of two or more. The alpha olefin preferably has 6 or more carbon atoms and 14 or less carbon atoms.

基油に用いられる合成炭化水素油の具体例は、1−デセンや1−ドデセンのオリゴマーであるポリアルファオレフィン(PAO)や、1−ブテンやイソブチレンのオリゴマーであるポリブテン、エチレンやプロピレンとアルファオレフィンのコオリゴマー等が挙げられる。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。 Specific examples of synthetic hydrocarbon oils used as base oils are polyalphaolefin (PAO), which is an oligomer of 1-decene and 1-dodecene, polybutene, which is an oligomer of 1-butene and isobutylene, ethylene, propylene, and alphaolefin. Examples thereof include co-oligomers. Further, alkylbenzene, alkylnaphthalene and the like can also be used.

エステル系基油は、ジエステルやポリオールエステルが挙げられる。ジエステルは、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。二塩基酸は、炭素数4以上36以下の脂肪族二塩基酸が好ましい。エステル部を構成するアルコール残基は、炭素数4以上26以下の一価アルコール残基が好ましい。 Examples of the ester-based base oil include diesters and polyol esters. Examples of the diester include esters of dibasic acids such as adipic acid, azelaic acid, sebacic acid, and dodecane diic acid. The dibasic acid is preferably an aliphatic dibasic acid having 4 to 36 carbon atoms. The alcohol residue constituting the ester portion is preferably a monohydric alcohol residue having 4 to 26 carbon atoms.

ポリオールエステルは、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルが挙げられる。エステル部を構成するカルボン酸残基は、炭素数4以上26以下のモノカルボン酸残基が好ましい。 The polyol ester is an ester of a neopentyl polyol in which a hydrogen atom does not exist on the carbon at the β-position, and specific examples thereof include carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol. The carboxylic acid residue constituting the ester portion is preferably a monocarboxylic acid residue having 4 or more carbon atoms and 26 or less carbon atoms.

また、エステル系基油は、上記以外にも、エチレングリコール、プロピレングリコール、ブチレングリコール、2−ブチル−2−エチルプロパンジオール、2,4−ジエチル−ペンタンジオール等の脂肪族二価アルコールと、直鎖又は分岐鎖の飽和脂肪酸とのエステルも用いることができる。直鎖又は分岐鎖の飽和脂肪酸は、炭素数4以上30以下の一価の直鎖又は分岐鎖の飽和脂肪酸が好ましい。 In addition to the above, the ester-based base oil is directly composed of an aliphatic dihydric alcohol such as ethylene glycol, propylene glycol, butylene glycol, 2-butyl-2-ethylpropanediol, and 2,4-diethyl-pentanediol. Esters with chain or branched saturated fatty acids can also be used. The straight-chain or branched-chain saturated fatty acid is preferably a monovalent straight-chain or branched-chain saturated fatty acid having 4 to 30 carbon atoms.

エーテル系基油は、ポリグリコールや(ポリ)フェニルエーテルなどが挙げられる。ポリグリコールは、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体などが挙げられる。(ポリ)フェニルエーテルは、モノアルキル化ジフェニルエーテル、ジアルキル化ジフェニルエーテルなどのアルキル化ジフェニルエーテルや、モノアルキル化テトラフェニルエーテル、ジアルキル化テトラフェニルエーテルなどのアルキル化テトラフェニルエーテル、ペンタフェニルエーテル、モノアルキル化ペンタフェニルエーテル、ジアルキル化ペンタフェニルエーテルなどのアルキル化ペンタフェニルエーテルなどが挙げられる。 Examples of the ether-based base oil include polyglycol and (poly) phenyl ether. Examples of polyglycol include polyethylene glycol, polypropylene glycol, and derivatives thereof. (Poly) phenyl ethers include alkylated diphenyl ethers such as monoalkylated diphenyl ethers and dialkylated diphenyl ethers, alkylated tetraphenyl ethers such as monoalkylated tetraphenyl ethers and dialkylated tetraphenyl ethers, pentaphenyl ethers, and monoalkylated penta. Examples thereof include alkylated pentaphenyl ethers such as phenyl ethers and dialkylated pentaphenyl ethers.

