JP2004342558A - Fuel cell loading vehicle - Google Patents

Fuel cell loading vehicle Download PDF

Info

Publication number
JP2004342558A
JP2004342558A JP2003140755A JP2003140755A JP2004342558A JP 2004342558 A JP2004342558 A JP 2004342558A JP 2003140755 A JP2003140755 A JP 2003140755A JP 2003140755 A JP2003140755 A JP 2003140755A JP 2004342558 A JP2004342558 A JP 2004342558A
Authority
JP
Japan
Prior art keywords
fuel cell
remaining capacity
temperature
heating
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140755A
Other languages
Japanese (ja)
Other versions
JP4484452B2 (en
Inventor
Takashi Kurimoto
隆志 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2003140755A priority Critical patent/JP4484452B2/en
Publication of JP2004342558A publication Critical patent/JP2004342558A/en
Application granted granted Critical
Publication of JP4484452B2 publication Critical patent/JP4484452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell loading vehicle which utilizes the heat of a cooling fluid of a fuel cell for heating the vehicle effectively. <P>SOLUTION: The fuel cell loading vehicle has a control means 10 which switches the loaded fuel cell 1 to an operation state and an idle state intermittently, and a heating means D which heats the inside of a vehicle room using heat possessed by the cooling fluid of the fuel cell 1. The constitution of the control means 10 switches the fuel cell 1 to the operation state and the idle state intermittently in such a way that an idle state time of the fuel cell 1 becomes shorter when the heating means D heats the vehicle room than when the heating means D stops the operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられた燃料電池搭載車に関する。
【0002】
【従来の技術】
かかる燃料電池搭載車は、燃料電池にて発電した電力にて、走行駆動用の電動モータを作動させるものであり、制御手段により燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成してある。
このような燃料電池搭載車において、従来では、以下のようにして燃料電池を運転状態と停止状態とに間欠的に切り換えるように、制御手段を構成していた。
即ち、燃料電池の発電電力の余剰分を蓄電する二次電池と、その二次電池の残存容量を検出する残存容量検出手段とを設け、制御手段は、残存容量検出手段にて検出される検出残存容量が発停制御用の設定残存容量以下になると燃料電池の運転を開始し、検出残存容量が前記設定残存容量よりも大きくなると燃料電池の運転を停止して、燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成していた(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平7−240212号公報
【0004】
【発明が解決しようとする課題】
ところで、燃料電池が停止状態のときは、二次電池に蓄電されている電力にて電動モータを作動させるようになっているので、走行状態の変動等により電動モータの消費電力が少なくなって、二次電池の放電量が少なくなる場合がある。
しかしながら、従来の燃料電池搭載車では、上述したように、残存容量検出手段にて検出される検出残存容量が前記設定残存容量以下になると燃料電池の運転を開始し、前記検出残存容量が前記設定残存容量よりも大きくなると燃料電池の運転を停止するという条件にて、燃料電池を運転状態と停止状態とに間欠的に切り換えることから、上述のように、電動モータの消費電力が少なくなって二次電池の放電量が少なくなると、燃料電池が停止状態となる時間が長くなって、その停止状態の間に燃料電池の温度が低くなり易い。そして、その停止状態の間に燃料電池の温度が低くなり過ぎると、次に燃料電池の運転が再開されたときの燃料電池の発電効率が低くなり、全体としての燃料電池の発電効率が低下することになる。
つまり、燃料電池の発電効率は燃料電池の温度により異なるものであって、燃料電池を高発電効率にて運転させることが可能な燃料電池の温度(以下、高効率運転温度と称する場合がある)があり、そして、燃料電池の運転が開始されると、発熱反応である発電反応により燃焼電池の温度が昇温するのであるが、上述のように、停止状態の間に燃料電池の温度が低くなり過ぎると、次に燃料電池の運転が再開されたときに、燃料電池の温度が高効率運転温度に達しなかったり、高効率運転温度に達するのに時間がかかったりして、燃料電池が発電効率の低い温度にて運転される時間が長くなって、燃料電池の発電効率が低下するのである。
【0005】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、燃料電池の発電効率の向上を図り得る燃料電池搭載車を提供することにある。
【0006】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の燃料電池搭載車は、搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられたものであって、
前記燃料電池を冷却する冷却用流体の保有熱にて車室内を暖房する暖房手段が設けられ、
