JP2021093286A - Fuel cell power generation system and control method of fuel cell power generation system - Google Patents

Fuel cell power generation system and control method of fuel cell power generation system Download PDF

Info

Publication number
JP2021093286A
JP2021093286A JP2019223094A JP2019223094A JP2021093286A JP 2021093286 A JP2021093286 A JP 2021093286A JP 2019223094 A JP2019223094 A JP 2019223094A JP 2019223094 A JP2019223094 A JP 2019223094A JP 2021093286 A JP2021093286 A JP 2021093286A
Authority
JP
Japan
Prior art keywords
water
fuel cell
cooling
temperature
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019223094A
Other languages
Japanese (ja)
Inventor
和田 克也
Katsuya Wada
克也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019223094A priority Critical patent/JP2021093286A/en
Priority to CN202011448778.0A priority patent/CN112952140A/en
Publication of JP2021093286A publication Critical patent/JP2021093286A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a fuel cell power generation system and a control method of the fuel cell power generation system that can suppress propagation of bacteria in a water tank which accumulates cooling-water drained from a fuel cell.SOLUTION: A fuel cell power generation system according to the present embodiment comprises: a fuel cell; a water tank; a first cooling heat-exchanger; and a controller. The water tank accumulates cooling-water. The first cooling heat-exchanger is arranged at a position being at a downstream side of the fuel cell of a cooling-water path for circulating the cooling-water between the fuel cell and the water tank and at an upstream side of the water tank, and cools the cooling-water. The controller controls at least any of the fuel cell, the first cooling heat-exchanger and the cooling-water pump, and increases the temperature of the cooling-water supplied into the water tank to a temperature at which the number of bacteria in the water tank does not increase, at predetermined timing.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、燃料電池発電システム及び燃料電池発電システムの制御方法に関する。 An embodiment of the present invention relates to a fuel cell power generation system and a control method for the fuel cell power generation system.

燃料電池発電システムでは、炭化水素を原燃料として改質反応により水素含有ガスを生成して燃料電池に供給するシステム、及び純水素ガスを原燃料として燃料電池に供給するシステムが知られている。これらの燃料電池発電システムでは、水処理システムを一般に有している。この水処理システムには、燃料電池発電システム内部を流れるガスを冷却して凝縮させて得られた凝縮水を溜める水タンク、その水タンクに溜められた水を浄化するイオン交換樹脂などが充填された水浄化装置が備えられている。この水浄化装置により浄化された水を燃料電池本体で発生した熱を冷却するための電池冷却水として循環させたり、改質型の発電システムにおいては、水素生成反応に必要な改質水を供給したりする。 As a fuel cell power generation system, a system in which hydrocarbons are used as a raw material to generate hydrogen-containing gas by a reforming reaction and supplied to a fuel cell, and a system in which pure hydrogen gas is used as a raw material and supplied to a fuel cell are known. These fuel cell power generation systems generally have a water treatment system. This water treatment system is filled with a water tank that stores condensed water obtained by cooling and condensing the gas flowing inside the fuel cell power generation system, an ion exchange resin that purifies the water stored in the water tank, and the like. It is equipped with a water purification device. The water purified by this water purification device is circulated as battery cooling water for cooling the heat generated in the fuel cell body, and in a reformed power generation system, the reformed water required for the hydrogen generation reaction is supplied. To do.

また、この水処理システムには、その内部で細菌が増殖し、スライムやバイオフィルムと呼ばれる有機物が発生して、水処理システムの経路を閉塞する。このため、細菌の繁殖を抑制するために、浄化装置へ供給する水の温度を上げる方法が知られている。ところが、燃料電池から排出された冷却水を貯める水タンク内にも細菌が繁殖する恐れがある。 In addition, bacteria grow inside the water treatment system, and organic substances called slime and biofilm are generated to block the path of the water treatment system. Therefore, in order to suppress the growth of bacteria, a method of raising the temperature of water supplied to the purification device is known. However, there is a risk that bacteria will grow in the water tank that stores the cooling water discharged from the fuel cell.

特開2010−113885号公報Japanese Unexamined Patent Publication No. 2010-1138885 特開2010−170877号公報JP-A-2010-170877

本発明が解決しようとする課題は、燃料電池から排出された冷却水を貯める水タンク内の細菌の繁殖を抑制可能な燃料電池発電システム及び燃料電池発電システムの制御方法を提供することである。 An object to be solved by the present invention is to provide a fuel cell power generation system and a control method for a fuel cell power generation system capable of suppressing the growth of bacteria in a water tank that stores cooling water discharged from a fuel cell.

本実施形態に係る燃料電池発電システムは、燃料電池と、水タンクと、第1冷却用熱交換器と、制御器とを備える。水タンクは、冷却水を溜める。第1冷却用熱交換器は、燃料電池と水タンクとの間を、冷却水を循環させる冷却水路の燃料電池の下流側であり、且つ水タンクの上流側である位置に配置され、冷却水を冷却する。制御器は、燃料電池、第1冷却用熱交換器、及び冷却水ポンプの少なくともいずれかを制御し、水タンク内の細菌数が増加しない温度まで水タンクに供給される冷却水の温度を所定のタイミングで上昇させる。 The fuel cell power generation system according to the present embodiment includes a fuel cell, a water tank, a first cooling heat exchanger, and a controller. The water tank stores cooling water. The first cooling heat exchanger is arranged between the fuel cell and the water tank at a position on the downstream side of the fuel cell in the cooling water channel for circulating the cooling water and on the upstream side of the water tank. To cool. The controller controls at least one of the fuel cell, the first cooling heat exchanger, and the cooling water pump, and determines the temperature of the cooling water supplied to the water tank to a temperature at which the number of bacteria in the water tank does not increase. Raise at the timing of.

本実施形態によれば、燃料電池から排出された冷却水を貯める水タンク内の細菌の繁殖を抑制できる。 According to this embodiment, it is possible to suppress the growth of bacteria in the water tank that stores the cooling water discharged from the fuel cell.

第1実施形態に係る燃料電池発電システムの構成例を示す図。The figure which shows the structural example of the fuel cell power generation system which concerns on 1st Embodiment. 菌繁殖抑制の処理例を示すフローチャート。The flowchart which shows the processing example of the fungus growth suppression. 菌繁殖抑制の別の処理例を示すフローチャート。The flowchart which shows another processing example of the fungus growth suppression. 第2実施形態に係る燃料電池発電システムの構成例を示す図。The figure which shows the structural example of the fuel cell power generation system which concerns on 2nd Embodiment.

