JP2021093826A - リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置 - Google Patents

リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置 Download PDF

Info

Publication number
JP2021093826A
JP2021093826A JP2019222972A JP2019222972A JP2021093826A JP 2021093826 A JP2021093826 A JP 2021093826A JP 2019222972 A JP2019222972 A JP 2019222972A JP 2019222972 A JP2019222972 A JP 2019222972A JP 2021093826 A JP2021093826 A JP 2021093826A
Authority
JP
Japan
Prior art keywords
stator
side salient
mover
auxiliary
main coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019222972A
Other languages
English (en)
Inventor
大久保 雅通
Masamichi Okubo
雅通 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2019222972A priority Critical patent/JP2021093826A/ja
Publication of JP2021093826A publication Critical patent/JP2021093826A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

【課題】駆動力の変動を効果的に抑制することができるリニアアクチュエータ等を提供する。【解決手段】固定子は、単相で主コイルが巻回される複数の固定子側突極と、固定子側突極に設けられかつ移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石と、補助コイルを有する複数の電磁石とを、移動方向に沿って複数組有し、移動子側突極のそれぞれは、移動子の移動に伴い、固定子側突極のうちのいずれか1つに対向する第1状態と、固定子側突極のいずれにも対向しない第2状態との間で変化し、補助磁石は移動子の移動方向に沿ってN極及びS極を有し、補助コイルは、移動子の移動に応じて通電されて、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向を補正する。【選択図】図1