前記制御手段が、前記暖房手段の暖房作動中はその停止中よりも前記燃料電池を停止状態にする時間が短くなるように、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成されている点を特徴構成とする。
即ち、暖房手段が暖房作動すると、燃料電池を冷却する冷却用流体の保有熱にて車室内が暖房され、制御手段により、暖房手段の暖房作動中はその停止中よりも燃料電池を停止状態にする時間が短くなるように、燃料電池が運転状態と停止状態とに間欠的に切り換えられる。
そして、暖房手段の暖房作動中において、燃料電池が停止状態となっている間に燃料電池の温度が低下するのを抑制することが可能となることから、次に燃料電池の運転が再開されたときに、燃料電池が発電効率の低い温度にて運転される時間を短縮化して、燃料電池の発電効率を向上することが可能となり、又、燃料電池の温度が低下するのを抑制することが可能となることにより、前記冷却用流体の温度が低下するのを抑制することも可能となるので、暖房手段の暖房能力を向上することも可能となる。
ちなみに、従来の燃料電池搭載車では、暖房手段の暖房作動中と停止中とにかかわらず、残存容量検出手段にて検出される検出残存容量が前記設定残存容量以下になると燃料電池の運転を開始し、前記検出残存容量が前記設定残存容量よりも大きくなると燃料電池の運転を停止するという同条件にて、燃料電池を運転状態と停止状態とに間欠的に切り換えることになるが、暖房手段の暖房作動中において、走行状態の変動等により電動モータの消費電力が少なくなって、二次電池の放電量が少なくなると、燃料電池が停止状態となる時間が長くなって、燃料電池の温度が低下し易くなる、延いては、前記冷却用流体の温度が低下し易くなるので、上述したように燃料電池の発電効率が低いという問題に加えて、前記冷却用流体の保有熱にて車室内を暖房する暖房手段の暖房能力が低くなるという問題もあった。
従って、燃料電池の発電効率の向上を図ることができ、しかも、暖房能力の向上をも図ることができる燃料電池搭載車を提供することができるようになった。
【0007】
〔請求項2記載の発明〕
請求項2に記載の燃料電池搭載車は、請求項1において、前記燃料電池の発電電力の余剰分を蓄電する二次電池の残存容量を検出する残存容量検出手段が設けられ、
前記制御手段は、前記残存容量検出手段にて検出される検出残存容量が運転開始用の設定残存容量以下になると前記燃料電池の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると前記燃料電池の運転を停止して、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成され、且つ、前記運転開始用の設定残存容量を前記暖房手段の暖房作動中はその停止中よりも大きく設定して、前記暖房手段の暖房作動中はその停止中よりも前記燃料電池を停止状態にする時間を短くするように構成されている点を特徴構成とする。
即ち、制御手段により、前記運転開始用の設定残存容量が暖房手段の暖房作動中はその停止中よりも大きく設定される状態で、残存容量検出手段の検出残存容量に基づいて、その検出残存容量が運転開始用の設定残存容量以下になると燃料電池の運転が開始され、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池の運転が停止されることにより、暖房手段の暖房作動中はその停止中よりも燃料電池を停止状態にする時間が短くなるように、燃料電池が運転状態と停止状態とに間欠的に切り換えられる。
つまり、制御手段により、残存容量検出手段の検出残存容量に基づいて、燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成する場合に、基本的な制御構成はそのまま利用しながら、前記運転開始用の設定残存容量として、暖房手段の停止中に対応するものと、その停止中に対応するものよりも大きい暖房手段の暖房作動中に対応するものとの2つを設定するだけの簡単な変更にて、しかも、新たな部品を追加することなく、暖房手段の暖房作動中はその停止中よりも燃料電池を停止状態にする時間が短くなるように、燃料電池を運転状態と停止状態とに間欠的に切り換えるようにすることが可能となるのである。
従って、請求項1記載の特徴構成を低廉化を図りながら実施するようにする上で好ましい具体構成を提供することができるようになった。
【0008】
〔請求項3記載の発明〕
請求項3に記載の燃料電池搭載車は、搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられたものであって、
前記燃料電池を冷却する冷却用流体の保有熱にて車室内を暖房する暖房手段と、
前記燃料電池の温度を検出する燃料電池温度検出手段とが設けられ、
前記制御手段が、前記暖房手段の暖房作動中において、前記燃料電池温度検出手段にて検出される前記燃料電池の温度が運転開始用の設定温度以下になると、前記燃料電池を運転状態にするように構成されている点を特徴構成とする。
即ち、暖房手段が暖房作動すると、燃料電池を冷却する冷却用流体の保有熱にて車室内が暖房され、その暖房手段の暖房作動中は、制御手段により、燃料電池温度検出手段にて検出される燃料電池の温度が運転開始用の設定温度以下になると、燃料電池が運転状態にされる。
そして、前記運転開始用の設定温度として、次に燃料電池の運転が再開されたときに、燃料電池が発電効率の低い温度にて運転される時間の短縮化が可能な温度に設定することにより、燃料電池の発電効率を向上することが可能となり、又、燃料電池の温度が低下するのを抑制することが可能となるので、前記冷却用流体の温度が低下するのを抑制することも可能となって、暖房手段の暖房能力を向上することも可能となる。
ちなみに、従来の燃料電池搭載車では、燃料電池の温度に関係なく、残存容量検出手段にて検出される検出残存容量が前記設定残存容量以下になると燃料電池の運転を開始し、前記検出残存容量が前記設定残存容量よりも大きくなると燃料電池の運転を停止するという条件にて、燃料電池を運転状態と停止状態とに間欠的に切り換えることになるが、暖房手段の暖房作動中において、走行状態の変動等により電動モータの消費電力が少なくなって、二次電池の放電量が少なくなると、燃料電池が停止状態となる時間が長くなって、燃料電池の温度が低下し易くなる、延いては、前記冷却用流体の温度が低下し易くなるので、上述したように燃料電池の発電効率が低いという問題に加えて、その冷却用流体の保有熱にて車室内を暖房する暖房手段の暖房能力が低くなるという問題があった。
従って、燃料電池の発電効率の向上を図ることができ、しかも、暖房能力の向上をも図ることができる燃料電池搭載車を提供することができるようになった。
【0009】
〔請求項4記載の発明〕
請求項4記載の燃料電池搭載車は、搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられたものであって、
前記燃料電池の発電電力の余剰分を蓄電する二次電池の残存容量を検出する残存容量検出手段と、
前記燃料電池の温度を検出する燃料電池温度検出手段とが設けられ、
前記制御手段は、前記残存容量検出手段にて検出される検出残存容量が運転開始用の設定残存容量以下になると前記燃料電池の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると前記燃料電池の運転を停止して、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成され、且つ、前記燃料電池が前記停止状態のときの前記燃料電池温度検出手段の検出温度が運転切り換え用の設定温度以下のときは、前記検出温度が前記設定温度より高いときよりも、次に前記燃料電池を運転状態に切り換えたときの前記運転停止用の設定残存容量を大きく設定するように構成されている点を特徴構成とする。