以下、本発明の実施形態に係る燃料電池発電システム及び燃料電池発電システムの制御方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
浄化水路(第1実施形態)
Hereinafter, the fuel cell power generation system and the control method of the fuel cell power generation system according to the embodiment of the present invention will be described in detail with reference to the drawings. The embodiments shown below are examples of the embodiments of the present invention, and the present invention is not construed as being limited to these embodiments. Further, in the drawings referred to in the present embodiment, the same parts or parts having similar functions are designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. In addition, the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
Purified water channel (first embodiment)

図1は、本実施形態に係る燃料電池発電システム1の構成例を示す図である。燃料電池発電システム1は、水タンク25及び水浄化装置40内で発生する細菌の繁殖を抑制可能なシステムである。この燃料電池発電システム1は、燃料電池10と、熱交換器20、50と、水タンク25と、冷却水ポンプ30と、水浄化装置40と、水処理ポンプ60と、燃料改質装置70と、改質処理ポンプ80と、凝縮器90と、制御器100とを備える。 FIG. 1 is a diagram showing a configuration example of the fuel cell power generation system 1 according to the present embodiment. The fuel cell power generation system 1 is a system capable of suppressing the growth of bacteria generated in the water tank 25 and the water purification device 40. The fuel cell power generation system 1 includes a fuel cell 10, heat exchangers 20, 50, a water tank 25, a cooling water pump 30, a water purification device 40, a water treatment pump 60, and a fuel reformer 70. , The reforming processing pump 80, the condenser 90, and the controller 100 are provided.

図1には更に冷却水路L1と、水浄化水路L2とが図示されている。冷却水路L1は、水タンク25の処理後水タンク25aに接続され、燃料電池10、及び熱交換器20を経由して処理後水タンク25aへ戻る。水浄化水路L2は、水タンク25の処理前水タンク25bに接続され、熱交換器50、及び水浄化装置40を経由して処理後水タンク25aへ接続される。 FIG. 1 further illustrates a cooling water channel L1 and a water purification water channel L2. The cooling water channel L1 is connected to the treated water tank 25a of the water tank 25, and returns to the treated water tank 25a via the fuel cell 10 and the heat exchanger 20. The water purification water channel L2 is connected to the pre-treatment water tank 25b of the water tank 25, and is connected to the post-treatment water tank 25a via the heat exchanger 50 and the water purification device 40.

燃料電池10は、配管を介して燃料改質装置70と接続され、その内部に冷却水路L1が形成されている。この燃料電池10は、電解質膜を挟み込むように設けられたアノードおよびカソードを備えている。また、アノードには、燃料流路が形成され、燃料改質装置70から水素含有ガスが供給される。カソードには、酸化剤流路が形成され、不図示の空気ブロワーから酸素含有ガスが供給される。 The fuel cell 10 is connected to the fuel reformer 70 via a pipe, and a cooling water channel L1 is formed therein. The fuel cell 10 includes an anode and a cathode provided so as to sandwich an electrolyte membrane. Further, a fuel flow path is formed in the anode, and hydrogen-containing gas is supplied from the fuel reformer 70. An oxidant flow path is formed in the cathode, and an oxygen-containing gas is supplied from an air blower (not shown).

燃料電池10は、アノードに供給される水素含有ガスと、カソードに供給される酸素含有ガスを用いて発電する。この発電により発生した熱は、燃料電池10内の冷却水路L1を流れる冷却水により冷却される。また、燃料電池10は、供給される水素含有ガスが増加するに従い発電量が増加し、発熱量も増加する。このため、発電量が増加するに従い、単位時間あたりに却水路L1を流れる冷却水に燃料電池10から供給される熱量も増加する。 The fuel cell 10 generates electricity by using the hydrogen-containing gas supplied to the anode and the oxygen-containing gas supplied to the cathode. The heat generated by this power generation is cooled by the cooling water flowing through the cooling water channel L1 in the fuel cell 10. Further, in the fuel cell 10, the amount of power generation increases and the amount of heat generated also increases as the amount of hydrogen-containing gas supplied increases. Therefore, as the amount of power generation increases, the amount of heat supplied from the fuel cell 10 to the cooling water flowing through the drainage channel L1 per unit time also increases.

熱交換器20は、燃料電池10と水タンク25との間において冷却水を循環させる冷却水路L1の燃料電池10の下流側であり、且つ水タンク25の上流側に配置され冷却水を冷却する。より具体的には、熱交換器20には、冷却水を受け取る高温側の高温水路が設けられていて、この高温水路は燃料電池10及び水タンク25に接続され、冷却水路L1を構成する。さらに、熱交換器20には、低温の水を循環させる低温水路が設けられている。 The heat exchanger 20 is located on the downstream side of the fuel cell 10 of the cooling water channel L1 for circulating cooling water between the fuel cell 10 and the water tank 25, and is arranged on the upstream side of the water tank 25 to cool the cooling water. .. More specifically, the heat exchanger 20 is provided with a high temperature water channel on the high temperature side for receiving the cooling water, and this high temperature water channel is connected to the fuel cell 10 and the water tank 25 to form the cooling water channel L1. Further, the heat exchanger 20 is provided with a low temperature water channel for circulating low temperature water.

熱交換器20では、高温水路を流れる冷却水と、低温水路を流れる循環水が熱交換することにより冷却水路L1内の冷却水が冷却される。すなわち、この熱交換器20では、熱交換器20の低温側を流れる流体の流量を低下させることで、熱交換器20から排出される冷却水の温度をより高温にすることが可能である。また、この熱交換器20では、熱交換器20の低温側を流れる流体の流量が一定であっても、冷却水路L1内を流れる冷却水の水量を増加することにより、熱交換器20から排出される冷却水の温度をより高温にすることが可能である。なお、本実施形態に係る熱交換器20が第1冷却用熱交換器に対応する。 In the heat exchanger 20, the cooling water in the cooling water channel L1 is cooled by heat exchange between the cooling water flowing through the high temperature water channel and the circulating water flowing through the low temperature water channel. That is, in this heat exchanger 20, the temperature of the cooling water discharged from the heat exchanger 20 can be made higher by reducing the flow rate of the fluid flowing on the low temperature side of the heat exchanger 20. Further, in this heat exchanger 20, even if the flow rate of the fluid flowing on the low temperature side of the heat exchanger 20 is constant, it is discharged from the heat exchanger 20 by increasing the amount of the cooling water flowing in the cooling water channel L1. It is possible to raise the temperature of the cooling water to be made higher. The heat exchanger 20 according to the present embodiment corresponds to the first cooling heat exchanger.

