JP6760474B1 - 分散型電源システム - Google Patents

分散型電源システム Download PDF

Info

Publication number
JP6760474B1
JP6760474B1 JP2019222521A JP2019222521A JP6760474B1 JP 6760474 B1 JP6760474 B1 JP 6760474B1 JP 2019222521 A JP2019222521 A JP 2019222521A JP 2019222521 A JP2019222521 A JP 2019222521A JP 6760474 B1 JP6760474 B1 JP 6760474B1
Authority
JP
Japan
Prior art keywords
power
output
conditioner
master
master machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019222521A
Other languages
English (en)
Other versions
JP2021093818A (ja
Inventor
中村 耕太郎
耕太郎 中村
秀樹 尾関
秀樹 尾関
馬渕 雅夫
雅夫 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2019222521A priority Critical patent/JP6760474B1/ja
Application granted granted Critical
Publication of JP6760474B1 publication Critical patent/JP6760474B1/ja
Publication of JP2021093818A publication Critical patent/JP2021093818A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】分散型電源システムにおける逆潮流電力を防止しつつ、パワーコンディショナの寿命を平準化する。【解決手段】発電装置(20)と、マスタ・スレーブ方式の通信が可能に接続された複数のパワーコンディショナ(10)と、出力電力を検知する検知手段(6a、6b)と、検出された出力電力をパワーコンディショナに入力する入力手段とを含み、複数のパワーコンディショナとは独立する系統電力計測手段(7)とを備え、マスタ機は、過去の所定期間における出力電力の最大値が、商用電力系統(1a)への逆潮流が生じ得る閾値より小さい場合には、出力変更手段(13)に出力電力を所定量だけ増加させる負荷追従制御を行う制御部(12)を備え、スレーブ機は、マスタ機から送信された過去の所定期間における出力電力と、負荷追従制御に関する情報とにしたがって負荷に電力を供給する制御部を備える。【選択図】図3

