JP2021104912A - Single crystal production apparatus - Google Patents

Single crystal production apparatus Download PDF

Info

Publication number
JP2021104912A
JP2021104912A JP2019236891A JP2019236891A JP2021104912A JP 2021104912 A JP2021104912 A JP 2021104912A JP 2019236891 A JP2019236891 A JP 2019236891A JP 2019236891 A JP2019236891 A JP 2019236891A JP 2021104912 A JP2021104912 A JP 2021104912A
Authority
JP
Japan
Prior art keywords
crucible
equalizing member
single crystal
heat equalizing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019236891A
Other languages
Japanese (ja)
Other versions
JP7351219B2 (en
Inventor
幸雄 永畑
Yukio Nagahata
幸雄 永畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019236891A priority Critical patent/JP7351219B2/en
Publication of JP2021104912A publication Critical patent/JP2021104912A/en
Application granted granted Critical
Publication of JP7351219B2 publication Critical patent/JP7351219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a single crystal production apparatus that can efficiently heat the raw material stored in a crucible.SOLUTION: A single crystal production apparatus 100 has a crucible 1 that can store raw material M on an inner bottom 3 and allows seed crystal SD to be installed on a lid 2, and heating means H surrounding the crucible 1. The crucible 1 has a soaking member 5 that erects from the inner bottom 3 to the seed crystal SD, and the soaking member 5 has a core rod 51 and an outer shell 52 that covers the core rod 51.SELECTED DRAWING: Figure 1

Description

本発明は、単結晶製造装置に関する。 The present invention relates to a single crystal manufacturing apparatus.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きく、熱伝導率が3倍程度高い等の特性を有する。炭化珪素はこれらの特性を有することから、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。 Silicon carbide (SiC) has characteristics such as a dielectric breakdown electric field that is an order of magnitude larger, a band gap that is three times larger, and a thermal conductivity that is about three times higher than that of silicon (Si). Since silicon carbide has these characteristics, it is expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like.

炭化珪素には、化学量論的には同じ組成でありながら、原子の積層の周期が(C軸方向にのみ)異なる多くの結晶多形(ポリタイプ)が存在する。代表的なポリタイプは、3C、4H、6Hなどであるが、特に4H−SiC単結晶はバンドギャップと飽和電子速度の特性が良いことなどから、光デバイスや電子デバイスの中心的な基板材料となっている。 Silicon carbide has many polymorphs (polytypes) that have the same stoichiometric composition but different atomic stacking periods (only in the C-axis direction). Typical polytypes are 3C, 4H, 6H, etc., but 4H-SiC single crystals have good bandgap and saturated electron velocity characteristics, so they can be used as the main substrate material for optical devices and electronic devices. It has become.

SiC単結晶を製造する方法の一つとして、昇華法が広く知られている。昇華法では、黒鉛製の坩堝内に配置した台座にSiC単結晶からなる種結晶を配置する。その後、坩堝を加熱することで坩堝内の原料粉末から昇華した昇華ガスを種結晶に供給し、種結晶をより大きなSiC単結晶へ成長させる。昇華法では、高品質なSiC単結晶を、効率的に結晶成長させることが求められている。 The sublimation method is widely known as one of the methods for producing a SiC single crystal. In the sublimation method, a seed crystal composed of a SiC single crystal is placed on a pedestal placed in a graphite crucible. Then, by heating the crucible, the sublimation gas sublimated from the raw material powder in the crucible is supplied to the seed crystal, and the seed crystal is grown into a larger SiC single crystal. In the sublimation method, it is required to efficiently grow a high-quality SiC single crystal.

例えば、特許文献1には、坩堝の台座に種結晶を貼付け、台座と対向する位置にSiC原料を配置し、SiC原料を昇華させることで、種結晶上にSiC単結晶を成長させる方法が記載されている。 For example, Patent Document 1 describes a method of growing a SiC single crystal on a seed crystal by attaching a seed crystal to a pedestal of a crucible, arranging a SiC raw material at a position facing the pedestal, and sublimating the SiC raw material. Has been done.

特許文献2には、坩堝の上側に種結晶を設置し、坩堝の底面に棒状の熱伝導体を設置する炭化珪素単結晶成長装置容器が記載されている。特許文献2には、坩堝の底面に棒状の熱伝導体を設置することで、坩堝の中心部に熱が伝導されるので、坩堝の内側壁付近の原材料が昇華すると同時に、中心部にある原材料も昇華すると記載されている。 Patent Document 2 describes a silicon carbide single crystal growth apparatus container in which a seed crystal is placed on the upper side of the crucible and a rod-shaped thermal conductor is placed on the bottom surface of the crucible. In Patent Document 2, by installing a rod-shaped heat conductor on the bottom surface of the crucible, heat is conducted to the center of the crucible, so that the raw material near the inner wall of the crucible is sublimated and at the same time, the raw material in the center is sublimated. Is also stated to sublimate.

特許第4450118号公報Japanese Patent No. 4450118 特開平5−58774号公報Japanese Unexamined Patent Publication No. 5-587774

しかしながら、特許文献1に記載の方法では、坩堝の外周を覆うように加熱手段が配置される。そのため、坩堝の壁付近が高温となりやすく、坩堝の中心部が低温の温度分布になりやすい。この温度分布により、高温に加熱される坩堝の壁付近で生じた昇華ガスが低温の中心部で結晶化してしまう場合がある。すなわち、特に坩堝の中心付近での原料の有効活用が困難だった。 However, in the method described in Patent Document 1, the heating means is arranged so as to cover the outer periphery of the crucible. Therefore, the temperature near the wall of the crucible tends to be high, and the temperature distribution in the center of the crucible tends to be low. Due to this temperature distribution, the sublimation gas generated near the wall of the crucible heated to a high temperature may crystallize in the center of the low temperature. That is, it was difficult to make effective use of raw materials, especially near the center of the crucible.