Description

本発明は、リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置に関する。
固定子を交流励磁することにより可動子を移動させるリニアアクチュエータが知られている(例えば、特許文献1参照)。
特開平10−174418号公報
リニアアクチュエータを3相以上の多相のリニアアクチュエータとして構成する場合、各相への転流のために複雑な制御が必要となる。また、可動子に永久磁石を持たないスイッチト・リラクタンス型のリニアアクチュエータでは、可動子を鉄芯のみで形成するシンプルな構造とすることができ、非常に堅牢であるという利点がある。したがって、リニアアクチュエータを単相のスイッチト・リラクタンス型として構成する場合、制御が容易で、かつ堅牢なアクチュエータが得られる。
しかし、元来、単相駆動のアクチュエータでは駆動力の変動が大きくなりがちである。さらに可動子に永久磁石を持たないスイッチト・リラクタンス型では、転流時に磁束の変化が大きくなるため、この点においても駆動力の変動が大きくなりやすい。
本発明は、リニアアクチュエータを単相のスイッチト・リラクタンス型として構成する場合に、駆動力の変動を効果的に抑制することができるリニアアクチュエータ、及びリニアアクチュエータを制御する制御装置を提供することを目的とする。
1つの側面では、移動方向に沿って複数の移動子側突極を有する移動子と、固定子と、を備え、前記固定子は、単相で主コイルが巻回される固定子側突極と、前記固定子側突極に設けられかつ前記移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石と、補助コイルを有する複数の電磁石とを、前記移動方向に沿って複数組有し、前記移動子側突極のそれぞれは、前記移動子の移動に伴い、前記固定子側突極のうちのいずれか1つに対向する第1状態と、前記固定子側突極のいずれにも対向しない第2状態との間で変化し、前記補助磁石は前記移動方向に沿ってN極及びS極を有し、前記電磁石は、補助コイルを有し、前記補助コイルは、前記移動子の移動に応じて通電されて、前記主コイル及び前記補助磁石により生ずる前記固定子側突極の磁束の強さ又は方向を補正する、リニアアクチュエータを提供する。
本発明によれば、リニアアクチュエータを単相のスイッチト・リラクタンス型として構成する場合に、駆動力の変動を効果的に抑制することができる。
一実施例のリニアアクチュエータを示す断面図である。 主コイル13及び補助コイル32に電流を与える制御装置4を含む構成例を示す図である。 駆動回路43の回路例を示す図である。 駆動回路44の回路例を示す図である。 主コイル13に通電がなく、補助コイル32に順方向の電流が与えられた場合の磁束を模式的に示す図である。 主コイル13に通電がなく、補助コイル32に逆方向の電流が与えられた場合の磁束を模式的に示す図である。 補助コイル32に通電しない場合における移動子2を駆動する動作を示す図である。 補助コイル32に通電しない場合における移動子2を駆動する動作を示す図である。 補助コイル32に通電しない場合における移動子2を駆動する動作を示す図である。 移動子2を駆動する際に、補助コイル32に通電することにより、駆動力の変動を抑制する動作を例示する図である。 移動子2を駆動する際に、補助コイル32に通電することにより、駆動力の変動を抑制する動作を例示する図である。 図7〜図7Aに示す動作に代えて、状態Fの近傍において、補助コイル32へ逆方向の電流を与える例を示す図である。 主コイル13に通電せず、かつ補助コイル32に通電しない場合に、可動子2の移動に伴って発生する磁束の流れを示す図である。 図6〜図6Bに示した動作における、主コイル13周りの鎖交磁束、主コイル13に生ずる誘起電圧、主コイル13に与えられる電流及び移動子2に対する駆動力の関係を模式的に示すタイムチャートである。 図7〜図7Aに示した動作における、主コイル13周りの鎖交磁束、主コイル13に生ずる誘起電圧、主コイル13に与えられる電流及び移動子2に対する駆動力の関係を模式的に示すタイムチャートである。
図1は、一実施例のリニアアクチュエータを示す断面図である。
図1に示すように、本実施例のリニアアクチュエータは、固定子1と、X軸方向(図1の右方向)に沿って複数の移動子側突極21を有する移動子2と、を備える。移動子2は、不図示の機構によりY軸方向(図1の紙面と直交する方向)及びZ軸方向(図1の上下方向)の移動が拘束されつつ、X軸方向にスライド可能に支持される。
固定子1は、単相で主コイル13が巻回される複数の固定子側突極11と、固定子側突極11に設けられかつX軸方向(移動子2の移動方向)に沿ってN極及びS極を有する永久磁石としての補助磁石12と、鉄芯31及び鉄芯31に巻き回された補助コイル32を有する複数の電磁石3とを、X軸方向に沿って複数組有する。図1に示すように、補助磁石12は、X軸方向におけるそれぞれの固定子側突極11の中央部分に埋設されている。また、互いに隣接する補助磁石12の極性は反転しており、すなわち、N極とN極又はS極とS極がX軸方向で対向するように、補助磁石12が配置されている。