水タンク25は、処理後水タンク25aと、処理前水タンク25bとを有する。処理後水タンク25aは、上述のように、冷却水路L1に接続される。また、燃料改質装置70に配管を介して接続され、冷却水を改質水として供給する。処理後水タンク25aには、上述のように、水浄化水路L2が接続される。また、処理後水タンク25aには、配管を介して凝縮器90が接続され、燃料改質装置70の改質ガスを冷却して得られる凝縮水1が導入される。さらにまた、処理後水タンク25aには、燃料改質装置70のバーナー排ガス、燃料電池10のカソード排気、燃料電池10のアノード排気を冷却して得られる凝縮水2が導入される。 The water tank 25 has a post-treatment water tank 25a and a pre-treatment water tank 25b. The treated water tank 25a is connected to the cooling water channel L1 as described above. Further, it is connected to the fuel reformer 70 via a pipe to supply cooling water as reforming water. As described above, the water purification water channel L2 is connected to the treated water tank 25a. Further, a condenser 90 is connected to the treated water tank 25a via a pipe, and condensed water 1 obtained by cooling the reformed gas of the fuel reformer 70 is introduced. Furthermore, condensed water 2 obtained by cooling the burner exhaust gas of the fuel reformer 70, the cathode exhaust of the fuel cell 10, and the anode exhaust of the fuel cell 10 is introduced into the treated water tank 25a.

冷却水ポンプ30は、冷却水路L1内の冷却水を循環させる。上述のように、
冷却水路L1内を流れる冷却水の水量を増加することにより、熱交換器20から排出される冷却水の温度をより高温にすることが可能である。このため、冷却水ポンプ30が送出する水量を増加させることで、水タンク25の処理後水タンク25aへ送る冷却水の温度を上昇させることができる。
The cooling water pump 30 circulates the cooling water in the cooling water channel L1. As mentioned above
By increasing the amount of cooling water flowing in the cooling water channel L1, it is possible to raise the temperature of the cooling water discharged from the heat exchanger 20 to a higher temperature. Therefore, by increasing the amount of water sent out by the cooling water pump 30, the temperature of the cooling water sent to the water tank 25a after the treatment of the water tank 25 can be raised.

水浄化装置40は、処理前水タンク25bの水を浄化する。水浄化装置40は、例えば円筒形の容器の中に収められた水処理フィルタとイオン交換樹脂とを有する。これにより、陽イオンや陰イオンなどの不純物が除去された後、冷却水は、処理後水タンク25aへ供給される。水浄化装置40へ送られる水の温度は、水浄化装置40に使われているイオン交換樹脂の耐熱温度以下で、より低い温度が求められており、その水中の細菌が増殖しやすい温度となっている。 The water purification device 40 purifies the water in the pretreatment water tank 25b. The water purification device 40 has, for example, a water treatment filter housed in a cylindrical container and an ion exchange resin. As a result, after impurities such as cations and anions are removed, the cooling water is supplied to the treated water tank 25a. The temperature of the water sent to the water purification device 40 is lower than the heat resistant temperature of the ion exchange resin used in the water purification device 40, and a lower temperature is required. ing.

熱交換器50は、水浄化水路L2の処理前水タンク25bの下流側であり、且つ水浄化装置40の上流側に配置され浄化水路L2内の冷却水を冷却する。より具体的には、熱交換器50には、冷却水を受け取る高温側の高温水路が設けられていて、この高温水路は水浄化装置40及び処理前水タンク25bに接続され、水浄化水路L2を構成する。さらに、熱交換器50には、低温の水を循環させる低温水路が設けられている。 The heat exchanger 50 is arranged on the downstream side of the pretreatment water tank 25b of the water purification water channel L2 and on the upstream side of the water purification device 40 to cool the cooling water in the purification water channel L2. More specifically, the heat exchanger 50 is provided with a high-temperature water channel on the high-temperature side that receives cooling water, and this high-temperature water channel is connected to the water purification device 40 and the pretreatment water tank 25b, and is connected to the water purification water channel L2. To configure. Further, the heat exchanger 50 is provided with a low temperature water channel for circulating low temperature water.

熱交換器50では、高温水路を流れる冷却水と、低温水路を流れる循環水が熱交換することにより浄化水路L2内の冷却水が冷却される。すなわち、この熱交換器50では、熱交換器50の低温側を流れる流体の流量を低下させることで、熱交換器50から排出される冷却水の温度をより高温にすることが可能である。また、この熱交換器50では、熱交換器50の低温側を流れる流体の流量が一定であっても、浄化水路L2内を流れる冷却水の水量を増加することにより、熱交換器50から排出される冷却水の温度をより高温にすることが可能である。なお、本実施形態に係る熱交換器50が第2冷却用熱交換器に対応する。 In the heat exchanger 50, the cooling water in the purified water channel L2 is cooled by heat exchange between the cooling water flowing through the high temperature water channel and the circulating water flowing through the low temperature water channel. That is, in this heat exchanger 50, it is possible to raise the temperature of the cooling water discharged from the heat exchanger 50 to a higher temperature by reducing the flow rate of the fluid flowing on the low temperature side of the heat exchanger 50. Further, in this heat exchanger 50, even if the flow rate of the fluid flowing on the low temperature side of the heat exchanger 50 is constant, it is discharged from the heat exchanger 50 by increasing the amount of cooling water flowing in the purified water channel L2. It is possible to raise the temperature of the cooling water to be heated. The heat exchanger 50 according to this embodiment corresponds to the second cooling heat exchanger.

冷却水ポンプ60は、浄化水路L2内の冷却水を循環させる。上述のように、
冷却水路L2内を流れる冷却水の水量を増加することにより、熱交換器50から排出される冷却水の温度をより高温にすることが可能である。このため、冷却水ポンプ60が送出する水量を増加させることで、水浄化装置40へ送る冷却水の温度を上昇させることができる。
The cooling water pump 60 circulates the cooling water in the purified water channel L2. As mentioned above
By increasing the amount of cooling water flowing in the cooling water channel L2, it is possible to raise the temperature of the cooling water discharged from the heat exchanger 50 to a higher temperature. Therefore, by increasing the amount of water delivered by the cooling water pump 60, the temperature of the cooling water sent to the water purification device 40 can be raised.

燃料改質装置70は、炭化水素系の原燃料を改質して水素含有ガスを生成し、燃料電池10に供給する。燃料改質装置70は、外部の燃料源に接続され、更に改質器バーナーが取り付けられている。上述のように処理後水タンク25aから供給される改質水を水蒸気にし、炭化水素系の原燃料との改質反応により、水素含有ガスを生成する。改質処理ポンプ80は、処理後水タンク25a内の冷却水を改質水として燃料改質装置70に供給する。 The fuel reformer 70 reforms a hydrocarbon-based raw fuel to generate a hydrogen-containing gas, which is supplied to the fuel cell 10. The fuel reformer 70 is connected to an external fuel source and is further fitted with a reformer burner. As described above, the reformed water supplied from the treated water tank 25a is converted into steam, and a hydrogen-containing gas is generated by a reforming reaction with a hydrocarbon-based raw material and fuel. The reforming pump 80 supplies the cooling water in the treated water tank 25a to the fuel reforming device 70 as reforming water.

