JP2021093816A - 分散型電源システム - Google Patents

分散型電源システム Download PDF

Info

Publication number
JP2021093816A
JP2021093816A JP2019222491A JP2019222491A JP2021093816A JP 2021093816 A JP2021093816 A JP 2021093816A JP 2019222491 A JP2019222491 A JP 2019222491A JP 2019222491 A JP2019222491 A JP 2019222491A JP 2021093816 A JP2021093816 A JP 2021093816A
Authority
JP
Japan
Prior art keywords
power
output
master machine
conditioner
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019222491A
Other languages
English (en)
Other versions
JP6791343B1 (ja
Inventor
中村 耕太郎
Kotaro Nakamura
耕太郎 中村
秀樹 尾関
Hideki Ozeki
秀樹 尾関
馬渕 雅夫
Masao Mabuchi
雅夫 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019222491A priority Critical patent/JP6791343B1/ja
Application granted granted Critical
Publication of JP6791343B1 publication Critical patent/JP6791343B1/ja
Publication of JP2021093816A publication Critical patent/JP2021093816A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】分散型電源システムにおける逆潮流電力を防止しつつ、パワーコンディショナの寿命を平準化する。【解決手段】発電装置(20)と、マスタ・スレーブ方式の通信が可能に接続された複数のパワーコンディショナ(10)と、出力電力を検知する検知手段(6a、6b)と、検知手段に接続され複数のパワーコンディショナ間を渡り配線によって接続させる信号線(25a、25b、26a、26b)とを備え、マスタ機は、過去の所定期間における出力電力の最大値が、商用電力系統(1a)への逆潮流が生じ得る閾値より小さい場合には、出力変更手段(13)に出力電力を所定量だけ増加させる負荷追従制御を行う制御部(12)を備え、スレーブ機は、検知手段から入力された過去の所定期間における出力電力と、マスタ機から送信された負荷追従制御に関する情報とにしたがって負荷に電力を供給する制御部を備える。【選択図】図3

Description

本発明は、自家消費を行うための分散型電源システムに関し、特に、分散型電源による電力の系統への逆潮流することを防止する分散型電源システムに関する。
従来より、分散型電源システムにおいては、系統との接続経路にある受電点における電力を検出し、分散型電源の出力電力を調整することで、系統側への出力電力の逆潮流を抑制していた(例えば、特許文献1等参照のこと)。しかしながら、特に、太陽光発電を利用する分散型電源においては、負荷の変動や太陽光の照度の変動があるため、出力を高速に調整することが困難な場合があった。これに対応するため、従来の分散型電源システムにおいては、系統側への逆潮流が生じる電力のレベルに対して、充分な余裕を持って動作させることで逆潮流の発生を防止していた。
ところで、太陽光発電を利用する分散型電源システムの形態として、複数台のパワーコンディショナで構成された自家消費システムが存在する。この形態では、複数台の内の1台を逆潮流電力を監視するマスタ機とし、当該マスタ機で検出された情報(出力電力量、故障情報、運転状態等)を通信を介して他のパワーコンディショナ(スレーブ機)に送信することで、それぞれのパワーコンディショナが逆潮流を防止するように発電量を制御していた。しかしながら、このような形態では、系統電力を計測するマスタ機が固定されてしまうため、例えば、故障等により当該マスタ機が停止している場合には系統電力を計測する手段が不在になる。自家消費システムを構成する各スレーブ機は、出力電力量、故障情報、運転状態等に基づく負荷追従制御が行えないため、当該システムは停止することになる。システム停止により、太陽光発電を利用した分散型電源システムのシステム稼働時間は相対的に短くなり、発電機会の減少による買電価格の上昇等により、当該システムの運用コストは相対的に増大してしまう。さらに、マスタ機に固定されたパワーコンディショナの稼働時間は相対的に長くなるため寿命が短くなるという問題もあった。
特許第3656556号公報
本発明は、上記のような状況に鑑みてなされたものであり、その目的は、分散型電源システムにおける逆潮流電力を防止しつつ、簡易な構成でシステムの稼働時間を確保し、パワーコンディショナの寿命を平準化することが可能な技術を提供することにある。
上記の課題を解決するための本発明は、直流電力を発電する発電装置と、電力供給対象である負荷と商用電力系統とに接続された出力端と、前記発電装置によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機を構成するパワーコンディショナを主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷に電力を供給する分散型電源システムであって、
過去の所定期間における前記出力電力を検知する検知手段と、
前記検知手段に接続され、前記複数のパワーコンディショナ間を渡り配線によって接続させる信号線と、を備え、
前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンディショナは、前記検知手段から入力される前記検知手段が検出した前記過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統への逆潮流が生じ得る閾値より小さい場合には、前記出力変更手段に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部を備え、