主コイル13が単相で通電されると、通電のタイミングに応じて移動子側突極21のそれぞれが、固定子側突極11のいずれかに同時に対向する第1状態と、固定子側突極11のいずれにも対向しない第2状態との間で切り替わるようにして、移動子2がX軸方向に移動する。なお、通電時に主コイル13に流れる電流の方向については後述する。
また、後述するように、補助コイル32は、移動子2の移動に応じて通電されて、主コイル13及び補助磁石12により生ずる固定子側突極11の磁束の強さ又は方向を補正する。なお、通電時に補助コイル32に流れる電流の方向については後述する。
図1は、主コイル13及び補助コイル32に通電がない場合における磁束の状態を模式的に示している。図1に示すように、この場合には、補助磁石12による磁束51のみが発生し、補助磁石12の向きに応じた方向の磁束51が、X軸方向に対して補助磁石12ごと(固定子側突極11ごと)に交互に発生する。
図2は、主コイル13及び補助コイル32に電流を与える制御装置4を含む構成例を示す図である。
図2に示すように、制御装置4は第1制御部41及び第2制御部42を備え、第1制御部41は駆動回路43に駆動信号を与え、第2制御部42は駆動回路44に駆動信号を与える。駆動回路43は、第1制御部41からの駆動信号に従ったタイミングで主コイル13に通電する。駆動回路44は、第2制御部42からの駆動信号に従ったタイミングで補助コイル32に通電する。
第1制御部41及び第2制御部42は、例えば、移動子2の位置又は速度を指示する指令値に基づいて、それぞれ主コイル13及び補助コイル32への通電を制御することができる。また、移動子2の位置を検出する位置センサ45を設けることもできる。この場合、第1制御部41及び第2制御部42は、位置センサ45からの位置情報に基づいて、それぞれ主コイル13及び補助コイル32への通電を制御することができる。なお、位置センサ45に代えて、移動子2の移動速度を検出する速度センサを用い、第1制御部41及び第2制御部42による通電の制御を行ってもよい。
図3は、駆動回路43の回路例を示す図である。図3の例では、駆動回路43は電源PSと主コイル13との間に接続された4つの半導体スイッチSW1〜SW4を備える。半導体スイッチSW1〜SW4は、第1制御部41からの駆動信号に従って、オン/オフする。例えば、半導体スイッチSW1及び半導体スイッチSW4のみがオンする場合に、主コイル13に順方向の電流が与えられ、半導体スイッチSW2及び半導体スイッチSW3のみがオンする場合に、主コイル13に逆方向の電流が与えられる。
図3Aは、駆動回路44の回路例を示す図である。図3Aの例では、駆動回路44は電源PSと補助コイル32との間に接続された4つの半導体スイッチSW11〜SW14を備える。半導体スイッチSW11〜SW14は、第2制御部42からの駆動信号に従って、オン/オフする。例えば、半導体スイッチSW11及び半導体スイッチSW14のみがオンする場合に、補助コイル32に順方向の電流が与えられ、半導体スイッチSW12及び半導体スイッチSW13のみがオンする場合に、補助コイル32に逆方向の電流が与えられる。なお、図3Aでは、1つの補助コイル32のみを示しているが、複数の電磁石3に設けられたそれぞれの補助コイル32を直列、又は並列に接続し、駆動回路44により駆動することができる。
図4は、主コイル13に通電がなく、補助コイル32に順方向の電流が与えられた場合の磁束を模式的に示す図である。図4に示すように、この場合には、電磁石3のN極及びS極が、Z軸方向(図1及び図4の上下方向)について主コイル13よりも移動子2から離れた側であって、X軸方向(図1及び図4の左右方向)について互いに隣接する固定子側突極11の間に設けられる。また、互いに隣接する電磁石3のN極とS極とが対向するように、補助コイル32が設けられている。
また、図4の場合には、X軸方向における補助磁石12及び電磁石3による磁束の方向が一致する。このため、補助磁石12による磁束51と、電磁石3による磁束52が足し合わされた磁束が固定子側突極11に生ずる。なお、図4における「N」及び「S」の表示は、補助磁石12及び電磁石3の磁極(N極及びS極)の位置を模式的に示している。図5においても同様である。
図5は、主コイル13に通電がなく、補助コイル32に逆方向の電流が与えられた場合の磁束を模式的に示す図である。図5に示すように、この場合には、電磁石3のN極及びS極の位置が図4の場合と逆となる。このため、X軸方向における補助磁石12による磁束51(図1、図4)と、電磁石3による磁束52(図4)の向きが逆となるため、これらの磁束が打ち消し合い、固定子側突極11には磁束51よりも弱い磁束54が生ずる。また、電磁石3の磁極から出る磁束53は、固定子側突極11に向かわず補助磁石12に向かう。
以下、図6〜図7Bを参照して、移動子2を駆動する動作について説明する。なお、以下の説明において、移動子側突極21のうちの特定の移動子側突極21を移動子側突極21a又は移動子側突極21bとして表示している。
図6、図6A及び図6Bは、補助コイル32に通電しない場合における移動子2を駆動する動作を示す図である。本実施例では、電磁石3の制御(補助コイル32への通電)によって、移動子2の駆動力の変動を抑制しているが、電磁石3の機能を明らかにするため、まず、補助コイル32に通電しない場合における動作について説明する。