また、特許文献2に記載の方法では、坩堝の内底部に設置された熱伝導体を介して、原料の熱が成長空間や坩堝に逃げてしまう。そのため、坩堝に収容された原料が低温になる場合があり、熱伝導体の付近に収容された原料に十分熱を伝えられない場合があった。特に、6インチ以上の大口径・長尺のSiC単結晶を成長するために使用する、大型の坩堝では、原料に十分に熱を伝えられない場合があった。そのため、昇華法において、坩堝に収容された原料の熱を逃がすことなく、坩堝の中心付近に収容された原料を効率的に加熱する方法が検討されている。 Further, in the method described in Patent Document 2, the heat of the raw material escapes to the growth space or the crucible through the heat conductor installed at the inner bottom of the crucible. Therefore, the raw material stored in the crucible may become cold, and the heat may not be sufficiently transferred to the raw material stored in the vicinity of the heat conductor. In particular, in a large crucible used for growing a large-diameter / long-length SiC single crystal of 6 inches or more, heat may not be sufficiently transferred to the raw material. Therefore, in the sublimation method, a method of efficiently heating the raw material stored in the vicinity of the center of the crucible without dissipating the heat of the raw material stored in the crucible is being studied.

本発明は、上記問題を鑑みてなされたものであり、坩堝に収容された原料を効率的に加熱することができる単結晶製造装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a single crystal manufacturing apparatus capable of efficiently heating raw materials contained in a crucible.

本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means for solving the above problems.

(1)本発明の第一の態様に係る単結晶製造装置は、内底部に原料を収容でき、蓋に種結晶を設置できる坩堝と、前記坩堝を囲む加熱手段と、を備え、前記坩堝は、前記内底部から前記種結晶に向って起立する均熱部材を有し、前記均熱部材は、芯棒と、前記芯棒を覆う外殻と、を備え、前記芯棒は、断熱材である。 (1) The single crystal manufacturing apparatus according to the first aspect of the present invention includes a crucible capable of accommodating a raw material in an inner bottom portion and a seed crystal can be placed on a lid, and a heating means surrounding the crucible. The heat equalizing member has a heat equalizing member that rises from the inner bottom portion toward the seed crystal, and the heat equalizing member includes a core rod and an outer shell that covers the core rod, and the core rod is made of a heat insulating material. be.

(2)上記態様に係る単結晶製造装置において、前記均熱部材の外径は、前記坩堝の内径の0.2倍以上0.7倍以下であってもよい。 (2) In the single crystal manufacturing apparatus according to the above aspect, the outer diameter of the heat equalizing member may be 0.2 times or more and 0.7 times or less the inner diameter of the crucible.

(3)上記態様に係る単結晶製造装置において、前記芯棒の外径は、前記均熱部材の外径の0.5倍以上0.95倍以下であってもよい。 (3) In the single crystal manufacturing apparatus according to the above aspect, the outer diameter of the core rod may be 0.5 times or more and 0.95 times or less the outer diameter of the heat equalizing member.

(4)上記態様に係る単結晶製造装置において、前記外殻は黒鉛からなっていてもよい。 (4) In the single crystal manufacturing apparatus according to the above aspect, the outer shell may be made of graphite.

(5)上記態様に係る単結晶製造装置において、前記外殻の厚さは2.5mm以上であってもよい。 (5) In the single crystal manufacturing apparatus according to the above aspect, the thickness of the outer shell may be 2.5 mm or more.

(6)上記態様に係る単結晶製造装置において、前記均熱部材は、前記内底部と平行で、径方向に広がる平行面を有し、前記均熱部材は、前記平行面を介して内底部に固定されてもよい。 (6) In the single crystal manufacturing apparatus according to the above aspect, the heat equalizing member has a parallel surface parallel to the inner bottom portion and spreading in the radial direction, and the heat equalizing member has an inner bottom portion via the parallel surface. It may be fixed to.

本発明の単結晶製造装置によれば、坩堝に収容された原料を効率的に加熱することができる。 According to the single crystal manufacturing apparatus of the present invention, the raw material contained in the crucible can be efficiently heated.

本発明の一実施形態に係る単結晶製造装置の断面模式図である。It is sectional drawing of the single crystal manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る単結晶製造装置の断面模式図である。It is sectional drawing of the single crystal manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る単結晶製造装置に用いられる均熱部材の変形例に係る断面模式図である。It is sectional drawing which concerns on the modification of the heat equalizing member used in the single crystal manufacturing apparatus which concerns on one Embodiment of this invention.

以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、数、配置、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components may differ from the actual ones. be. The materials, numbers, arrangements, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the present invention are exhibited. Is.

[単結晶製造装置]
図1は、第1実施形態にかかる単結晶製造装置100の構成を概略的に示す断面模式図である。単結晶製造装置100は、例えば坩堝1と、坩堝1を覆う断熱材4と、断熱材4を囲む加熱手段Hと、を備える。本実施形態に係る単結晶製造装置100は、加熱手段Hにより坩堝1を加熱し、昇華法によりSiC単結晶を成長する際に用いられる。図1では、単結晶製造装置100を用いてSiC単結晶Sを成長する様子を示している。図1では理解を容易にするために、原料M、種結晶SDを同時に図示している。
[Single crystal manufacturing equipment]
FIG. 1 is a schematic cross-sectional view schematically showing the configuration of the single crystal manufacturing apparatus 100 according to the first embodiment. The single crystal manufacturing apparatus 100 includes, for example, a crucible 1, a heat insulating material 4 that covers the crucible 1, and a heating means H that surrounds the heat insulating material 4. The single crystal manufacturing apparatus 100 according to the present embodiment is used when the crucible 1 is heated by the heating means H and the SiC single crystal is grown by the sublimation method. FIG. 1 shows how a SiC single crystal S is grown using the single crystal manufacturing apparatus 100. In FIG. 1, the raw material M and the seed crystal SD are shown at the same time for easy understanding.

まず、方向について定義する。坩堝1において、内底部3から蓋2へ向かう方向をz方向(第1方向)とする。z方向に対して垂直で、坩堝1の中心から拡がる方向を径方向とする。 First, the direction is defined. In the crucible 1, the direction from the inner bottom portion 3 to the lid 2 is defined as the z direction (first direction). The direction perpendicular to the z direction and extending from the center of the crucible 1 is the radial direction.

坩堝1は、例えば円柱形の部材である。坩堝1は、蓋2と内底部3とを有する。蓋2は、坩堝1から分離可能であってもよい。 The crucible 1 is, for example, a cylindrical member. The crucible 1 has a lid 2 and an inner bottom portion 3. The lid 2 may be separable from the crucible 1.