前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナは、前記信号線を通じて入力された前記過去の所定期間における前記出力電力と、前記マスタ機から送信された前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給する制御部を備える、
ことを特徴とする、分散型電源システムである。
これによれば、過去の所定期間における出力電力を検知する検知手段で検出された出力電力を、複数のパワーコンディショナ間を渡り配線によって接続させる信号線通じて、全てのパワーコンディショナに入力できる。そして、マスタ機のパワーコンディショナは、検知手段から入力される過去の所定期間における前記出力電力の最大値に基づいて、商用電力系統への逆潮流が生じ得る閾値より小さい場合には、出力変更手段に出力電力を所定量だけ増加させる負荷追従制御を行うことが可能になる。さらに、スレーブ機のパワーコンディショナは、渡り配線された信号線を通じて入力された前記過去の所定期間における前記出力電力と、マスタ機から送信された負荷追従制御に関する情報とにしたがって自身に接続する負荷に電力を供給することが可能になる。この結果、逆潮流電力を防止しつつ、簡易な構成でシステムの稼働時間を確保することが可能になる。
また、本発明においては、複数のパワーコンディショナの中の、前記マスタ機を構成するパワーコンディショナは、前記マスタ機として稼働する稼働時間を平準化させるように選択されるようにしてもかまわない。これによれば、マスタ機に設定されるパワーコンディショナを、複数のパワーコンディショナの中でローテーションさせることが可能になる。この結果、逆潮流電力を防止しつつ、パワーコンディショナの稼働時間を確保し、パワーコンディショナの寿命を平準化できる。
また、本発明においては、前記複数のパワーコンディショナがマスタ・スレーブ方式の通信が可能に接続される接続される接続線は、通信速度が相対的に高い第1接続線と前記第1接続線より通信速度が相対的に低い第2接続線とを含み、
前記マスタ機を構成するパワーコンディショナは、前記第1接続線を通じて前記検知手段によって検出された前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とを前記スレーブ機を構成するパワーコンディショナに送信するとともに、前記第2接続線を通じて前記負荷追従に関する情報以外の情報を送信するようにしてもかまわない。これによれば、マスタ機は、負荷追従制御に関する情報を高速通信が可能な接続線を介して優先的にスレーブ機側に伝送できるため、より確度を高めた負荷追従制御が可能になる。
また、本発明においては、前記マスタ機を構成するパワーコンディショナは、前記第2接続線を通じて、前記マスタ機のパワーコンディショナに設定された第1設定情報と、前記スレーブ機を構成するパワーコンディショナに設定される第2設定情報を送信するようにしてもかまわない。これによれば、マスタ機で設定された設定情報を、接続線を通じてスレーブ機側へ設定することが可能になるため、それぞれのパワーコンディショナに対して行われていた操作設定作業を簡略化でき、複数のパワーコンディショナを備えた分散型電源システムに対する施行工数が低減可能になる。
また、本発明においては、前記商用電力系統に接続される受電点における逆潮流電力が検出された場合に第1検出信号を出力する逆電力検出部と、前記系統側で地絡故障が検出
された場合に第2検出信号を出力する地絡過電圧検出部と、をさらに備え、前記マスタ機を構成するパワーコンディショナは、前記第1検出信号及び前記第2検出信号が入力されるとともに、前記接続線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御するようにしてもかまわない。これによれば、全てのパワーコンディショナに対して逆電力継電器および地絡過電圧継電器の検出信号を入力するための配線が行われる場合と比較して、相対的な施行コスト(工数、配線費用等)を削減することが可能になる。
また、本発明においては、前記逆電力検出部および前記地絡過電圧検出部は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、前記マスタ機を構成するパワーコンディショナは、前記無線を通じて前記第1検出信号及び前記第2検出信号が入力されるとともに、前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御するようにしてもかまわない。これによれば、各構成機器間を接続する配線を大幅に削減することが可能になるため、相対的な施行コストをさらに削減することが期待できる。
また、本発明においては、前記検知手段は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、前記マスタ機を構成するパワーコンディショナは、前記無線を通じて入力された前記検知手段が検出した過去の所定期間における前記出力電力に基づいて前記負荷追従制御を行うとともに、前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機のパワーコンディショナは、前記マスタ機から送信された前記過去の所定期間における前記出力電力と前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給するようにしてもかまわない。これによれば、各構成機器間を接続する配線を大幅に削減することが可能になるため、相対的な施行コストをさらに削減することが期待できる。
なお、本発明における上記の課題を解決するための手段は、可能な限り組み合わせて使用することが可能である。
本発明によれば、分散型電源システムにおける逆潮流電力を防止しつつ、簡易な構成でシステムの稼働時間を確保し、パワーコンディショナの寿命を平準化することが可能になる。
