JP5687167B2 - Heat-resistant thermal grease - Google Patents

Heat-resistant thermal grease Download PDF

Info

Publication number
JP5687167B2
JP5687167B2 JP2011211554A JP2011211554A JP5687167B2 JP 5687167 B2 JP5687167 B2 JP 5687167B2 JP 2011211554 A JP2011211554 A JP 2011211554A JP 2011211554 A JP2011211554 A JP 2011211554A JP 5687167 B2 JP5687167 B2 JP 5687167B2
Authority
JP
Japan
Prior art keywords
carbon atoms
hydrocarbon group
general formula
mass
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011211554A
Other languages
Japanese (ja)
Other versions
JP2013071990A (en
Inventor
光伸 木村
光伸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2011211554A priority Critical patent/JP5687167B2/en
Publication of JP2013071990A publication Critical patent/JP2013071990A/en
Application granted granted Critical
Publication of JP5687167B2 publication Critical patent/JP5687167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Description

本発明は、高い熱伝導率を有する熱伝導性グリース用耐熱性向上剤、及びその耐熱性向上剤を含有する、高温下におけるちょう度変化率の少ない耐熱型熱伝導性グリースに関する。   The present invention relates to a heat resistance improver for a heat conductive grease having a high heat conductivity and a heat resistant heat conductive grease containing the heat resistance improver and having a low rate of change in consistency at high temperatures.

電子機器に使用されている半導体部品の中には、コンピューターのCPU、ペルチェ素子、LED、インバーター等の電源制御用パワー半導体など使用中に発熱をともなう部品がある。
これらの半導体部品を熱から保護し、正常に機能させるためには、発生した熱をヒートスプレッダーやヒートシンク等の放熱部品へ伝導させ放熱する方法がある。熱伝導性グリースは、これら半導体部品と放熱部品を密着させるように両者の間に塗布され、半導体部品の熱を放熱部品に効率よく伝導させるために用いられる。
近年、これら半導体部品を用いる電子機器の性能向上や小型・高密度実装化が急速に進んでおり、半導体の発熱量が増大しているため、このような放熱対策に用いられる熱伝導性グリースには高い熱伝導性が求められるとともにグリース自身の耐熱性も求められている。
Among semiconductor components used in electronic devices, there are components that generate heat during use, such as power semiconductors for power control such as computer CPUs, Peltier elements, LEDs, and inverters.
In order to protect these semiconductor components from heat and to function normally, there is a method of conducting the generated heat to heat dissipation components such as a heat spreader and a heat sink to dissipate heat. The thermally conductive grease is applied between the semiconductor component and the heat radiating component so that the semiconductor component and the heat radiating component are in close contact with each other, and is used to efficiently conduct the heat of the semiconductor component to the heat radiating component.
In recent years, the performance improvement of electronic devices using these semiconductor components and the implementation of compact and high-density mounting are rapidly progressing, and the amount of heat generated by semiconductors is increasing. Is required to have high thermal conductivity and the heat resistance of the grease itself.

熱伝導性グリースは、液状炭化水素やシリコーン油やフッ素油等の基油に、酸化亜鉛、酸化アルミニウムなどの金属酸化物や、窒化ホウ素、窒化ケイ素、窒化アルミニウムなどの無機窒化物や、アルミニウムや銅などの金属粉末等、熱伝導率の高い充填剤が多量に分散されたグリース状組成物である。
本発明者は、既に、無機粉末充填剤の分散性を向上するための表面改質剤として2価以上の金属イオンと有機酸とからなる金属せっけんを配合し、さらにアミン系酸化防止剤を特定量配合することで、高いちょう度を持ち、なおかつ耐熱性に優れた熱伝導性グリースを見出している。(特許文献1参照。)
Thermally conductive greases are based on liquid hydrocarbons, base oils such as silicone oil and fluorine oil, metal oxides such as zinc oxide and aluminum oxide, inorganic nitrides such as boron nitride, silicon nitride and aluminum nitride, aluminum and A grease-like composition in which a filler having a high thermal conductivity such as a metal powder such as copper is dispersed in a large amount.
The inventor has already formulated a metal soap composed of a divalent or higher metal ion and an organic acid as a surface modifier for improving the dispersibility of the inorganic powder filler, and further specified an amine-based antioxidant. We have found a heat-conducting grease that has a high consistency and excellent heat resistance. (See Patent Document 1)

特開2009−046639号公報JP 2009-046639 A

熱伝導性グリースは、コンピューターのCPU等の冷却装置や、ハイブリッド自動車や電気自動車等に搭載される高出力のインバーターに使用されるパワー半導体等の冷却装置における熱接触界面に使用されている。近年、これらのエレクトロニクス機器における半導体素子は、小型化・高性能化に伴い、発熱密度及び発熱量が増大しており、熱伝導性グリースは以前にも増して高温に曝される環境にある。
このような高温の環境で長期に渡り熱伝導性グリースを使用する場合には、熱伝導性グリースの種類によっては大きくちょう度が低下する場合がある。このように、放熱材料として実装使用時にちょう度が大きく低下したり、硬化したりした場合にはクラックやボイドの発生等が起こり、放熱性能が低下する可能性がある。
Thermally conductive grease is used at a thermal contact interface in a cooling device such as a CPU of a computer or a cooling device such as a power semiconductor used in a high-power inverter mounted on a hybrid vehicle or an electric vehicle. In recent years, semiconductor elements in these electronic devices have increased in heat generation density and heat generation along with downsizing and higher performance, and heat conductive grease is in an environment where it is exposed to higher temperatures than ever before.
When a heat conductive grease is used for a long time in such a high temperature environment, the consistency may be greatly lowered depending on the type of the heat conductive grease. As described above, when the consistency is greatly reduced or cured as a heat dissipation material, cracks or voids may be generated, and the heat dissipation performance may be deteriorated.

したがって、半導体ユニットの発熱温度や周囲の環境温度が高温に至る使用状況で長期間に渡り使用されるケースでは、熱伝導性グリースの性能としては、高温下でのちょう度変化率が少ない、耐熱性に優れることが求められている。
本発明の目的は、高温下におけるちょう度変化率の少ない熱伝導性グリースを提供することにある。
Therefore, in the case where the heat generation temperature of the semiconductor unit and the ambient environment temperature are high and used for a long period of time, the performance of the thermal conductive grease has a low rate of change in consistency at high temperatures. It is required to have excellent properties.
An object of the present invention is to provide a thermally conductive grease having a low rate of change in consistency at high temperatures.

そこで、本発明者は、上記課題を達成するために鋭意検討した結果、無機粉末充填剤の分散性を向上するための特定の金属せっけんを特定量配合し、特定の酸化防止剤を特定量配合し、さらに特定の構造を有する化合物を特定量配合することで、無機粉末充填剤を高充填して熱伝導率を高めながら、耐熱性を格段に向上させることができることを見出し、本発明の完成に至った。 Therefore, as a result of intensive studies to achieve the above-mentioned problems, the present inventor formulated a specific amount of a specific metal soap for improving the dispersibility of the inorganic powder filler, and a specific amount of a specific antioxidant. Furthermore, by adding a specific amount of a compound having a specific structure, it was found that the heat resistance can be remarkably improved while highly filling the inorganic powder filler to increase the thermal conductivity, and the present invention was completed. It came to.

すなわち、本発明は、一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の無機粉末充填剤を充填した熱伝導性グリース用耐熱性向上剤を提供するものである。 That is, the present invention provides a heat resistance improver for thermally conductive grease filled with one or more inorganic powder fillers selected from compounds having a structure represented by general formulas (1) to (5). is there.

Figure 0005687167
(一般式(1)において、R、Rは、炭素数4〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(In General Formula (1), R 1 and R 2 are monovalent hydrocarbon groups having 4 to 10 carbon atoms, and R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)

Figure 0005687167
(一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(In General Formula (2), R 4 and R 5 are tertiary type hydrocarbon groups having 4 to 10 carbon atoms, and R 6 and R 7 are hydrogen atoms or monovalent hydrocarbons having 1 to 10 carbon atoms. And R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)

Figure 0005687167
(一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基である。)
Figure 0005687167
(In General Formula (3), R 9 , R 10 , R 11 , R 12 , and R 13 are a hydrogen atom or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and at least one of them has 4 carbon atoms. 10 is a tertiary type hydrocarbon group, R 14 , R 15 , R 16 , R 17 , R 18 are a hydrogen atom, a hydroxyl group or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and At least one is a hydroxyl group.)