蓋2は、種結晶SDを設置するための台座2aを有する。台座2aは、例えば円柱形の部材である。台座2aには、種結晶SDが設置される。種結晶SDは、SiC単結晶からなる。 The lid 2 has a pedestal 2a for installing the seed crystal SD. The pedestal 2a is, for example, a cylindrical member. A seed crystal SD is installed on the pedestal 2a. The seed crystal SD is composed of a SiC single crystal.

内底部3は、坩堝1の底面である。蓋2と内底部3とは、対向する位置に配置されている。内底部3にはSiC単結晶Sを成長するための原料Mが収容される。内底部3には、均熱部材5が設置される。z方向から平面視して、原料Mと均熱部材5とは重ならないように配置されていることが好ましい。すなわち均熱部材5が原料Mよりz方向において高くなるように配置されていることが好ましい。 The inner bottom portion 3 is the bottom surface of the crucible 1. The lid 2 and the inner bottom portion 3 are arranged at opposite positions. The raw material M for growing the SiC single crystal S is housed in the inner bottom portion 3. A heat equalizing member 5 is installed on the inner bottom portion 3. It is preferable that the raw material M and the heat equalizing member 5 are arranged so as not to overlap each other in a plan view from the z direction. That is, it is preferable that the heat equalizing member 5 is arranged so as to be higher in the z direction than the raw material M.

均熱部材5は、z方向に起立する。すなわち均熱部材5は、台座2aおよび種結晶SDに向けて起立する。均熱部材5は、例えば円柱形の部材である。均熱部材5は、芯棒51と外殻52とを備える。外殻52は、例えば黒鉛からなり、芯棒51を覆う。図1中には、説明の便宜上、芯棒51の外径w1、均熱部材5の外径w2、坩堝1の内径w3、外殻52の厚さTが示されている。 The heat equalizing member 5 stands up in the z direction. That is, the heat equalizing member 5 stands up toward the pedestal 2a and the seed crystal SD. The heat equalizing member 5 is, for example, a cylindrical member. The heat equalizing member 5 includes a core rod 51 and an outer shell 52. The outer shell 52 is made of graphite, for example, and covers the core rod 51. In FIG. 1, for convenience of explanation, the outer diameter w1 of the core rod 51, the outer diameter w2 of the heat equalizing member 5, the inner diameter w3 of the crucible 1, and the thickness T of the outer shell 52 are shown.

均熱部材5は、例えばねじ込みやかしめ等で内底部3に固定される。均熱部材5の高さは、例えば、坩堝1の高さの0.4倍である。均熱部材5の高さは、内底部3に収容する原料Mよりもz方向における高さが高いことが好ましい。すなわち、均熱部材5の一部は、原料Mの表面からz方向に突出することが好ましい。均熱部材の5の一部が、原料Mの表面から突出することで、均熱部材5が輻射を受けやすくなる。 The heat equalizing member 5 is fixed to the inner bottom portion 3 by, for example, screwing or caulking. The height of the heat equalizing member 5 is, for example, 0.4 times the height of the crucible 1. The height of the heat equalizing member 5 is preferably higher in the z direction than the raw material M housed in the inner bottom portion 3. That is, it is preferable that a part of the heat equalizing member 5 projects in the z direction from the surface of the raw material M. Since a part of the heat equalizing member 5 protrudes from the surface of the raw material M, the heat equalizing member 5 is easily radiated.

均熱部材5の外径w2は、坩堝1の内径w3の例えば0.2倍以上0.7倍以下であり、好ましくは0.3倍以上0.6倍以下であり、より好ましくは0.35倍以上0.5倍以下である。均熱部材の外径w2が坩堝の内径w3の0.3倍以上であると、坩堝1の平面視中心付近に配置される原料Mの温度を一層向上でき、収容する原料Mを効率的に昇華できる。また、均熱部材の外径w2が坩堝の内径w3の0.7倍以下であると、長尺なSiC単結晶Sを成長するために十分な量の原料Mを収容できる。 The outer diameter w2 of the heat equalizing member 5 is, for example, 0.2 times or more and 0.7 times or less, preferably 0.3 times or more and 0.6 times or less, and more preferably 0. It is 35 times or more and 0.5 times or less. When the outer diameter w2 of the heat equalizing member is 0.3 times or more the inner diameter w3 of the crucible, the temperature of the raw material M arranged near the center of the crucible 1 in a plan view can be further improved, and the raw material M to be accommodated can be efficiently stored. Can be sublimated. Further, when the outer diameter w2 of the heat equalizing member is 0.7 times or less the inner diameter w3 of the crucible, a sufficient amount of the raw material M can be accommodated for growing the long SiC single crystal S.

芯棒51は、原料Mの熱を断熱する断熱材である。芯棒51は、例えば2000℃以上の高温で熱伝導率が1.0W/mK以下の断熱材を用いる。具体的には、芯棒51としては、黒鉛フェルトや黒鉛フェルトを固め成型した断熱材(成形断熱材)等を用いることができる。 The core rod 51 is a heat insulating material that insulates the heat of the raw material M. For the core rod 51, for example, a heat insulating material having a thermal conductivity of 1.0 W / mK or less at a high temperature of 2000 ° C. or higher is used. Specifically, as the core rod 51, graphite felt, a heat insulating material obtained by solidifying and molding graphite felt (molded heat insulating material) or the like can be used.

外殻52の厚さTは、均熱部材5の外径w2の、例えば0.025倍以上0.25倍以下であり、0.05倍以上0.15倍以下であることがより好ましい。すなわち、芯棒の外径w1は、例えば均熱部材5の外径w2の0.5倍以上0.95倍以下であり、0.7倍以上0.9倍以下であることがより好ましい。芯棒51の外径w1が均熱部材5の外径w2の0.5倍以上であると、より断熱効果を向上することができ、収容する原料Mを効率的に昇華できる。また、芯棒51の外径w1が均熱部材5の外径w2の0.95倍以下であると、外殻52内に昇華ガスが浸透することによる断熱効果の低下を抑制し、原料Mを効率的に昇華できる。また、芯棒51の交換の頻度を減らすことができ、スループットが向上する。 The thickness T of the outer shell 52 is, for example, 0.025 times or more and 0.25 times or less, and more preferably 0.05 times or more and 0.15 times or less of the outer diameter w2 of the heat equalizing member 5. That is, the outer diameter w1 of the core rod is, for example, 0.5 times or more and 0.95 times or less, and more preferably 0.7 times or more and 0.9 times or less the outer diameter w2 of the heat equalizing member 5. When the outer diameter w1 of the core rod 51 is 0.5 times or more the outer diameter w2 of the heat equalizing member 5, the heat insulating effect can be further improved, and the raw material M to be accommodated can be efficiently sublimated. Further, when the outer diameter w1 of the core rod 51 is 0.95 times or less of the outer diameter w2 of the heat equalizing member 5, the deterioration of the heat insulating effect due to the permeation of the sublimation gas into the outer shell 52 is suppressed, and the raw material M Can be sublimated efficiently. In addition, the frequency of replacement of the core rod 51 can be reduced, and the throughput is improved.