本発明の実施例1における分散型電源システムの概略構成を示す図である。 本発明の実施例1における出力電力の変化、出力制御目標の変化及び、制御偏差の最小値の変化を示すグラフである。 本発明の実施例2における分散型電源システムの概略構成を示す図である。 本発明の実施例3における分散型電源システムの概略構成を示す図である。 本発明の実施例3における変形例の分散型電源システムの通信形態を説明する図である。
〔適用例〕
以下、本発明の適用例について、図面を参照しつつ説明する。図1に、本適用例における分散型電源システム1の概略構成について示す。図1において、分散型電源システム1は、パワーコンディショナ10と太陽光発電装置20とを含んでいる。1aは商用電源の商用電力系統であり、この商用電力系統1aには、第1の負荷2と、第2の負荷3(以下、単純に負荷2、3という)が接続されている。また、分散型電源システム1は、商用電
力系統1aと負荷2、3の間の受電点を流れる電流の向きと大きさを検出する検知手段としての系統CT(カレントトランス)6a、6bを備える。この系統CT6a、6bで検出された検出信号は、パワーコンディショナ10の備えるCT入力回路(ADコンバータ)15a、15bにCT電流線を通じて入力される。
パワーコンディショナ10は、太陽光発電装置20から入力された電力を変換する電力変換部13を有する。この電力変換部13は、太陽光発電装置20が発電した電力を昇圧するDC/DCコンバータと、このDC/DCコンバータによって昇圧された電力を商用電力系統1aと同期のとれた交流電力に変換するDC/ACインバータを含んでおり、これらの作動により、太陽光発電装置20が発電した直流電力を、商用電力系統1aと同期のとれた交流電力に変換する。また、パワーコンディショナ10は、電力変換部13からの出力電力を制御するための制御指令信号を発信する制御部12と、電力変換部13からの出力電力を制御する際に用いる情報を記憶する記憶部11を有する。
そして、パワーコンディショナ10は、上述のように、太陽光発電装置20が発電した電力を商用電力系統1aと同期のとれた交流電力に変換して負荷2、3に供給する。そして、パワーコンディショナ10による出力電力が、負荷2、3における消費電力に対して不足する場合には、商用電力系統1aより商用電力の供給を受ける。一方、パワーコンディショナ10による出力電力が、負荷2、3における消費電力より大きい場合には、商用電力系統1a側に逆潮流が生じる虞があるので、この場合には、電力変換部13を、出力電力が商用電力系統1a側への逆潮流が生じる閾値を超えない範囲で追従する制御を行う。
図2には、分散型電源システム1における制御の一例を示す。図2の上段グラフは、系統CT(カレントトランス)6a、6bが設けられた受電点における系統電力の時間的変化を示す。この系統電力は、負荷2、3の消費電力が一定の場合には、パワーコンディショナ10からの出力電力に応じた時間的変化をするので、上段グラフは、パワーコンディショナ10からの出力電力を示しているとも言える。この系統電力は、太陽光発電装置20による発電電力やパワーコンディショナ10の電力変換部13による出力の変動や揺らぎを含んでおり、ばらつきながら変化する。
図2の中段グラフは、パワーコンディショナ10の電力変換部13における出力制御目標Bの時間的変化を示す。図2の上段グラフにおいて、RPR検出レベルは、系統電力がこれ以上となることで、逆潮流が発生する閾値である。実際には、系統電力がこれ以上となることで、逆電力継電器(RPR)が作動し、逆潮流が商用電力系統1aに流れ込まないように、パワーコンディショナ10が商用電力系統1aから遮断される。
図1に示す本適用例のパワーコンディショナ10を複数に備える場合の分散型電源システム51の機略構成が図3に例示される。図3においては、分散型電源システム51は、系統CT(カレントトランス)6a、6bで検出された検出信号が、CT電流線の渡り配線を用いて当該システムを構成する全てのパワーコンディショナ10に供給されるように構成した。ここで、渡り配線とは、全てのパワーコンディショナ10、または、全ての中の一部のパワーコンディショナ10を直列に接続させる配線形式である。本適用例においては、一つのパワーコンディショナ10に系統CT(カレントトランス)6a、6bで検出された検出信号が入力されると、渡り配線を通じて接続された他のパワーコンディショナ10に当該検出信号を入力することが可能になる。
つまり、本適用例の分散型電源システム51では、CT電流線の渡り配線で接続された全てのパワーコンディショナ10が、系統CT(カレントトランス)6a、6bで検出された検出信号を用いて負荷追従制御を行うことが可能になる。すなわち、それぞれのパワ
ーコンディショナ10はマスタ機として機能し、系統CT(カレントトランス)6a、6bで検出された検出信号に基づいて、逆潮流がRPR検出レベルを超えない範囲で、パワーコンディショナ10の出力電力が可及的に大きくなるように制御をすることができ、逆潮流の発生を抑制しながら、効率的に負荷2、3に電力供給を行うことが可能になる。複数のパワーコンディショナ10を備える分散型電源システム51では、全てのパワーコンディショナ10がマスタ機として機能することが可能になるため、システム稼働時間を長くすることが可能になる。システム稼働時間が、マスタ機として機能するパワーコンディショナ10に左右されることはない。また、CT電流線の渡り配線に接続された各パワーコンディショナ間では、マスタ機として機能するパワーコンディショナをローテーションにより稼働することができるため、パワーコンディショナ10の寿命が平準化できる。そして、系統CT(カレントトランス)6a、6bで検出された検出信号は、パワーコンディショナ間を接続させるCT電流線の渡り配線のみで供給されるため簡易な構成でシステムの稼働時間が確保できる。
〔実施例1〕
以下では、本発明の実施例に係る分散型電源システム1について、図面を用いて、より詳細に説明する。
<システム構成>
本実施例において、パワーコンディショナ10は、太陽光発電装置20が発電した電力を商用電力系統1aと同期のとれた交流電力に変換する出力変更手段としての電力変換部13を備える。また、商用電力系統1aと負荷2、3の間の受電点を流れる電流の向きと大きさを検出する検知手段としての系統CT(カレントトランス)6a、6bと、この系統CT6a、6bの検出信号を入力するCT入力回路(ADコンバータ)15a、15bを備える。また、電力変換部13の出力電流の大きさを検出する出力CT(カレントトランス)CT14と、この出力CT14の検出信号を入力するCT入力回路(ADコンバータ)15cを備える。さらに、商用電力系統1aの電圧(系統電圧)を検出信号として入力する電圧入力回路35a、35bと、電力変換部13に指令を発信してパワーコンディショナ10による出力電力を制御する制御部(MPU)12を備える。