なお、基油には炭化水素油以外の基油成分が含有されていてもよい。例えば、リン酸エステル、シリコーン油及びフッ素油等が挙げられる。 The base oil may contain a base oil component other than the hydrocarbon oil. For example, phosphoric acid ester, silicone oil, fluorine oil and the like can be mentioned.

(2)不活性化剤
不活性化剤は、熱伝導性組成物に含有されることにより、銅粉末の触媒作用による炭化水素油の劣化を抑制して、熱伝導性組成物に高い熱安定性を付与する。
(2) Inactivating agent By being contained in the thermally conductive composition, the inactivating agent suppresses the deterioration of the hydrocarbon oil due to the catalytic action of the copper powder, and is highly thermally stable in the thermally conductive composition. Give sex.

不活性化剤としては、イミノ基を有する複素環式化合物を挙げることができるが、ベンゾトリアゾール又はその誘導体であることが好ましい。 Examples of the inactivating agent include heterocyclic compounds having an imino group, but benzotriazole or a derivative thereof is preferable.

不活性化剤の含有量は基油100質量部に対して0.3質量部以上の割合で含有することが好ましく、0.5質量部以上の割合で含有することがより好ましく、1.0質量部以上の割合で含有することがさらに好ましい。これにより、銀被覆銅粉末の触媒作用による炭化水素油の劣化をより効果的に抑制することができる。不活性化剤の含有量は基油100質量部に対して5.0質量部以下の割合で含有することが好ましく、3.0質量部以下の割合で含有することがより好ましく、2.0質量部以下の割合で含有することがさらに好ましい。5.0質量部を超えて含有させても、炭化水素油の劣化を抑制する効果には変化はなく5.0質量部以下の割合で含有することにより相対的に他の成分の含有量を増やすことができる。 The content of the inactivating agent is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and 1.0 part by mass with respect to 100 parts by mass of the base oil. It is more preferable to contain it in a proportion of parts by mass or more. This makes it possible to more effectively suppress the deterioration of the hydrocarbon oil due to the catalytic action of the silver-coated copper powder. The content of the inactivating agent is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less with respect to 100 parts by mass of the base oil. It is more preferable to contain it in a proportion of parts by mass or less. Even if it is contained in excess of 5.0 parts by mass, the effect of suppressing deterioration of the hydrocarbon oil does not change, and by containing it in a proportion of 5.0 parts by mass or less, the content of other components is relatively increased. Can be increased.

(3)その他の添加剤
本実施の形態に係る熱伝導性組成物には、必要に応じて、本発明の特性を損なわない範囲でその他の添加剤を含有させることができる。その他の添加剤としては、酸化防止剤、二次酸化防止剤、防錆剤、腐食防止剤、増粘剤、増ちょう剤、拡散防止剤、分散剤等、熱伝導性組成物の特性を調整する添加剤を使用することができる。
(3) Other Additives The thermally conductive composition according to the present embodiment may contain other additives, if necessary, as long as the characteristics of the present invention are not impaired. Other additives include antioxidants, secondary antioxidants, rust inhibitors, corrosion inhibitors, thickeners, thickeners, diffusion inhibitors, dispersants, etc., which adjust the properties of the thermally conductive composition. Additives can be used.

特に、本実施の形態に係る熱伝導性組成物は、比較的少量の含有量でも熱伝導性組成物に高い熱伝導率を付与できる銀被覆銅粉末を含有していることから相対的に他の成分の含有量を増加させることが可能である。例えば、本実施の形態に係る熱伝導性組成物を熱伝導性グリースとして用いる場合、熱伝導性グリースのちょう度を制御するために所定量の増ちょう剤を含有してもよい。 In particular, the thermally conductive composition according to the present embodiment is relatively different because it contains a silver-coated copper powder capable of imparting high thermal conductivity to the thermally conductive composition even with a relatively small content. It is possible to increase the content of the components of. For example, when the thermally conductive composition according to the present embodiment is used as the thermally conductive grease, a predetermined amount of thickener may be contained in order to control the consistency of the thermally conductive grease.

≪熱伝導性組成物の製造方法≫
本実施の形態に係る熱伝導性組成物は、各成分を混合することにより製造する。製造方法としては、均一に成分を混合できれば特に限定されない。
≪Manufacturing method of thermally conductive composition≫
The thermally conductive composition according to the present embodiment is produced by mixing each component. The production method is not particularly limited as long as the components can be mixed uniformly.