即ち、制御手段により、燃料電池が停止状態のときの燃料電池温度検出手段の検出温度が運転切り換え用の設定温度以下のときは、前記検出温度が前記設定温度より高いときよりも、次に燃料電池を運転状態に切り換えたときの運転停止用の設定残存容量が大きく設定される状態で、残存容量検出手段にて検出される検出残存容量に基づいて、その検出残存容量が運転開始用の設定残存容量以下になると燃料電池の運転が開始され、前記検出残存容量が前記運転停止用の設定残存容量以上になると燃料電池の運転が停止されて、燃料電池が運転状態と停止状態とに間欠的に切り換えられる。
つまり、燃料電池が停止状態のときの燃料電池温度検出手段の検出温度が運転切り換え用の設定温度以下のときは、その検出温度が前記設定温度より高いときよりも、次に燃料電池を運転状態にする時間を長くすることから、運転状態のときには燃料電池の温度を高効率運転温度にまで昇温させる状態で、燃料電池を運転状態と停止状態とに間欠的に切り換えることが可能なようにすることができるようになり、もって、燃料電池を高効率運転温度で運転させる時間を長くして燃料電池の発電効率を向上することが可能となる。
従って、燃料電池の発電効率の向上を図り得る燃料電池搭載車を提供することができるようになった。
【0010】
〔請求項5記載の発明〕
請求項5に記載の燃料電池搭載車は、搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられたものであって、
前記燃料電池の温度を検出する燃料電池温度検出手段が設けられ、
前記制御手段が、前記燃料電池温度検出手段にて検出される前記燃料電池の温度が運転開始用の設定温度以下になると、前記燃料電池を運転状態にするように構成されている点を特徴構成とする。
即ち、制御手段により、燃料電池温度検出手段にて検出される燃料電池の温度が運転開始用の設定温度以下になると、燃料電池が運転状態にされる。
そして、前記運転開始用の設定温度として、次に燃料電池の運転が再開されたときに、燃料電池が発電効率の低い温度にて運転される時間の短縮化が可能な温度に設定することにより、燃料電池の発電効率を向上することが可能となる。
従って、燃料電池の発電効率の向上を図り得る燃料電池搭載車を提供することができるようになった。
【0011】
【発明の実施の形態】
〔第1実施形態〕
以下、図面に基づいて、本発明の第1実施形態を説明する。
図1に示すように、燃料電池搭載車は、走行駆動用の電動モータMを駆動源として車体(図示省略)を走行させる電気自動車として構成し、前記電動モータMに電力を供給するための燃料電池1及びそれを発電作動させるための付属設備を備える燃料電池システムF、前記燃料電池1の発電電力の余剰分を蓄電する二次電池としてのバッテリー2、前記燃料電池1や前記バッテリー2から供給される直流電力を三相交流電力に変換して前記電動モータMに供給するインバータ3、並びに、車両全体の動作を統括して管理する車両制御部5を搭載してある。前記バッテリー2は、前記燃料電池1の発電電力の余剰分の他に、車体走行中にブレーキ操作により減速するときに前記電動モータMから発生する回生電力を蓄電することが可能なように構成してある。
前記燃料電池1の出力直流電力は、コンバータ31により電圧を所定の電圧に変換してバッテリー2やインバータ3に供給するように構成してある。
【0012】
電動モータMの動力は、トランスミッション4に伝えられ、このトランスミッション4内部の変速機構により変速された後、左右の車輪Wに伝えられるように構成してある。
【0013】
前記燃料電池1は、周知であるので詳述はしないが、例えば、固体高分子膜を電解質層(図示省略)とするセル(図示省略)の複数を積層状態に設けた固体高分子型に構成し、各セルの燃料極(図示省略)に燃料ガスとして水素含有ガスを供給し、各セルの酸素極(図示省略)に空気を供給して、水素と酸素との電気化学的な反応により発電を行うように構成してある。ちなみに、各セルは、前記電解質層の両面に前記燃料極と前記酸素極とを振り分け配置して構成してある。
【0014】
次に、前記燃料電池システムFにおける燃料電池1を発電作動させるための付属設備について説明する。
図1に示すように、前記付属設備は、燃料電池1の前記燃料極に燃料ガスとして水素含有ガスを供給するための燃料ガス供給設備6、燃料電池1の前記酸素極に空気を供給するため空気供給設備7、燃料電池1の前記燃料極から排出される燃料極排ガス、並びに、燃料電池1の前記酸素極から排出される酸素極排ガス及び電気化学反応により発生した水を外部に排出させるための排気設備8、燃料電池1を冷却するための冷却設備9、各部の動作を電気的に制御するための燃料電池制御部10の夫々を備えて構成してある。そして、この燃料電池制御部10を用いて、燃料電池1を運転状態と停止状態とに間欠的に切り換える制御手段を構成してある。
【0015】
詳述すると、図1に示すように、前記燃料電池1に供給する燃料ガスとしての水素含有ガスの一例である水素ガスを高圧状態で充填した状態で貯蔵する水素ボンベ11を備え、この水素ボンベ11から水素ガス供給管12を通して水素ガスを燃料電池1に供給するように構成すると共に、その水素ガス供給管12には、レギュレータ13、電磁遮断弁14を設けてあり、これら水素ボンベ11、水素ガス供給管12、レギュレータ13及び電磁遮断弁14等により前記燃料ガス供給設備6を構成してある。尚、前記水素ボンベ11内の水素貯蔵量が減ったときには水素ガスを充填する必要があるが、水素ガスの充填作業は図示しない充填用の供給管を通して行う。
【0016】
モータ駆動式のコンプレッサ15によって、エアークリーナ16及び吸気管17を通して車体外部から空気を吸引するとともに、その空気を空気供給管18を通して燃料電池1の前記酸素極に供給するように構成してあり、それらコンプレッサ15、エアークリーナ16、吸気管17、及び、空気供給管18等により前記空気供給設備7を構成してある。尚、この空気供給設備7から供給される空気は加湿器19にて加湿された後に燃料電池1の前記酸素極に供給される。
【0017】
一方、燃料電池1の前記燃料極から排出される燃料極排ガスを導く燃料極排気管20、及び、燃料電池1の前記酸素極から排出される酸素極排ガスを導く酸素極排気管21を設け、更に、燃料極排気管20から燃料極排ガスが供給され、且つ、酸素極排気管21から酸素極排ガスが供給されると共に、供給された燃料極排ガス及び酸素極排ガスを混合して、その混合気を大気中に排出する排気管22を設けてある。前記燃料極排気管20には、その流路を開閉自在な燃料極排気遮断弁23を設けてある。そして、これら燃料極排気管20、酸素極排気管21、排気管22及び燃料極排気遮断弁23等により、排気設備8を構成してある。
又、燃料電池1の前記酸素極にて電気化学反応により発生した水も、酸素極排ガスと共に酸素極排気管21を通じて排気管22に導かれ、その排気管22にて外部に排出されるようになっている。
尚、前記燃料極排気遮断弁23は、通常は閉状態であり、設定時間が経過する毎に流路を開放させて燃料極内の不純物を排出させるようになっている。