そして、制御部(MPU)12は、CT入力回路15a、15b、15c及び電圧入力回路35a、35bからの信号を受けて、負荷2、3側から商用電力系統1a側に向かう逆潮流が生じないように電力変換部13を制御する。この制御部12には、制御部12によって行われる制御に必要なデータが記憶された記憶部11が接続されている。この記憶部11は、ROM、RAM等のメモリ素子を含んで構成される。
制御部12の出力側は電力変換部13に設けられたCPU(図示せず)に接続されており、この電力変換部13の入力側には太陽光発電装置20の出力側が接続してあり、電力変換部13の出力側は信号出力部16に接続されている。この信号出力部16は、接続線17、18、19を介して商用電力系統1a及び負荷2、3に接続されている。そして、この信号出力部16には出力CT14が設けてあり、この出力CT14の信号出力側はCT入力回路15cを介して制御部12に接続されている。また、信号出力部16からの出力信号の電圧を検出すべく信号出力部16に電圧入力回路35a、35bの入力側が接続されている。
次に、図2について詳細に説明する。図2において、前述のように、上段グラフは、系統CT(カレントトランス)6a、6bが設けられた受電点における系統電力の時間的変化を示す。図2の中段グラフは、パワーコンディショナ10の制御部12によって決定される出力制御目標Bの時間的変化を示す。図2の下段グラフは、上段グラフにおいて検出され記憶部11に記憶された、各分割期間における分割期間最大値の変更の様子を示す。
なお、実際には、本実施例においては、各分割期間における分割期間最大値は、RPR検出レベルと各分割期間における分割期間最大値との制御偏差Aとして記憶される。よって、各分割期間における分割期間最大値は、各分割期間における制御偏差Aの最小値Amin[n](n=0〜11)として記憶部に記憶される。なお、各分割期間における制御偏差Aの最小値Amin[n]は、以下、分割期間偏差とも呼ぶ。
図2の上段グラフにおいて、RPR検出レベルは、パワーコンディショナ10の出力電力がこれを超えることで、保護継電器(RPR)が作動し、分散型電源システム1と商用電力系統1aとが遮断される閾値である。このRPR検出レベルは、例えば、逆潮流も順潮流もない0Wの状態から、パワーコンディショナ10の定格電力の5%の電力が逆潮流側に流れた場合の電力値であってもよい。また、図2において、上述のように、分割期間の長さは5secであり、監視期間の長さは60secである。すなわち、監視期間60secを12分割する期間として、分割期間5secが定義されている。
本実施例では、過去60secの監視期間における、RPR検出レベルと系統電力との偏差である制御偏差Aが監視される。この制御偏差Aの値は、太陽光発電装置20に対する照度の変化やパワーコンディショナ10の出力電力の変動によって変化する。そして、図2の上段グラフに示すように、各分割期間における分割期間偏差Amin[n](n=0〜11)を検出し、記憶部11に記憶する。なお、本実施例では、制御偏差Aは、以下の式(1)に示すように、パワーコンディショナ10による定格出力電力(パワーコンディショナ10が後述するように複数個ある場合にはその合計値)に対する割合[%]として記憶される。

制御偏差A[%] = [ { (−系統電力) − (−RPR検出レベル) }÷Σパワーコンディショナ定格 ]
×100[%] −オフセット・・・・・(1)
(系統電力とRPR検出レベルは、逆符号のため偏差を足し算で算出している。)
式(1)に関して、標準偏差A[%]は、逆潮流側については、−100[%] ≦ 制御偏差A[%]の範囲に制限してもよい。また、順潮流側については、制御偏差A[%] ≦ 50[%]の範囲に制限してもよい。これにより、負荷2、3が大幅に変動したような場合であっても、制御偏差A[%]が過応答になることを抑制できる。
そして、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が、所定の偏差閾値(本実施例ではパワーコンディショナ定格出力の1%)より大きい場合には、出力制御目標Bを、所定増加量(所定増加量:本実施例では1%)ずつ増加させる。この所定増加量は本発明における所定量に相当する。同時に、各分割期間について記憶されている制御偏差Aの最小値を1%縮小する。また、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が0以下(あるいは負数でもよい)となった場合は、その時の出力制御目標Bの値に、分割期間偏差Amin[n]の監視期間全体における最小値Min(Amin[n])を加算する。
同時に、各分割期間について記憶されている分割期間偏差Amin[n]から、Min(Amin[n])を減算する。この場合、Min(Amin[n])は負の値であるので、出力制御目標Bは減少し、各分割期間偏差Amin[n]は増加し、その最小値Min(Amin[n])が0になる。なお、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が0以下(あるいは負数でもよい)となった場合は、パワーコンディショナ10による出力電力の監視期間における最大値が増加したために、監視期間における系統電力の逆潮流側の最大値が、RPR検出レベル以上となった場合に相当する。
なお、その際、出力制御目標Bの変化には、1[%/s]といった所定のレートリミット
をかけるようにしてもよい。また、出力制御目標Bは、システムの起動時あるいは、系統と切り離されたゲートブロックの解除時には、0%から再スタートさせるようにしてもよい。また、各分割期間偏差Amin[n]は、システムの起動時あるいは、系統と切り離されたゲートブロックの解除時には、Amin[n](%)−5(%)等の値から、再スタートさせるようにしてもよい。