Description

本発明は、自家消費を行うための分散型電源システムに関し、特に、分散型電源による電力の系統への逆潮流することを防止する分散型電源システムに関する。
従来より、分散型電源システムにおいては、系統との接続経路にある受電点における電力を検出し、分散型電源の出力電力を調整することで、系統側への出力電力の逆潮流を抑制していた(例えば、特許文献1等参照のこと)。しかしながら、特に、太陽光発電を利用する分散型電源においては、負荷の変動や太陽光の照度の変動があるため、出力を高速に調整することが困難な場合があった。これに対応するため、従来の分散型電源システムにおいては、系統側への逆潮流が生じる電力のレベルに対して、充分な余裕を持って動作させることで逆潮流の発生を防止していた。
ところで、太陽光発電を利用する分散型電源システムの形態として、複数台のパワーコンディショナで構成された自家消費システムが存在する。この形態では、複数台の内の1台を逆潮流電力を監視するマスタ機とし、当該マスタ機で検出された情報(出力電力量、故障情報、運転状態等)を通信を介して他のパワーコンディショナ(スレーブ機)に送信することで、それぞれのパワーコンディショナが逆潮流を防止するように発電量を制御していた。しかしながら、このような形態では、系統電力を計測するマスタ機が固定されてしまうため、例えば、故障等により当該マスタ機が停止している場合には系統電力を計測する手段が不在になる。自家消費システムを構成する各スレーブ機は、出力電力量、故障情報、運転状態等に基づく負荷追従制御が行えないため、当該システムは停止することになる。システム停止により、太陽光発電を利用した分散型電源システムのシステム稼働時間は相対的に短くなり、発電機会の減少による買電価格の上昇等により、当該システムの運用コストは相対的に増大してしまう。さらに、マスタ機に固定されたパワーコンディショナの稼働時間は相対的に長くなるため寿命が短くなるという問題もあった。
特許第3656556号公報
本発明は、上記のような状況に鑑みてなされたものであり、その目的は、分散型電源システムにおける逆潮流電力を防止しつつ、発電機会の減少を抑制し、パワーコンディショナの寿命を平準化することが可能な技術を提供することにある。
上記の課題を解決するための本発明は、直流電力を発電する発電装置と、電力供給対象である負荷と商用電力系統とに接続された出力端と、前記発電装置によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機のパワーコンディショナを主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷に電力を供給する分散型電源システムであって、
過去の所定期間における前記出力電力を検知する検知手段と、前記検知手段で検出された前記出力電力を前記パワーコンディショナに入力する入力手段とを含み、前記複数のパワーコンディショナとは独立する系統電力計測手段を備え、
前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンディショナは、前記系統電力計測手段から入力される前記検知手段が検出した前記過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統への逆潮流が生じ得る閾値より小さい場合には、前記出力変更手段に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部を備え、
前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナは、前記マスタ機から送信された前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給する制御部を備える、
ことを特徴とする、分散型電源システムである。
これによれば、過去の所定期間における前記出力電力を検知する検知手段と、前記検知手段で検出された前記出力電力を前記パワーコンディショナに入力する入力手段とを含む系統電力計測手段は、パワーコンディショナと分離させて構成できる。そして、マスタ機のパワーコンディショナは、系統電力計測手段から入力される過去の所定期間における前記出力電力の最大値に基づいて、商用電力系統への逆潮流が生じ得る閾値より小さい場合には、出力変更手段に出力電力を所定量だけ増加させる負荷追従制御を行うことが可能になる。さらに、スレーブ機のパワーコンディショナは、マスタ・スレーブ方式の通信が可能に接続線によって接続されたマスタ機から伝送された過去の所定期間における出力電力と、負荷追従制御に関する情報とにしたがって自身に接続する負荷に電力を供給することが可能になる。この結果、逆潮流電力を防止しつつ、発電機会の減少を抑制し、パワーコンディショナの稼働時間を継続させることが可能になる。
また、本発明においては、複数のパワーコンディショナの中の、前記マスタ機は、前記マスタ機として稼働する稼働時間を平準化させるように選択されるようにしてもかまわない。これによれば、マスタ機に設定されるパワーコンディショナを、複数のパワーコンディショナの中でローテーションさせることが可能になる。この結果、逆潮流電力を防止しつつ、発電機会の減少を抑制し、パワーコンディショナの寿命を平準化できる。
また、本発明においては、前記複数のパワーコンディショナが接続される接続線は、通信速度が相対的に高い第1接続線と前記第1接続線より通信速度が相対的に低い第2接続線とを含み、
前記マスタ機を構成するパワーコンディショナは、前記第1接続線を通じて前記検知手段によって検出された前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とを前記スレーブ機を構成するパワーコンディショナに送信するとともに、前記第2接続線を通じて前記負荷追従に関する情報以外の情報を送信するようにしてもかまわない。これによれば、マスタ機は、負荷追従制御に関する情報を高速通信が可能な接続線を介して優先的にスレーブ機側に伝送できるため、より確度を高めた負荷追従制御が可能になる。