さらに、外殻52の厚さTは、2.5mm以上が好ましく、4mm以上であることがより好ましい。外殻52の厚さTが2.5mm以上であると、外殻52内に昇華ガスが浸透することによる断熱効果の低下を抑制し、原料Mを効率的に昇華できる。また、外殻52の厚さTは、均熱部材5の外径w2の0.25倍以下であることが好ましい。 Further, the thickness T of the outer shell 52 is preferably 2.5 mm or more, and more preferably 4 mm or more. When the thickness T of the outer shell 52 is 2.5 mm or more, it is possible to suppress a decrease in the heat insulating effect due to the permeation of the sublimation gas into the outer shell 52 and efficiently sublimate the raw material M. Further, the thickness T of the outer shell 52 is preferably 0.25 times or less the outer diameter w2 of the heat equalizing member 5.

加熱手段Hは、例えば高周波コイルである。この場合、加熱手段Hに高周波電流を流すことにより磁界を発生させて電磁誘導によって坩堝1を発熱させることができる。加熱手段Hの構成は、これに限られず、坩堝1と断熱材4との間に発熱体を設け、間接加熱方式にて坩堝1を加熱する構成であってもよい。 The heating means H is, for example, a high frequency coil. In this case, a magnetic field can be generated by passing a high-frequency current through the heating means H, and the crucible 1 can be heated by electromagnetic induction. The structure of the heating means H is not limited to this, and a heat generating body may be provided between the crucible 1 and the heat insulating material 4 to heat the crucible 1 by an indirect heating method.

断熱材4は、坩堝1を覆うように配置されている。断熱材4は、坩堝1に密接して配置されることが好ましい。断熱材は、坩堝1を安定的に高温状態に維持するために配置される。断熱材4は、坩堝1を必要な程度に安定的に高温状態に維持するよう、適宜、厚さや熱伝導率を調整した材料を用いることができ、例えば、黒鉛フェルト、成形断熱材などを用いることができる。また、単結晶製造装置100では、断熱材4および断熱材を備える芯棒51で挟まれる領域に原料Mが収容されるため、原料Mの熱は一層逃げにくい。 The heat insulating material 4 is arranged so as to cover the crucible 1. The heat insulating material 4 is preferably arranged in close contact with the crucible 1. The heat insulating material is arranged to stably maintain the crucible 1 in a high temperature state. As the heat insulating material 4, a material whose thickness and thermal conductivity are appropriately adjusted so that the crucible 1 can be stably maintained at a high temperature to a required degree can be used. For example, graphite felt, a molded heat insulating material, or the like is used. be able to. Further, in the single crystal manufacturing apparatus 100, since the raw material M is housed in the region sandwiched between the heat insulating material 4 and the core rod 51 provided with the heat insulating material, the heat of the raw material M is more difficult to escape.

第1実施形態に係る単結晶製造装置100によれば、低温となりやすい坩堝1の中心付近には原料Mを収容しない。そのため、中心付近での原料の結晶化を抑制できる。また、坩堝1の中心付近には、断熱材を備える均熱部材5が配置されている。そのため、原料Mの熱が均熱部材5に伝わることを抑制できる。また、均熱部材5に伝わった熱が成長空間Rに逃げることを抑制できる。従って、原料Mに加えられた熱が原料Mの外へ伝わることを抑制し、坩堝1に収容された原料Mを効率的に加熱することができる。 According to the single crystal manufacturing apparatus 100 according to the first embodiment, the raw material M is not accommodated in the vicinity of the center of the crucible 1 which tends to have a low temperature. Therefore, crystallization of the raw material near the center can be suppressed. Further, a heat equalizing member 5 provided with a heat insulating material is arranged near the center of the crucible 1. Therefore, it is possible to suppress the heat of the raw material M from being transferred to the heat equalizing member 5. Further, it is possible to prevent the heat transferred to the heat equalizing member 5 from escaping to the growth space R. Therefore, it is possible to suppress the heat applied to the raw material M from being transferred to the outside of the raw material M, and to efficiently heat the raw material M housed in the crucible 1.

均熱部材5は、例えば、坩堝1の平面視中心に配置される。図1では、均熱部材5が坩堝1の平面視中心に1つだけ配置されている例を示したが、本実施形態に係るSiC単結晶製造装置は、この例に限定されない。例えば、成長させるSiC単結晶の大きさに合わせて複数の均熱部材5を、坩堝1の平面視中心に対して対称に配置してもよい。 The heat equalizing member 5 is arranged at the center of the crucible 1 in a plan view, for example. Although FIG. 1 shows an example in which only one heat equalizing member 5 is arranged at the center of the crucible 1 in a plan view, the SiC single crystal manufacturing apparatus according to the present embodiment is not limited to this example. For example, a plurality of heat equalizing members 5 may be arranged symmetrically with respect to the center of the crucible 1 in a plan view according to the size of the SiC single crystal to be grown.

図1では、坩堝1の外側全体を1つの断熱材4を覆う構成を例示したが、本実施形態はこの例に限定されない。例えば、断熱材が蓋2を覆う部分と蓋2以外を覆う部分とに分離していてもよい。また、断熱材4の何れかの位置に開口が形成されていてもよい。断熱材4のいずれかの位置に開口が形成されることで、例えば放射温度計を用いて坩堝1の温度を計測できる。 Although FIG. 1 illustrates a configuration in which one heat insulating material 4 covers the entire outer surface of the crucible 1, the present embodiment is not limited to this example. For example, the heat insulating material may be separated into a portion covering the lid 2 and a portion covering other than the lid 2. Further, an opening may be formed at any position of the heat insulating material 4. By forming an opening at any position of the heat insulating material 4, the temperature of the crucible 1 can be measured using, for example, a radiation thermometer.