なお、本実施例においては、出力制御目標Bの値は、5秒の分割期間に1%という割合で、徐々に変化させることとしたが、出力制御目標Bの変化速度はこれに限られない。例えば、PI制御によって、一機にRPR検出レベルに近づけてもよい。また、本実施例において出力制御目標Bは、パワーコンディショナ10の定格出力に対する比率[%]を制御量として制御を行ったが、必ずしも、出力制御目標Bをパワーコンディショナ10の定格出力に対する比率[%]を制御量として制御する必要はない。実際の電力値[W]を制御量として制御しても構わない。さらに、本実施例においては、監視期間を60secとしたが、監視期間がこれに限定されるものではないことは当然である。しかしながら、監視期間を60sec程度とし、分割時間を5sec程度とすることで、パワーコンディショナ10による出力電力を充分高速に制御することが可能である。
また、本実施例においては、発電装置として、太陽光発電装置20を用いることを前提としたが、本発明は、発電装置として、太陽光の他の自然エネルギーを用いた発電装置の他、燃料電池、蓄電池を用いた電力供給装置、ガスエンジン装置、それらの組み合わせ等に適用されてもよい。
本実施例によれば、パワーコンディショナ10は、逆潮流がRPR検出レベルを超えない範囲で、パワーコンディショナ10の出力電力が可及的に大きくなるように制御をすることができ、逆潮流の発生を抑制しながら、効率的に負荷2、3に電力供給を行うことが可能になる。本システムにおいては、負荷2、3の変動の影響も含めた上で、分散型電源システム1の作動中にパワーコンディショナ10による出力電力を最適値に自動調節することが可能である。
〔実施例2〕
次に、本発明の実施例2について説明する。本実施例においては、分散型電源システムが、複数のパワーコンディショナを備えている例について説明する。
図3には、本実施例における分散型電源システム51の概略構成を示す。図3に示すように、本実施例では、パワーコンディショナ10aの他に、パワーコンディショナ10b、10cを備えている。各パワーコンディショナ10a、10b、10cの内部構成は、図1に示したものと同等である。パワーコンディショナ10aは、接続線17a、18a、19aによって、商用電力系統1a及び負荷2、3に接続されている。パワーコンディショナ10bは、接続線17b、18b、19bによって、商用電力系統1a及び負荷2,3に接続されており、パワーコンディショナ10cは、接続線17c、18c、19cによって、商用電力系統1a及び負荷2,3に接続されている。パワーコンディショナ10aとパワーコンディショナ10bの間及び、パワーコンディショナ10bとパワーコンディショナ10cの間では、通信レートが低速であるRS−485と通信レートが高速であるCAN(Controller Area Networkとを組合せた通信22、23によって情報通信
がなされる。
また、分散型電源システム51は、商用電力系統1aと負荷2、3の間の受電点を流れる電流の向きと大きさを検出する検知手段としての系統CT(カレントトランス)6a、6bを備える。そして、系統CT6a、6bは、CT電流線24a、24bによってパワーコンディショナ10aに接続され、系統CT6a、6bで検出された検出信号は、CT
電流線24a、24bを通じてパワーコンディショナ10aの備えるCT入力回路(ADコンバータ)15a、15bに入力される。パワーコンディショナ10aとパワーコンディショナ10b、および、パワーコンディショナ10bとパワーコンディショナ10cとは、それぞれCT電流線25a、25、および26a、26bを介して接続される。CT電流線25a、25b、および26a、26bは、系統CT6a、6bで検出された検出信号をパワーコンディショナ10bおよびパワーコンディショナ10cに入力するための渡り配線を構成する。パワーコンディショナ10bの備えるCT入力回路15a、15b(不図示)には、CT電流線25a、25bを通じて系統CT6a、6bで検出された検出信号が入力される。パワーコンディショナ10cの備えるCT入力回路15a、15b(不図示)には、CT電流線26a、26bを通じて系統CT6a、6bで検出された検出信号が入力される。
このように、本実施例においては、渡り配線を通じて入力された検出信号に基づいて、各パワーコンディショナ10a、10b、10cのそれぞれは、マスタ機として機能することも、スレーブ機として機能することも可能になる。また、本実施例においては、マスタ機に設定された設定情報を、通信22、23を通じてスレーブ機側へ設定することが可能になるため、各パワーコンディショナに対して行われていた操作設定作業を簡略化でき、複数のパワーコンディショナを備えた分散型電源システムに対する施行工数が低減可能になる。
本実施例における制御の概要は、実施例1で説明した制御と同等である。本実施例においては、パワーコンディショナ10aがマスタ機として機能するときには、制御における出力制御目標Bは、パワーコンディショナ10a、10b、10cの合計の定格出力を100%とした場合の、各パワーコンディショナの出力の割合(%)として制御される。例えば、パワーコンディショナ10aの制御部12において、実施例1と同様の制御によって、出力制御目標B(%)が決定される。そして、その出力制御目標B(%)の情報がRS−485とCANとを組合せた通信22、23によって、スレーブ機として機能するパワーコンディショナ10b、10cに送信される。スレーブ機として機能するパワーコンディショナ10b、10cにおいては、マスタ機として機能するパワーコンディショナ10aからの指令に基づいて、自らにおける出力制御目標B(%)が同じ値になるような制御が行われる。
図3に示す本実施例の分散型電源システム51においては、マスタ機は、複数のパワーコンディショナの合計の定格出力に対する比率(%)を制御量とするので、パワーコンディショナの台数が増えても、系統電力計測ユニット7の検出信号を用いて同じアルゴリズムを使用することが可能になる。そして、本実施例の分散型電源システム51においては、渡り配線を通じて接続された各パワーコンディショナに系統CT6a、6bで検出された検出信号を入力できるため、システム稼働時間がマスタ機として機能するパワーコンディショナに左右されることはない。