また、本発明においては、前記マスタ機を構成するパワーコンディショナは、前記第2接続線を通じて、前記マスタ機のパワーコンディショナに設定された第1設定情報と、前記スレーブ機を構成するパワーコンディショナに設定される第2設定情報を送信するようにしてもかまわない。これによれば、マスタ機で設定された設定情報を、接続線を通じてスレーブ機側へ設定することが可能になるため、それぞれのパワーコンディショナに対して行われていた操作設定作業を簡略化でき、複数のパワーコンディショナを備えた分散型電源システムに対する施行工数が低減可能になる。
また、本発明においては、前記商用電力系統に接続される受電点における逆潮流電力が検出された場合に第1検出信号を出力する逆電力検出部と、前記系統側で地絡故障が検出された場合に第2検出信号を出力する地絡過電圧検出部と、をさらに備え、前記マスタ機
を構成するパワーコンディショナは、前記第1検出信号及び前記第2検出信号が入力されるとともに、前記接続線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御するようにしてもかまわない。これによれば、全てのパワーコンディショナに対して逆電力継電器および地絡過電圧継電器の検出信号を入力するための配線が行われる場合と比較して、相対的な施行コスト(工数、配線費用等)を削減することが可能になる。
また、本発明においては、前記逆電力検出部および前記地絡過電圧検出部は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、前記マスタ機を構成するパワーコンディショナは、前記無線を通じて前記第1検出信号及び前記第2検出信号が入力されるとともに、前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御するようにしてもかまわない。これによれば、各構成機器間を接続する配線を大幅に削減することが可能になるため、相対的な施行コストをさらに削減することが期待できる。
なお、本発明における上記の課題を解決するための手段は、可能な限り組み合わせて使用することが可能である。
本発明によれば、分散型電源システムにおける逆潮流電力を防止しつつ、発電機会の減少を抑制し、パワーコンディショナの寿命を平準化することが可能になる。
本発明の実施例1における分散型電源システムの概略構成を示す図である。 本発明の実施例1における出力電力の変化、出力制御目標の変化及び、制御偏差の最小値の変化を示すグラフである。 本発明の実施例2における分散型電源システムの概略構成を示す図である。 本発明の実施例3における分散型電源システムの概略構成を示す図である。 本発明の実施例3における変形例の分散型電源システムの通信形態を説明する図である。
〔適用例〕
以下、本発明の適用例について、図面を参照しつつ説明する。図1に、本適用例における分散型電源システム1の概略構成について示す。図1において、分散型電源システム1は、パワーコンディショナ10と太陽光発電装置20とを含んでいる。1aは商用電源の商用電力系統であり、この商用電力系統1aには、第1の負荷2と、第2の負荷3(以下、単純に負荷2、3という)が接続されている。また、分散型電源システム1は、商用電力系統1aと負荷2、3の間の受電点を流れる電流の向きと大きさを検出する検知手段としての系統CT(カレントトランス)6a、6bと、この系統CT6a、6bの検出信号を入力するCT入力回路(ADコンバータ)15a、15bを含む、系統電力計測ユニット7を備える。そして、系統電力計測ユニット7を通じて検出された検出信号が、パワーコンディショナ10に出力される。
パワーコンディショナ10は、太陽光発電装置20から入力された電力を変換する電力変換部13を有する。この電力変換部13は、太陽光発電装置20が発電した電力を昇圧するDC/DCコンバータと、このDC/DCコンバータによって昇圧された電力を商用電力系統1aと同期のとれた交流電力に変換するDC/ACインバータを含んでおり、これらの作動により、太陽光発電装置20が発電した直流電力を、商用電力系統1aと同期のとれた交流電力に変換する。また、パワーコンディショナ10は、電力変換部13から
の出力電力を制御するための制御指令信号を発信する制御部12と、電力変換部13からの出力電力を制御する際に用いる情報を記憶する記憶部11を有する。
そして、パワーコンディショナ10は、上述のように、太陽光発電装置20が発電した電力を商用電力系統1aと同期のとれた交流電力に変換して負荷2、3に供給する。そして、パワーコンディショナ10による出力電力が、負荷2、3における消費電力に対して不足する場合には、商用電力系統1aより商用電力の供給を受ける。一方、パワーコンディショナ10による出力電力が、負荷2、3における消費電力より大きい場合には、商用電力系統1a側に逆潮流が生じる虞があるので、この場合には、電力変換部13を、出力電力が商用電力系統1a側への逆潮流が生じる閾値を超えない範囲で追従する制御を行う。
図2には、分散型電源システム1における制御の一例を示す。図2の上段グラフは、系統CT(カレントトランス)6a、6bが設けられた受電点における系統電力の時間的変化を示す。この系統電力は、負荷2、3の消費電力が一定の場合には、パワーコンディショナ10からの出力電力に応じた時間的変化をするので、上段グラフは、パワーコンディショナ10からの出力電力を示しているとも言える。この系統電力は、太陽光発電装置20による発電電力やパワーコンディショナ10の電力変換部13による出力の変動や揺らぎを含んでおり、ばらつきながら変化する。