具体的に、製造方法としては、プラネタリーミキサー、自転公転ミキサーなどにより混練りを行い、さらに三本ロールにて均一に混練りする方法を用いることができる。 Specifically, as a manufacturing method, a method of kneading with a planetary mixer, a rotation / revolution mixer, or the like, and further uniformly kneading with three rolls can be used.

以下、本発明の実施例及び比較例を示して、本発明についてより具体的に説明する。なお、本発明は以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention. The present invention is not limited to the following examples.

下記(1)〜(3)に示す各材料を用い、下記表1に示す組成の熱伝導性組成物(熱伝導性グリース)を作製した。 Using each of the materials shown in (1) to (3) below, a thermally conductive composition (thermally conductive grease) having the composition shown in Table 1 below was prepared.

(熱伝導性グリースの構成)
(1)無機粉末充填剤
平均粒径:5μm
銅粉末 :銀の被覆量 0質量%
銀被覆銅粉末A:銀の被覆量 3.0質量%
銀被覆銅粉末B:銀の被覆量 5.0質量%
銀被覆銅粉末C:銀の被覆量 10.0質量%
アルミナ粉末
(2)基油
エステル油 (住鉱潤滑剤(株)製 ハイテンプオイルES−Q)
(3)不活性化剤
ベンゾトリアゾール (日本ルーブリゾール(株)製)
(Composition of thermally conductive grease)
(1) Inorganic powder filler Average particle size: 5 μm
Copper powder: Silver coating amount 0% by mass
Silver-coated copper powder A: Silver coating amount 3.0% by mass
Silver-coated copper powder B: Silver coating amount 5.0% by mass
Silver-coated copper powder C: Silver coating amount 10.0% by mass
Alumina powder (2) Base oil Ester oil (High Temp Oil ES-Q manufactured by Sumiko Lubricant Co., Ltd.)
(3) Inactivating agent Benzotriazole (manufactured by Nippon Lubrizol Co., Ltd.)

(熱伝導性グリースの製造方法)
下記表1に示すように材料(1)〜(3)を配合し、プラネタリーミキサーにて混合しグリース状とした。その後、三本ロールによる混練を行うことにより各材料を十分に分散させて、実施例及び比較例の熱伝導性グリースを製造した。
(Manufacturing method of thermally conductive grease)
As shown in Table 1 below, the materials (1) to (3) were blended and mixed with a planetary mixer to prepare a grease. Then, each material was sufficiently dispersed by kneading with three rolls to produce the heat conductive greases of Examples and Comparative Examples.

[熱伝導性グリースの評価]
(熱伝導率評価)
熱伝導率は、京都電子工業(株)製迅速熱伝導率計QTM−500を用いて室温にて測定した。評価結果を表1に示す(表1中、「熱伝導率」と表記)。なお、熱伝導性グリースの熱伝導率が3.0W/mk以上のものを良好と判断した。
[Evaluation of thermally conductive grease]
(Evaluation of thermal conductivity)
The thermal conductivity was measured at room temperature using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Denshi Kogyo Co., Ltd. The evaluation results are shown in Table 1 (indicated as "thermal conductivity" in Table 1). The heat conductive grease having a thermal conductivity of 3.0 W / mk or more was judged to be good.

(熱安定性評価)
熱安定性評価の加速試験として、250℃環境下での硬化までにかかる時間を評価した。実施例及び比較例の熱伝導性グリースをガラス基板上に80mm×80mmの面積で100μmの厚みに塗布して評価試料を作製した。この評価試料を250℃の恒温槽に静置し、1時間おきに恒温槽から評価試料を取り出して熱伝導性グリースの硬化度合いを確認した。
(Evaluation of thermal stability)
As an accelerated test for thermal stability evaluation, the time required for curing in an environment of 250 ° C. was evaluated. The heat conductive greases of Examples and Comparative Examples were applied on a glass substrate in an area of 80 mm × 80 mm to a thickness of 100 μm to prepare an evaluation sample. This evaluation sample was allowed to stand in a constant temperature bath at 250 ° C., and the evaluation sample was taken out from the constant temperature bath every hour to check the degree of curing of the heat conductive grease.