【0018】
又、燃料電池1の内部を冷却するための冷却用流体としての冷却水を冷却水循環ポンプ24にて循環させる冷却水循環路25を設け、その冷却水循環路25には、ラジエータファン26にて車室外に送風される空気に前記冷却水の保有熱を放熱させるラジエータ27と、暖房用ファン28にて送風路(図示省略)を通じて車室内に送風される空気に前記冷却水の保有熱を放熱させる暖房用熱交換器29とを互いに並列接続した状態で設け、更に、冷却水を前記ラジエータ27と前記暖房用熱交換器29とに分流させると共に、その分流比を調節自在な三方弁30を設けてある。
そして、これら冷却水循環ポンプ24、冷却水循環路25、ラジエータファン26、ラジエータ27、暖房用ファン28、暖房用熱交換器29及び三方弁30等により冷却設備9を構成してある。
又、三方弁30、暖房用熱交換器29及び暖房用ファン28により、燃料電池1を冷却する冷却用流体としての冷却水の保有熱にて車室内を暖房する暖房手段Dを構成してあり、暖房用ファン28を作動させることにより、暖房手段Dが暖房作動状態に切り換えられることになり、暖房用ファン28を停止させることにより、暖房手段Dが停止状態に切り換えられることになる。
【0019】
前記のコンプレッサ15、冷却水循環ポンプ24等の補機にも、前記燃料電池1及びバッテリー2から電力が供給されるように構成してある。
【0020】
以下、前記車両制御部5及び前記燃料電池制御部10について説明する。
車両制御部5と燃料電池制御部10との間で、各種制御情報が通信されるように構成してある。
この車両制御部5には、シフトポジションレバー32の位置を検出するシフトポジションセンサS1、車室内の温度を検出する車室温度センサS2、アクセル操作具(図示省略)の操作量を検出するポテンショメータ式のアクセル操作量検出センサS3、電動モータMの回転速度を検出する回転速度センサS4、及び、車輪Wの回転速度に基づいて車速を検出する車速センサS5等による各種の検出情報、並びに、電動モータMの作動を指令するアクセルスイッチ(図示省略)、車室内の空調を指令する空調指令スイッチ33、及び、車室内の空調目標温度を設定する温度設定部34等からの各種指令情報が入力されるように構成してある。
【0021】
前記シフトポジションレバー32の位置としては、「駐車位置」、「後進走行位置」、「中立位置」、「前進走行位置」があり、運転者により運転状況に対応して切り換え操作されることになる。
【0022】
車両制御部5は、アクセル操作具の操作量に応じて電動モータMの出力を制御するモータ制御、及び、車室内を温度設定部34にて設定される目標空調温度になるように空調する空調制御等を実行するが、それらの各制御は周知であるので簡単に説明する。
車両制御部5は、前記モータ制御では、前記アクセルスイッチがオンのときは、アクセル操作量検出センサS3、回転速度センサS4及び車速センサS5夫々の検出情報に基づいて目標走行駆動力を求め、電動モータMから前記目標走行駆動力を出力するように、インバータ3を制御する。
尚、車両制御部5は、前記モータ制御において、アクセル操作量検出センサS3によりアクセル操作具の操作量がゼロである状態が検出され、且つ、車速センサS5にて車速がゼロである状態が検出されているときは、回転速度センサS4の検出情報に基づいて電動モータMの回転速度が設定アイドリング回転速度になるようにインバータ3を制御する。
その設定アイドリング回転速度としては、通常時設定アイドリング回転速度と、その通常時設定アイドリング回転速度よりも速い暖房時設定アイドリング回転速度とを設定してあり、詳細は後述するが、暖房手段Dが暖房作動中のときで、燃料電池制御部10からアイドルアップ指令が指令されているときは、前記設定アイドリング回転速度として前記暖房時設定アイドリング回転速度を用い、暖房手段Dの停止中のときで、アイドルアップ指令が指令されていないときは、前記設定アイドリング回転速度として前記通常時設定アイドリング回転速度を用いるように構成してある。ちなみに、前記通常時設定アイドリング回転速度としては、0rpmも含むものであり、暖房手段Dの停止中のときのアイドリング状態としては、電動モータMを停止させる状態も含むものである。
【0023】
又、車両制御部5は、前記アクセルスイッチがオンのときに、アクセル操作量検出センサS3によりアクセル操作具の操作量がゼロで無い状態が検出されるか、又は、車速センサS5にて車速がゼロで無い状態が検出されているときは、燃料電池制御部10に対して、負荷状態であることを示す負荷状態情報を送信し、前記アクセルスイッチがオンのときに、アクセル操作量検出センサS3によりアクセル操作具の操作量がゼロである状態が検出され、且つ、車速センサS5にて車速がゼロである状態が検出されているときは、アイドリング状態であることを示すアイドリング状態情報を送信し、前記アクセルスイッチがオフになると、燃料電池制御部10に対して、発電停止指令を送信するように構成してある。
【0024】
車両制御部5は、前記空調制御では、車室温度センサS2の検出温度と前記目標空調温度とに基づいて、冷房装置(図示省略)の冷房作動の要否及び前記暖房手段Dの暖房作動の要否を判断すると共に、冷房作動の要否の判断結果に基づいて、前記冷房装置の冷房作動を制御し、又、暖房作動の要否の判断結果に基づいて、暖房作動が必要なときは、前記暖房用ファン28を作動させて前記暖房手段Dを暖房作動させ且つ車室温度センサS2の検出温度が前記目標空調温度になるように前記暖房用ファン28の送風量を制御すると共に、その暖房手段Dが暖房作動中であることを示す暖房作動状態情報を燃料電池制御部10に対して送信し、暖房作動が不要なときは、前記暖房用ファン28を停止させて前記暖房手段Dを停止させると共に、その暖房手段Dが停止中であることを示す暖房停止状態情報を燃料電池制御部10に対して送信する。
【0025】
前記燃料電池制御部10は、前記バッテリー2の残存容量を検出する残存容量検出部S6、及び、前記燃料電池1から流出し且つ暖房用熱交換器29及びラジエータ27に流入する前の冷却水の温度を検出する冷却水出口温度センサS7等による各種検出情報が入力され、それら各種検出情報、及び、前記車両制御部5から送信される各種制御情報に基づいて、前記電磁遮断弁14、前記コンプレッサ15、前記冷却水循環ポンプ24、前記ラジエータファン26及び前記三方弁30等の作動を制御するように構成してある。
尚、前記燃料電池1から流出し且つ暖房用熱交換器29及びラジエータ27に流入する前の冷却水の温度は、燃料電池1の温度と同一又は略同一であって、燃料電池1の温度に対応するものであるので、冷却水出口温度センサS7にて、燃料電池1の温度を検出する燃料電池温度検出手段を構成してある。
【0026】
以下の説明において、燃料電池制御部10により燃料電池1を運転状態と停止状態とに間欠的に切り換える点について説明するが、前記運転状態は、電磁遮断弁14を開弁し、コンプレッサ15及びラジエータファン26を作動させる状態であり、前記停止状態は、電磁遮断弁14を閉弁し、コンプレッサ15及びラジエータファン26を停止させる状態である。
尚、燃料電池制御部10は、冷却水循環ポンプ24については、燃料電池1を運転状態としているときは常時、燃料電池1を停止状態にしているときは、車両制御部5から前記暖房作動状態情報が送信されてから前記暖房停止状態情報が送信されるまでの間、予め設定された運転条件にて運転し、その他のときは停止する。