凝縮器90は、燃料改質装置70の生成した素含有ガスから水分を除去する。凝縮器90から処理前水タンク25bに供給される凝縮水の熱量を増加させることにより、処理前水タンク25bの水温を上昇させることが可能である。すなわち、燃料改質装置70に供給される炭化水素系の原燃料を増加させることにより、凝縮器90から処理前水タンク25bに供給する凝縮水の熱量を増加させることが可能である。 The condenser 90 removes water from the element-containing gas produced by the fuel reformer 70. By increasing the amount of heat of the condensed water supplied from the condenser 90 to the pretreatment water tank 25b, it is possible to raise the water temperature of the pretreatment water tank 25b. That is, by increasing the hydrocarbon-based raw fuel supplied to the fuel reformer 70, it is possible to increase the amount of heat of the condensed water supplied from the condenser 90 to the pretreatment water tank 25b.

制御器100は、燃料電池発電システム1全体を制御する装置であり、例えばCPU(Central Processing Unit)と、記憶部を有している。制御器100は、記憶部に記憶されるプログラムを実行することにより各機能を実現する。制御器100は、処理後水タンク25a、処理前水タンク25b、及び水浄化装置40それぞれの温度情報を不図示の温度計から取得する。 The controller 100 is a device that controls the entire fuel cell power generation system 1, and has, for example, a CPU (Central Processing Unit) and a storage unit. The controller 100 realizes each function by executing a program stored in the storage unit. The controller 100 acquires the temperature information of each of the post-treatment water tank 25a, the pre-treatment water tank 25b, and the water purification device 40 from a thermometer (not shown).

次に、燃料電池発電システム1の制御器100による制御例を説明する。 Next, a control example by the controller 100 of the fuel cell power generation system 1 will be described.

まず、炭化水素系燃料が燃料改質装置70に供給される。供給された原燃料は、燃料改質装置70で脱硫され、改質反応により生成された水素含有ガスガスは、燃料電池10のアノードに供給される。この際に、燃料改質装置70の改質ガスを凝縮器90により冷却して得た凝縮水1は、処理前水タンク25bへ送られる。 First, the hydrocarbon fuel is supplied to the fuel reformer 70. The supplied raw material fuel is desulfurized by the fuel reformer 70, and the hydrogen-containing gas gas generated by the reforming reaction is supplied to the anode of the fuel cell 10. At this time, the condensed water 1 obtained by cooling the reformed gas of the fuel reformer 70 by the condenser 90 is sent to the pretreatment water tank 25b.

燃料改質装置70のカソードには、酸素含有ガスが供給され、燃料電池10は、発電する。燃料電池10で消費されなかった水素を含有するアノード排ガスは、冷却されて凝縮水2として処理前水タンク25bに供給される。同様に、燃料電池10で消費されなかった酸素を含有するカソード排ガス7は、冷却されて凝縮水2として処理前水タンク25bに供給される。また、燃料改質装置70のバーナーの燃焼排ガスは、冷却されて凝縮水2として処理前水タンク25bに供給される。このように、処理前水タンク25bには、改質ガス凝縮水、アノード排ガス凝縮水、改質器燃焼排ガス凝縮水、及びカソード排ガス凝縮水が貯水される。 Oxygen-containing gas is supplied to the cathode of the fuel reformer 70, and the fuel cell 10 generates electricity. The hydrogen-containing anode exhaust gas that has not been consumed by the fuel cell 10 is cooled and supplied to the pretreatment water tank 25b as condensed water 2. Similarly, the cathode exhaust gas 7 containing oxygen that has not been consumed by the fuel cell 10 is cooled and supplied to the pretreatment water tank 25b as condensed water 2. Further, the combustion exhaust gas of the burner of the fuel reformer 70 is cooled and supplied as condensed water 2 to the pretreatment water tank 25b. In this way, the reformed gas condensed water, the anode exhaust gas condensed water, the reformer combustion exhaust gas condensed water, and the cathode exhaust gas condensed water are stored in the pretreatment water tank 25b.

処理前水タンク25bの冷却水(凝縮水)は、冷却水ポンプ60によって送出され、熱交換器50で温度が低減された後、水浄化装置40へ供給される。水浄化装置40に供給された冷却水は、不純物が除去された後に処理後水タンク25aに供給される。 The cooling water (condensed water) of the pretreatment water tank 25b is sent out by the cooling water pump 60, and after the temperature is reduced by the heat exchanger 50, it is supplied to the water purification device 40. The cooling water supplied to the water purification device 40 is supplied to the treated water tank 25a after impurities are removed.

処理後水タンク25aの冷却水は、冷却水ポンプ30により燃料電池10の冷却水路L1へ送出される。冷却水は、燃料電池10を冷却して、燃料電池10を最適な動作温度に維持する。この際、冷却水は、燃料電池10に加熱されて、例えば60℃〜65℃程度に上昇する。燃料電池10を通過した冷却水は、熱交換器20で低温水路の循環水と熱交換して、約60℃を少し下回る程度に温度が低下する。約60℃を少し下回る程度に温度が低下した冷却水は、再び処理後水タンク25aに貯えられる。 The cooling water of the treated water tank 25a is sent to the cooling water channel L1 of the fuel cell 10 by the cooling water pump 30. The cooling water cools the fuel cell 10 and maintains the fuel cell 10 at an optimum operating temperature. At this time, the cooling water is heated by the fuel cell 10 and rises to, for example, about 60 ° C. to 65 ° C. The cooling water that has passed through the fuel cell 10 exchanges heat with the circulating water in the low temperature water channel by the heat exchanger 20, and the temperature drops to a degree slightly lower than about 60 ° C. The cooling water whose temperature has dropped to a little lower than about 60 ° C. is stored again in the treated water tank 25a.

次に、図2、3に基づき、細菌繁殖抑制の処理例を説明する。図2は、細菌繁殖抑制の処理例のフローチャートである。 Next, an example of treatment for suppressing bacterial growth will be described with reference to FIGS. FIG. 2 is a flowchart of a treatment example of bacterial growth suppression.

処理後水タンク25aへ供給される冷却水の温度は、温度計により制御器100に監視される。燃料電池10の発電運転中に、この冷却水の温度が細菌繁殖限界温度未満のまま一定時間経過したとき、制御器100は、冷却水の高温処理を開始する(ステップS100)。 The temperature of the cooling water supplied to the treated water tank 25a is monitored by the controller 100 by a thermometer. During the power generation operation of the fuel cell 10, when a certain period of time elapses while the temperature of the cooling water remains below the bacterial growth limit temperature, the controller 100 starts high temperature treatment of the cooling water (step S100).