さらに、本実施例の分散型電源システム51においては、複数のパワーコンディショナ10の中から、マスタ機として機能するパワーコンディショナ10、および、スレーブ機として機能するパワーコンディショナ10を適宜に選定することが可能になる。例えば、各パワーコンディショナの総稼働時間に基づいて、マスタ機として機能させるパワーコンディショナ10をローテーションすることが可能になるため、分散型電源システム51を構成する各パワーコンディショナの寿命が平準化できる。寿命の平準化により、複数のパワーコンディショナ10を備える分散型電源システム51においては、システム稼働時間を相対的に長くすることが可能になる。
また、分散型電源システム51を構成するパワーコンディショナ10に故障が生じた場
合であっても、当該パワーコンディショナを解列させてシステムから切り離し、当該パワーコンディショナ以外のパワーコンディショナ10を用いてシステム稼働が可能になる。
また、本実施例においては、通信22、23を介して通信される情報内容は、通信速度に応じて適宜に設定することができる。例えば、マスタ機とスレーブ機間の負荷追従制御に関する情報(各種のパラメータを含む)は、高速通信が行えるCAN側で通信し、マスタ機とスレーブ機間の設定情報やモニタ信号といった負荷追従制御に関する情報以外の情報は、低速側のRS−485に振り分けることができる。
〔実施例3〕
次に、本発明の実施例3について説明する。図4には、本実施例に係る分散型電源システム52を、三相の需要家負荷2a及び単相の需要家負荷2、3と、高圧配電線21とに接続した例が示される。この実施例においては、高圧配電線21からの電力を、キュービクル52bを介して、需要家構内52aにおける三相の需要家負荷2aと、単相の需要家負荷2、3に供給している。マスタ機として機能するパワーコンディショナ10a及びスレーブ機として機能するパワーコンディショナ10b、10cの構成は、図3に示したものと同等である。パワーコンディショナ10a及びパワーコンディショナ10b、10cの出力端は、単相の需要家負荷2、3とキュービクル52bの間に接続されており、系統電力計測ユニット7は、高圧配電線21とキュービクル52bの間の受電点に設けられている。そして、高圧配電線21とキュービクル52bの間には、逆電力継電器(RPR:Reverse Power Relays)8と地絡過電圧継電器(OVGR:Over Voltage Ground Relay
)9とが設けられている。逆電力継電器8は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えると、検出信号を出力し、地絡過電圧継電器9は、系統側で地絡故障(アースへのショート)が発生した場合、故障した場所の探査や、故障の除去作業にあたる作業員の感電を防止するために、電圧が閾値(OVGR検出レベル)をこえると検出信号を出力する。本実施例においては、逆電力継電器8及び地絡過電圧継電器9の検出信号(接点信号)は、マスタ機として機能するパワーコンディショナ10に入力される。
ここで、分散型電源システムが構築される需要家においては、三相の需要家負荷2a及び単相の需要家負荷2、3と、高圧配電線21とが接続される場合には、逆電力継電器8や地絡過電圧継電器9の検出信号の入力を受けて、パワーコンディショナ10を停止させることが求められる。分散型電源システムが複数のパワーコンディショナ10を備える場合には、全てのパワーコンディショナ10に対して逆電力継電器8および地絡過電圧継電器9の検出信号を入力するための配線が行われていた。
本実施例においては、マスタ機として機能するパワーコンディショナ10aには、系統CT6a、6bで検出された検出信号と、逆電力継電器8および地絡過電圧継電器9の検出信号とが入力される構成を採用する。そして、マスタ機は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えた場合や、系統側で地絡故障(アースへのショート)が発生し、電圧が閾値(OVGR検出レベル)をこえた場合には、通信伝達手段(通信22、23)を用いてスレーブ機を停止させる。本実施例の分散型電源システム52においては、マスタ機は、複数のパワーコンディショナの合計の定格出力に対する比率(%)を制御量とするので、パワーコンディショナの台数が増えても、系統電力計測ユニット7の検出信号を用いて図2で説明した同じアルゴリズムを使用することが可能になる。そして、マスタ機は、逆電力継電器8および地絡過電圧継電器9の検出信号に基づき、通信伝達手段(通信22、23)を用いてスレーブ機を停止させることができるため、分散型電源システム52を施行する際の施行コスト(工数、配線費用等)を削減することが可能になる。本実施例においては、需要家構内52aのキュービクル52bから高圧配電線21への逆潮流を抑制しつつ、施工コストを削減し、各パワーコンディショナに接続さ
れた太陽光発電装置(不図示)の出力を負荷追従制御することが可能になる。
≪変形例≫
図5は、実施例3における変形例の分散型電源システム53の通信形態を説明する図である。変形例の分散型電源システム53においては、近距離無線通信や構内無線LAN等の通信規格に準拠した通信回路を備える系統CT6c、6d(カレントトランス)、逆電力継電器8a、地絡過電圧継電器9a、パワーコンディショナ10a、10b、10cを備える。系統CT6cの通信回路6c1、系統CT6dの通信回路6d1、逆電力継電器8aの通信回路8a1、地絡過電圧継電器9a通信回路9a1のそれぞれは、上記通信規格に準拠した通信手順により無線回線を通じて、マスタ機として機能するパワーコンディショナ10aの通信回路10a1と接続される。また、パワーコンディショナ10aの通信回路10a1は、スレーブ機として機能するパワーコンディショナ10bの通信回路10b1と無線回線を通じて接続され、当該通信回路10b1はスレーブ機として機能するパワーコンディショナ10cの通信回路10c1と接続される。
そして、変形例の分散型電源システム53においては、当該無線通信を通じて、系統CT6c、6dで検出された検出信号と、逆電力継電器8aおよび地絡過電圧継電器9aの検出信号とがマスタ機として機能するパワーコンディショナ10aに入力される。マスタ機は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えた場合や、系統側で地絡故障(アースへのショート)が発生し、電圧が閾値(OVGR検出レベル)をこえた場合には、通信伝達手段として機能する無線通信を通じてスレーブ機を停止させる。