【0027】
前記残存容量検出部S6は、バッテリー2の電圧、温度、充電電力量及び放電電力量等に基づいて残存容量(即ち、SOC)を演算するように構成してある。
【0028】
前記燃料電池制御部10について説明を加える。
燃料電池制御部10は、車両制御部5から前記負荷状態情報が送信されると、負荷時発電制御を実行し、車両制御部5から前記アイドリング状態情報が送信されると、アイドリング時発電制御を実行し、車両制御部5から前記発電停止指令が送信されると、燃料電池1を停止状態に切り換えるように構成してある。
【0029】
そして、燃料電池制御部10は、前記負荷時発電制御では、暖房手段Dの暖房作動中は、暖房手段Dの停止中よりも燃料電池1を停止状態にする時間が短くなるように、燃料電池1を運転状態と停止状態とに間欠的に切り換える。
尚、暖房手段Dの暖房作動中は暖房手段Dの停止中よりも燃料電池1を停止状態にする時間が短くなるように、燃料電池1を運転状態と停止状態とに間欠的に切り換えるに当たっては、電動モータMの消費電力が同一であるとしたときに、暖房手段Dの暖房作動中は暖房手段Dの停止中よりも燃料電池1を停止状態にする時間が短くなるようにする。
ちなみに、燃料電池制御部10は、車両制御部5から前記暖房作動状態情報が送信されることにより、暖房手段Dが暖房作動中であると判断し、車両制御部5から前記暖房停止状態情報が送信されると、暖房手段Dが停止中であると判断する。
【0030】
具体的には、燃料電池制御部10は、前記負荷時発電制御では、残存容量検出部S6にて検出される検出残存容量が運転開始用の設定残存容量以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池1の運転を停止して、燃料電池1を運転状態と停止状態とに間欠的に切り換え、且つ、前記運転開始用の設定残存容量を暖房手段Dの暖房作動中はその停止中よりも大きく設定して、暖房手段Dの暖房作動中はその停止中よりも燃料電池1を停止状態にする時間を短くする。
【0031】
又、燃料電池制御部10は、前記アイドリング時発電制御では、前記検出残存容量が前記運転停止用の設定残存容量よりも小さいときは燃料電池1を運転し、前記検出残存容量が前記運転停止用の設定残存容量以上になると燃料電池1の運転を停止し、且つ、暖房手段Dが暖房作動されると、車両制御部5に対して前記アイドルアップ指令を送信し、暖房手段Dが停止されると、車両制御部5に対してアイドルアップ停止指令を送信する。
【0032】
そして、車両制御部5は、燃料電池制御部10からのアイドルアップ指令を受信すると、設定アイドリング回転速度として前記暖房時設定アイドリング回転速度を用いて、電動モータMの回転速度が暖房時設定アイドリング回転速度になるようにインバータ3を制御し、燃料電池制御部10からのアイドルアップ停止指令を受信すると、設定アイドリング回転速度として前記通常時設定アイドリング回転速度に変更して、電動モータMの回転速度が通常時設定アイドリング回転速度になるようにインバータ3を制御する。ちなみに、前記通常時設定アイドリング回転速度として0rpmに設定されているときは、電動モータMは停止状態になる。
【0033】
燃料電池制御部10は、上述の負荷時発電制御及びアイドリング時発電制御の夫々において、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が、予め設定された目標運転温度になるように、三方弁30を制御する。具体的には、ラジエータ27による放熱量の方が暖房用熱交換器29による放熱量よりも大きくなるように構成してあるので、冷却水出口温度センサS7の検出温度が低いほど、暖房用熱交換器29を通流する冷却水の流量が多くなるように、三方弁30を制御することになる。従って、暖房用ファン28が作動して暖房手段Dが暖房作動しているときは、暖房手段Dの停止中よりも暖房用熱交換器29での放熱量が大きくなって、冷却水出口温度センサS7の検出温度が低くなる傾向となるので、暖房用熱交換器29を通流する冷却水の流量が暖房手段Dの停止中よりも多くなるように、三方弁30が制御されることになる。
【0034】
ちなみに、前記目標運転温度は、燃料電池1の温度が前記高効率運転温度範囲である状態に対応する冷却水の温度に設定し、前記燃料電池1を固体高分子型にて構成している場合は、例えば70°C程度に設定する。
【0035】
次に、図2ないし図4に基づいて、負荷時発電制御及びアイドリング時発電制御夫々における燃料電池制御部10の制御動作について、説明を加える。
尚、運転停止用の設定残存容量Puとして、例えば、前記最大充電電力量よりも少ない値に設定し、運転開始用の設定残存容量Pdは前記運転停止用の設定残存容量Puよりも小さい値に設定すると共に、その設定残存容量Pdとして、暖房手段Dの停止中に対応する下位運転開始用設定残存容量Pd1と、その下位運転開始用設定残存容量Pd1よりも大きくて、暖房手段Dの暖房作動中に対応する上位運転開始用設定残存容量Pd2との2つを設定してある。
又、図中、冷却水温を示す図において、温度範囲Thは、前記高効率運転温度範囲に対応する冷却水の温度範囲を示す。
【0036】
燃料電池制御部10は、前記負荷時発電制御では、暖房手段Dの停止中は、図2に示すように、前記検出残存容量が下位運転開始用設定残存容量Pd1以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量Pu以上になると燃料電池1の運転を停止し、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が目標運転温度Tpになるように三方弁30の作動を制御し、暖房手段Dの暖房作動中は、図3に示すように、前記検出残存容量が上位運転開始用設定残存容量Pd2以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量Pu以上になると燃料電池1の運転を停止し、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が目標運転温度Tpになるように三方弁30の作動を制御する。
【0037】
次に、図4に基づいて、前記アイドリング時発電制御における制御動作について説明する。
図4に示すように、例えば、前記検出残存容量が運転停止用の設定残存容量Pu以上になって、燃料電池1を停止状態にしているときに、暖房手段Dが停止状態から暖房作動状態に切り換えられると、燃料電池制御部10は、車両制御部5に対して、アイドルアップ指令を送信する。すると、車両制御部5により、電動モータMのアイドリング回転速度が通常時設定アイドリング回転速度Rdから暖房時設定アイドリング回転速度Ruに上昇される。
そして、そのアイドリング回転速度の上昇により、負荷が増大して、前記検出残存容量が運転停止用の設定残存容量Puよりも小さくなるので、燃料電池制御部10は、燃料電池1を運転状態に切り換える。燃料電池1の発電電力分が、アイドリング回転速度の上昇による負荷増大分で消費されるので、前記検出残存容量が運転停止用の設定残存容量Puよりも小さい状態が維持されて、燃料電池制御部10は、燃料電池1の運転を継続することになる。
【0038】