制御器100は、熱交換器20における低温水路の送出量を減少させる(ステップS102)。これにより、冷却水から低温水路への熱交換量が、冷却水の持つ熱量に対して相対的に低下し、処理後水タンク25aへ供給される凝縮水の温度は上昇する。この際、制御器100は、凝縮水の温度が細菌繁殖抑制温度以上となるように低温水路の送出量を調節し、細菌繁殖抑制温度以上のまま一定時間保持させる。このように、熱交換器20を経由する冷却水を所定の温度にすることにより、処理後水タンク25aの細菌繁殖抑制処理を行える。 The controller 100 reduces the delivery amount of the low temperature water channel in the heat exchanger 20 (step S102). As a result, the amount of heat exchanged from the cooling water to the low-temperature water channel decreases relative to the amount of heat possessed by the cooling water, and the temperature of the condensed water supplied to the treated water tank 25a rises. At this time, the controller 100 adjusts the delivery amount of the low temperature water channel so that the temperature of the condensed water becomes equal to or higher than the bacterial growth suppression temperature, and keeps the temperature kept above the bacterial growth suppression temperature for a certain period of time. By setting the cooling water passing through the heat exchanger 20 to a predetermined temperature in this way, the bacterial growth suppression treatment of the post-treatment water tank 25a can be performed.

また、この際に水浄化装置40の細菌繁殖抑制処理も合わせて、又は単独で行ってもよい。この場合、ステップS102において、水浄化装置40の温度は、温度計により制御器100に監視される。制御器100は、熱交換器50における低温水路の送出量を減少させる。これにより、冷却水から低温水路への熱交換量が、冷却水の持つ熱量に対して相対的に低下し、水浄化装置40へ供給される冷却水の温度も上昇する。このように、水浄化装置40を経由する冷却水及び熱交換器20を経由する双方の冷却水を所定の温度にすることにより、処理後水タンク25aの細菌繁殖抑制処理を効率的に行える。また、この際に水浄化装置40の細菌繁殖抑制処理も合わせて行われる。 Further, at this time, the bacterial growth suppression treatment of the water purification device 40 may be performed together or independently. In this case, in step S102, the temperature of the water purification device 40 is monitored by the controller 100 by the thermometer. The controller 100 reduces the delivery amount of the cold water channel in the heat exchanger 50. As a result, the amount of heat exchanged from the cooling water to the low-temperature water channel decreases relative to the amount of heat contained in the cooling water, and the temperature of the cooling water supplied to the water purification device 40 also rises. In this way, by setting both the cooling water passing through the water purification device 40 and the cooling water passing through the heat exchanger 20 to a predetermined temperature, the bacterial growth suppression treatment of the post-treatment water tank 25a can be efficiently performed. At this time, the bacterial growth suppression treatment of the water purification device 40 is also performed.

図3は、細菌繁殖抑制の別の処理例のフローチャートである。 FIG. 3 is a flowchart of another treatment example of bacterial growth suppression.

処理後水タンク25aへ供給される冷却水の温度は、温度計により制御器100に監視される。燃料電池10の発電運転中に、この冷却水の温度が細菌繁殖限界温度未満のまま一定時間経過したとき、制御器100は、冷却水の高温処理を開始する(ステップS200)。 The temperature of the cooling water supplied to the treated water tank 25a is monitored by the controller 100 by a thermometer. During the power generation operation of the fuel cell 10, when a certain period of time elapses while the temperature of the cooling water remains below the bacterial growth limit temperature, the controller 100 starts high temperature treatment of the cooling water (step S200).

制御器100は、冷却水ポンプ30における送出量を増加させる(ステップS202)。これにより、冷却水から低温水路への熱交換量が、冷却水の持つ熱量に対して相対的に低下し、処理後水タンク25aへ供給される冷却水の温度は上昇する。この際、冷却水の温度は、細菌繁殖抑制温度以上となるように冷却水ポンプ30の送出量を調節し、細菌繁殖抑制温度以上のまま一定時間保持される。 The controller 100 increases the delivery amount in the cooling water pump 30 (step S202). As a result, the amount of heat exchanged from the cooling water to the low-temperature water channel decreases relative to the amount of heat possessed by the cooling water, and the temperature of the cooling water supplied to the treated water tank 25a rises. At this time, the temperature of the cooling water is adjusted so that the temperature of the cooling water is equal to or higher than the temperature for suppressing bacterial growth, and the amount of the cooling water pump 30 is maintained at the temperature higher than the temperature for suppressing bacterial growth for a certain period of time.

また、この際に水浄化装置40の細菌繁殖抑制処理も合わせて、又は単独で行ってもよい。この場合、ステップS102において、水浄化装置40の温度は、温度計により制御器100に監視される。制御器100は、水処理ポンプ60における送出量を増加させる(ステップS202)。これにより、冷却水から低温水路への熱交換量が、冷却水の持つ熱量に対して相対的に低下し、水浄化装置40へ供給される冷却水の温度は上昇する。この際、制御器100は、冷却水の温度が細菌繁殖抑制温度以上となるように冷却水ポンプ30、水処理ポンプ60の送出量を調節し、細菌繁殖抑制温度以上のまま一定時間保持させる。このように、水浄化装置40を経由する冷却水及び熱交換器20を経由する双方の冷却水を所定の温度にすることにより、処理後水タンク25aの細菌繁殖抑制処理を効率的に行える。また、この際に水浄化装置40の細菌繁殖抑制処理も合わせて行われる。 Further, at this time, the bacterial growth suppression treatment of the water purification device 40 may be performed together or independently. In this case, in step S102, the temperature of the water purification device 40 is monitored by the controller 100 by the thermometer. The controller 100 increases the delivery amount in the water treatment pump 60 (step S202). As a result, the amount of heat exchanged from the cooling water to the low-temperature water channel decreases relative to the amount of heat possessed by the cooling water, and the temperature of the cooling water supplied to the water purification device 40 rises. At this time, the controller 100 adjusts the delivery amount of the cooling water pump 30 and the water treatment pump 60 so that the temperature of the cooling water becomes equal to or higher than the bacterial growth suppression temperature, and keeps the cooling water at the bacterial growth suppression temperature or higher for a certain period of time. In this way, by setting both the cooling water passing through the water purification device 40 and the cooling water passing through the heat exchanger 20 to a predetermined temperature, the bacterial growth suppression treatment of the post-treatment water tank 25a can be efficiently performed. At this time, the bacterial growth suppression treatment of the water purification device 40 is also performed.