図6〜図6Bの状態A〜状態D及び状態F〜状態Jは、移動子2がX軸方向(図6〜図6Bの右方向)に順次、駆動される状態(移動子2の位置)を示している。また、図6〜図6Bにおける「N」及び「S」の表示は、固定子1に生ずる磁極の位置を模式的に示している。また、「N」及び「S」の文字の大きさは、磁極における磁化の強度を示しており、文字が大きいと磁化の強度がより高いことを示す。
状態A及び状態B(図6)では、主コイル13に順方向の電流が与えられ、固定子側突極11と、移動子側突極21との間の磁気吸引力により、移動子2にX方向(図6の右方向)の駆動力が与えられる。なお、駆動力は磁気吸引力のベクトル(大きさと方向)の総和により決まる。
状態C(図6)では、主コイル13への通電が切り替えられる(瞬間的に停止)されるが、このときの鎖交磁束55(主コイル13を通過する磁束)は最大となる。
状態D及び状態F〜状態G(図6A)では、主コイル13に逆方向の電流が与えられ、固定子側突極11と、移動子側突極21との間の磁気吸引力により、移動子2にX方向(図6の右方向)の駆動力が与えられる。
状態H(図6B)では、主コイル13への通電は停止されるが、このときの鎖交磁束55は最大となる。
状態I〜状態J(図6B)では、再び、主コイル13に順方向の電流が与えられ、固定子側突極11と、移動子側突極21との間の磁気吸引力により、移動子2にX方向(図6の右方向)の駆動力が与えられる。
このように、主コイル13に供給される電流の向きを移動子2の位置に応じて切り替えることにより、移動子2を駆動することができる。
次に、図7〜図7Aは、移動子2を駆動する際に、補助コイル32に通電することにより、駆動力の変動を抑制する動作を例示する図である。この場合においても、主コイル13に供給される電流の向きを移動子2の位置に応じて切り替える動作は、図6〜図6Bに示す例と同様である。以下、補助コイル32に通電することにより、駆動力の変動を抑制する動作について説明する。
まず、状態A〜状態Cでは、図6に示したのと同様、主コイル13に順方向の電流が与えられ、固定子側突極11と、移動子側突極21との間の磁気吸引力により、移動子2にX方向(図6の右方向)の駆動力が与えられる。この間、補助コイル32への通電はない。
図7に示すように、状態Cを経て、状態Dに至ると、状態Dにおいては図6Aと同様、主コイル13に逆方向の電流が与えられ、固定子側突極11と、移動子側突極21との間の磁気吸引力により、移動子2にX方向(図6の右方向)の駆動力が与えられる。また、状態Aから状態Dに至るまで、補助コイル32への通電はない。
図7に示すように、状態Eの位置まで移動子2が移動すると、補助コイル32に順方向の電流が与えられる。これにより、図7に示す固定子側突極11の部位11d及び部位11aの近傍に電磁石3のN極が位置付けられるため、部位11d及び部位11aの両者において、N極としての磁力(磁束)が強くなる。しかし、状態Dと比較した場合、部位11d及び部位11aにおける磁力の差は縮小する。このため、状態Dから状態Eへの移行に伴い、移動子側突極21aが部位11aに接近したときの、移動子側突極21aと部位11bとの間の吸引力と、移動子側突極21aと部位11dとの間の吸引力との間の均衡が適切に調整される。このため、部位11d及び部位11aを介して移動子2に与えられるX方向(図7の右方向)への駆動力が急激に増大することが抑制される。
同様に、補助コイル32に順方向の電流が与えられることにより、図7に示す固定子側突極11の部位11b及び部位11cの近傍に電磁石3のS極が位置付けられるため、部位11b及び部位11cの両者において、S極としての磁力(磁束)が強くなる。しかし、状態Dと比較した場合、部位11b及び部位11cにおける磁力の差は縮小する。このため、状態Dから状態Eへの移行に伴い、移動子側突極21bが部位11cに接近したときの、移動子側突極21bと部位11cとの間の吸引力と、移動子側突極21bと部位11bとの間の吸引力との間の均衡が適切に調整される。このため、部位11b及び部位11cを介して移動子2に与えられるX方向(図7の右方向)への駆動力が急激に増大することが抑制される。
状態Eから状態Fに至るまで、主コイル13への順方向の電流及び補助コイル32への順方向の電流が維持される。この間、状態Dと比較した場合、部位11d及び部位11aにおける磁力の差及び部位11b及び部位11cにおける磁力の差は、上記のように補助コイル32への順方向の電流により抑制される。このため、部位11a〜部位11dを介して移動子2に与えられるX方向(図7の右方向)への駆動力が適切に抑制される。
状態Gでは、主コイル13への順方向の電流は維持されるが、主コイル13への順方向の電流に先立って、補助コイル32への通電が停止されている。これは、固定子側突極11、とくに部位11a及び部位11cにおける磁力(磁束)を弱めることで、主コイル13における電流方向の切り替え(転流)に伴う、移動子2に対する駆動力の変動を抑制するためである。
その後、状態H(図7A)では、主コイル13への通電が停止されるが、このときの鎖交磁束55は最大となる。以降、同様のタイミングで、逆方向の電流を主コイル13及び補助コイル32を与えることにより、移動子2をX方向(図7Aの右方向)に駆動することができる。