このような構成によっても実施例3と同等の効果を奏することができ、検出信号や制御信号等の伝達に使用していた配線を削除することができるため、変形例の分散型電源システム53を施行する際の施行コスト(工数、配線費用等)をさらに削減することが可能になる。
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
直流電力を発電する発電装置(20)と、電力供給対象である負荷(2、3)と商用電力系統(1a)とに接続された出力端(17、18、19)と、前記発電装置(20)によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機を構成するパワーコンディショナ(10)を主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷(2、3)に電力を供給する分散型電源システム(1)であって、
過去の所定期間における前記出力電力を検知する検知手段(6a、6b)と、
前記検知手段(6a、6b)に接続され、前記複数のパワーコンディショナ間を渡り配線によって接続させる信号線(25a、25b、26a、26b)と、
前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンデショナ(10)は、前記検知手段(6a、6b)から入力される前記検知手段が検出した前記過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統(1a)への逆潮流が生じ得る閾値より小さい場合には、前記出力変更手段(13)に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部(12)を備え、
前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナ(10)は、前記信号線を通じて入力された前記過去の所定期間における前記出力電力と、前記マスタ機から送信された前記負荷追従制御に関する情報とにしたがって前記負荷(2、3)に電力を供給する制御部(12)を備える、
ことを特徴とする、分散型電源システム(1)。
1 :分散型電源システム
1a :商用電力系統
2,3 :負荷
7 :系統電力計測ユニット
10 :パワーコンディショナ
11 :記憶部
12 :制御部

Claims (7)

  1. 直流電力を発電する発電装置と、電力供給対象である負荷と商用電力系統とに接続された出力端と、前記発電装置によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機を構成するパワーコンディショナを主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷に電力を供給する分散型電源システムであって、
    過去の所定期間における前記出力電力を検知する検知手段と、
    前記検知手段に接続され、前記複数のパワーコンディショナ間を渡り配線によって接続させる信号線と、を備え、
    前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンディショナは、前記検知手段から入力される前記検知手段が検出した前記過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統への逆潮流が生じ得る閾値より小さい場合には、前記出力変更手段に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部を備え、
    前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナは、前記信号線を通じて入力された前記過去の所定期間における前記出力電力と、前記マスタ機から送信された前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給する制御部を備える、
    ことを特徴とする、分散型電源システム。
  2. 前記複数のパワーコンディショナの中の、前記マスタ機を構成するパワーコンディショナは、前記マスタ機として稼働する稼働時間を平準化させるように選択される、ことを特徴とする請求項1に記載の分散型電源システム。
  3. 前記複数のパワーコンディショナがマスタ・スレーブ方式の通信が可能に接続される接続線は、通信速度が相対的に高い第1接続線と前記第1接続線より通信速度が相対的に低い第2接続線とを含み、
    前記マスタ機を構成するパワーコンディショナは、前記第1接続線を通じて前記負荷追従制御に関する情報を前記スレーブ機を構成するパワーコンディショナに送信するとともに、前記第2接続線を通じて前記負荷追従に関する情報以外の情報を送信する、ことを特徴とする請求項1または2に記載の分散型電源システム。
  4. 前記マスタ機を構成するパワーコンディショナは、前記第2接続線を通じて、前記マスタ機のパワーコンディショナに設定された第1設定情報と、前記スレーブ機を構成するパワーコンディショナに設定される第2設定情報を送信する、ことを特徴とする請求項3に記載の分散型電源システム。
  5. 前記商用電力系統に接続される受電点における逆潮流電力が検出された場合に第1検出信号を出力する逆電力検出部と、
    前記系統側で地絡故障が検出された場合に第2検出信号を出力する地絡過電圧検出部と、をさらに備え、
    前記マスタ機を構成するパワーコンディショナは、前記第1検出信号及び前記第2検出信号が入力されるとともに、接続線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御する、ことを特徴とする請求項1から4の何れか一項に記載の分散型電源システム。
  6. 前記逆電力検出部および前記地絡過電圧検出部は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、
    前記マスタ機を構成するパワーコンディショナは、前記無線を通じて前記第1検出信号及び前記第2検出信号が入力されるとともに、前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御する、ことを特徴とする請求項5に記載の分散型電源システム。