そして、その状態で、暖房手段Dが暖房作動状態から停止状態に切り換えられると、燃料電池制御部10は、車両制御部5に対して、アイドルアップ停止指令を送信する。すると、車両制御部5により、電動モータMのアイドリング回転速度が暖房時設定アイドリング回転速度Ruから通常時設定アイドリング回転速度Rdに減速されて、負荷が減少し、燃料電池1の発電電力の余剰分がバッテリー2に蓄電されることになる。そして、前記検出残存容量が増加して運転停止用の設定残存容量Pu以上になると、燃料電池制御部10は、燃料電池1を停止状態に切り換えることになる。
燃料電池制御部10は、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が目標運転温度Tpになるように三方弁30の作動を制御する。
【0039】
従って、車両の走行中、即ち、アクセル操作量検出センサS3によりアクセル操作具の操作量がゼロで無い状態が検出されるか、又は、車速センサS5にて車速がゼロで無い状態が検出されているときに、暖房手段Dが暖房作動されると、電動モータMの消費電力が同一であるとしたときに、暖房手段Dの停止中よりも燃料電池1を停止状態にする時間が短くなるように、燃料電池1が運転状態と停止状態とに間欠的に切り換えられるので、暖房手段Dの暖房作動中において、燃料電池1が停止状態となっている間に冷却水の温度が低下するのを抑制することが可能となって、次に燃料電池1の運転が再開されたときに、燃料電池1が前記高効率運転温度よりも低い温度にて運転される時間の短縮化が可能となり、もって、次に燃料電池1の運転が再開されたときに、燃料電池1の発電効率が低下するのを抑制することが可能となり、又、暖房手段Dの暖房能力を向上することも可能となる。
又、車両が停車してアイドリング状態のとき、即ち、アクセル操作量検出センサS3によりアクセル操作具の操作量がゼロである状態が検出され、且つ、車速センサS5にて車速がゼロである状態が検出されている状態のときに、暖房手段Dが暖房作動されると、電動モータMのアイドリング回転速度が上昇されて負荷が増加するので、その負荷増加分を燃料電池1で発電することになって、冷却水の温度を上昇させることが可能となるので、暖房手段Dの暖房能力を向上することが可能となる。
【0040】
〔第2実施形態〕
以下、図面に基づいて、本発明の第2実施形態を説明する。
第2実施形態においては、燃料電池搭載車の構成は、図1に基づいて説明した第1実施形態における構成と同様であるので、その説明を省略する。
又、車両制御部5の制御構成は、上記の第1実施形態と同様であるので、その説明を省略する。
燃料電池制御部10は、第1実施形態と同様に、車両制御部5から前記負荷状態情報が送信されると、負荷時発電制御を実行し、車両制御部5から前記アイドリング状態情報が送信されると、アイドリング時発電制御を実行し、車両制御部5から前記発電停止指令が送信されると、燃料電池1を停止状態に切り換えるように構成してあるが、負荷時発電制御の制御構成が第1実施形態と異なるので、以下、負荷時発電制御について説明する。
【0041】
燃料電池制御部10は、前記負荷時発電制御では、暖房手段Dの停止中は、残存容量検出部S6にて検出される検出残存容量が運転開始用の設定残存容量以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池1の運転を停止して、燃料電池1を運転状態と停止状態とに間欠的に切り換え、暖房手段Dの暖房作動中は、燃料電池1が停止状態のときに冷却水出口温度センサS7の検出温度が運転開始用の設定温度以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池1の運転を停止して、燃料電池1を運転状態と停止状態とに間欠的に切り換える。
【0042】
前記運転開始用の設定温度としては、前記検出残存容量が運転開始用の設定残存容量以下になると燃料電池1の運転を開始する場合に比べて、電動モータMの消費電力が同一であるとしたときに、次に燃料電池1の運転が再開されたときに燃料電池1が発電効率の低い温度にて運転される時間を短くすることが可能な温度に設定する。
【0043】
次に、負荷時発電制御における燃料電池制御部10の制御動作について、説明を加える。
運転停止用の設定残存容量Puは、第1実施形態と同一の値に設定し、運転開始用の設定残存容量は、第1実施形態における下位運転開始用設定残存容量Pd1と同一の値に設定してある。
暖房手段Dの停止中における負荷時発電制御の制御動作は、図2に基づいて説明した第1実施形態と同様であるので、説明を省略して、暖房手段Dの暖房作動中における負荷時発電制御の制御動作を図5に基づいて説明する。尚、図5中、冷却水温を示す図において、温度範囲Thは、前記高効率運転温度範囲に対応する冷却水の温度範囲を示す。
【0044】
燃料電池1が停止状態のときに冷却水出口温度センサS7の検出温度が運転開始用の設定温度Ta以下になると燃料電池1の運転を開始し、残存容量検出部S6にて検出される残存容量が運転停止用の設定残存容量Pu以上になると燃料電池1の運転を停止し、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が目標運転温度Tpになるように冷却水循環ポンプ24の作動を制御する。
【0045】
従って、暖房手段Dの停止中に燃料電池1が停止状態となったときに、燃料電池1の温度が低下し過ぎるのを防止することが可能となるので、燃料電池1の発電効率を向上することが可能となり、又、冷却水の温度が低下し過ぎるのも防止することが可能となるので、暖房手段Dの暖房能力を向上することも可能となる。
【0046】
〔第3実施形態〕
以下、図面に基づいて、本発明の第3実施形態を説明する。
第3実施形態においては、燃料電池搭載車の構成は、図1に基づいて説明した第1実施形態における構成と同様であるので、その説明を省略する。
又、車両制御部5の制御構成は、上記の第1実施形態と同様であるので、その説明を省略する。
燃料電池制御部10は、第1実施形態と同様に、車両制御部5から前記負荷状態情報が送信されると、負荷時発電制御を実行し、車両制御部5から前記アイドリング状態情報が送信されると、アイドリング時発電制御を実行し、車両制御部5から前記発電停止指令が送信されると、燃料電池1を停止状態に切り換えるように構成してあるが、負荷時発電制御の制御構成が第1実施形態と異なるので、以下、負荷時発電制御について説明する。
【0047】
燃料電池制御部10は、前記負荷時発電制御では、暖房手段Dの停止中及び暖房作動中にかかわらず、残存容量検出部S6にて検出される検出残存容量が運転開始用の設定残存容量以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池1の運転を停止して、燃料電池1を運転状態と停止状態とに間欠的に切り換え、且つ、燃料電池1が前記停止状態のときの冷却水出口温度センサS7の検出温度が運転切り換え用の設定温度以下のときは、前記検出温度が前記運転切り換え用の設定温度より高いときよりも、次に燃料電池1を運転状態に切り換えたときの前記運転停止用の設定残存容量を大きく設定する。
【0048】
次に、図6に基づいて、負荷時発電制御における燃料電池制御部10の制御動作について、説明を加える。尚、図6中、冷却水温を示す図において、温度範囲Thは、前記高効率運転温度範囲に対応する冷却水の温度範囲を示す。