<変形例1>
図2は、変形例1に係る単結晶製造装置の構成を概略的に示す断面模式図である。単結晶製造装置200は、均熱部材5の配置が単結晶製造装置100と異なる。本変形例において、単結晶製造装置100と同一の構成は同一の符号を付し、説明を省略する場合がある。
<Modification example 1>
FIG. 2 is a schematic cross-sectional view schematically showing the configuration of the single crystal manufacturing apparatus according to the first modification. In the single crystal manufacturing apparatus 200, the arrangement of the heat equalizing member 5 is different from that of the single crystal manufacturing apparatus 100. In this modification, the same configuration as the single crystal manufacturing apparatus 100 may be designated by the same reference numerals and the description thereof may be omitted.

本変形例において、均熱部材5は坩堝1に埋め込まれた埋め込み構造である。埋め込み構造は、例えば平面視中心に開口が形成された内底部3に均熱部材5が埋め込まれることで実現する。単結晶製造装置200では、芯棒51と断熱材4とが接触し、外殻52が内底部3に固定されている。 In this modification, the heat equalizing member 5 has an embedded structure embedded in the crucible 1. The embedded structure is realized, for example, by embedding the heat equalizing member 5 in the inner bottom portion 3 having an opening formed in the center in a plan view. In the single crystal manufacturing apparatus 200, the core rod 51 and the heat insulating material 4 are in contact with each other, and the outer shell 52 is fixed to the inner bottom portion 3.

埋め込み構造は、上述の例に限定されず、芯棒51および外殻52の少なくとも一方が坩堝1の内底部3に埋め込まれることで実現する。均熱部材5は、例えばねじ込みや嵌め込みにより内底部3に埋め込まれても良い。また、芯棒51と断熱材4、および外殻52と坩堝1とがそれぞれ一体となるように配置されていても良い。均熱部材5の第1方向における位置は任意に選択される。 The embedded structure is not limited to the above example, and is realized by embedding at least one of the core rod 51 and the outer shell 52 in the inner bottom portion 3 of the crucible 1. The heat equalizing member 5 may be embedded in the inner bottom portion 3 by, for example, screwing or fitting. Further, the core rod 51 and the heat insulating material 4, and the outer shell 52 and the crucible 1 may be arranged so as to be integrated with each other. The position of the heat equalizing member 5 in the first direction is arbitrarily selected.

変形例1にかかる単結晶製造装置200を用いた場合であっても、第1実施形態に係る単結晶製造装置100と同様な効果を得ることができる。 Even when the single crystal manufacturing apparatus 200 according to the first modification is used, the same effect as that of the single crystal manufacturing apparatus 100 according to the first embodiment can be obtained.

<変形例2>
図3は、本実施形態に係る単結晶製造装置に用いられる均熱部材の変形例の一例である。本実施形態に係る均熱部材は、図1および図2に示すような形状に限定されず、図3に示すような形状であってもよい。尚、以下に例示する均熱部材は、上述した埋め込み構造を備えていてもよい。
<Modification 2>
FIG. 3 is an example of modification of the heat equalizing member used in the single crystal manufacturing apparatus according to the present embodiment. The heat equalizing member according to the present embodiment is not limited to the shape shown in FIGS. 1 and 2, and may have the shape shown in FIG. The heat equalizing member illustrated below may have the above-mentioned embedded structure.

図3(a)は、均熱部材5aの断面模式図である。均熱部材5aは、外殻52aの構造が均熱部材5と異なる。外殻52aは、内底部3と平行な平行面520を有する。平行面520は、径方向に広がる。均熱部材5と同一な構成は同一の符号を付し、説明を省略する。平行面520の大きさは、任意に選択することができる。例えば、z方向から平面視して坩堝1の内径w3と同じ長さになるようにしてもよい。均熱部材5aは、平行面520を介して内底部3に固定されてもよい。均熱部材5aにおいて、外径w2は均熱部材5のうち平行面520を含まない部分の外径である。 FIG. 3A is a schematic cross-sectional view of the heat equalizing member 5a. The structure of the outer shell 52a of the heat equalizing member 5a is different from that of the heat equalizing member 5. The outer shell 52a has a parallel surface 520 parallel to the inner bottom portion 3. The parallel surface 520 extends in the radial direction. The same configurations as those of the heat equalizing member 5 are designated by the same reference numerals, and the description thereof will be omitted. The size of the parallel plane 520 can be arbitrarily selected. For example, the length may be the same as the inner diameter w3 of the crucible 1 when viewed in a plan view from the z direction. The heat equalizing member 5a may be fixed to the inner bottom portion 3 via the parallel surface 520. In the heat equalizing member 5a, the outer diameter w2 is the outer diameter of the portion of the heat equalizing member 5 that does not include the parallel surface 520.

均熱部材5aを用いた場合であっても、均熱部材5を用いた場合と同様な効果を得ることができる。また、外殻52aが平行面520を有していると、原料Mによる昇華ガスが、均熱部材5の内部に入ることをさらに抑制できる。 Even when the heat equalizing member 5a is used, the same effect as when the heat equalizing member 5 is used can be obtained. Further, when the outer shell 52a has the parallel surface 520, it is possible to further suppress the sublimation gas produced by the raw material M from entering the inside of the heat equalizing member 5.

図3(b)は、均熱部材5bの断面模式図である。均熱部材5bは、上端5b1における径方向の大きさおよび下端5b2における径方向の大きさよりも、中腹5b3における径方向の大きさの方が大きい。中腹5b3は、均熱部材5のz方向における大きさを二等分する部分である。均熱部材5bを用いた場合であっても、均熱部材5を用いた場合と同様な効果を得ることができる。また、均熱部材5bは、芯棒51bの坩堝1と接する面積が小さく、成長空間Rに面する面積も小さい。そのため、均熱部材5bを通じて熱が逃げることを、さらに効率的に抑制することができる。 FIG. 3B is a schematic cross-sectional view of the heat equalizing member 5b. The heat equalizing member 5b has a larger radial size at the middle 5b3 than a radial size at the upper end 5b1 and a radial size at the lower end 5b2. The middle portion 5b3 is a portion that bisects the size of the heat equalizing member 5 in the z direction. Even when the heat equalizing member 5b is used, the same effect as when the heat equalizing member 5 is used can be obtained. Further, the heat equalizing member 5b has a small area in contact with the crucible 1 of the core rod 51b, and a small area facing the growth space R. Therefore, it is possible to more efficiently suppress the escape of heat through the heat equalizing member 5b.