図2の中段グラフは、パワーコンディショナ10の電力変換部13における出力制御目標Bの時間的変化を示す。図2の上段グラフにおいて、RPR検出レベルは、系統電力がこれ以上となることで、逆潮流が発生する閾値である。実際には、系統電力がこれ以上となることで、逆電力継電器(RPR)が作動し、逆潮流が商用電力系統1aに流れ込まないように、パワーコンディショナ10が商用電力系統1aから遮断される。
本実施例においては、系統電力計測ユニット7の検出信号に基づいて、逆潮流がRPR検出レベルを超えない範囲で、パワーコンディショナ10の出力電力が可及的に大きくなるように制御をすることができ、逆潮流の発生を抑制しながら、効率的に負荷2、3に電力供給を行うことが可能になる。分散型電源システム1では、従来のパワーコンディショナ10が備える系統電力計測回路を分離させたシステムが構築できるため、系統電力計測ユニット7の電源を常時通電状態にすることで、システム稼働時間を長くすることが可能になる。システム稼働時間が、マスタ機として機能するパワーコンディショナ10に左右されることはない。なお、系統電力計測ユニット7が故障した場合には、システム停止を余儀なくされるが、当該ユニットの交換はパワーコンディショナ10の交換と比べて容易であり、短時間で換装できるため、システム停止を相対的に短縮できる。
〔実施例1〕
以下では、本発明の実施例に係る分散型電源システム1について、図面を用いて、より詳細に説明する。
<システム構成>
本実施例における分散型電源システム1は、系統電力計測ユニット7を備える。本実施例の系統電力計測ユニット7は、従来のパワーコンディショナが備える系統電力計測回路を構成に含む。すなわち、系統電力計測ユニット7は、商用電力系統1aと負荷2、3の間の受電点を流れる電流の向きと大きさを検出する検知手段としての系統CT(カレントトランス)6a、6bと、この系統CT6a、6bの検出信号を入力するCT入力回路(ADコンバータ)15a、15bを備える。このCT入力回路15a、15bは、従来のパワーコンディショナ10が備えていた系統電力計測回路機能が分離されたものである。そして、本実施例における分散型電源システム1では、系統電力計測ユニット7を通じて
検出された検出信号が、パワーコンディショナ10に出力される。
本実施例において、パワーコンディショナ10は、太陽光発電装置20が発電した電力を商用電力系統1aと同期のとれた交流電力に変換する出力変更手段としての電力変換部13を備える。また、電力変換部13の出力電流の大きさを検出する出力CT(カレントトランス)CT14と、この出力CT14の検出信号を入力するCT入力回路(ADコンバータ)15cを備える。さらに、商用電力系統1aの電圧(系統電圧)を検出信号として入力する電圧入力回路35a、35bと、電力変換部13に指令を発信してパワーコンディショナ10による出力電力を制御する制御部(MPU)12を備える。そして、制御部(MPU)12は、CT入力回路15a、15b、15c及び電圧入力回路35a、35bからの信号を受けて、負荷2、3側から商用電力系統1a側に向かう逆潮流が生じないように電力変換部13を制御する。この制御部12には、制御部12によって行われる制御に必要なデータが記憶された記憶部11が接続されている。この記憶部11は、ROM、RAM等のメモリ素子を含んで構成される。
制御部12の出力側は電力変換部13に設けられたCPU(図示せず)に接続されており、この電力変換部13の入力側には太陽光発電装置20の出力側が接続してあり、電力変換部13の出力側は信号出力部16に接続されている。この信号出力部16は、接続線17、18、19を介して商用電力系統1a及び負荷2、3に接続されている。そして、この信号出力部16には出力CT14が設けてあり、この出力CT14の信号出力側はCT入力回路15cを介して制御部12に接続されている。また、信号出力部16からの出力信号の電圧を検出すべく信号出力部16に電圧入力回路35a、35bの入力側が接続されている。
次に、図2について詳細に説明する。図2において、前述のように、上段グラフは、系統CT(カレントトランス)6a、6bが設けられた受電点における系統電力の時間的変化を示す。図2の中段グラフは、パワーコンディショナ10の制御部12によって決定される出力制御目標Bの時間的変化を示す。図2の下段グラフは、上段グラフにおいて検出され記憶部11に記憶された、各分割期間における分割期間最大値の変更の様子を示す。なお、実際には、本実施例においては、各分割期間における分割期間最大値は、RPR検出レベルと各分割期間における分割期間最大値との制御偏差Aとして記憶される。よって、各分割期間における分割期間最大値は、各分割期間における制御偏差Aの最小値Amin[n](n=0〜11)として記憶部に記憶される。なお、各分割期間における制御偏差Aの最小値Amin[n]は、以下、分割期間偏差とも呼ぶ。
図2の上段グラフにおいて、RPR検出レベルは、パワーコンディショナ10の出力電力がこれを超えることで、保護継電器(RPR)が作動し、分散型電源システム1と商用電力系統1aとが遮断される閾値である。このRPR検出レベルは、例えば、逆潮流も順潮流もない0Wの状態から、パワーコンディショナ10の定格電力の5%の電力が逆潮流側に流れた場合の電力値であってもよい。また、図2において、上述のように、分割期間の長さは5secであり、監視期間の長さは60secである。すなわち、監視期間60secを12分割する期間として、分割期間5secが定義されている。
本実施例では、過去60secの監視期間における、RPR検出レベルと系統電力との偏差である制御偏差Aが監視される。この制御偏差Aの値は、太陽光発電装置20に対する照度の変化やパワーコンディショナ10の出力電力の変動によって変化する。そして、図2の上段グラフに示すように、各分割期間における分割期間偏差Amin[n](n=0〜11)を検出し、記憶部11に記憶する。なお、本実施例では、制御偏差Aは、以下の式(1)に示すように、パワーコンディショナ10による定格出力電力(パワーコンディショナ10が後述するように複数個ある場合にはその合計値)に対する割合[%]として記
憶される。