Figure 0005687167
(一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、R29は炭素数1〜12の2価の炭化水素基である。)
Figure 0005687167
(In General formula (4), R <19> , R <20> , R <21> , R <22> , R <23> , R < 24 >, R < 25 >, R < 26 > is a C1-C10 monovalent hydrocarbon group, R <27> , R 28 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and at least one is a hydrogen atom, and R 29 is a divalent hydrocarbon group having 1 to 12 carbon atoms.)

Figure 0005687167
(一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、R35、R36は炭素数1〜12の2価の炭化水素基であり、nは1〜20である。)
Figure 0005687167
(In the general formula (5), R 30, R 31, R 32, R 33, R 34 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 35, R 36 is from 1 to 12 carbon atoms (It is a divalent hydrocarbon group, and n is 1-20.)

なお、本発明において、「炭素数4〜10のターシャリータイプの炭化水素基」とは、置換基である炭素数4〜10の炭化水素基の置換基結合部位が第三級炭素原子であるものであり、炭素数4の飽和脂肪族炭化水素基の場合はtert−ブチル基を、炭素数5の飽和脂肪族炭化水素基の場合はtert−ペンチル基を意味する。 In the present invention, the term “tertiary type hydrocarbon group having 4 to 10 carbon atoms” means that the substituent binding site of the hydrocarbon group having 4 to 10 carbon atoms as a substituent is a tertiary carbon atom. In the case of a saturated aliphatic hydrocarbon group having 4 carbon atoms, it means a tert-butyl group, and in the case of a saturated aliphatic hydrocarbon group having 5 carbon atoms, it means a tert-pentyl group.

また、本発明は、(A)無機粉末充填剤を70〜97質量%、(B)基油を2〜28質量%、(C)2価以上の金属イオンと有機酸とからなる金属せっけんを0.001〜3質量%、及び(D)アミン系酸化防止剤を0.03〜0.75質量%、(E)前記一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の耐熱性向上剤を0.001〜1.0質量%の割合で含有することを特徴とする熱伝導性グリースを提供するものである。
また、本発明は、上記熱伝導性グリースにおいて、(B)成分の基油に含まれるポリアルファオレフィンの割合が5〜100質量%である熱伝導性グリースを提供するものである。
The present invention also provides (A) 70 to 97% by mass of an inorganic powder filler, (B) 2 to 28 % by mass of a base oil, and (C) a metal soap comprising a divalent or higher metal ion and an organic acid. 0.001 to 3% by mass, and (D) 0.03 to 0.75% by mass of the amine-based antioxidant, and (E) a compound having a structure represented by the general formulas (1) to (5). One or more heat resistance improvers contained in a proportion of 0.001 to 1.0% by mass are provided.
The present invention also provides a thermally conductive grease in which the proportion of the polyalphaolefin contained in the base oil of component (B) is 5 to 100% by mass in the above thermally conductive grease.

本発明の熱伝導性グリースは、無機粉末充填剤の分散性を向上するための特定の金属せっけんを特定量配合し、特定の酸化防止剤を特定量配合し、さらに一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上を特定量配合する事により格段に優れた耐熱性を実現するものである。本発明の熱伝導性グリースを使用することで、高熱を発する電子部品の放熱性を向上でき、特に高温環境に曝される自動車用パワー半導体やLEDの放熱材料として好適である。 The heat conductive grease of the present invention contains a specific amount of a specific metal soap for improving the dispersibility of the inorganic powder filler, a specific amount of a specific antioxidant, and a general formula (1)-( A particularly excellent heat resistance is realized by blending a specific amount of one or more selected from compounds having the structure represented by 5). By using the thermally conductive grease of the present invention, the heat dissipation of an electronic component that emits high heat can be improved, and it is particularly suitable as a heat dissipation material for automotive power semiconductors and LEDs that are exposed to high temperature environments.

本発明に用いられる無機粉末充填剤(A)は、基油より高い熱伝導率を有するものであれば特に限定されないが、金属酸化物、無機窒化物、金属、ケイ素化合物、カーボン材料などの粉末が好適に用いられる。本発明の無機粉末充填剤の種類は1種類であってもよいし、また2種以上を組み合わせて用いることもできる。   The inorganic powder filler (A) used in the present invention is not particularly limited as long as it has a higher thermal conductivity than the base oil, but powders such as metal oxides, inorganic nitrides, metals, silicon compounds, and carbon materials. Are preferably used. One kind of the inorganic powder filler of the present invention may be used, or two or more kinds may be used in combination.

上記の無機粉末充填剤は、電気絶縁性を求める場合には、酸化亜鉛、酸化アルミニウム、酸化チタン、窒化アルミニウム、窒化ホウ素、炭化ケイ素、シリカ、ダイヤモンドなどの、半導体やセラミックなどの非導電性物質の粉末が好適に使用でき、酸化亜鉛、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素の粉末がより好ましく、酸化亜鉛、酸化アルミニウムの粉末が特に好ましい。これらの無機粉末充填剤をそれぞれ単独で用いてもよいし、2種以上を組み合わせてもよい。また、電気絶縁性を求めず、より高い熱伝導性を求める場合には、アルミニウム、金、銀、銅などの金属粉末や、グラファイト、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料粉末が好適に使用でき、金属粉末がより好ましく、アルミニウムの粉末が特に好ましい。また、金属粉末や炭素材料粉末を上記の非導電性物質の粉末と組み合わせて用いることもできる。   In the case where the above-mentioned inorganic powder filler is required for electrical insulation, non-conductive substances such as semiconductors and ceramics such as zinc oxide, aluminum oxide, titanium oxide, aluminum nitride, boron nitride, silicon carbide, silica, and diamond are used. Are preferably used, more preferably zinc oxide, aluminum oxide, aluminum nitride, boron nitride, and silicon carbide powder, and particularly preferably zinc oxide and aluminum oxide powder. These inorganic powder fillers may be used alone or in combination of two or more. In addition, when seeking higher thermal conductivity without requiring electrical insulation, metal powders such as aluminum, gold, silver, and copper, and carbon material powders such as graphite, fullerene, carbon nanotubes, and carbon nanohorns are suitable. Metal powder is more preferable, and aluminum powder is particularly preferable. Further, a metal powder or a carbon material powder can be used in combination with the above-mentioned non-conductive substance powder.

また、上記無機粉末充填剤は、細粒のみを用いる場合は平均粒径0.15μm以上3μm未満の無機粉末を用いることが好ましい。平均粒径を0.15μm以上とすることで、無機粉末充填剤の表面を親油化する金属せっけんの量と液体成分の量との割合のバランスがよく、高充填したときにより高いちょう度を得ることができる。一方、平均粒径を3μm未満とすることで、最密充填をしやすくなり、より高い熱伝導率とすることができ、また離油もしづらくなる。また、平均粒径の異なる2種以上の細粒を組み合わせることで、最密充填をしやすくなり、離油しづらくなる。この場合にも、熱伝導率と実装時の観点から、それぞれの細粒の平均粒径は0.15μm以上3μm未満であることが好ましい。平均粒径の異なる細粒を組み合わせて用いる場合、平均粒径の小さい細粒の平均粒径は、平均粒径の大きい細粒の平均粒径に対して60〜10%の平均粒径であることが好ましく、55〜20%の平均粒径であることがより好ましい。また、平均粒径の小さい細粒と平均粒径の大きい細粒の混合割合は、質量比で5:95〜85:15の範囲が好ましい。 The inorganic powder filler is preferably an inorganic powder having an average particle size of 0.15 μm or more and less than 3 μm when only fine particles are used. By setting the average particle size to 0.15 μm or more, the balance between the amount of metal soap and the amount of liquid component that makes the surface of the inorganic powder filler oleophilic is good, and a higher consistency is achieved when the amount is high. Can be obtained. On the other hand, when the average particle size is less than 3 μm, it becomes easy to perform close packing, higher thermal conductivity can be obtained, and oil separation is difficult. In addition, by combining two or more kinds of fine particles having different average particle diameters, it becomes easy to perform close-packing and oil separation is difficult. Also in this case, from the viewpoint of thermal conductivity and mounting, the average particle size of each fine particle is preferably 0.15 μm or more and less than 3 μm. When using a combination of fine particles having different average particle sizes, the average particle size of the fine particles having a small average particle size is an average particle size of 60 to 10% with respect to the average particle size of the fine particles having a large average particle size. Preferably, the average particle size is 55 to 20%. The mixing ratio of the fine particles having a small average particle diameter and the fine particles having a large average particle diameter is preferably in the range of 5:95 to 85:15 in terms of mass ratio.