  7. 前記検知手段は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、
    前記マスタ機を構成するパワーコンディショナは、前記無線を通じて入力された前記検知手段が検出した過去の所定期間における前記出力電力に基づいて前記負荷追従制御を行うとともに、
    前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機のパワーコンディショナは、前記マスタ機から送信された前記過去の所定期間における前記出力電力と前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給する、請求項1から6の何れか一項に記載の分散型電源システム。
JP2019222491A 2019-12-09 2019-12-09 分散型電源システム Active JP6791343B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222491A JP6791343B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222491A JP6791343B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Publications (2)

Publication Number Publication Date
JP6791343B1 JP6791343B1 (ja) 2020-11-25
JP2021093816A true JP2021093816A (ja) 2021-06-17

Family

ID=73455244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222491A Active JP6791343B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Country Status (1)

Country Link
JP (1) JP6791343B1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050835A (ja) * 2013-08-30 2015-03-16 京セラ株式会社 分散電源システム、パワーコンディショナ
JP2017163795A (ja) * 2016-03-11 2017-09-14 オムロン株式会社 発電設備の運転制御装置、運転制御方法および運転制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050835A (ja) * 2013-08-30 2015-03-16 京セラ株式会社 分散電源システム、パワーコンディショナ
JP2017163795A (ja) * 2016-03-11 2017-09-14 オムロン株式会社 発電設備の運転制御装置、運転制御方法および運転制御システム

Also Published As

Publication number Publication date
JP6791343B1 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP5311153B2 (ja) 電力制御装置および電力制御方法
US9882379B2 (en) Power source system
EP2240993B1 (en) Backup power system and method
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
US11223229B2 (en) Uninterruptible power supply system comprising energy storage system
CN111788754A (zh) 电网系统
JP6760474B1 (ja) 分散型電源システム
TW201351846A (zh) 在低電壓事件期間用於供電給儀器的系統、方法與設備
KR101815464B1 (ko) 풍력 연계용량 적정성 검증 시스템
WO2015032420A1 (en) Redundant point of common coupling (pcc) to reduce risk of microgrid's islanding
JP6356517B2 (ja) 系統監視制御装置
KR20170026695A (ko) 하이브리드 에너지저장 시스템
JP2006288079A (ja) 電力設備接続装置、電力供給システム、電力設備接続方法および電力系統運用方法。
Otomega et al. A load shedding scheme against both short-and long-term voltage instabilities in the presence of induction motors
JP2017103935A (ja) 分散型電源のシステム制御装置、及びパワーコンディショナ
JP2019201453A (ja) 電力供給システムおよび電力管理方法
JP6791343B1 (ja) 分散型電源システム
CN104393602A (zh) 一种分布式能源网络的调节方法及装置
WO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
JP5205654B2 (ja) 分散直流電源制御回路
JP6773204B1 (ja) 分散型電源システム
JP2016136815A (ja) 電力供給装置
JP6787473B1 (ja) 分散型電源システム
KR20180099277A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
JP2020137299A (ja) 電力系統安定化システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6791343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150