制御偏差A[%] = [ { (−系統電力) − (−RPR検出レベル) }÷Σパワーコンディショナ定格 ]
×100[%] −オフセット・・・・・(1)
(系統電力とRPR検出レベルは、逆符号のため偏差を足し算で算出している。)
式(1)に関して、標準偏差A[%]は、逆潮流側については、−100[%] ≦ 制御偏差A[%]の範囲に制限してもよい。また、順潮流側については、制御偏差A[%] ≦ 50[%]の範囲に制限してもよい。これにより、負荷2、3が大幅に変動したような場合であっても、制御偏差A[%]が過応答になることを抑制できる。
そして、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が、所定の偏差閾値(本実施例ではパワーコンディショナ定格出力の1%)より大きい場合には、出力制御目標Bを、所定増加量(所定増加量:本実施例では1%)ずつ増加させる。この所定増加量は本発明における所定量に相当する。同時に、各分割期間について記憶されている制御偏差Aの最小値を1%縮小する。また、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が0以下(あるいは負数でもよい)となった場合は、その時の出力制御目標Bの値に、分割期間偏差Amin[n]の監視期間全体における最小値Min(Amin[n])を加算する。
同時に、各分割期間について記憶されている分割期間偏差Amin[n]から、Min(Amin[n])を減算する。この場合、Min(Amin[n])は負の値であるので、出力制御目標Bは減少し、各分割期間偏差Amin[n]は増加し、その最小値Min(Amin[n])が0になる。なお、各分割期間における分割期間偏差Amin[n]の、監視期間全体における最小値が0以下(あるいは負数でもよい)となった場合は、パワーコンディショナ10による出力電力の監視期間における最大値が増加したために、監視期間における系統電力の逆潮流側の最大値が、RPR検出レベル以上となった場合に相当する。
なお、その際、出力制御目標Bの変化には、1[%/s]といった所定のレートリミットをかけるようにしてもよい。また、出力制御目標Bは、システムの起動時あるいは、系統と切り離されたゲートブロックの解除時には、0%から再スタートさせるようにしてもよい。また、各分割期間偏差Amin[n]は、システムの起動時あるいは、系統と切り離されたゲートブロックの解除時には、Amin[n](%)−5(%)等の値から、再スタートさせるようにしてもよい。
なお、本実施例においては、出力制御目標Bの値は、5秒の分割期間に1%という割合で、徐々に変化させることとしたが、出力制御目標Bの変化速度はこれに限られない。例えば、PI制御によって、一機にRPR検出レベルに近づけてもよい。また、本実施例において出力制御目標Bは、パワーコンディショナ10の定格出力に対する比率[%]を制御量として制御を行ったが、必ずしも、出力制御目標Bをパワーコンディショナ10の定格出力に対する比率[%]を制御量として制御する必要はない。実際の電力値[W]を制御量として制御しても構わない。さらに、本実施例においては、監視期間を60secとしたが、監視期間がこれに限定されるものではないことは当然である。しかしながら、監視期間を60sec程度とし、分割時間を5sec程度とすることで、パワーコンディショナ10による出力電力を充分高速に制御することが可能である。
また、本実施例においては、発電装置として、太陽光発電装置20を用いることを前提としたが、本発明は、発電装置として、太陽光の他の自然エネルギーを用いた発電装置の他、燃料電池、蓄電池を用いた電力供給装置、ガスエンジン装置、それらの組み合わせ等に適用されてもよい。
本実施例によれば、パワーコンディショナ10は、系統電力計測ユニット7の検出信号に基づいて、逆潮流がRPR検出レベルを超えない範囲で、パワーコンディショナ10の出力電力が可及的に大きくなるように制御をすることができ、逆潮流の発生を抑制しながら、効率的に負荷2、3に電力供給を行うことが可能になる。そして、分散型電源システム1では、従来のパワーコンディショナ10が備える系統電力計測回路を分離させたシステムが構築できるため、系統電力計測ユニット7の電源を常時通電状態にすることで、システム稼働時間を長くすることが可能になる。システム稼働時間が、マスタ機として機能するパワーコンディショナ10に左右されることはない。本システムにおいては、負荷2、3の変動の影響も含めた上で、分散型電源システム1の作動中にパワーコンディショナ10による出力電力を最適値に自動調節することが可能である。
〔実施例2〕
次に、本発明の実施例2について説明する。本実施例においては、分散型電源システム1が、複数のパワーコンディショナを備えている例について説明する。
図3には、本実施例における分散型電源システム51の概略構成を示す。図3に示すように、本実施例では、パワーコンディショナ10aの他に、パワーコンディショナ10b、10cを備えている。各パワーコンディショナ10a、10b、10cの内部構成は、図1に示したものと同等である。パワーコンディショナ10aは、接続線17a、18a、19aによって、商用電力系統1a及び負荷2、3に接続されている。パワーコンディショナ10bは、接続線17b、18b、19bによって、商用電力系統1a及び負荷2,3に接続されており、パワーコンディショナ10cは、接続線17c、18c、19cによって、商用電力系統1a及び負荷2,3に接続されている。そして、パワーコンディショナ10aとパワーコンディショナ10bの間及び、パワーコンディショナ10bとパワーコンディショナ10cの間では、通信レートが低速であるRS−485と通信レートが高速であるCAN(Controller Area Network)とを組合せた通信22、23によって
情報通信がなされる。
本実施例においては、通信22、23を通じて情報通信された系統電力計測ユニット7を通じて検出された検出信号に基づいて、各パワーコンディショナ10a、10b、10cのそれぞれは、マスタ機として機能することも、スレーブ機として機能することも可能になる。また、本実施例においては、マスタ機で設定された設定情報を、通信22、23を通じてスレーブ機側へ設定することが可能になるため、各パワーコンディショナに対して行われていた操作設定作業を簡略化でき、複数のパワーコンディショナを備えた分散型電源システムに対する施行工数が低減可能になる。
本実施例における制御の概要は、実施例1で説明した制御と同等である。本実施例においては、パワーコンディショナ10aがマスタ機として機能するときには、制御における出力制御目標Bは、パワーコンディショナ10a、10b、10cの合計の定格出力を100%とした場合の、各パワーコンディショナの出力の割合(%)として制御される。例えば、パワーコンディショナ10aの制御部12において、実施例1と同様の制御によって、出力制御目標B(%)が決定される。そして、その出力制御目標B(%)の情報がRS−485とCANとを組合せた通信22、23によって、スレーブ機として機能するパワーコンディショナ10b、10cに送信される。スレーブ機として機能するパワーコンディショナ10b、10cにおいては、マスタ機として機能するパワーコンディショナ10aからの指令に基づいて、自らにおける出力制御目標B(%)が同じ値になるような制御が行われる。
図3に示す本実施例の分散型電源システム51においては、マスタ機は、複数のパワー
コンディショナの合計の定格出力に対する比率(%)を制御量とするので、パワーコンディショナの台数が増えても、系統電力計測ユニット7の検出信号を用いて同じアルゴリズムを使用することが可能になる。そして、本実施例の分散型電源システム51においても、従来のパワーコンディショナ10が備える系統電力計測回路を分離させて系統電力計測ユニット7に含めることができるため、システム稼働時間がマスタ機として機能するパワーコンディショナに左右されることはない。
さらに、本実施例の分散型電源システム51においては、複数のパワーコンディショナ10の中から、マスタ機として機能するパワーコンディショナ10、および、スレーブ機として機能するパワーコンディショナ10を適宜に選定することが可能になる。例えば、各パワーコンディショナの総稼働時間に基づいて、マスタ機として機能させるパワーコンディショナ10をローテーションすることが可能になるため、分散型電源システム51を構成する各パワーコンディショナの寿命が平準化できる。寿命の平準化により、複数のパワーコンディショナ10を備える分散型電源システム51においては、システム稼働時間を相対的に長くすることが可能になる。