[SiC単結晶の製造方法]
本実施形態に係るSiC単結晶の製造方法は、例えば単結晶製造装置100を用いてSiC単結晶Sを製造する。本実施形態に係るSiC単結晶の製造方法は、準備工程と加熱工程とを有する。
[Manufacturing method of SiC single crystal]
In the method for producing a SiC single crystal according to the present embodiment, for example, the SiC single crystal S is produced using a single crystal production apparatus 100. The method for producing a SiC single crystal according to the present embodiment includes a preparation step and a heating step.

準備工程は、坩堝1の内底部3に原料Mを収容する。原料Mは、蓋2に垂直な方向からの平面視で、均熱部材5に重ならないように収容することが好ましい。原料Mに用いられるSiCは、例えば2H、3C、4H、6H、15Rのいずれかの結晶構造を含む結晶である。原料Mを構成する粉末粒子の平均粒径は、例えば1000μm以下である。 In the preparatory step, the raw material M is housed in the inner bottom portion 3 of the crucible 1. It is preferable that the raw material M is housed in a plan view from a direction perpendicular to the lid 2 so as not to overlap the heat equalizing member 5. The SiC used in the raw material M is, for example, a crystal containing any one of 2H, 3C, 4H, 6H, and 15R. The average particle size of the powder particles constituting the raw material M is, for example, 1000 μm or less.

加熱工程は、加熱手段Hにより坩堝1を加熱し、原料Mを昇華する。加熱工程は、直接加熱により坩堝1を発熱させてもよく、間接加熱により坩堝1を加熱してもよい。 In the heating step, the crucible 1 is heated by the heating means H to sublimate the raw material M. In the heating step, the crucible 1 may be heated by direct heating, or the crucible 1 may be heated by indirect heating.

本実施形態のSiC単結晶の製造方法は、均熱部材5によって坩堝1内に収容された原料Mの熱が逃げることを抑制できる。すなわち、原料Mを高温に保つことができ、効率的に原料Mを加熱できる。 In the method for producing a SiC single crystal of the present embodiment, it is possible to prevent the heat of the raw material M housed in the crucible 1 from escaping by the heat equalizing member 5. That is, the raw material M can be kept at a high temperature, and the raw material M can be heated efficiently.

<実施例1>
図1に示す構成の単結晶製造装置100に、SiC原料Mを収容し、SiC単結晶Sを製造した際に、昇華したSiC原料の比率を求めた。実施例1は、以下の条件で行った。尚、以下の条件における符号は、図1の構成と実施例の条件についての対応の理解をわかりやすくするために便宜上記載されたものであり、本実施形態は以下の数値に限定されるものではない。
<Example 1>
When the SiC single crystal S was produced by accommodating the SiC raw material M in the single crystal manufacturing apparatus 100 having the configuration shown in FIG. 1, the ratio of the sublimated SiC raw material was determined. Example 1 was carried out under the following conditions. In addition, the reference numerals in the following conditions are described for convenience in order to make it easier to understand the correspondence between the configuration of FIG. 1 and the conditions of the examples, and the present embodiment is not limited to the following numerical values. do not have.

坩堝1の内径w3:200mm
均熱部材5の外径:60mm
芯棒51の外径:30mm
外殻52の厚さT:15mm
坩堝1の高さ:300mm
均熱部材5の高さ:110mm
収容した原料Mの高さ:100mm
Inner diameter w3 of crucible 1: 200 mm
Outer diameter of heat equalizing member 5: 60 mm
Outer diameter of core rod 51: 30 mm
Thickness of outer shell 52 T: 15 mm
Height of crucible 1: 300 mm
Height of heat equalizing member 5: 110 mm
Height of contained raw material M: 100 mm

上記の通り、実施例1では均熱部材5の外径w2が坩堝1の内径w3の0.3倍になるように設定し、芯棒51の外径w1が均熱部材5の外径w2の0.5倍になるように設定した。芯棒51としては、黒鉛フェルトを用いた。実施例1では、均熱部材5を配置せずにSiC原料を収容する場合と比較し、重量比率で91%のSiC原料が収容された。この単結晶製造装置を用いてSiC単結晶Sを製造し、製造後のSiC原料の重量を測定した。 As described above, in the first embodiment, the outer diameter w2 of the heat equalizing member 5 is set to be 0.3 times the inner diameter w3 of the crucible 1, and the outer diameter w1 of the core rod 51 is the outer diameter w2 of the heat equalizing member 5. It was set to be 0.5 times that of. Graphite felt was used as the core rod 51. In Example 1, 91% of the SiC raw material was accommodated in terms of weight ratio, as compared with the case where the SiC raw material was accommodated without arranging the heat equalizing member 5. A SiC single crystal S was produced using this single crystal production apparatus, and the weight of the SiC raw material after production was measured.

その結果、充填したSiC原料に対して、昇華したSiC原料の重量比率は37%であった。すなわち、均熱部材5を設置しない場合に充填できるSiC原料の量が100gであったとすると、実施例1で収容できるSiC原料Mの重量は91gであり、昇華したSiC原料の重量は33.67gであった。 As a result, the weight ratio of the sublimated SiC raw material to the filled SiC raw material was 37%. That is, assuming that the amount of the SiC raw material that can be filled when the heat equalizing member 5 is not installed is 100 g, the weight of the SiC raw material M that can be accommodated in Example 1 is 91 g, and the weight of the sublimated SiC raw material is 33.67 g. Met.