運転停止用の設定残存容量Puとして、例えば、前記最大充電電力量よりも少なくする状態で、第1実施形態における運転停止用の設定残存容量Puと等しいか略等しい下位運転停止用設定残存容量Pu1と、その下位運転停止用設定残存容量PU1よりも大きい上位運転停止用設定残存容量Pu2との2つを設定し、運転開始用の設定残存容量Pdは,前記2つの前記運転停止用の設定残存容量Pu1,Pu2よりも小さい値に設定してある。
前記検出残存容量が運転開始用の設定残存容量Pdから前記下位運転停止用設定残存容量Pu1になるまで燃料電池1を運転させたときに、燃料電池1を昇温させることが可能な温度幅を昇温可能温度幅とすると、前記運転切り換え用の設定温度Tbは、前記高効率運転温度範囲よりも前記昇温可能温度幅低い温度よりも多少高い温度に設定してある。
【0049】
燃料電池制御部10は、前記負荷時発電制御では、燃料電池1が停止状態のときの前記検出残存容量が前記運転開始用の設定残存容量Pd以下になると、そのときの冷却水出口温度センサS7の検出温度が前記運転切り換え用の設定温度Tb以下のときは、前記検出残存容量が前記上位運転停止用設定残存容量Pu2になるまで燃料電池1を運転して停止し、燃料電池1が停止状態のときの前記検出残存容量が運転開始用の設定残存容量Pd以下になると、そのときの冷却水出口温度センサS7の検出温度が前記運転切り換え用の設定温度Tbより高いときは、前記検出残存容量が前記下位運転停止用設定残存容量Pu1になるまで燃料電池1を運転して停止し、燃料電池1を運転状態としているときは、冷却水出口温度センサS7の検出温度が目標運転温度Tpになるように三方弁30の作動を制御する。
【0050】
従って、燃料電池1が停止状態のときの冷却水出口温度センサS7の検出温度運転切り換え用の設定温度以下のときは、その検出温度が前記設定温度より高いときよりも、次に燃料電池1を運転状態にする時間を長くすることから、運転状態のときには燃料電池1の温度を高効率運転温度にまで昇温させる状態で、燃料電池1を運転状態と停止状態とに間欠的に切り換えることが可能なようにすることができるようになり、もって、燃料電池1を高効率運転温度で運転させる時間を長くして燃料電池1の発電効率を向上することが可能となる。
【0051】
〔第4実施形態〕
以下、図面に基づいて、本発明の第4実施形態を説明する。
第4実施形態においては、燃料電池搭載車の構成は、図1に基づいて説明した第1実施形態における構成と同様であるので、その説明を省略する。
又、車両制御部5の制御構成は、上記の第1実施形態と同様であるので、その説明を省略する。
燃料電池制御部10は、第1実施形態と同様に、車両制御部5から前記負荷状態情報が送信されると、負荷時発電制御を実行し、車両制御部5から前記アイドリング状態情報が送信されると、アイドリング時発電制御を実行し、車両制御部5から前記発電停止指令が送信されると、燃料電池1を停止状態に切り換えるように構成してあるが、負荷時発電制御の制御構成が第1実施形態と異なるので、以下、負荷時発電制御について説明する。
【0052】
燃料電池制御部10は、前記負荷時発電制御では、暖房手段Dの停止中及び暖房作動中にかかわらず、燃料電池1が停止状態のときに冷却水出口温度センサS7の検出温度が運転開始用の設定温度以下になると燃料電池1の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると燃料電池1の運転を停止して、燃料電池1を運転状態と停止状態とに間欠的に切り換える。
尚、前記負荷時発電制御における燃料電池制御部10の制御動作は、図5に基づいて説明した第2実施形態における暖房手段Dの暖房作動中における負荷時発電制御の制御動作と同様であるので、説明を省略する。
【0053】
従って、燃料電池1の停止中に、燃料電池1の温度が低下し過ぎるのを防止することが可能となるので、燃料電池1の発電効率を向上することが可能となる。
【0054】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第1実施形態においては、制御手段10を、燃料電池1を運転状態と停止状態とに間欠的に切り換えるように構成するに、二次電池2の残存容量を検出する残存容量検出手段S6の検出情報に基づいて切り換えるように構成する場合について例示したが、このように構成する場合に限定されるものではなく、例えば、停止状態とする設定停止時間を設定して、残存容量検出手段S6の検出残存容量が運転停止用の設定残存容量以上になると、前記設定停止時間の間停止状態とし、前記設定停止時間が経過すると運転を開始する形態で、燃料電池1を運転状態と停止状態とに間欠的に切り換えるように構成しても良い。この場合、暖房手段Dの暖房作動中はその停止中よりも燃料電池1を停止状態にする時間を短くするように構成するには、前記設定停止時間を暖房手段Dの暖房作動中はその停止中よりも短く設定する。
【0055】
(ロ) 上記の実施形態においては、燃料電池1の運転形態として、一定出力を出力するように運転する場合について例示したが、残存容量検出手段S6の検出情報に応じて出力を調整して運転するように構成しても良い。
【0056】
(ハ) 上記の実施形態においては、暖房手段Dの暖房作動の開始及び停止の指令を、車両制御部5により自動的に行うように構成する場合について例示したが、人為操作式のスイッチにて人為的に行うように構成しても良い。
【0057】
(ニ) 二次電池2の残存容量を検出する残存容量検出部S6の具体構成は、上記の実施形態において例示した構成に限定されるものではなく、例えば、二次電池2の電圧に基づいて残存容量を検出するように構成しても良い。
【0058】
(ホ) 上記の実施形態においては、燃料電池温度検出手段として、燃料電池1から流出し且つ暖房用熱交換器29及びラジエータ27に流入する前の冷却水の温度を検出する冷却水出口温度センサS7にて構成する場合について例示したが、燃料電池1の温度を直接検出する温度センサにて構成しても良い。
【0059】
(ヘ) 運転開始用の設定残存容量、運転停止用の設定残存容量、目標運転温度、運転開始用の設定温度及び運転切り換え用の設定温度夫々は、燃料電池1、バッテリー2及び冷却設備9等の特性に適応するように、種々に設定することが可能である。
【0060】
(ト) 燃料電池1としては、上記の実施形態において例示した固体高分子型に限定されるものではなく、例えば、電解質としてリン酸を用いたリン酸型等、種々の型式のものを用いることが可能である。
燃料電池1に燃料ガスとして供給する水素含有ガスとしては、上記の実施形態において例示した純水素ガスに限定されるものではない。例えば、天然ガスやアルコール等の炭化水素系の原燃料を水蒸気を用いて、水素ガスを含有する改質ガスに改質処理して、その改質ガスを水素含有ガスとして用いることができる。この場合は、原燃料を貯留するボンベ等の貯留部、及び、原燃料を水蒸気を用いて改質ガスに改質処理する改質装置を搭載することになる。
【図面の簡単な説明】
【図1】第1実施形態にかかる燃料電池搭載車のブロック図
【図2】第1実施形態にかかる燃料電池搭載車の制御動作を説明する図
【図3】第1実施形態にかかる燃料電池搭載車の制御動作を説明する図
【図4】第1実施形態にかかる燃料電池搭載車の制御動作を説明する図
【図5】第2実施形態にかかる燃料電池搭載車の制御動作を説明する図
【図6】第3実施形態にかかる燃料電池搭載車の制御動作を説明する図
【符号の説明】
1 燃料電池
2 二次電池
10 制御手段
D 暖房手段
S6 残存容量検出手段