また、分散型電源システム51を構成するパワーコンディショナ10に故障が生じた場合であっても、当該パワーコンディショナを解列させてシステムから切り離し、当該パワーコンディショナ以外のパワーコンディショナ10を用いてシステム稼働が可能になる。なお、系統電力計測ユニット7が故障した場合には、システム停止を余儀なくされるが、当該ユニットの交換はパワーコンディショナ10の交換と比べて容易であり、短時間で換装できるため、システム停止を相対的に短縮できる。
また、本実施例においては、通信22、23を介して通信される情報内容は、通信速度に応じて適宜に設定することができる。例えば、系統電力計測ユニット7で検出された検出信号や、マスタ機とスレーブ機間の負荷追従制御に関する情報(各種のパラメータを含む)は、高速通信が行えるCAN側で通信し、マスタ機とスレーブ機間の設定情報やモニタ信号といった負荷追従制御に関する情報以外の情報は、低速側のRS−485に振り分けることができる。
〔実施例3〕
次に、本発明の実施例3について説明する。図4には、本実施例に係る分散型電源システム52を、三相の需要家負荷2a及び単相の需要家負荷2、3と、高圧配電線21とに接続した例が示される。この実施例においては、高圧配電線21からの電力を、キュービクル52bを介して、需要家構内52aにおける三相の需要家負荷2aと、単相の需要家負荷2、3に供給している。マスタ機として機能するパワーコンディショナ10a及びスレーブ機として機能するパワーコンディショナ10b、10cの構成は、図3に示したものと同等である。パワーコンディショナ10a及びパワーコンディショナ10b、10cの出力端は、単相の需要家負荷2、3とキュービクル52bの間に接続されており、系統電力計測ユニット7は、高圧配電線21とキュービクル52bの間の受電点に設けられている。そして、高圧配電線21とキュービクル52bの間には、逆電力継電器(RPR:Reverse Power Relays)8と地絡過電圧継電器(OVGR:Over Voltage Ground Relay
)9とが設けられている。逆電力継電器8は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えると、検出信号を出力し、地絡過電圧継電器9は、系統側で地絡故障(アースへのショート)が発生した場合、故障した場所の探査や、故障の除去作業にあたる作業員の感電を防止するために、電圧が閾値(OVGR検出レベル)をこえると検出信号を出力する。本実施例においては、逆電力継電器8及び地絡過電圧継電器9の検出信号(接点信号)は、マスタ機として機能するパワーコンディショナ10に入力される。
ここで、分散型電源システムが構築される需要家においては、三相の需要家負荷2a及び単相の需要家負荷2、3と、高圧配電線21とが接続される場合には、逆電力継電器8や地絡過電圧継電器9の検出信号の入力を受けて、パワーコンディショナ10を停止させることが求められる。分散型電源システムが複数のパワーコンディショナ10を備える場合には、全てのパワーコンディショナ10に対して逆電力継電器8および地絡過電圧継電器9の検出信号を入力するための配線が行われていた。
本実施例においては、マスタ機として機能するパワーコンディショナ10aには、系統電力計測ユニット7を介して検出された検出信号と、逆電力継電器8および地絡過電圧継電器9の検出信号とが入力される構成を採用する。そして、マスタ機は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えた場合や、系統側で地絡故障(アースへのショート)が発生し、電圧が閾値(OVGR検出レベル)をこえた場合には、通信伝達手段(通信22、23)を用いてスレーブ機を停止させる。本実施例の分散型電源システム52においては、マスタ機は、複数のパワーコンディショナの合計の定格出力に対する比率(%)を制御量とするので、パワーコンディショナの台数が増えても、系統電力計測ユニット7の検出信号を用いて図2で説明した同じアルゴリズムを使用することが可能になる。そして、マスタ機は、逆電力継電器8および地絡過電圧継電器9の検出信号に基づき、通信伝達手段(通信22、23)を用いてスレーブ機を停止させることができるため、分散型電源システム52を施行する際の施行コスト(工数、配線費用等)を削減することが可能になる。本実施例においては、需要家構内52aのキュービクル52bから高圧配電線21への逆潮流を抑制しつつ、施工コストを削減し、各パワーコンディショナに接続された太陽光発電装置(不図示)の出力を負荷追従制御することが可能になる。
≪変形例≫
図5は、実施例3における変形例の分散型電源システム53の通信形態を説明する図である。変形例の分散型電源システム53においては、近距離無線通信や構内無線LAN等の通信規格に準拠した通信回路を備える系統電力計測ユニット7a、逆電力継電器8a、地絡過電圧継電器9a、パワーコンディショナ10a、10b、10cを備える。電力計測ユニット7aの通信回路7a1、逆電力継電器8aの通信回路8a1、地絡過電圧継電器9a通信回路9a1のそれぞれは、上記通信規格に準拠した通信手順により無線回線を通じて、マスタ機として機能するパワーコンディショナ10aの通信回路10a1と接続される。また、パワーコンディショナ10aの通信回路10a1は、スレーブ機として機能するパワーコンディショナ10bの通信回路10b1と無線回線を通じて接続され、当該通信回路10b1はスレーブ機として機能するパワーコンディショナ10cの通信回路10c1と接続される。
そして、変形例の分散型電源システム53においては、当該無線通信を通じて、系統電力計測ユニット7aを介して検出された検出信号と、逆電力継電器8aおよび地絡過電圧継電器9aの検出信号とがマスタ機として機能するパワーコンディショナ10aに入力される。マスタ機は、商用電力系統2側に逆潮流する電力が閾値(RPR検出レベル)を超えた場合や、系統側で地絡故障(アースへのショート)が発生し、電圧が閾値(OVGR検出レベル)をこえた場合には、通信伝達手段として機能する無線通信を通じてスレーブ機を停止させる。
このような構成によっても実施例3と同等の効果を奏することができ、検出信号や制御信号等の伝達に使用していた配線を削除することができるため、変形例の分散型電源システム53を施行する際の施行コスト(工数、配線費用等)をさらに削減することが可能になる。
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の
構成要件を図面の符号付きで記載しておく。
<発明1>
直流電力を発電する発電装置(20)と、電力供給対象である負荷(2、3)と商用電力系統(1a)とに接続された出力端(17、18、19)と、前記発電装置(20)によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機のパワーコンディショナを主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷(2、3)に電力を供給する分散型電源システム(1)であって、
過去の所定期間における前記出力電力を検知する検知手段(6a、6b)と、前記検知手段(6a、6b)で検出された前記出力電力を前記パワーコンディショナに入力する入力手段とを含み、前記複数のパワーコンディショナとは独立する系統電力計測手段(7)と、
前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンデショナ(10)は、前記系統電力計測手段(7)から入力される前記検知手段(6a、6b)が検出した前記過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統(1a)への逆潮流が生じ得る閾値より小さい場合には、前記出力変更手段(13)に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部(12)を備え、
前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナ(10)は、前記マスタ機から送信された前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とにしたがって前記負荷(2、3)に電力を供給する制御部(12)と、
を備えることを特徴とする、分散型電源システム(1)。
1 :分散型電源システム
1a :商用電力系統
2,3 :負荷
7 :系統電力計測ユニット
10 :パワーコンディショナ
11 :記憶部
12 :制御部