<実施例2〜6、比較例1〜4>
図1に示す構成において、均熱部材5の外径w2に対する芯棒51の外径w1の比(w1/w2)、坩堝1の内径w3に対する均熱部材5の外径w2の比(w2/w3)を表1に示す条件に変更してSiC単結晶Sを製造した。その他の条件は、実施例1と同様にした。比較例1は、均熱部材5を配置しない条件であり、比較例2〜4は、均熱部材として黒鉛のみで形成された棒(黒鉛棒)を配置した条件である。
<Examples 2 to 6, Comparative Examples 1 to 4>
In the configuration shown in FIG. 1, the ratio of the outer diameter w1 of the core rod 51 to the outer diameter w2 of the heat equalizing member 5 (w1 / w2) and the ratio of the outer diameter w2 of the heat equalizing member 5 to the inner diameter w3 of the crucible 1 (w2 / The conditions shown in Table 1 were changed to w3) to produce a SiC single crystal S. Other conditions were the same as in Example 1. Comparative Example 1 is a condition in which the heat equalizing member 5 is not arranged, and Comparative Examples 2 to 4 are conditions in which a rod (graphite rod) formed only of graphite is arranged as the heat equalizing member.

充填したSiC原料の重量比率とは、比較例1で充填したSiC原料の重量に対して、充填したSiC原料の重量の比率である。昇華したSiC原料の比率とは、充填したSiC原料の重量に対して、昇華したSiC原料の重量の比率である。昇華したSiC原料の量とは、比較例1で収容したSiC原料の重量を100gとしたとき、昇華したSiC原料の重量(g)である。 The weight ratio of the filled SiC raw material is the ratio of the weight of the filled SiC raw material to the weight of the filled SiC raw material in Comparative Example 1. The ratio of the sublimated SiC raw material is the ratio of the weight of the sublimated SiC raw material to the weight of the filled SiC raw material. The amount of the sublimated SiC raw material is the weight (g) of the sublimated SiC raw material when the weight of the SiC raw material contained in Comparative Example 1 is 100 g.

Figure 2021104912
Figure 2021104912

表1に示す通り、芯棒および外殻のいずれも配置しない場合(比較例1)と比較し、黒鉛棒を配置した比較例2〜4および均熱部材5を配置した実施例1〜6では、昇華したSiC原料の比率を高めることができる。比較例1で残存するSiC原料を確認したところ、SiC原料が中心部付近で結晶化していることが確認された。 As shown in Table 1, in comparison with the case where neither the core rod nor the outer shell is arranged (Comparative Example 1), in Comparative Examples 2 to 4 in which the graphite rod is arranged and Examples 1 to 6 in which the heat equalizing member 5 is arranged. , The ratio of sublimated SiC raw material can be increased. When the remaining SiC raw material was confirmed in Comparative Example 1, it was confirmed that the SiC raw material was crystallized near the central portion.

実施例1、2の均熱部材5の外径w2と比較例2の黒鉛棒の外径は、同一である。そのため、実施例1、2と比較例2とでは、充填したSiC原料の重量が同一である。実施例1、2と比較例2の結果を比較すると、実施例1、2の方が、比較例2よりも昇華したSiC原料の比率が高い。 The outer diameter w2 of the heat equalizing member 5 of Examples 1 and 2 and the outer diameter of the graphite rod of Comparative Example 2 are the same. Therefore, the weights of the filled SiC raw materials are the same in Examples 1 and 2 and Comparative Example 2. Comparing the results of Examples 1 and 2 and Comparative Example 2, Examples 1 and 2 have a higher ratio of sublimated SiC raw materials than Comparative Example 2.

同様に、実施例3、4の均熱部材5の外径w2と比較例3の黒鉛棒の外径、および実施例5、6の均熱部材5の外径w2と比較例4の黒鉛棒の外径は、それぞれ同一である。実施例3、4と比較例3の結果を比較すると、実施例3、4の方が、比較例3よりも昇華したSiC原料の比率が高く、実施例5、6の方が、比較例4よりも昇華したSiC原料の比率が高い。 Similarly, the outer diameter w2 of the heat equalizing member 5 of Examples 3 and 4 and the outer diameter of the graphite rod of Comparative Example 3, and the outer diameter w2 of the heat equalizing member 5 of Examples 5 and 6 and the graphite rod of Comparative Example 4 The outer diameters of are the same. Comparing the results of Examples 3 and 4 and Comparative Example 3, Examples 3 and 4 have a higher ratio of sublimated SiC raw materials than Comparative Example 3, and Examples 5 and 6 have a higher ratio of Sublimated SiC raw materials than Comparative Example 4. The ratio of sublimated SiC raw material is higher than that.

従って、実施例1〜6および比較例2〜4に示すように、外殻52と芯棒51とを備える均熱部材5を配置することで、黒鉛棒を配置する場合と比べて、SiC原料の有効活用ができる。 Therefore, as shown in Examples 1 to 6 and Comparative Examples 2 to 4, by arranging the heat equalizing member 5 including the outer shell 52 and the core rod 51, the SiC raw material is compared with the case where the graphite rod is arranged. Can be effectively used.

上述の実施例が示す通り、均熱部材5の外径w2が、坩堝1の内径w3の0.3倍以上0.7倍以下であると、原料を効率的に加熱でき、均熱部材近傍の温度を高めることができる。また、芯棒の外径が均熱部材の外径の0.5倍以上0.95倍以下であると、原料を効率的に加熱でき、均熱部材近傍の温度を高めることができる。また、均熱部材は、外殻の内側に芯棒として断熱材を有することで、効率的に原料を加熱することができる。すなわち、SiC原料の有効活用と一度の成長での成長量の向上とを両立できる。 As shown in the above embodiment, when the outer diameter w2 of the heat equalizing member 5 is 0.3 times or more and 0.7 times or less of the inner diameter w3 of the crucible 1, the raw material can be efficiently heated and the vicinity of the heat equalizing member. The temperature of the crucible can be increased. Further, when the outer diameter of the core rod is 0.5 times or more and 0.95 times or less the outer diameter of the heat equalizing member, the raw material can be efficiently heated and the temperature in the vicinity of the heat equalizing member can be raised. Further, the heat equalizing member can efficiently heat the raw material by having a heat insulating material as a core rod inside the outer shell. That is, it is possible to achieve both effective utilization of the SiC raw material and improvement of the amount of growth in one growth.