熱伝導性グリースが流動性を保持していた場合には、恒温槽内に戻し試験を継続した。一方、熱伝導性グリースが流動性を失っていた場合には、試験を終了し、その時間を熱伝導性グリースの硬化時間とした。評価結果を表1に示す(表1中、「熱安定性」と表記)。 If the thermally conductive grease maintained its fluidity, it was returned to the constant temperature bath and the test was continued. On the other hand, when the heat conductive grease lost its fluidity, the test was terminated and the time was defined as the curing time of the heat conductive grease. The evaluation results are shown in Table 1 (indicated as "thermal stability" in Table 1).

熱伝導性グリースの流動性は、熱伝導性グリースを金属へらを用いてひっかくことにより確認した。熱伝導性グリースにおいては、硬化時間が5時間以上のものを良好と判断した。 The fluidity of the thermally conductive grease was confirmed by scratching the thermally conductive grease with a metal spatula. As for the heat conductive grease, those having a curing time of 5 hours or more were judged to be good.

(塗布性評価)
塗布性は、熱伝導性グリースの室温でのちょう度により評価した。JIS K2220グリースの「ちょう度」測定法に準じてちょう度を測定した。評価結果を表1に示す(表1中、「ちょう度」と表記)。
(Evaluation of coatability)
The coatability was evaluated by the consistency of the heat conductive grease at room temperature. Consistency was measured according to the "consistency" measuring method of JIS K2220 grease. The evaluation results are shown in Table 1 (indicated as "concentration" in Table 1).

Figure 2021105135
Figure 2021105135

表1より、本発明の範囲内である実施例は、熱伝導率が3.2W/mk以上、熱安定性(250℃の硬化時間)が6時間以上となり、良好な結果を示した。 From Table 1, in the examples within the scope of the present invention, the thermal conductivity was 3.2 W / mk or more, and the thermal stability (curing time at 250 ° C.) was 6 hours or more, showing good results.

特に基油100質量部に対して不活性化剤の含有量が1.00質量部以上である実施例3、4の熱伝導性グリースは、不活性化剤の含有量が1.00質量部未満である実施例1、2の熱伝導性グリースと比較しても、250℃の硬化時間が長くなり熱安定性がさらに向上していた。 In particular, the heat conductive greases of Examples 3 and 4 having an inactivating agent content of 1.00 parts by mass or more with respect to 100 parts by mass of the base oil have an inactivating agent content of 1.00 parts by mass. Compared with the heat conductive greases of Examples 1 and 2 which are less than, the curing time at 250 ° C. was longer and the thermal stability was further improved.

また、銅粉末100質量部に対して銀の被覆量が5.0質量部である実施例3の熱伝導性グリースは、銅粉末100質量部に対して銀の被覆量が3.0質量部である実施例6の熱伝導性グリースと比較しても、250℃の硬化時間が長くなり熱安定性がさらに向上していた。そして、銅粉末100質量部に対して銀の被覆量が5.0質量部である実施例1の熱伝導性グリースと、銅粉末100質量部に対して銀の被覆量が10.0質量部である実施例5の熱伝導性グリースは、250℃の硬化時間が同一であった。このことから、銀の被覆量が銅粉末100質量部に対して5.0質量部以上の割合であることにより、250℃の硬化時間が長くなり熱安定性がさらに向上することが分かる。 Further, the heat conductive grease of Example 3 having a silver coating amount of 5.0 parts by mass with respect to 100 parts by mass of copper powder has a silver coating amount of 3.0 parts by mass with respect to 100 parts by mass of copper powder. Compared with the heat conductive grease of Example 6, the curing time at 250 ° C. was longer and the thermal stability was further improved. Then, the heat conductive grease of Example 1 in which the amount of silver coated is 5.0 parts by mass with respect to 100 parts by mass of copper powder, and the amount of silver coated with respect to 100 parts by mass of copper powder is 10.0 parts by mass. The thermally conductive grease of Example 5 had the same curing time at 250 ° C. From this, it can be seen that when the coating amount of silver is 5.0 parts by mass or more with respect to 100 parts by mass of the copper powder, the curing time at 250 ° C. becomes longer and the thermal stability is further improved.