Claims (6)

  1. 直流電力を発電する発電装置と、電力供給対象である負荷と商用電力系統とに接続された出力端と、前記発電装置によって発電された直流電力の電圧を変更するとともに直流を交流に変換する複数のパワーコンディショナとを備え、前記複数のパワーコンディショナはマスタ機のパワーコンディショナを主制御機として通信するマスタ・スレーブ方式の通信が可能に接続されるとともに、所定の出力電力を出力することで前記負荷に電力を供給する分散型電源システムであって、
    前記商用電力系統から前記負荷に流れ込む電流の向きと大きさを検知する検知手段と、前記検知手段で検出された前記出力電力の時間的変化に応じて前記商用電力系統から前記負荷に流れ込む電流の向きと大きさを示す検出データを前記パワーコンディショナに入力する入力手段とを含み、前記複数のパワーコンディショナとは独立する系統電力計測手段を備え、
    前記マスタ・スレーブ方式の通信におけるマスタ機を構成するパワーコンディショナは、前記系統電力計測手段から入力された前記検出データに基づいて、過去の所定期間における前記出力電力の最大値を取得し、前記出力電力の最大値が、前記商用電力系統への逆潮流が生じ得る閾値より小さい場合には、前記直流電力を発電する発電装置と接続する出力変更手段に前記出力電力を所定量だけ増加させる負荷追従制御を行う制御部を備え、
    前記マスタ・スレーブ方式の通信におけるスレーブ機を構成するパワーコンディショナは、前記マスタ機から送信された前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とにしたがって前記負荷に電力を供給する制御部を備える、
    ことを特徴とする、分散型電源システム。
  2. 前記複数のパワーコンディショナの中の、前記マスタ機は、前記マスタ機として稼働する稼働時間を平準化させるように選択される、ことを特徴とする請求項1に記載の分散型電源システム。
  3. 前記複数のパワーコンディショナが接続される接続線は、通信速度が相対的に高い第1接続線と前記第1接続線より通信速度が相対的に低い第2接続線とを含み、
    前記マスタ機を構成するパワーコンディショナは、前記第1接続線を通じて前記過去の所定期間における前記出力電力と、前記負荷追従制御に関する情報とを前記スレーブ機を構成するパワーコンディショナに送信するとともに、前記第2接続線を通じて前記負荷追
    従に関する情報以外の情報を送信する、ことを特徴とする請求項1または2に記載の分散型電源システム。
  4. 前記マスタ機を構成するパワーコンディショナは、前記第2接続線を通じて、前記マスタ機のパワーコンディショナに設定された第1設定情報と、前記スレーブ機を構成するパワーコンディショナに設定される第2設定情報を送信する、ことを特徴とする請求項3に記載の分散型電源システム。
  5. 前記商用電力系統に接続される受電点における逆潮流電力が検出された場合に第1検出信号を出力する逆電力検出部と、
    前記商用電力系統側地絡故障が検出された場合に第2検出信号を出力する地絡過電圧検出部と、をさらに備え、
    前記マスタ機を構成するパワーコンディショナは、前記第1検出信号及び前記第2検出信号が入力されるとともに、前記接続線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御する、ことを特徴とする請求項1から4の何れか一項に記載の分散型電源システム。
  6. 前記逆電力検出部および前記地絡過電圧検出部は、前記マスタ機を構成するパワーコンディショナと無線を通じて接続され、
    前記マスタ機を構成するパワーコンディショナは、前記無線を通じて前記第1検出信号及び前記第2検出信号が入力されるとともに、前記マスタ機のパワーコンディショナと無線を通じて接続された前記スレーブ機を構成するパワーコンディショナの停止を制御する、ことを特徴とする請求項5に記載の分散型電源システム。
JP2019222521A 2019-12-09 2019-12-09 分散型電源システム Active JP6760474B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222521A JP6760474B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222521A JP6760474B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Publications (2)