図7Bは、図7〜図7Aに示す動作に代えて、状態Fの近傍において、補助コイル32へ逆方向の電流を与える例を示す図である。
図7Bに示す例では、状態Fを含む状態Fの近傍において、補助コイル32へ逆方向の電流を与えることにより、それまで固定子側突極11に生じていた磁束を弱めることができる。それにより、主コイル13における電流方向の切り替え(転流)に際して、あらかじめ固定子側突極11に生じていた磁束が弱まるため、とくに部位11a及び部位11cにおける磁力をより一層、弱めることができる。このため、主コイル13における電流方向の切り替え(転流)に伴う、移動子2に対する駆動力の変動をより一層、抑制することができる。
図7Bに示す状態Fを経て状態H(図7B)に移行するが、このときの鎖交磁束55も、図7Aの場合よりも弱くなる。このため、その後、主コイル13の電流を反転した際の、移動子2に対する駆動力の変動を抑制することができる。
図8は、移動子2の移動時における、主コイル13への通電によって発生する磁束の流れを示す図である。
図8に示すように、状態Aから移動子2が移動すると、主コイル13の導体周りの鎖交磁束は、ゼロ(状態A)→最大値(状態C)→ゼロ(状態F)→最大値(状態H)の順で変化する。ここで、状態A、状態C、状態F及び状態Hは、図6〜図7Bに示した各状態の移動子2の位置に対応する。
主コイル13の導体周りの鎖交磁束Φの変化は、主コイル13に生ずる誘起電圧IE=ΔΦ/Δtの関係に従い、誘起電圧IEを生じさせる。
したがって、この誘起電圧IEの変化(正負)に応じて主コイル13の電流を転流(電流の方向を反転)することで、移動子2に対する駆動力を得ることができる。
図8Aは、図6〜図6Bに示した動作における、主コイル13を通過する鎖交磁束、主コイル13に生ずる誘起電圧(誘起電圧IE)、主コイル13に与えられる電流及び移動子2に対する駆動力の関係を模式的に示すタイムチャート、図8Bは、図7〜図7Aに示した動作における、主コイル13を通過する鎖交磁束、主コイル13に生ずる誘起電圧、主コイル13に与えられる電流及び移動子2に対する駆動力の関係を模式的に示すタイムチャートである。
図8Aに示すように、図6〜図6Bに示した動作では、主コイル13に生ずる誘起電圧IEは、鎖交磁束の変化(Z軸方向成分の変化)に従って変化し、移動子2に対する駆動力は、誘起電圧IEに応じて(磁気吸引力の変動に応じて)変動する。
これに対し、図8Bに示すように、図7〜図7Aに示した動作では、補助コイル32への通電により、主コイル13に生ずる誘起電圧IEの変動が抑制される。このため、移動子2に対する駆動力の変動も抑制される。
上記実施例では、補助コイル32への通電状態として、通電しない状態、順方向の電流を与える状態及び逆方向の電流を与える状態の3値をとる例を示している。しかし、第2制御部42においてパルス幅変調(PWM)などによるスイッチング制御を実行することで、補助コイル32に与える実質的な電圧の値を制御可能となる。これにより、補助コイル32に与えられる電流値を細かく調整できるため、移動子2に対する駆動力の変動をさらに抑制することができる。公知のように、この場合には、第2制御部42により駆動回路44の半導体スイッチSW11〜SW14のスイッチングのタイミングを介してデューティー値が制御され、これにより補助コイル32に与えられる電流が制御される。
以上のように、本実施例では、主コイル13への通電及び補助磁石12により生ずる磁束を、補助コイル32への通電の制御を介して電磁石3が発生する磁束により補正している。このため、移動子2に与えられる駆動力の変動を効果的に抑制することができる。また、主コイル13は単相で通電しているため、主コイル13への通電のための複雑な制御を必要としない。したがって、本実施例では、単相のスイッチト・リラクタンス型のリニアアクチュエータにおいて、制御が容易で、かつ堅牢なアクチュエータが得られる。
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
なお、以上の実施例に関し、さらに以下の付記を開示する。
[付記1]
移動方向に沿って複数の移動子側突極(21)を有する移動子(2)と、
固定子(1)と、を備え、
前記固定子は、単相で主コイル(13)が巻回される複数の固定子側突極(11)と、前記固定子側突極に設けられかつ前記移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石(12)と、補助コイル(32)を有する複数の電磁石(3)とを、前記移動方向に沿って複数組有し、
前記移動子側突極のそれぞれは、前記移動子の移動に伴い、前記固定子側突極のうちのいずれか1つに対向する第1状態と、前記固定子側突極のいずれにも対向しない第2状態との間で変化し、
前記補助磁石は前記移動方向に沿ってN極及びS極を有し、
前記補助コイルは、前記移動子の移動に応じて通電されて、前記主コイル及び前記補助磁石により生ずる前記固定子側突極の磁束の強さ又は方向を補正する、リニアアクチュエータ。