以上、本発明の好ましい実施形態について詳述したが、本発明は特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

1:坩堝、2:蓋、2a台座、3:内底部、4:断熱材、5:均熱部材、51:芯棒、
52:外殻、100:単結晶製造装置、H:加熱手段、M:原料、S:SiC単結晶、
SD:種結晶、R:成長空間
1: Crucible, 2: Lid, 2a pedestal, 3: Inner bottom, 4: Insulation material, 5: Heat equalizing member, 51: Core rod,
52: Outer shell, 100: Single crystal production equipment, H: Heating means, M: Raw material, S: SiC single crystal,
SD: Seed crystal, R: Growth space

Claims (6)

内底部に原料を収容でき、蓋に種結晶を設置できる坩堝と、
前記坩堝を囲む加熱手段と、を備え、
前記坩堝は、前記内底部から前記種結晶に向って起立する均熱部材を有し、
前記均熱部材は、芯棒と、前記芯棒を覆う外殻と、を備え、
前記芯棒は、断熱材である、単結晶製造装置。
A crucible that can store raw materials in the inner bottom and can place seed crystals on the lid,
A heating means that surrounds the crucible is provided.
The crucible has a heat equalizing member that rises from the inner bottom toward the seed crystal.
The heat equalizing member includes a core rod and an outer shell that covers the core rod.
The core rod is a single crystal manufacturing apparatus that is a heat insulating material.
前記均熱部材の外径は、前記坩堝の内径の0.2倍以上0.7倍以下である、請求項1に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 1, wherein the outer diameter of the heat equalizing member is 0.2 times or more and 0.7 times or less the inner diameter of the crucible. 前記芯棒の外径は、前記均熱部材の外径の0.5倍以上0.95倍以下である、請求項1または2に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 1 or 2, wherein the outer diameter of the core rod is 0.5 times or more and 0.95 times or less the outer diameter of the heat equalizing member. 前記外殻は黒鉛からなる、請求項1〜3のいずれか一項に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to any one of claims 1 to 3, wherein the outer shell is made of graphite. 前記外殻の厚さは2.5mm以上である、請求項1〜4のいずれか一項に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to any one of claims 1 to 4, wherein the outer shell has a thickness of 2.5 mm or more. 前記均熱部材は、前記内底部と平行で、径方向に広がる平行面を有し、
前記均熱部材は、前記平行面を介して前記内底部に固定される、請求項1〜5のいずれか一項に記載の単結晶製造装置。
The heat equalizing member has a parallel surface that is parallel to the inner bottom portion and extends in the radial direction.
The single crystal manufacturing apparatus according to any one of claims 1 to 5, wherein the heat equalizing member is fixed to the inner bottom portion via the parallel surface.
JP2019236891A 2019-12-26 2019-12-26 Single crystal manufacturing equipment Active JP7351219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236891A JP7351219B2 (en) 2019-12-26 2019-12-26 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236891A JP7351219B2 (en) 2019-12-26 2019-12-26 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021104912A true JP2021104912A (en) 2021-07-26
JP7351219B2 JP7351219B2 (en) 2023-09-27

Family

ID=76918535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236891A Active JP7351219B2 (en) 2019-12-26 2019-12-26 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7351219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270624A1 (en) 2021-06-24 2022-12-29 良広 渡部 Antibody-inducing polypeptide and vaccine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558774A (en) * 1991-09-03 1993-03-09 Sanyo Electric Co Ltd Vessel for silicone carbide single crystal growing device
JPH11268990A (en) * 1998-03-20 1999-10-05 Denso Corp Production of single crystal and production device
JP2001072491A (en) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol Method and apparatus for producing single crystal
JP2007076928A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Method and device for manufacturing single crystal
JP2013212952A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
US20170204532A1 (en) * 2014-09-25 2017-07-20 Melior Innovations, Inc. Vapor deposition apparatus and techniques using high puritiy polymer derived silicon carbide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558774A (en) * 1991-09-03 1993-03-09 Sanyo Electric Co Ltd Vessel for silicone carbide single crystal growing device
JPH11268990A (en) * 1998-03-20 1999-10-05 Denso Corp Production of single crystal and production device
JP2001072491A (en) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol Method and apparatus for producing single crystal
JP2007076928A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Method and device for manufacturing single crystal
JP2013212952A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
US20170204532A1 (en) * 2014-09-25 2017-07-20 Melior Innovations, Inc. Vapor deposition apparatus and techniques using high puritiy polymer derived silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270624A1 (en) 2021-06-24 2022-12-29 良広 渡部 Antibody-inducing polypeptide and vaccine

Also Published As

Publication number Publication date
JP7351219B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7018816B2 (en) Crucible and SiC single crystal growth device
JP5346821B2 (en) Silicon carbide single crystal manufacturing equipment
JP7217627B2 (en) SiC single crystal manufacturing apparatus and structure for manufacturing SiC single crystal
US11421339B2 (en) Method of manufacturing SiC single crystal and covering member
US20120107218A1 (en) Production method of silicon carbide crystal, silicon carbide crystal, and production device of silicon carbide crystal
JP2013212952A (en) Method for manufacturing silicon carbide single crystal
JP2021102533A (en) MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
KR20130124024A (en) Apparatus for growing large diameter single crystal and method for growing using the same
JP5293732B2 (en) Method for producing silicon carbide single crystal
JP2021104912A (en) Single crystal production apparatus
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP2021031311A (en) Method for manufacturing SiC single crystal ingot
JP7242978B2 (en) Manufacturing method of SiC single crystal ingot
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2020015642A (en) Crystal growth apparatus
JP6859800B2 (en) Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it
JP2011207691A (en) Apparatus and method for producing silicon carbide single crystal
JP2006143497A (en) Apparatus for manufacturing silicon carbide single crystal
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
JP2021102531A (en) MANUFACTURING APPARATUS OF SiC SINGLE CRYSTAL AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
US11629433B2 (en) SiC single crystal production apparatus
JP7306217B2 (en) Crucible and SiC single crystal growth apparatus
KR20200018037A (en) Apparatus for growing silicon carbide single crystal ingot
CN110408997B (en) Heat-insulating shielding member and single crystal manufacturing apparatus provided with same
KR20120138112A (en) Apparatus for fabricating ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R151 Written notification of patent or utility model registration

Ref document number: 7351219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350