更に、細粒と粗粒を組み合わせる場合には、上記の細粒と、平均粒径3〜50μmの粗粒の無機粉末を組み合わせることができる。この場合には、粗粒の平均粒径を3μm以上とすることでより高い熱伝導率を得やすくでき、粗粒の平均粒径を50μm以下とすることで塗膜を薄くし、実装時の放熱性能を一層高めることができる。
無機粉末充填剤を細粒と粗粒の組み合わせとする場合、粗粒としては、平均粒径の異なる2種類以上の粉末の組み合わせとすることもできる。この場合にも、熱伝導率と実装時の放熱性能の観点から、それぞれの粗粒の平均粒径は3〜50μmであることが好ましい。
なお、本発明において、無機粉末充填剤の平均粒径はレーザー回折散乱法(JIS R 1629に準拠)により測定した粒度分布の体積平均径として算出できる。
Furthermore, when combining a fine grain and a coarse grain, said fine grain and a coarse inorganic powder with an average particle diameter of 3-50 micrometers can be combined. In this case, it is easy to obtain higher thermal conductivity by setting the average particle size of the coarse particles to 3 μm or more, and the coating film is thinned by setting the average particle size of the coarse particles to 50 μm or less. The heat dissipation performance can be further enhanced.
When the inorganic powder filler is a combination of fine particles and coarse particles, the coarse particles can be a combination of two or more kinds of powders having different average particle sizes. Also in this case, it is preferable that the average particle diameter of each coarse grain is 3-50 micrometers from a viewpoint of heat conductivity and the thermal radiation performance at the time of mounting.
In the present invention, the average particle size of the inorganic powder filler can be calculated as a volume average particle size distribution measured by a laser diffraction scattering method (based on JIS R 1629).

また、細粒と粗粒の無機粉末充填剤を組み合わせる場合の質量比は、20:80〜85:15の範囲で混合するのが好ましい。粗粒を2種類以上組み合わせる場合には粗粒同士の質量比は特に限定されないが、この場合にも細粒の質量比を無機粉末充填剤のうち20%〜85%の範囲にするのが好ましい。細粒と粗粒の配合比を上記範囲とすることで、無機粉末充填剤の表面を親油化する金属せっけんの量と液体成分の量とのバランスから、高いちょう度を得ることができる。また、粗粒と細粒のバランスが最密充填に適しており、離油もしづらくなる。 Moreover, it is preferable to mix in the range of 20: 80-85: 15 mass ratio in the case of combining a fine grain and coarse grain inorganic powder filler. When two or more kinds of coarse particles are combined, the mass ratio between the coarse particles is not particularly limited. In this case, the mass ratio of the fine particles is preferably in the range of 20% to 85% of the inorganic powder filler. . By setting the blending ratio of the fine particles and the coarse particles in the above range, a high consistency can be obtained from the balance between the amount of the metal soap that makes the surface of the inorganic powder filler lipophilic and the amount of the liquid component. In addition, the balance between coarse and fine particles is suitable for closest packing, and oil separation is difficult.

無機粉末充填剤の含有率は70〜97質量%であるが、含有率が高いほど熱伝導性に優れ、好ましくは75〜96質量%である。70質量%未満では熱伝導性が低くなったり、離油しやすくなることがある。一方、97質量%を越えるとちょう度が低くなり十分な塗布性を保てなくなるか、熱伝導性グリースが調製できなくなる。   Although the content rate of an inorganic powder filler is 70-97 mass%, it is excellent in thermal conductivity, so that the content rate is high, Preferably it is 75-96 mass%. If it is less than 70% by mass, the thermal conductivity may be lowered or the oil may be easily removed. On the other hand, if it exceeds 97% by mass, the consistency will be low and sufficient coatability will not be maintained, or a thermally conductive grease will not be prepared.

基油(B)としては、種々の基油が使用でき、例えば、鉱油、合成炭化水素油などの炭化水素系基油、エステル系基油、エーテル系基油、リン酸エステル、シリコーン油及びフッ素油などが挙げられ、炭化水素系基油、エステル系基油、エーテル基油が好ましい。離油を防止する点においては、表面張力の低いシリコーン油及びフッ素油は、あまり好ましくない。基油は1種単独で使用しても、2種以上を組み合わせて使用しても良い。
鉱油としては、例えば、鉱油系潤滑油留分を溶剤抽出、溶剤脱ロウ、水素化精製、水素化分解、ワックス異性化などの精製手法を適宜組み合わせて精製したもので、150ニュートラル油、500ニュートラル油、ブライトストック、高粘度指数基油などが挙げられる。鉱油は、高度に水素化精製された高粘度指数基油が好ましい。
As the base oil (B), various base oils can be used. For example, hydrocarbon base oils such as mineral oil and synthetic hydrocarbon oil, ester base oils, ether base oils, phosphate esters, silicone oils and fluorine Examples thereof include hydrocarbon base oils, ester base oils, and ether base oils. In terms of preventing oil separation, silicone oil and fluorine oil having a low surface tension are not preferred. A base oil may be used individually by 1 type, or may be used in combination of 2 or more type.
As mineral oil, for example, a mineral oil-based lubricating oil fraction is refined by appropriately combining purification methods such as solvent extraction, solvent dewaxing, hydrorefining, hydrocracking, wax isomerization, 150 neutral oil, 500 neutral Oil, bright stock, and high viscosity index base oil. The mineral oil is preferably a highly hydrorefined high viscosity index base oil.

合成炭化水素油としては、例えば、エチレンやプロピレン、ブテン、及びこれらの誘導体などを原料として製造されたアルファオレフィンを、単独または2種以上混合して重合したものが挙げられる。アルファオレフィンとしては、炭素数6〜14のものが好ましく挙げられる。
具体的には、1−デセンや1−ドデセンのオリゴマーであるポリアルファオレフィン(PAO)や、1−ブテンやイソブチレンのオリゴマーであるポリブテン、エチレンやプロピレンとアルファオレフィンのコオリゴマー等が挙げられる。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。
Examples of the synthetic hydrocarbon oil include those obtained by polymerizing alpha olefins produced using ethylene, propylene, butene, and derivatives thereof as a raw material alone or in combination of two or more. As an alpha olefin, a C6-C14 thing is mentioned preferably.
Specific examples include polyalphaolefin (PAO) which is an oligomer of 1-decene and 1-dodecene, polybutene which is an oligomer of 1-butene and isobutylene, and a co-oligomer of ethylene, propylene and alphaolefin. Moreover, alkylbenzene, alkylnaphthalene, etc. can also be used.

エステル系基油としては、ジエステルやポリオールエステルが挙げられる。
ジエステルとしては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。二塩基酸としては、炭素数4〜36の脂肪族二塩基酸が好ましい。エステル部を構成するアルコール残基は、炭素数4〜26の一価アルコール残基が好ましい。
ポリオールエステルとしては、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルが挙げられる。エステル部を構成するカルボン酸残基は、炭素数4〜26のモノカルボン酸残基が好ましい。
Examples of ester base oils include diesters and polyol esters.
Examples of the diester include esters of dibasic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. As the dibasic acid, an aliphatic dibasic acid having 4 to 36 carbon atoms is preferable. The alcohol residue constituting the ester portion is preferably a monohydric alcohol residue having 4 to 26 carbon atoms.
The polyol ester is an ester of neopentyl polyol in which a hydrogen atom does not exist on the β-position carbon, and specifically includes carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol. The carboxylic acid residue constituting the ester part is preferably a monocarboxylic acid residue having 4 to 26 carbon atoms.