付記1の構成によれば、補助コイルにより、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向を補正するので、固定子側突極と移動子側突極との間の磁気吸引力により生じる、移動子に対する駆動力の変動を抑制することができる。
[付記2]
付記1に記載のリニアアクチュエータにおいて、
前記電磁石の磁極は、前記固定子側突極及び前記移動子側突極が対向する方向について前記主コイルよりも前記移動子から離れた側に配置される、リニアアクチュエータ。
付記2の構成によれば、固定子側突極及び移動子側突極が対向する方向について主コイルよりも移動子から離れた側に配置される電磁石の磁極により、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向が補正される。
[付記3]
付記1又は2に記載のリニアアクチュエータにおいて、
前記電磁石の磁極は、前記移動方向について互いに隣接する前記固定子側突極の間に設けられる、リニアアクチュエータ。
付記3の構成によれば、移動子の移動方向について互いに隣接する固定子側突極の間に設けられる電磁石の磁極により、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向が補正される。
[付記4]
付記3に記載のリニアアクチュエータにおいて、
互いに隣接する前記電磁石のN極とS極とが対向するように、前記電磁石が前記移動方向に沿って配列される、リニアアクチュエータ。
付記4の構成によれば、互いに隣接する電磁石のN極とS極とが対向するように、電磁石が移動子の移動方向に沿って配列されるので、移動子の移動方向について互いに隣接する固定子側突極の間に、N極とS極が交互に配置される。
[付記5]
リニアアクチュエータを制御する制御装置(4)であって、
前記リニアアクチュエータは、
移動方向に沿って複数の移動子側突極を有する移動子と、
固定子と、を備え、
前記固定子は、単相で主コイルが巻回される複数の固定子側突極と、前記固定子側突極に設けられかつ前記移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石と、補助コイルを有する複数の電磁石とを、前記移動方向に沿って複数組有し、
前記移動子側突極のそれぞれは、前記移動子の移動に伴い、前記固定子側突極のうちのいずれか1つに対向する第1状態と、前記固定子側突極のいずれにも対向しない第2状態との間で変化し、
前記制御装置は、前記主コイルへの通電を制御する第1制御部(41)と、前記補助コイルへの通電を制御する第2制御部(42)とを、備え、
前記第1制御部は、前記移動子が前記移動方向に沿って移動するように前記固定子側突極と前記移動子側突極の間に磁気吸引力を発生させ、
前記第2制御部は、前記移動方向に沿った前記移動子の位置に応じて、前記主コイル及び前記補助磁石により生ずる前記固定子側突極の磁束の強さ又は方向を補正する、制御装置。
付記5の構成によれば、補助コイルにより、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向を補正するので、固定子側突極と移動子側突極との間の磁気吸引力により生じる、移動子に対する駆動力の変動を抑制することができる。
[付記6]
前記電磁石の磁極は、前記移動方向について互いに隣接する前記固定子側突極の間に設けられる、制御装置。
付記6の構成によれば、移動子の移動方向について互いに隣接する固定子側突極の間に設けられる電磁石の磁極により、主コイル及び補助磁石により生ずる固定子側突極の磁束の強さ又は方向が補正される。
[付記7]
付記6に記載の制御装置において、
前記固定子側突極の磁力を強くする方向における前記補助コイルへの通電を、前記主コイルへの通電よりも遅れて開始させるように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
付記7の構成によれば、移動子に与えられる駆動力が急激に増大することが抑制される。
[付記8]
付記6に記載の制御装置において、
固定子側突極の磁力を強くする方向における前記補助コイルへの通電を、前記主コイルへの通電よりも先に停止させるように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
付記8の構成によれば、補助コイルへの通電を、主コイルへの通電よりも先に停止させることにより、固定子側突極における磁力を弱めることができるので、主コイルにおける転流に伴う、移動子に対する駆動力の変動が抑制される。
[付記9]
付記6に記載の制御装置において、
前記固定子側突極の磁力を弱くする方向における前記補助コイルへの通電を、前記主コイルへの通電の停止する前に実行するように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
付記9の構成によれば、固定子側突極の磁力を弱くする方向における補助コイルへの通電を、主コイルへの通電の停止する前に実行するので、固定子側突極における磁力を弱めることができるので、主コイルにおける転流に伴う、移動子に対する駆動力の変動が抑制される。
1 固定子
2 移動子
3 電磁石
4 制御装置
11 固定子側突極
12 補助磁石
21、21a、21b 移動子側突極
13 主コイル
32 補助コイル