また、図2の処理と並行して図3で示す処理を行ってもよい。これにより、水浄化装置40を経由する冷却水及び熱交換器20を経由する双方の冷却水を所定の温度により短時間ですることが可能となり、処理後水タンク25aの細菌繁殖抑制処理をより効率的に行える。 Further, the process shown in FIG. 3 may be performed in parallel with the process of FIG. As a result, both the cooling water passing through the water purification device 40 and the cooling water passing through the heat exchanger 20 can be cooled at a predetermined temperature in a short time, and the post-treatment water tank 25a can be further treated to suppress bacterial growth. It can be done efficiently.

また、制御器100は、燃料電池10の発電出力を増加させることで、処理後水タンク25a及び処理前水タンク25bを上昇させることが可能である。すなわち、燃料電池10の発電出力を増加させることにより、燃料電池10から排出される冷却水の温度が上昇し、冷却水から低温水路への熱交換量が、冷却水の持つ熱量に対して相対的に低下し、処理後水タンク25aへ供給される冷却水の温度は上昇する。 Further, the controller 100 can raise the post-treatment water tank 25a and the pre-treatment water tank 25b by increasing the power generation output of the fuel cell 10. That is, by increasing the power generation output of the fuel cell 10, the temperature of the cooling water discharged from the fuel cell 10 rises, and the amount of heat exchange from the cooling water to the low temperature water channel is relative to the amount of heat possessed by the cooling water. The temperature of the cooling water supplied to the water tank 25a after the treatment rises.

また、燃料電池10の発電出力を増加させることで、高温の凝縮水1、2が増加し、処理前水タンク25bの水温を上昇させる。すなわち、燃料改質装置70に供給される炭化水素系の原燃料を増加させることにより、凝縮器90から処理前水タンク25bに供給する凝縮水1の熱量を増加させることが可能である。同様に、燃料改質装置70のバーナーの燃焼排ガスの凝縮水2も増加する。 Further, by increasing the power generation output of the fuel cell 10, the high-temperature condensed waters 1 and 2 increase, and the water temperature of the pretreatment water tank 25b rises. That is, by increasing the hydrocarbon-based raw fuel supplied to the fuel reformer 70, it is possible to increase the amount of heat of the condensed water 1 supplied from the condenser 90 to the pretreatment water tank 25b. Similarly, the condensed water 2 of the combustion exhaust gas of the burner of the fuel reformer 70 also increases.

また、燃料電池10の発電出力を増加させることで、燃料電池10で消費されなかった水素を含有するアノード排ガスの凝縮水2と、燃料電池10で消費されなかった酸素を含有するカソード排ガスの凝縮水2も増加し、処理前水タンク25bの水温を上昇させる。 Further, by increasing the power generation output of the fuel cell 10, the condensed water 2 of the anode exhaust gas containing hydrogen not consumed by the fuel cell 10 and the cathode exhaust gas containing oxygen not consumed by the fuel cell 10 are condensed. Water 2 also increases, raising the water temperature of the pretreatment water tank 25b.

図2、図3で示す処理と並行してこれらの処理を行ってもよい。これにより、処理後水タンク25a及び水浄化装置40の細菌繁殖抑制処理をより効率的に行える。 These processes may be performed in parallel with the processes shown in FIGS. 2 and 3. As a result, the bacterial growth suppression treatment of the post-treatment water tank 25a and the water purification device 40 can be performed more efficiently.

以上のように、本実施形態によれば、制御器100は、燃料電池10、熱交換器20、及び冷却水ポンプ30の少なくともいずれかを制御し、細菌数が増加しない温度まで水タンク25に供給される冷却水の温度を所定のタイミングで上昇させることとした。水タンク25に供給される冷却水の温度を上昇されることにより、水タンク25内の細菌数を減少させることが可能である。 As described above, according to the present embodiment, the controller 100 controls at least one of the fuel cell 10, the heat exchanger 20, and the cooling water pump 30, and the water tank 25 is set to a temperature at which the number of bacteria does not increase. It was decided to raise the temperature of the supplied cooling water at a predetermined timing. By raising the temperature of the cooling water supplied to the water tank 25, it is possible to reduce the number of bacteria in the water tank 25.

(第2実施形態)
第2実施形態に係る燃料電池発電システム1は、純水素ガスを原燃料として燃料電池に供給し、水タンク25が一つの空間で構成される点で第1実施形態に係る燃料電池発電システム1と相違する。以下では、第1実施形態に係る燃料電池発電システム1と相違する点を説明する。
(Second Embodiment)
The fuel cell power generation system 1 according to the second embodiment supplies pure hydrogen gas as a raw fuel to the fuel cell, and the water tank 25 is composed of one space. Is different from. Hereinafter, the differences from the fuel cell power generation system 1 according to the first embodiment will be described.

図4は、第2実施形態に係る燃料電池発電システム1の構成例を示す図である。第2実施形態に係る燃料電池発電システム1の燃料電池10には、純水素が供給される。このため、燃料改質装置70(図1)は設けられていない。 FIG. 4 is a diagram showing a configuration example of the fuel cell power generation system 1 according to the second embodiment. Pure hydrogen is supplied to the fuel cell 10 of the fuel cell power generation system 1 according to the second embodiment. Therefore, the fuel reformer 70 (FIG. 1) is not provided.

また、水タンク25が一つの空間で構成される。本実施形態では燃料改質装置70(図1)へ改質水を送る必要がないため、水の純度を第1実施形態の処理後水タンク25aより低下させることが可能である。このため、水タンク25をより簡易な構成とすることが可能である。一方で、凝縮水、冷却水路L1内の水、及び水浄化水路L2内の水が全て同一の容器に一次的に集められるため、水タンク25内の温度を高温とするためには、凝縮水、冷却水路L1内の水、及び水浄化水路L2内の水の温度調整をする必要がある。このため、制御器100は、冷却水路L1内の水、及び水浄化水路L2内の水の温度調整を同時に行う。なお、冷却水路L1内の水をより高温にすることで、水浄化水路L2内の水の温度調整を行わずとも、水タンク25内の温度を高温にすることも可能である。 Further, the water tank 25 is composed of one space. Since it is not necessary to send the reformed water to the fuel reformer 70 (FIG. 1) in the present embodiment, the purity of the water can be made lower than that of the treated water tank 25a of the first embodiment. Therefore, the water tank 25 can have a simpler configuration. On the other hand, since the condensed water, the water in the cooling water channel L1 and the water in the water purification water channel L2 are all temporarily collected in the same container, the condensed water is required to raise the temperature in the water tank 25. , It is necessary to adjust the temperature of the water in the cooling water channel L1 and the water in the water purification water channel L2. Therefore, the controller 100 simultaneously adjusts the temperature of the water in the cooling water channel L1 and the water in the water purification water channel L2. By raising the temperature of the water in the cooling water channel L1 to a higher temperature, it is possible to raise the temperature in the water tank 25 to a higher temperature without adjusting the temperature of the water in the water purification water channel L2.