また、上記以外にも、エチレングリコール、プロピレングリコール、ブチレングリコール、2−ブチル−2−エチルプロパンジオール、2,4−ジエチル−ペンタンジオール等の脂肪族二価アルコールと、直鎖または分岐鎖の飽和脂肪酸とのエステルも用いることができる。直鎖または分岐鎖の飽和脂肪酸としては、炭素数4〜30の一価の直鎖または分岐鎖の飽和脂肪酸が好ましい。
エーテル系基油としては、ポリグリコールや(ポリ)フェニルエーテルなどが挙げられる。
ポリグリコールとしては、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体などが挙げられる。
(ポリ)フェニルエーテルとしては、アルキル化ジフェニルエーテルや、モノアルキル化テトラフェニルエーテル、ジアルキル化テトラフェニルエーテル、ペンタフェニルエーテルなどが挙げられる。
In addition to the above, aliphatic dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, 2-butyl-2-ethylpropanediol, and 2,4-diethyl-pentanediol, and linear or branched chain saturation Esters with fatty acids can also be used. As the linear or branched saturated fatty acid, a monovalent linear or branched saturated fatty acid having 4 to 30 carbon atoms is preferable.
Examples of the ether base oil include polyglycol and (poly) phenyl ether.
Examples of the polyglycol include polyethylene glycol, polypropylene glycol, and derivatives thereof.
Examples of (poly) phenyl ether include alkylated diphenyl ether, monoalkylated tetraphenyl ether, dialkylated tetraphenyl ether, and pentaphenyl ether.

リン酸エステルとしては、トリエチルホスフェート、トリブチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等が挙げられる。   Examples of phosphate esters include triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, and trixylenyl phosphate.

熱伝導性グリースは発熱部に塗布されるため、長時間高温にさらされる。このため、基油としては熱酸化安定性に優れることが望ましい。上記基油の中では、合成系基油が好ましく、合成炭化水素油、エステル系基油、エーテル系基油が好ましい。これらの基油のうち、特に熱酸化安定性に優れるものとして、合成炭化水素油では、ポリアルファオレフィン、エステル系基油では、ポリオールエステル、エーテル系基油では(ポリ)フェニルエーテルが好ましい基油として用いられる。さらにこれらの基油のうち、比較的粘度指数が高く、グリースを調製したときにちょう度が高く塗布性に優れるグリースが調製できるポリアルファオレフィンやポリオールエステルが好ましい基油として用いられる。   Since the heat conductive grease is applied to the heat generating part, it is exposed to high temperature for a long time. For this reason, it is desirable that the base oil has excellent thermal oxidation stability. Among the above base oils, synthetic base oils are preferable, and synthetic hydrocarbon oils, ester base oils, and ether base oils are preferable. Among these base oils, those having particularly excellent thermal oxidation stability include polyalphaolefins for synthetic hydrocarbon oils, polyol esters for ester base oils, and (poly) phenyl ethers for ether base oils. Used as Furthermore, among these base oils, polyalphaolefins and polyol esters that can prepare greases having a relatively high viscosity index and high consistency when the grease is prepared and excellent coating properties are used as preferred base oils.

基油に含まれるポリアルファオレフィンの含有量は、5質量%〜100質量%であり、好ましくは10質量%〜100質量%である。上記範囲でポリアルファオレフィンを基油中に配合することにより、塗布性に優れるグリースを調製することができる。また、特に優れた塗布性を求めない場合は粘度の高い(ポリ)フェニルエーテルを用いることもできる。
基油の動粘度は、40℃で10mm/s〜1200mm/sであることが好ましい。40℃における動粘度を10mm/s以上とすることで、高温下での基油の蒸発や離油などが抑制される傾向にあるため好ましい。また、40℃における動粘度を1200mm/s以下とすることで高いちょう度を得やすくなるため好ましい。
The content of the polyalphaolefin contained in the base oil is 5% by mass to 100% by mass, preferably 10% by mass to 100% by mass. By blending the polyalphaolefin in the base oil within the above range, a grease having excellent coatability can be prepared. In addition, when a particularly excellent coating property is not required, (poly) phenyl ether having a high viscosity can be used.
The kinematic viscosity of the base oil is preferably 10mm 2 / s~1200mm 2 / s at 40 ° C.. It is preferable to set the kinematic viscosity at 40 ° C. to 10 mm 2 / s or more because evaporation of base oil and oil separation at high temperatures tend to be suppressed. Moreover, since kinematic viscosity in 40 degreeC shall be 1200 mm < 2 > / s or less, since it becomes easy to obtain a high consistency, it is preferable.

基油の含有量としては2〜28質量%であり、3〜28質量%が好ましく、3〜25質量%が特に好ましい。含有量が30質量%を超える場合には、ちょう度が高くなりすぎ、高温環境に置かれた場合に熱伝導性グリースが流れ出てしまう場合がある。さらに離油を生じたり、熱伝導性が低下する場合がある。 The content of the base oil is 2 to 28 % by mass, preferably 3 to 28 % by mass, and particularly preferably 3 to 25% by mass. When the content exceeds 30% by mass, the consistency becomes too high, and the thermally conductive grease may flow out when placed in a high temperature environment. In addition, oil separation may occur and thermal conductivity may decrease.

本発明に用いられる金属せっけん(C)は、無機粉末充填剤の表面に吸着し、基油との親和性を向上させる表面改質剤としての働きを持ち、耐熱性が高いため、金属せっけん(C)を表面改質剤として用いることで熱伝導性グリースの耐熱性を向上させることができる。 The metal soap (C) used in the present invention is adsorbed on the surface of the inorganic powder filler, has a function as a surface modifier that improves the affinity with the base oil, and has high heat resistance. By using C) as a surface modifier, the heat resistance of the thermally conductive grease can be improved.

本発明に用いられる金属せっけん(C)は、2価以上の金属イオンと有機酸とからなる金属せっけんである。金属せっけん(C)の具体例としては、例えば、単一金属せっけんとしてはカルシウムせっけん、マグネシウムせっけん、アルミニウムせっけん、亜鉛せっけんなどが挙げられ、マグネシウムせっけん、アルミニウムせっけん、亜鉛せっけんが好ましく、亜鉛せっけんが特に好ましい。また、コンプレックス型金属せっけんとしては、カルシウムコンプレックスせっけん、バリウムコンプレックスせっけん、アルミニウムコンプレックスせっけんなどが挙げられる。 The metal soap (C) used in the present invention is a metal soap composed of a divalent or higher valent metal ion and an organic acid. Specific examples of the metal soap (C) include, for example, calcium soap, magnesium soap, aluminum soap, zinc soap and the like as single metal soap. Magnesium soap, aluminum soap and zinc soap are preferable, and zinc soap is particularly preferable. preferable. Examples of complex-type metal soaps include calcium complex soaps, barium complex soaps, and aluminum complex soaps.

これらの金属せっけんのうち、ケン化反応を用いることなく、プレソープの混合法によるグリースへの添加が可能な単一金属せっけんが好ましい。また金属せっけんの有機酸の部分は直鎖またはヒドロキシ基を有する脂肪酸が好ましく、直鎖の飽和脂肪酸がより好ましい。この場合、脂肪酸の炭素数は12〜28が好ましく、より耐熱性を向上させる場合には14〜24が特に好ましい。このような脂肪酸金属せっけんとしてはステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ラウリン酸亜鉛などが挙げられ、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムが特に好ましい。 Of these metal soaps, single metal soaps that can be added to grease by a pre-soap mixing method without using a saponification reaction are preferred. The organic acid portion of the metal soap is preferably a straight chain or a fatty acid having a hydroxy group, and more preferably a straight chain saturated fatty acid. In this case, the carbon number of the fatty acid is preferably 12 to 28, and 14 to 24 is particularly preferable when the heat resistance is further improved. Such fatty acid metal soaps include calcium stearate, magnesium stearate, zinc stearate, aluminum stearate, zinc laurate and the like, with magnesium stearate, zinc stearate and aluminum stearate being particularly preferred.

本発明に用いられる金属せっけん(C)は、0.001質量%〜3質量%含有するが、好ましくは0.005質量%〜2質量%であり、更に好ましくは0.01質量%〜1質量%であり、最も好ましくは0.1質量%〜1質量%である。含有量が0.001質量%より少ない場合、無機粉末充填剤の表面を親油化するのに不充分な含有量であるため高いちょう度が得られず、充填率を高くすることが難しい傾向にあり、また高温高湿度の環境に置かれた場合にはちょう度低下が起こったり、凝集して硬化しやすくなる傾向にある。また、含有量が3質量%より多い場合には、金属せっけんが基油中で増ちょう剤としての働きを持つため、グリースが硬くなるか、無機粉末充填剤の充填率を高めた場合にはグリース化できなくなる傾向にある。 Although the metal soap (C) used for this invention contains 0.001 mass%-3 mass%, Preferably it is 0.005 mass%-2 mass%, More preferably, it is 0.01 mass%-1 mass. %, And most preferably 0.1% by mass to 1% by mass. When the content is less than 0.001% by mass, the content of the inorganic powder filler is insufficient to make the surface oleophilic, so a high consistency cannot be obtained and the filling rate tends to be difficult. In addition, when it is placed in an environment of high temperature and high humidity, the consistency decreases, or it tends to aggregate and harden easily. In addition, when the content is more than 3% by mass, the metal soap has a function as a thickener in the base oil. Therefore, when the grease is hardened or the filling rate of the inorganic powder filler is increased. It tends to be impossible to grease.