Claims (9)

  1. 移動方向に沿って複数の移動子側突極を有する移動子と、
    固定子と、を備え、
    前記固定子は、単相で主コイルが巻回される複数の固定子側突極と、前記固定子側突極に設けられかつ前記移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石と、補助コイルを有する複数の電磁石とを、前記移動方向に沿って複数組有し、
    前記移動子側突極のそれぞれは、前記移動子の移動に伴い、前記固定子側突極のうちのいずれか1つに対向する第1状態と、前記固定子側突極のいずれにも対向しない第2状態との間で変化し、
    前記補助磁石は前記移動方向に沿ってN極及びS極を有し、
    前記補助コイルは、前記移動子の移動に応じて通電されて、前記主コイル及び前記補助磁石により生ずる前記固定子側突極の磁束の強さ又は方向を補正する、リニアアクチュエータ。
  2. 請求項1に記載のリニアアクチュエータにおいて、
    前記電磁石の磁極は、前記固定子側突極及び前記移動子側突極が対向する方向について前記主コイルよりも前記移動子から離れた側に配置される、リニアアクチュエータ。
  3. 請求項1又は請求項2に記載のリニアアクチュエータにおいて、
    前記電磁石の磁極は、前記移動方向について互いに隣接する前記固定子側突極の間に設けられる、リニアアクチュエータ。
  4. 請求項3に記載のリニアアクチュエータにおいて、
    互いに隣接する前記電磁石のN極とS極とが対向するように、前記電磁石が前記移動方向に沿って配列される、リニアアクチュエータ。
  5. リニアアクチュエータを制御する制御装置であって、
    前記リニアアクチュエータは、
    移動方向に沿って複数の移動子側突極を有する移動子と、
    固定子と、を備え、
    前記固定子は、単相で主コイルが巻回される複数の固定子側突極と、前記固定子側突極に設けられかつ前記移動方向に沿ってN極及びS極を有する永久磁石としての補助磁石と、補助コイルを有する複数の電磁石とを、前記移動方向に沿って複数組有し、
    前記移動子側突極のそれぞれは、前記移動子の移動に伴い、前記固定子側突極のうちのいずれか1つに対向する第1状態と、前記固定子側突極のいずれにも対向しない第2状態との間で変化し、
    前記制御装置は、前記主コイルへの通電を制御する第1制御部と、前記補助コイルへの通電を制御する第2制御部とを、備え、
    前記第1制御部は、前記移動子が前記移動方向に沿って移動するように前記固定子側突極と前記移動子側突極の間に磁気吸引力を発生させ、
    前記第2制御部は、前記移動方向に沿った前記移動子の位置に応じて、前記主コイル及び前記補助磁石により生ずる前記固定子側突極の磁束の強さ又は方向を補正する、制御装置。
  6. 請求項5に記載の制御装置において、
    前記電磁石の磁極は、前記移動方向について互いに隣接する前記固定子側突極の間に設けられる、制御装置。
  7. 請求項6に記載の制御装置において、
    前記固定子側突極の磁力を強くする方向における前記補助コイルへの通電を、前記主コイルへの通電よりも遅れて開始させるように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
  8. 請求項6に記載の制御装置において、
    前記固定子側突極の磁力を強くする方向における前記補助コイルへの通電を、前記主コイルへの通電よりも先に停止させるように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
  9. 請求項6に記載の制御装置において、
    前記固定子側突極の磁力を弱くする方向における前記補助コイルへの通電を、前記主コイルへの通電の停止する前に実行するように、前記主コイル及び前記補助コイルへの通電を制御する、制御装置。
JP2019222972A 2019-12-10 2019-12-10 リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置 Pending JP2021093826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222972A JP2021093826A (ja) 2019-12-10 2019-12-10 リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222972A JP2021093826A (ja) 2019-12-10 2019-12-10 リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置