以上のように、本実施形態によれば、燃料電池10には、純水素を供給し、水タンク25を一つの空間で構成する。このため、制御器100は、冷却水路L1内の水、及び水浄化水路L2内の水の温度調整を同時に行うこととした。
このように、水浄化装置40を経由する冷却水及び熱交換器20を経由する双方の冷却水を所定の温度にすることにより、水タンク25の細菌繁殖抑制処理をより効率的に行うことが可能となる。
As described above, according to the present embodiment, pure hydrogen is supplied to the fuel cell 10 and the water tank 25 is configured in one space. Therefore, the controller 100 is determined to simultaneously adjust the temperature of the water in the cooling water channel L1 and the water in the water purification water channel L2.
In this way, by setting both the cooling water passing through the water purification device 40 and the cooling water passing through the heat exchanger 20 to a predetermined temperature, the bacterial growth suppression treatment of the water tank 25 can be performed more efficiently. It will be possible.

以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法及びプログラムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法及びプログラムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。 Although some embodiments have been described above, these embodiments are presented only as examples and are not intended to limit the scope of the invention. The novel devices, methods and programs described herein can be implemented in a variety of other forms. In addition, various omissions, substitutions, and changes can be made to the forms of the apparatus, method, and program described in the present specification without departing from the gist of the invention.

1:燃料電池発電システム、10:燃料電池、20、50:熱交換器、25:水タンク、25a:処理後水タンク、25b:処理前水タンク、30:冷却水ポンプ、40:水浄化装置、60:水処理ポンプ、70:燃料改質装置、90:凝縮器、100:制御器、L1:冷却水路、L2:水浄化水路。 1: Fuel cell power generation system, 10: Fuel cell, 20, 50: Heat exchanger, 25: Water tank, 25a: Water tank after treatment, 25b: Water tank before treatment, 30: Cooling water pump, 40: Water purification device , 60: Water treatment pump, 70: Fuel reformer, 90: Condenser, 100: Controller, L1: Cooling water channel, L2: Water purification water channel.

Claims (12)

燃料電池と、
冷却水を溜める水タンクと、
前記燃料電池と前記水タンクとの間を、前記冷却水を循環させる冷却水路の前記燃料電池の下流側であり、且つ前記水タンクの上流側である位置に配置され、前記冷却水を冷却する第1冷却用熱交換器と、
前記冷却水路の前記冷却水を循環させる冷却水ポンプと、
前記燃料電池、前記第1冷却用熱交換器、及び前記冷却水ポンプの少なくともいずれかを制御し、前記水タンク内の細菌数が増加しない温度まで前記水タンクに供給される前記冷却水の温度を所定のタイミングで上昇させる制御器と、
を備える、燃料電池発電システム。
With a fuel cell
A water tank that stores cooling water and
The cooling water is cooled by being arranged between the fuel cell and the water tank at a position on the downstream side of the fuel cell and the upstream side of the water tank in the cooling water channel for circulating the cooling water. The first cooling heat exchanger and
A cooling water pump that circulates the cooling water in the cooling water channel,
The temperature of the cooling water that controls at least one of the fuel cell, the first cooling heat exchanger, and the cooling water pump and is supplied to the water tank to a temperature at which the number of bacteria in the water tank does not increase. With a controller that raises the temperature at a predetermined timing,
A fuel cell power generation system equipped with.
前記水タンクの水を浄化するための水浄化装置と、
前記水浄化装置と前記水タンクとの間において前記冷却水を循環させる水浄化水路の前記水タンクの下流側であり、且つ前記水浄化装置の上流側に配置され前記冷却水を冷却する第2冷却用熱交換器と、
前記水浄化水路の前記冷却水を循環させる水処理ポンプと、を更に備え、
前記制御器は、前記第2冷却用熱交換器、及び前記水処理ポンプの少なくともいずれかを制御し、細菌数が増加しない温度まで前記水浄化装置へ送る水の温度を所定のタイミングで上昇させる、請求項1に記載の燃料電池発電システム。
A water purification device for purifying the water in the water tank,
A second that is located on the downstream side of the water tank of the water purification water channel that circulates the cooling water between the water purification device and the water tank, and is arranged on the upstream side of the water purification device to cool the cooling water. Cooling heat exchanger and
A water treatment pump for circulating the cooling water in the water purification channel is further provided.
The controller controls at least one of the second cooling heat exchanger and the water treatment pump, and raises the temperature of water sent to the water purification device to a temperature at which the number of bacteria does not increase at a predetermined timing. , The fuel cell power generation system according to claim 1.
前記制御器は、前記燃料電池の発電出力を増加させることで、前記水タンクの水温を上昇させる、請求項1又は2に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 1 or 2, wherein the controller raises the water temperature of the water tank by increasing the power generation output of the fuel cell. 炭化水素系の原燃料を改質して水素含有ガスを生成し、前記燃料電池に供給する燃料改質装置を更に備え、
前記制御器は、前記燃料改質装置における前記原燃料の改質量を調整することにより、前記水タンクの水温を上昇させる、請求項1乃至3のいずれか一項に記載の燃料電池発電システム。
A fuel reformer that reforms hydrocarbon-based raw fuel to generate hydrogen-containing gas and supplies it to the fuel cell is further provided.
The fuel cell power generation system according to any one of claims 1 to 3, wherein the controller raises the water temperature of the water tank by adjusting the reforming amount of the raw material fuel in the fuel reformer.
前記燃料改質装置の生成した素含有ガスから水分を除去する凝縮器を更に備え、
前記凝縮器から前記水タンクに供給される凝縮水の熱量を増加させることにより、前記水タンクの水温を上昇させる、請求項4に記載の燃料電池発電システム。
Further provided with a condenser for removing water from the element-containing gas generated by the fuel reformer.
The fuel cell power generation system according to claim 4, wherein the water temperature of the water tank is raised by increasing the amount of heat of the condensed water supplied from the condenser to the water tank.
前記制御器は、前記第1冷却用熱交換器の低温側を流れる流体の流量を低下させることで、前記水タンクの水温を上昇させる、請求項1乃至5のいずれか一項に記載の燃料電池発電システム。 The fuel according to any one of claims 1 to 5, wherein the controller raises the water temperature of the water tank by reducing the flow rate of the fluid flowing on the low temperature side of the first cooling heat exchanger. Battery power generation system. 前記制御器は、前記冷却水ポンプが送出する水量を増加させることで、前記水タンクへ送る前記冷却水の温度を上昇させる、請求項1乃至6のいずれか一項に記載の燃料電池発電システム。 The fuel cell power generation system according to any one of claims 1 to 6, wherein the controller raises the temperature of the cooling water sent to the water tank by increasing the amount of water delivered by the cooling water pump. .. 前記制御器は、前記第2冷却用熱交換器の低温側を流れる流体の流量を低下させることで、前記水浄化装置へ送る水の温度を上昇させる、請求項2に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 2, wherein the controller raises the temperature of water sent to the water purification device by reducing the flow rate of the fluid flowing on the low temperature side of the second cooling heat exchanger. .. 前記制御器は、前記水処理ポンプが送出する水量を増加させることで、前記水浄化装置へ送る水の温度を上昇させる、請求項2又は8に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 2 or 8, wherein the controller raises the temperature of water sent to the water purification device by increasing the amount of water delivered by the water treatment pump. 前記水タンクに、前記燃料改質装置のバーナー排ガス、前記燃料電池のカソード排気及びアノード排気のうち、少なくとも1つ以上のガスを冷却して得られる凝縮水を導入する、請求項4に記載の燃料電池発電システム。 The fourth aspect of claim 4, wherein the water tank is introduced with condensed water obtained by cooling at least one or more of the burner exhaust gas of the fuel reformer and the cathode exhaust and the anode exhaust of the fuel cell. Fuel cell power generation system. 前記水タンクは、前記冷却水を送出する水を溜める第1槽と、凝縮水を溜める第2槽とを有し、
前記第1槽に接続される前記冷却水路は、前記燃料電池、及び前記第1冷却用熱交換器を経由して前記第1槽へ戻り、前記第2槽に接続される前記水浄化水路は、前記第2冷却用熱交換器、及び前記水浄化装置を経由して前記第1槽へ接続される、請求項2に記載の燃料電池発電システム。
The water tank has a first tank for storing water for delivering the cooling water and a second tank for storing condensed water.
The cooling water channel connected to the first tank returns to the first tank via the fuel cell and the first cooling heat exchanger, and the water purification water channel connected to the second tank The fuel cell power generation system according to claim 2, which is connected to the first tank via the second cooling heat exchanger and the water purification device.
燃料電池と、
冷却水を溜める水タンクと、
前記燃料電池と前記水タンクとの間において前記冷却水を循環させる冷却水路の前記燃料電池の下流側であり、且つ前記水タンクの上流側に配置され前記冷却水を冷却する第1冷却用熱交換器と、
前記冷却水路の前記冷却水を循環させる冷却水ポンプと、
を備える燃料電池発電システムの制御方法であって、
前記燃料電池、前記第1冷却用熱交換器、及び前記冷却水ポンプの少なくともいずれかを制御し、細菌数が増加しない温度まで前記水タンクに供給される前記冷却水の温度を所定のタイミングで上昇させる、燃料電池発電システムの制御方法。
With a fuel cell
A water tank that stores cooling water and
A first cooling heat that is located on the downstream side of the fuel cell in the cooling water channel that circulates the cooling water between the fuel cell and the water tank and is arranged on the upstream side of the water tank to cool the cooling water. With the exchanger
A cooling water pump that circulates the cooling water in the cooling water channel,
It is a control method of a fuel cell power generation system equipped with
Control at least one of the fuel cell, the first cooling heat exchanger, and the cooling water pump, and adjust the temperature of the cooling water supplied to the water tank to a temperature at which the number of bacteria does not increase at a predetermined timing. How to control the fuel cell power generation system to raise.
JP2019223094A 2019-12-10 2019-12-10 Fuel cell power generation system and control method of fuel cell power generation system Pending JP2021093286A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019223094A JP2021093286A (en) 2019-12-10 2019-12-10 Fuel cell power generation system and control method of fuel cell power generation system
CN202011448778.0A CN112952140A (en) 2019-12-10 2020-12-09 Fuel cell power generation system and control method for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223094A JP2021093286A (en) 2019-12-10 2019-12-10 Fuel cell power generation system and control method of fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2021093286A true JP2021093286A (en) 2021-06-17