本発明に用いられるアミン系酸化防止剤(D)としては、フェニル−α−ナフチルアミン、フェニル−β−ナフチルアミン等のナフチルアミン類、p,p’−ジアルキルジフェニルアミン等のアルキル化ジフェニルアミン類、ジフェニル-p-フェニレンジアミン、ジピリジルアミン類、フェノチアジン類等が好適に用いられる。これらのうち油溶性が高くスラッジを生成しにくいナフチルアミン類とアルキル化ジフェニルアミン類が好ましく、アルキル化ジフェニルアミン類が特に好ましい。
ナフチルアミン類は、フェニル基を有するものが好ましく、フェニル基に1価の炭化水素基を有するものが特に好ましい。1価の炭化水素基の炭素数は、4〜20が好ましく、6〜18がより好ましい。また、1価の炭化水素基はアルキル基が好ましい。
Examples of the amine antioxidant (D) used in the present invention include naphthylamines such as phenyl-α-naphthylamine and phenyl-β-naphthylamine, alkylated diphenylamines such as p, p′-dialkyldiphenylamine, and diphenyl-p-. Phenylenediamine, dipyridylamines, phenothiazines and the like are preferably used. Of these, naphthylamines and alkylated diphenylamines, which are highly oil-soluble and hardly generate sludge, are preferred, and alkylated diphenylamines are particularly preferred.
Naphthylamines preferably have a phenyl group, and those having a monovalent hydrocarbon group in the phenyl group are particularly preferred. 4-20 are preferable and, as for carbon number of a monovalent hydrocarbon group, 6-18 are more preferable. The monovalent hydrocarbon group is preferably an alkyl group.

アルキル化ジフェニルアミン類は、モノアルキル化ジフェニルアミン類、ジアルキル化ジフェニルアミン類、トリアルキル化ジフェニルアミン類、テトラアルキル化ジフェニルアミン類などが挙げられるが、ジアルキル化ジフェニルアミン類が好ましい。
また、アルキル化ジフェニルアミン類におけるアルキル基は、炭素数1〜20のアルキル基が好ましく、炭素数3〜14のアルキル基がより好ましく、炭素数4〜12のアルキル基が特に好ましい。
アミン系酸化防止剤は高温におけるラジカル連鎖反応を防止する効果を有し、それ自身の昇華性が低いため、他の酸化防止剤を使用した場合に比較して耐熱性を向上する効果がある。
Examples of the alkylated diphenylamines include monoalkylated diphenylamines, dialkylated diphenylamines, trialkylated diphenylamines, and tetraalkylated diphenylamines, with dialkylated diphenylamines being preferred.
The alkyl group in the alkylated diphenylamines is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 3 to 14 carbon atoms, and particularly preferably an alkyl group having 4 to 12 carbon atoms.
The amine-based antioxidant has an effect of preventing a radical chain reaction at a high temperature and has a low sublimation property. Therefore, the amine-based antioxidant has an effect of improving heat resistance as compared with the case of using another antioxidant.

これらのアミン系酸化防止剤は単独で用いてもよく、2種以上を組み合わせても良い。アミン系酸化防止剤の含有量は0.03〜0.75質量%であり、0.1〜0.6質量%が好ましい。アミン系酸化防止剤の含有量が0.03質量%未満では効果が小さく、0.75質量%より大きくても効果の向上は期待できないばかりか、長期間高温に曝された場合には酸化防止剤自身の劣化物の影響によりグリースが硬くなる傾向にある。 These amine antioxidants may be used alone or in combination of two or more. Content of amine antioxidant is 0.03-0.75 mass%, and 0.1-0.6 mass% is preferable. If the content of the amine antioxidant is less than 0.03% by mass, the effect is small, and if it is greater than 0.75% by mass, the effect cannot be expected. The grease tends to be hardened due to the influence of the deteriorated product itself.

本発明に用いられる(E)成分の耐熱性向上剤は、金属せっけん(C)及びアミン系酸化防止剤(D)と共に用いることで無機粉末充填剤を充填した熱伝導性グリースの耐熱性を格段に向上させることができる。
本発明に用いられる(E)成分の耐熱性向上剤は、一般式(1)〜(5)で表わされる構造をもつ化合物が挙げられる。


The heat resistance improver of the component (E) used in the present invention is remarkably improved in heat resistance of the heat conductive grease filled with the inorganic powder filler by using it together with the metal soap (C) and the amine-based antioxidant (D). Can be improved.
Examples of the heat resistance improver of the component (E) used in the present invention include compounds having a structure represented by the general formulas (1) to (5).


Figure 0005687167
Figure 0005687167

一般式(1)において、R、Rは、炭素数4〜10のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜8のターシャリータイプの炭化水素基である。
一般式(1)において、Rは炭素数1〜10の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基である。
乃至Rの炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
In the general formula (1), R 1 and R 2 are a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and more preferably a tertiary type hydrocarbon group having 4 to 8 carbon atoms.
In the general formula (1), R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, preferably a divalent hydrocarbon group having 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. These are divalent hydrocarbon groups.
It limitation on the kind of the hydrocarbon group R 1 to R 3 are not, but preferred are saturated hydrocarbon groups.

Figure 0005687167
Figure 0005687167

一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(2)において、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、好ましくは水素原子または炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(2)において、Rは炭素数1〜10の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基であり、特に好ましくは炭素数2〜5の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
In the general formula (2), R 4 and R 5 are a tertiary type hydrocarbon group having 4 to 10 carbon atoms, preferably a tertiary type hydrocarbon group having 4 to 8 carbon atoms, more preferably It is a tertiary type hydrocarbon group having 4 to 6 carbon atoms. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.
In the general formula (2), R 6 and R 7 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a tertiary type hydrocarbon group having 4 to 8 carbon atoms. More preferably a tertiary type hydrocarbon group having 4 to 6 carbon atoms. Moreover, in the case of a hydrocarbon group, there is no restriction | limiting in the kind, However, A saturated hydrocarbon group is preferable.
In the general formula (2), R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms, preferably a divalent hydrocarbon group having 1 to 8 carbon atoms, and more preferably 1 to 5 carbon atoms. The divalent hydrocarbon group is particularly preferably a divalent hydrocarbon group having 2 to 5 carbon atoms. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.

Figure 0005687167
Figure 0005687167

一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、ターシャリータイプの炭化水素基の場合は、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。R、R10、R11、R12、R13において、水素原子であるものの数は、2〜4個が好ましく、3〜4個がより好ましい。
一般式(3)において、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基であり、ターシャリータイプの炭化水素基の場合は、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。R14、R15、R16、R17、R18において、水素原子であるものの数は、2〜4個が好ましい。
In the general formula (3), R 9 , R 10 , R 11 , R 12 , R 13 are a hydrogen atom or a tertiary hydrocarbon group having 4 to 10 carbon atoms, and at least one of them has 4 to 10 is a tertiary type hydrocarbon group, and in the case of a tertiary type hydrocarbon group, it is preferably a tertiary type hydrocarbon group having 4 to 8 carbon atoms, more preferably 4 to 6 carbon atoms. This is a tertiary type hydrocarbon group. Moreover, in the case of a hydrocarbon group, there is no restriction | limiting in the kind, However, A saturated hydrocarbon group is preferable. In R 9 , R 10 , R 11 , R 12 , and R 13 , the number of hydrogen atoms is preferably 2 to 4, and more preferably 3 to 4.
In the general formula (3), R 14 , R 15 , R 16 , R 17 and R 18 are a hydrogen atom, a hydroxyl group or a tertiary hydrocarbon group having 4 to 10 carbon atoms, and at least one is a hydroxyl group. In the case of a tertiary type hydrocarbon group, it is preferably a tertiary type hydrocarbon group having 4 to 8 carbon atoms, and more preferably a tertiary type hydrocarbon group having 4 to 6 carbon atoms. Moreover, in the case of a hydrocarbon group, there is no restriction | limiting in the kind, However, A saturated hydrocarbon group is preferable. In R 14 , R 15 , R 16 , R 17 , R 18 , the number of hydrogen atoms is preferably 2 to 4.