一方、銀が被覆されていない銅粉末を無機粉末充填剤として含有する比較例1、2の熱伝導性グリースは、250℃の硬化時間が短く熱安定性は低下していた。なお、比較例2の熱伝導性グリースは、不活性化剤を含有していたが、実施例1〜6の熱伝導性グリースと比較して、250℃の硬化時間が短く十分な熱安定性は得られなかった。 On the other hand, the heat conductive greases of Comparative Examples 1 and 2 containing a copper powder not coated with silver as an inorganic powder filler had a short curing time at 250 ° C. and had reduced thermal stability. Although the thermally conductive grease of Comparative Example 2 contained an inactivating agent, it had a shorter curing time at 250 ° C. and sufficient thermal stability as compared with the thermally conductive grease of Examples 1 to 6. Was not obtained.

さらに、銀被覆銅粉末を無機粉末充填剤として含有し、不活性化剤を含有しない比較例3の熱伝導性グリースは実施例1〜6の熱伝導性グリースと比較して、250℃の硬化時間が短く十分な熱安定性は得られなかった。 Further, the heat conductive grease of Comparative Example 3 containing silver-coated copper powder as an inorganic powder filler and not containing an inactivating agent was cured at 250 ° C. as compared with the heat conductive grease of Examples 1 to 6. The time was short and sufficient thermal stability could not be obtained.

また、アルミナ粉末を無機粉末充填剤として含有する比較例4の熱伝導性グリースは、不活性化剤を含有していないにも関わらず、250℃の硬化時間が長く熱安定性は良好なものではあったが、十分な熱伝導率は得られなかった。 Further, the thermally conductive grease of Comparative Example 4 containing alumina powder as an inorganic powder filler has a long curing time of 250 ° C. and good thermal stability even though it does not contain an inactivating agent. However, sufficient thermal conductivity could not be obtained.

そして、十分な熱伝導率は得られるようにアルミナ粉末の含有量を比較例4の熱伝導性グリースよりも増加させた比較例5の熱伝導性グリースでは、250℃の硬化時間が長く熱安定性は良好であり、かつ十分な熱伝導率は得られたものの、ちょう度が低下した。これは、相対的に基油成分の含有量が減少し、ちょう度の制御が困難となったためである。このように、アルミナ粉末を無機粉末充填剤として含有する熱伝導性グリースは、例えばちょう度の制御が困難になるなど、ハンドリング性が低下することが分かる。 The heat conductive grease of Comparative Example 5 in which the content of the alumina powder was increased as compared with the heat conductive grease of Comparative Example 4 so as to obtain sufficient thermal conductivity had a long curing time of 250 ° C. and was thermally stable. The properties were good and sufficient thermal conductivity was obtained, but the consistency was reduced. This is because the content of the base oil component is relatively reduced, making it difficult to control the consistency. As described above, it can be seen that the heat conductive grease containing alumina powder as an inorganic powder filler has reduced handleability, for example, it becomes difficult to control the consistency.

Claims (5)

基油組成物と、無機粉末充填剤と、を含有する熱伝導性組成物であって、
前記無機粉末充填剤は、銀が被覆された銅粉末を含有し、
前記基油組成物は、炭化水素油を含有する基油と、不活性化剤と、を含有する
熱伝導性組成物。
A thermally conductive composition containing a base oil composition and an inorganic powder filler.
The inorganic powder filler contains silver-coated copper powder and contains.
The base oil composition is a thermally conductive composition containing a base oil containing a hydrocarbon oil and an inactivating agent.
前記不活性化剤は、ベンゾトリアゾールを含有する
請求項1に記載の熱伝導性組成物。
The thermally conductive composition according to claim 1, wherein the inactivating agent contains benzotriazole.
前記不活性化剤は、前記基油100質量部に対して0.50質量部以上の割合で含有する
請求項1又は2に記載の熱伝導性組成物。
The heat conductive composition according to claim 1 or 2, wherein the inactivating agent is contained in a proportion of 0.50 parts by mass or more with respect to 100 parts by mass of the base oil.
前記不活性化剤は、前記基油100質量部に対して0.50質量部以上5.00質量部以下の割合で含有する
請求項3に記載の熱伝導性組成物。
The thermally conductive composition according to claim 3, wherein the inactivating agent is contained in a ratio of 0.50 parts by mass or more and 5.00 parts by mass or less with respect to 100 parts by mass of the base oil.
前記銅粉末における前記銀の被覆量は、前記銅粉末100質量部に対して5.0質量部以上の割合である
請求項1から4のいずれかに記載の熱伝導性組成物。
The heat conductive composition according to any one of claims 1 to 4, wherein the amount of silver coated on the copper powder is 5.0 parts by mass or more with respect to 100 parts by mass of the copper powder.
JP2019237497A 2019-12-26 2019-12-26 Thermally conductive composition Pending JP2021105135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237497A JP2021105135A (en) 2019-12-26 2019-12-26 Thermally conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237497A JP2021105135A (en) 2019-12-26 2019-12-26 Thermally conductive composition