Family

ID=76234805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223094A Pending JP2021093286A (en) 2019-12-10 2019-12-10 Fuel cell power generation system and control method of fuel cell power generation system

Country Status (2)

Country Link
JP (1) JP2021093286A (en)
CN (1) CN112952140A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342558A (en) * 2003-05-19 2004-12-02 Daihatsu Motor Co Ltd Fuel cell loading vehicle
JP2005044749A (en) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd Fuel cell automobile
JP2007026893A (en) * 2005-07-15 2007-02-01 Nissan Motor Co Ltd Fuel cell system
JP2010170877A (en) * 2009-01-23 2010-08-05 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof
JP2011008916A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Fuel cell cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342558A (en) * 2003-05-19 2004-12-02 Daihatsu Motor Co Ltd Fuel cell loading vehicle
JP2005044749A (en) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd Fuel cell automobile
JP2007026893A (en) * 2005-07-15 2007-02-01 Nissan Motor Co Ltd Fuel cell system
JP2010170877A (en) * 2009-01-23 2010-08-05 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof
JP2011008916A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Fuel cell cooling system

Also Published As

Publication number Publication date
CN112952140A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
JP6534116B2 (en) Solid oxide fuel cell system
JP5528451B2 (en) Fuel cell device
JP5121269B2 (en) Fuel cell device
JP5092186B2 (en) Fuel cell cogeneration system
JP5188086B2 (en) Fuel cell device
JP2003100336A (en) Fuel cell power generation system and its operation method
JP2008159463A (en) Fuel cell device and its operation method
JP2021093286A (en) Fuel cell power generation system and control method of fuel cell power generation system
JP5460208B2 (en) Fuel cell cogeneration system
KR101328985B1 (en) Fuel processor providing temperature control function for CO shift reactor and managing method thereof
JP2010170877A (en) Fuel cell power generation system and operation method thereof
JP2008016320A (en) Fuel cell system
JP5856004B2 (en) Fuel cell device
JP5247530B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5534775B2 (en) Fuel cell cogeneration system
KR101392452B1 (en) A fuel cell apparatus providing fuel processor and managing method thereof
JP2003157869A (en) Water treating device for fuel cell
JP6214364B2 (en) Fuel cell system
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JP7109218B2 (en) fuel cell system
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2018137094A (en) Fuel cell device
JP4265239B2 (en) Fuel reforming system
JP2010113885A (en) Fuel cell power generation system and its operation method
JP6534125B2 (en) Solid oxide fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230714