Publications (1)

Publication Number Publication Date
JP2021093826A true JP2021093826A (ja) 2021-06-17

Family

ID=76312894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222972A Pending JP2021093826A (ja) 2019-12-10 2019-12-10 リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置

Country Status (1)

Country Link
JP (1) JP2021093826A (ja)

Similar Documents

Publication Publication Date Title
KR101154022B1 (ko) 전동기
US7126309B1 (en) Motor
US20090315505A1 (en) Synchronous motor, motor system and method for operating a motor system
JP2012130223A (ja) 同期モータ
WO2017006744A1 (ja) モータシステム及びこれを備える機器
JP2010115086A (ja) モータシステム及び永久磁石モータの通電方法
JP2014007853A (ja) 電動機
JP6323220B2 (ja) 同期電動機の駆動装置
JP2023536259A (ja) 電気機械内の電力分配
JP5885423B2 (ja) 永久磁石式回転電機
US8729745B2 (en) Multiple-phase linear switched reluctance motor
JP2021093826A (ja) リニアアクチュエータ、及びリニアアクチュエータを制御する制御装置
CN110546858B (zh) 永磁体偏置系统和方法
JP2010183651A (ja) 可変特性電動機
JP2009303373A (ja) 回転電機
JP2022035612A (ja) 永久磁石同期モータ
JP4312115B2 (ja) モータ駆動装置
KR200318359Y1 (ko) 무정류자 직류전동기
KR100715217B1 (ko) 하이브리드형 고효율 발전장치
WO2017038859A1 (ja) 電動機
JPH07245932A (ja) リニアモータ
JP2006115684A (ja) 回転電機の磁気回路構造
JPH09117184A (ja) 電子モータ
KR20040081247A (ko) 무정류자 직류전동기
JP2018182928A (ja) モータおよびモータ駆動装置