Figure 0005687167
Figure 0005687167

一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(4)において、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、好ましくは両方とも水素原子である。R27、R28が1価の炭化水素基の場合は、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(4)において、R29は炭素数1〜12の2価の炭化水素基であり、好ましくは炭素数4〜10の2価の炭化水素基であり、更に好ましくは炭素数6〜10の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
In the general formula (4), R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 are monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably carbon atoms. A monovalent hydrocarbon group having 1 to 8 carbon atoms, more preferably a monovalent hydrocarbon group having 1 to 6 carbon atoms. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.
In the general formula (4), R 27 and R 28 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and at least one is a hydrogen atom, preferably both are hydrogen atoms. When R 27 and R 28 are monovalent hydrocarbon groups, they are preferably monovalent hydrocarbon groups having 1 to 8 carbon atoms, more preferably monovalent hydrocarbon groups having 1 to 6 carbon atoms. . Moreover, in the case of a hydrocarbon group, there is no restriction | limiting in the kind, However, A saturated hydrocarbon group is preferable.
In the general formula (4), R 29 is a divalent hydrocarbon group having 1 to 12 carbon atoms, preferably a divalent hydrocarbon group having 4 to 10 carbon atoms, and more preferably 6 to 10 carbon atoms. These are divalent hydrocarbon groups. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.

Figure 0005687167
Figure 0005687167

一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(5)において、R35、R36は炭素数1〜12の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(5)において、n=1〜20であり、好ましくはn=5〜18であり、より好ましくはn=8〜16である。
In the general formula (5), R 30 , R 31 , R 32 , R 33 , and R 34 are monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably monovalent hydrocarbons having 1 to 8 carbon atoms. Group, more preferably a monovalent hydrocarbon group having 1 to 6 carbon atoms. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.
In the general formula (5), R 35 and R 36 are a divalent hydrocarbon group having 1 to 12 carbon atoms, preferably a divalent hydrocarbon group having 1 to 8 carbon atoms, and more preferably a carbon number. 1 to 5 divalent hydrocarbon groups. Moreover, although there is no restriction | limiting in the kind of hydrocarbon group, A saturated hydrocarbon group is preferable.
In General formula (5), it is n = 1-20, Preferably it is n = 5-18, More preferably, it is n = 8-16.

(E)成分の耐熱性向上剤は、実施例において記載した熱伝導性グリースの高温放置試験におけるちょう度変化率が、±10%以下の耐熱性の効能を発揮するものが好ましい。その高温放置試験におけるちょう度変化率は、±9%以下がより好ましく、±8%以下がさらに好ましく、±7%以下が特に好ましい。
(E)成分の耐熱性向上剤として、一般式(1)〜(5)のいずれの化合物を用いても良いが、好ましくは一般式(2)〜(5)の化合物であり、より好ましくは一般式(2)、一般式(3)、および一般式(5)の化合物であり、更に好ましくは一般式(2)および一般式(5)の化合物であり、最も好ましくは一般式(5)の化合物である。
As the heat resistance improver of the component (E), those exhibiting a heat resistance effect having a consistency change rate of ± 10% or less in the high temperature standing test of the heat conductive grease described in the examples are preferable. The consistency change rate in the high temperature storage test is more preferably ± 9% or less, further preferably ± 8% or less, and particularly preferably ± 7% or less.
As the heat resistance improver for the component (E), any compound represented by the general formulas (1) to (5) may be used, but the compounds represented by the general formulas (2) to (5) are preferable, and more preferably. Compounds of general formula (2), general formula (3), and general formula (5), more preferably compounds of general formula (2) and general formula (5), most preferably general formula (5). It is a compound of this.

(E)成分の耐熱性向上剤の含有量は、0.001質量%〜1.0質量%であり、好ましくは0.005質量%〜1.0質量%であり、より好ましくは0.005質量%〜0.8質量%であり、更に好ましくは0.005質量%〜0.5質量%である。
(E)成分の耐熱性向上剤の含有量を上記範囲とすることで、熱伝導性グリースの耐熱性を向上することができる。この理由として、詳細は判っていないが、熱伝導性グリースの熱履歴により発生するラジカルを(E)成分が補足することが考えられる。
(E)成分の耐熱性向上剤の含有量は、液体成分の含有量に対して0.01質量%〜5質量%の割合であり、0.05質量%〜2質量%がより好ましい。(E)成分の液体成分に対する含有量が0.01質量%より少ないと、優れた耐熱性を得にくくなる、また、(E)成分の液体成分に対する含有量が5質量%を超えると、ちょう度が低くなり、良好な塗布性を得にくくなるため好ましくない。
(E) Content of the heat resistance improver of a component is 0.001 mass%-1.0 mass%, Preferably it is 0.005 mass%-1.0 mass%, More preferably, it is 0.005. It is from mass% to 0.8 mass%, more preferably from 0.005 mass% to 0.5 mass%.
By making content of the heat resistance improver of (E) component into the said range, the heat resistance of heat conductive grease can be improved. Although the details are not known, it is conceivable that the component (E) supplements radicals generated by the thermal history of the thermally conductive grease.
(E) Content of the heat resistance improver of a component is a ratio of 0.01 mass%-5 mass% with respect to content of a liquid component, and 0.05 mass%-2 mass% are more preferable. When the content of the component (E) with respect to the liquid component is less than 0.01% by mass, it becomes difficult to obtain excellent heat resistance, and when the content of the component (E) with respect to the liquid component exceeds 5% by mass, The degree is low, and it is difficult to obtain good coating properties.

また、本発明の熱伝導性グリースには必要に応じて、公知の添加剤を適宜配合することができる。これらとしては、例えば、2次酸化防止剤としてはサルファイド、ジサルファイド、トリサルファイド、チオビスフェノールなどのイオウ系酸化防止剤や、アルキルフォスファイト、ZnDTPなどのリン系酸化防止剤等、さび止め剤としてはスルホン酸塩、カルボン酸、カルボン酸塩、コハク酸エステル等、腐食防止剤としてはベンゾトリアゾールおよびその誘導体等の化合物、チアジアゾール系化合物が、増粘剤としてはポリブテン、ポリメタクリレート、オレフィンコポリマー、高粘度のポリアルファオレフィン等、増ちょう剤としてはウレア化合物、ナトリウムテレフタラメート、ポリテトラフルオロエチレン、有機化ベントナイト、シリカゲル、石油ワックス、ポリエチレンワックス等が挙げられる。これらの添加剤の配合量は、通常の配合量であればよい。   Moreover, a well-known additive can be suitably mix | blended with the heat conductive grease of this invention as needed. These include, for example, secondary antioxidants such as sulfur antioxidants such as sulfide, disulfide, trisulfide, and thiobisphenol, and phosphorus antioxidants such as alkyl phosphite and ZnDTP. Is sulfonate, carboxylic acid, carboxylate, succinate, etc., corrosion inhibitor is benzotriazole and its derivatives, thiadiazole compounds, thickener is polybutene, polymethacrylate, olefin copolymer, high Examples of thickeners such as polyalphaolefin having a viscosity include urea compounds, sodium terephthalate, polytetrafluoroethylene, organic bentonite, silica gel, petroleum wax, polyethylene wax and the like. The amount of these additives may be a normal amount.

本発明の高熱伝導性グリースの製造に関しては、均一に成分を混合できればその方法にはよらない。一般的な製造方法としては、乳鉢、プラネタリーミキサー、2軸式押出機などにより混練りを行い、グリース状にした後、さらに三本ロールにて均一に混練りする方法がある。   Regarding the production of the high thermal conductivity grease of the present invention, the method is not limited as long as the components can be mixed uniformly. As a general production method, there is a method of kneading with a mortar, a planetary mixer, a twin-screw extruder, or the like to form a grease and then uniformly kneading with three rolls.