Publication Number Publication Date
JP6760474B1 true JP6760474B1 (ja) 2020-09-23
JP2021093818A JP2021093818A (ja) 2021-06-17

Family

ID=72517904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222521A Active JP6760474B1 (ja) 2019-12-09 2019-12-09 分散型電源システム

Country Status (1)

Country Link
JP (1) JP6760474B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116388283A (zh) * 2023-06-06 2023-07-04 国网上海能源互联网研究院有限公司 一种多移动储能系统离网并联运行控制方法和装置
JP7487633B2 (ja) 2020-10-08 2024-05-21 オムロン株式会社 分散型電源システムおよびパワーコンディショナ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764056B2 (ja) * 2001-02-16 2006-04-05 ヤンマー株式会社 パワーコンディショナの運転制御装置とその運転制御方法
JP5215121B2 (ja) * 2008-10-24 2013-06-19 ヤンマー株式会社 自家発電装置
JP6126499B2 (ja) * 2013-08-30 2017-05-10 株式会社東芝 電力変換装置、協調制御方法およびプログラム
JP6452331B2 (ja) * 2014-07-10 2019-01-16 京セラ株式会社 発電システムの制御方法、発電システム、及び発電装置
JP6497341B2 (ja) * 2016-03-11 2019-04-10 オムロン株式会社 発電設備の運転制御装置、運転制御方法および運転制御システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487633B2 (ja) 2020-10-08 2024-05-21 オムロン株式会社 分散型電源システムおよびパワーコンディショナ
CN116388283A (zh) * 2023-06-06 2023-07-04 国网上海能源互联网研究院有限公司 一种多移动储能系统离网并联运行控制方法和装置
CN116388283B (zh) * 2023-06-06 2023-08-04 国网上海能源互联网研究院有限公司 一种多移动储能系统离网并联运行控制方法和装置

Also Published As

Publication number Publication date
JP2021093818A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5311153B2 (ja) 電力制御装置および電力制御方法
US11073807B2 (en) Method and apparatus for activation and de-activation of power conditioners in distributed resource island systems using low voltage AC
EP2240993B1 (en) Backup power system and method
EP2955828A1 (en) Power-supply system
JP2017518725A (ja) エネルギ貯蔵充電ステーション用の電力制御のシステムおよび方法
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
US11223229B2 (en) Uninterruptible power supply system comprising energy storage system
JP6760474B1 (ja) 分散型電源システム
JP2015162911A (ja) 自立運転システム
TW201351846A (zh) 在低電壓事件期間用於供電給儀器的系統、方法與設備
JP6356517B2 (ja) 系統監視制御装置
US20200366126A1 (en) Power conversion system and method of operating the same
JP2017055598A (ja) 電力制御装置
KR20170026695A (ko) 하이브리드 에너지저장 시스템
JP2006288079A (ja) 電力設備接続装置、電力供給システム、電力設備接続方法および電力系統運用方法。
JP6773204B1 (ja) 分散型電源システム
JP2017103935A (ja) 分散型電源のシステム制御装置、及びパワーコンディショナ
JP2019201453A (ja) 電力供給システムおよび電力管理方法
JPWO2018139603A1 (ja) 電源制御方法、電源制御装置及び電源制御システム
JP6791343B1 (ja) 分散型電源システム
JP2016136815A (ja) 電力供給装置
JP6787473B1 (ja) 分散型電源システム
JP2020137299A (ja) 電力系統安定化システム
JP2016181969A (ja) 分散型電源のシステム制御装置、分散型電源のシステム制御方法、及びパワーコンディショナ
WO2014027462A1 (ja) エネルギー管理装置、及びエネルギー管理装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150