Publications (1)

Publication Number Publication Date
JP2021105135A true JP2021105135A (en) 2021-07-26

Family

ID=76919362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237497A Pending JP2021105135A (en) 2019-12-26 2019-12-26 Thermally conductive composition

Country Status (1)

Country Link
JP (1) JP2021105135A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092646A (en) * 1996-09-13 1998-04-10 Nisshin Steel Co Ltd Conductive particles having excellent migration resistance
WO2003035739A1 (en) * 2001-10-19 2003-05-01 Hitachi Chemical Co., Ltd. Electroconductive resin composition and electronic parts using the same
JP2011028985A (en) * 2009-07-24 2011-02-10 Fujikura Kasei Co Ltd Method of manufacturing conductive paste, and the conductive paste
CN102604722A (en) * 2012-02-08 2012-07-25 无锡中石油润滑脂有限责任公司 Electric lubricating grease and preparation method thereof
JP2014531495A (en) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Conductive adhesive containing silver-coated particles
CN105482886A (en) * 2015-11-25 2016-04-13 铜陵市金利电子有限公司 Heatproof electric power lubricating grease
JP2016204567A (en) * 2015-04-27 2016-12-08 東洋インキScホールディングス株式会社 Conductive adhesive, conductive adhesive sheet, and wiring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092646A (en) * 1996-09-13 1998-04-10 Nisshin Steel Co Ltd Conductive particles having excellent migration resistance
WO2003035739A1 (en) * 2001-10-19 2003-05-01 Hitachi Chemical Co., Ltd. Electroconductive resin composition and electronic parts using the same
JP2011028985A (en) * 2009-07-24 2011-02-10 Fujikura Kasei Co Ltd Method of manufacturing conductive paste, and the conductive paste
JP2014531495A (en) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Conductive adhesive containing silver-coated particles
CN102604722A (en) * 2012-02-08 2012-07-25 无锡中石油润滑脂有限责任公司 Electric lubricating grease and preparation method thereof
JP2016204567A (en) * 2015-04-27 2016-12-08 東洋インキScホールディングス株式会社 Conductive adhesive, conductive adhesive sheet, and wiring device
CN105482886A (en) * 2015-11-25 2016-04-13 铜陵市金利电子有限公司 Heatproof electric power lubricating grease

Similar Documents

Publication Publication Date Title
JP5269366B2 (en) Heat-resistant thermal grease
JP5687167B2 (en) Heat-resistant thermal grease
JP5577553B2 (en) Heat dissipation compound composition
JP5944306B2 (en) High thermal conductive grease
JP5489409B2 (en) High thermal conductivity compound
JP4603700B2 (en) High thermal conductive grease composition and cooling device using the same
JP7155661B2 (en) thermal grease
JP4652085B2 (en) High thermal conductivity compound
JP2014194006A (en) Thermal conductive grease having performance of preventing base oil diffusion
JP4667882B2 (en) High thermal conductivity compound
JP7379940B2 (en) thermally conductive composition
JP5781407B2 (en) Thermally conductive compound
JP4841341B2 (en) High thermal conductivity compound
JP2021080316A (en) Thermally conductive composition
JP2022030766A (en) Thermally conductive grease
JP7073939B2 (en) Thermally conductive grease
JP2021105135A (en) Thermally conductive composition
JP7379939B2 (en) thermally conductive composition
JP2021130772A (en) Thermally conductive grease
JP7275797B2 (en) Thermally conductive base oil-containing composition
JP6870576B2 (en) Thermally conductive grease
JP2021008548A (en) Thermal conductivity composition
JP6848816B2 (en) Thermal conductivity grease
JP2023166735A (en) Heat-conductive grease, and production method of heat-conductive grease
JP7110759B2 (en) thermal grease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528