以下、実施例により本発明を詳述するが、本発明はこれによって何ら限定されるものではない。
実施例及び比較例に用いた各成分について以下に示す。
(A−1)酸化亜鉛1 平均粒径:0.29μm(レーザー回折散乱法)
(A−2)酸化亜鉛2 平均粒径:0.6μm(レーザー回折散乱法)
(B−1)ポリ−アルファ−オレフィン(1−デセン−オリゴマー) 40℃動粘度:47mm/s
(B−2)ペンタエリスリトールと炭素数8及び10のモノカルボン酸とのエステル 40℃動粘度:32mm/s
(C)ステアリン酸亜鉛
(D)アミン系酸化防止剤 ジオクチルジフェニルアミン
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this.
It shows below about each component used for the Example and the comparative example.
(A-1) Zinc oxide 1 Average particle diameter: 0.29 μm (laser diffraction scattering method)
(A-2) Zinc oxide 2 Average particle diameter: 0.6 μm (laser diffraction scattering method)
(B-1) Poly-alpha-olefin (1-decene-oligomer) 40 ° C. kinematic viscosity: 47 mm 2 / s
(B-2) Ester of pentaerythritol and monocarboxylic acid having 8 and 10 carbon atoms 40 ° C. kinematic viscosity: 32 mm 2 / s
(C) Zinc stearate (D) amine-based antioxidant dioctyl diphenylamine

(E−1)1,2−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシナモリ)ヒドラジン
(一般式(1)におけるRとRはtert−ブチル基、Rはエチレン基である。)
(E−2)2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート
(一般式(2)におけるR、R、R、Rはtert−ペンチル基、Rはメチルメチレン基である。)
(E−3)2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート
(一般式(3)におけるR、R11、R15、R17はtert−ブチル基、R10、R12、R13、R14、R18は水素原子、R16は水酸基である。)
(E-1) 1,2-bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamori) hydrazine (R 1 and R 2 in the general formula (1) are tert-butyl groups, and R 3 is Ethylene group.)
(E-2) 2- [1- (2-Hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate (R 4 in the general formula (2), R 5 , R 6 and R 7 are tert-pentyl groups, and R 8 is a methylmethylene group.)
(E-3) 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (R 9 , R 11 , R 15 , R 17 in the general formula (3) are tert -Butyl group, R 10 , R 12 , R 13 , R 14 , R 18 are hydrogen atoms, and R 16 is a hydroxyl group.)

(E−4)4−tert−ブチルフェニルサリシレート
(一般式(3)におけるR11はtert−ブチル基、R、R10、R12、R13、R14、R15、R16、およびR17は水素原子、R18は水酸基である。)
(E−5)ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート
(一般式(4)におけるR19乃至R26のいずれもメチル基、R27とR28は水素原子、R29は−(CH−基である。)
(E−6)コハク酸ジメチルと1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジンの重縮合物
(一般式(5)におけるR30乃至R33のいずれもメチル基、R35とR36はエチレン基、R34はメチル基、n=14である。)
(E-4) 4-tert-butylphenyl salicylate (R 11 in the general formula (3) is a tert-butyl group, R 9 , R 10 , R 12 , R 13 , R 14 , R 15 , R 16 , and R 17 is a hydrogen atom, and R 18 is a hydroxyl group.)
(E-5) bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (R 19 to R 26 in the general formula (4) are all methyl groups, R 27 and R 28 are hydrogen atoms, R 29 is a — (CH 2 ) 8 — group.
(E-6) Polycondensate of dimethyl succinate and 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine (R 30 to R 33 in the general formula (5) (All are methyl groups, R 35 and R 36 are ethylene groups, R 34 is a methyl group, and n = 14.)

(E−7)2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート
(一般式(2)におけるR、Rはtert−ブチル基、R、Rはメチル基、Rはメチレン基である。)
(E−8)2,2,4,4−テトラヒドロキシベンゾフェノン
(E−9)ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート(一般式(4)におけるR19乃至R28のいずれもメチル基、R29は−(CH−基である。)とメチル(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートの混合物である。)
なお、表中の液体成分中の(E)の含有量の質量%とは、組成物中を構成する成分のうち、(A)無機粉末充填剤を除いた成分の合計を100とし、そのうちの(E)の占める割合を示したものである。
(E-7) 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (R 4 and R 7 in the general formula (2) are tert- (Butyl group, R 5 and R 6 are methyl groups, and R 8 is a methylene group.)
(E-8) 2,2,4,4-tetrahydroxybenzophenone (E-9) bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate (R 19 to R 19 in the general formula (4)) R 28 is a methyl group, and R 29 is a — (CH 2 ) 8 — group.) And methyl (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate. )
In addition, the mass% of the content of (E) in the liquid component in the table means that among the components constituting the composition, (A) the sum of the components excluding the inorganic powder filler is 100, of which The ratio of (E) is shown.

熱伝導性グリースの調製は、以下のように行った。
基油に酸化防止剤を溶解し、無機粉末充填剤、金属せっけん、および一般式(1)〜(5)で表わされる構造をもつ化合物の耐熱性向上剤とともにプラネタリーミキサーに入れた。120℃〜150℃程度に加熱しながら混練りを行いよく混合し、グリース状とした。その後、三本ロールによる混練りを1〜2回実施して熱伝導性グリースを調製した。
The heat conductive grease was prepared as follows.
The antioxidant was dissolved in the base oil and placed in a planetary mixer together with an inorganic powder filler, metal soap, and a compound having a structure represented by the general formulas (1) to (5). The mixture was kneaded while being heated to about 120 ° C. to 150 ° C. and mixed well to obtain a grease. Thereafter, kneading with three rolls was carried out once or twice to prepare a heat conductive grease.

得られた熱伝導性グリースを用いて、以下に示す性能を評価した。
ちょう度は、JIS−K2220に準拠して不混和ちょう度を測定した。ちょう度の値が大きいほど熱伝導性グリースが軟らかくなり、逆に小さいほど硬くなる。
熱伝導率は、京都電子工業(株)製迅速熱伝導率計QTM−500により室温にて測定した。
高温放置試験は、熱伝導性グリース0.25mlを鉄板に挟み、厚さ200μmに薄膜化し、180℃で240時間加熱することにより行った。試験前後のちょう度を簡易的に測定した。ここで、高温放置試験におけるちょう度変化率は以下の式により算出した。
The performance shown below was evaluated using the obtained heat conductive grease.
For the penetration, the immiscibility penetration was measured according to JIS-K2220. The greater the consistency value, the softer the heat conductive grease, and vice versa.
The thermal conductivity was measured at room temperature using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
The high temperature storage test was performed by sandwiching 0.25 ml of heat conductive grease between iron plates, forming a thin film with a thickness of 200 μm, and heating at 180 ° C. for 240 hours. The consistency before and after the test was simply measured. Here, the consistency change rate in the high temperature standing test was calculated by the following equation.

Figure 0005687167
ちょう度変化率の絶対値が小さい程、耐熱性が優れている。
Figure 0005687167
The smaller the absolute value of the consistency change rate, the better the heat resistance.

Figure 0005687167
Figure 0005687167


Figure 0005687167
Figure 0005687167




Figure 0005687167
Figure 0005687167





Figure 0005687167
Figure 0005687167

表1〜3から分かるように、実施例1〜13は、200以上の高いちょう度を持ちながら、180℃×240時間の高温放置試験後もちょう度変化が非常に少なく、耐熱性が格段に優れている。
一方、一般式(1)〜(5)で表わされる構造をもつ化合物を含まない比較例1〜4は、180℃×240時間の高温放置試験後のちょう度変化が大きく、耐熱性が劣る。
本発明の耐熱型熱伝導性グリースは、熱対策の必要な電子部品の放熱性を向上でき、特にCPU、パワー半導体、LEDの放熱材料として好適である。
As can be seen from Tables 1 to 3, Examples 1 to 13 have a very high consistency of 200 or more, and have very little change in consistency after a high-temperature standing test at 180 ° C. × 240 hours. Are better.
On the other hand, Comparative Examples 1 to 4, which do not contain the compounds having the structures represented by the general formulas (1) to (5), have a large change in consistency after a high-temperature standing test at 180 ° C. × 240 hours, and are inferior in heat resistance.
The heat-resistant thermal conductive grease of the present invention can improve the heat dissipation of electronic components that require heat countermeasures, and is particularly suitable as a heat dissipation material for CPUs, power semiconductors, and LEDs.

本発明の耐熱型熱伝導性グリースは、熱対策の必要な電子部品の放熱性を向上でき、特にCPU、パワー半導体、LEDの放熱材料として好適である。
The heat-resistant thermal conductive grease of the present invention can improve the heat dissipation of electronic components that require heat countermeasures, and is particularly suitable as a heat dissipation material for CPUs, power semiconductors, and LEDs.

Claims (3)

一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の無機粉末充填剤を充填した熱伝導性グリース用耐熱性向上剤。
Figure 0005687167
(一般式(1)において、R、Rは、炭素数4〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基である。)
Figure 0005687167
(一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、R29は炭素数1〜12の2価の炭化水素基である。)
Figure 0005687167
(一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、R35、R36は炭素数1〜12の2価の炭化水素基であり、nは1〜20である。)
A heat resistance improver for thermally conductive grease filled with one or more inorganic powder fillers selected from compounds having a structure represented by general formulas (1) to (5).
Figure 0005687167
(In General Formula (1), R 1 and R 2 are monovalent hydrocarbon groups having 4 to 10 carbon atoms, and R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)
Figure 0005687167
(In General Formula (2), R 4 and R 5 are tertiary type hydrocarbon groups having 4 to 10 carbon atoms, and R 6 and R 7 are hydrogen atoms or monovalent hydrocarbons having 1 to 10 carbon atoms. And R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)
Figure 0005687167
(In General Formula (3), R 9 , R 10 , R 11 , R 12 , and R 13 are a hydrogen atom or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and at least one of them has 4 carbon atoms. 10 is a tertiary type hydrocarbon group, R 14 , R 15 , R 16 , R 17 , R 18 are a hydrogen atom, a hydroxyl group or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and At least one is a hydroxyl group.)
Figure 0005687167
(In General formula (4), R <19> , R <20> , R <21> , R <22> , R <23> , R < 24 >, R < 25 >, R < 26 > is a C1-C10 monovalent hydrocarbon group, R <27> , R 28 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and at least one is a hydrogen atom, and R 29 is a divalent hydrocarbon group having 1 to 12 carbon atoms.)
Figure 0005687167
(In the general formula (5), R 30, R 31, R 32, R 33, R 34 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 35, R 36 is from 1 to 12 carbon atoms (It is a divalent hydrocarbon group, and n is 1-20.)
(A)無機粉末充填剤を70〜97質量%、
(B)基油を2〜28質量%、
(C)2価以上の金属イオンと有機酸とからなる金属せっけんを0.001〜3質量%、
(D)アミン系酸化防止剤を0.03〜0.75質量%、
(E)前記一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の耐熱性向上剤を0.001〜1.0質量%の割合で含有することを特徴とする熱伝導性グリース。
Figure 0005687167
(一般式(1)において、R 、R は、炭素数4〜10の1価の炭化水素基であり、R は炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(一般式(2)において、R 、R は炭素数4〜10のターシャリータイプの炭化水素基であり、R 、R は水素原子または炭素数1〜10の1価の炭化水素基であり、R は炭素数1〜10の2価の炭化水素基である。)
Figure 0005687167
(一般式(3)において、R 、R 10 、R 11 、R 12 、R 13 は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、R 14 、R 15 、R 16 、R 17 、R 18 は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基である。)
Figure 0005687167
(一般式(4)において、R 19 、R 20 、R 21 、R 22 、R 23 、R 24 、R 25 、R 26 は炭素数1〜10の1価の炭化水素基であり、R 27 、R 28 は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、R 29 は炭素数1〜12の2価の炭化水素基である。)
Figure 0005687167
(一般式(5)において、R 30 、R 31 、R 32 、R 33 、R 34 は炭素数1〜10の1価の炭化水素基であり、R 35 、R 36 は炭素数1〜12の2価の炭化水素基であり、nは1〜20である。)
(A) 70 to 97% by mass of inorganic powder filler,
(B) 2 to 28 % by mass of base oil,
(C) 0.001 to 3% by mass of metal soap composed of a divalent or higher metal ion and an organic acid,
(D) 0.03 to 0.75% by mass of an amine-based antioxidant,
(E) It contains one or more heat resistance improvers selected from compounds having the structures represented by the general formulas (1) to (5) in a proportion of 0.001 to 1.0% by mass. Heat conductive grease.
Figure 0005687167
(In General Formula (1), R 1 and R 2 are monovalent hydrocarbon groups having 4 to 10 carbon atoms, and R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)
Figure 0005687167
(In General Formula (2), R 4 and R 5 are tertiary type hydrocarbon groups having 4 to 10 carbon atoms, and R 6 and R 7 are hydrogen atoms or monovalent hydrocarbons having 1 to 10 carbon atoms. And R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms.)
Figure 0005687167
(In General Formula (3), R 9 , R 10 , R 11 , R 12 , and R 13 are a hydrogen atom or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and at least one of them has 4 carbon atoms. 10 is a tertiary type hydrocarbon group, R 14 , R 15 , R 16 , R 17 , R 18 are a hydrogen atom, a hydroxyl group or a tertiary type hydrocarbon group having 4 to 10 carbon atoms, and At least one is a hydroxyl group.)
Figure 0005687167
(In the general formula (4), R 19, R 20, R 21, R 22, R 23, R 24, R 25, R 26 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 27, R 28 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and at least one is a hydrogen atom, and R 29 is a divalent hydrocarbon group having 1 to 12 carbon atoms.)
Figure 0005687167
(In the general formula (5), R 30, R 31, R 32, R 33, R 34 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 35, R 36 is from 1 to 12 carbon atoms (It is a divalent hydrocarbon group, and n is 1-20.)
(B)成分の基油に含まれるポリアルファオレフィンの割合が5〜100質量%である請求項2に記載の熱伝導性グリース。 The thermally conductive grease according to claim 2, wherein the proportion of the polyalphaolefin contained in the base oil of component (B) is 5 to 100% by mass.
JP2011211554A 2011-09-27 2011-09-27 Heat-resistant thermal grease Active JP5687167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211554A JP5687167B2 (en) 2011-09-27 2011-09-27 Heat-resistant thermal grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211554A JP5687167B2 (en) 2011-09-27 2011-09-27 Heat-resistant thermal grease

Publications (2)

Publication Number Publication Date
JP2013071990A JP2013071990A (en) 2013-04-22
JP5687167B2 true JP5687167B2 (en) 2015-03-18

Family

ID=48476755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211554A Active JP5687167B2 (en) 2011-09-27 2011-09-27 Heat-resistant thermal grease

Country Status (1)

Country Link
JP (1) JP5687167B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278872B2 (en) * 2014-09-25 2018-02-14 株式会社Adeka Lubricating oil additive composition and lubricating oil composition containing the same
JP6870576B2 (en) * 2017-10-30 2021-05-12 住友金属鉱山株式会社 Thermally conductive grease
JP7073939B2 (en) * 2018-06-26 2022-05-24 住友金属鉱山株式会社 Thermally conductive grease
JP7095194B1 (en) * 2020-09-11 2022-07-04 富士高分子工業株式会社 Thermally conductive grease and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006132253A1 (en) * 2005-06-07 2009-01-08 ニホンハンダ株式会社 Thermally conductive oil composition, heat dissipation agent and electronic device
JP2007077244A (en) * 2005-09-13 2007-03-29 Nsk Ltd Grease composition and rolling bearing
JP5269366B2 (en) * 2007-08-22 2013-08-21 コスモ石油ルブリカンツ株式会社 Heat-resistant thermal grease

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10428257B2 (en) 2014-07-07 2019-10-01 Honeywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Also Published As

Publication number Publication date
JP2013071990A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5687167B2 (en) Heat-resistant thermal grease
JP5269366B2 (en) Heat-resistant thermal grease
JP5944306B2 (en) High thermal conductive grease
JP5489409B2 (en) High thermal conductivity compound
JP5577553B2 (en) Heat dissipation compound composition
JP6263042B2 (en) Thermally conductive grease with base oil diffusion prevention performance
JP4652085B2 (en) High thermal conductivity compound
JP5318733B2 (en) Thermally conductive grease
JP7155661B2 (en) thermal grease
JP4667882B2 (en) High thermal conductivity compound
JP7379940B2 (en) thermally conductive composition
JP5781407B2 (en) Thermally conductive compound
JP2022030766A (en) Thermally conductive grease
JP2021080316A (en) Thermally conductive composition
JP4841341B2 (en) High thermal conductivity compound
JP7073939B2 (en) Thermally conductive grease
JP7379939B2 (en) thermally conductive composition
JP7275797B2 (en) Thermally conductive base oil-containing composition
JP2021130772A (en) Thermally conductive grease
JP6848816B2 (en) Thermal conductivity grease
JP2023166735A (en) Heat-conductive grease, and production method of heat-conductive grease
JP2022119422A (en) Thermally conductive grease
JP7110759B2 (en) thermal grease
JP2022183767A (en) Thermally conductive composition
JP2021008548A (en) Thermal conductivity composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5687167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250