S7 燃料電池温度検出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell vehicle provided with control means for intermittently switching a mounted fuel cell between an operating state and a stopped state.
[0002]
[Prior art]
Such a fuel cell-equipped vehicle operates an electric motor for driving the vehicle with electric power generated by the fuel cell, and is configured to intermittently switch the fuel cell between an operation state and a stop state by control means. I have.
Conventionally, in such a fuel cell vehicle, the control means is configured to intermittently switch the fuel cell between the operating state and the stopped state as follows.
That is, a secondary battery that stores the surplus of the power generated by the fuel cell, and a remaining capacity detection unit that detects the remaining capacity of the secondary battery are provided, and the control unit detects the remaining capacity detected by the remaining capacity detection unit. When the remaining capacity becomes equal to or less than the set remaining capacity for start / stop control, the operation of the fuel cell is started, and when the detected remaining capacity becomes larger than the set remaining capacity, the operation of the fuel cell is stopped, and the fuel cell is brought into the operating state and stopped. The state is switched intermittently (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-240212
[0004]
[Problems to be solved by the invention]
By the way, when the fuel cell is in the stopped state, the electric motor is operated by the electric power stored in the secondary battery, so that the power consumption of the electric motor is reduced due to fluctuations in the running state, etc. The discharge amount of the secondary battery may be reduced.
However, in the conventional vehicle equipped with a fuel cell, as described above, when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than the set remaining capacity, the fuel cell starts to operate, and the detected remaining capacity becomes equal to the set remaining capacity. The fuel cell is intermittently switched between the operating state and the stopped state under the condition that the operation of the fuel cell is stopped when the remaining capacity becomes larger than the remaining capacity. When the discharge amount of the secondary battery is reduced, the time during which the fuel cell is in the stop state is prolonged, and the temperature of the fuel cell tends to decrease during the stop state. If the temperature of the fuel cell becomes too low during the stop state, the power generation efficiency of the fuel cell when the operation of the fuel cell is restarted next decreases, and the power generation efficiency of the fuel cell as a whole decreases. Will be.
That is, the power generation efficiency of the fuel cell differs depending on the temperature of the fuel cell, and the temperature of the fuel cell at which the fuel cell can be operated with high power generation efficiency (hereinafter, may be referred to as a high efficiency operation temperature). Then, when the operation of the fuel cell is started, the temperature of the combustion cell rises due to the power generation reaction that is an exothermic reaction. If it becomes too high, the next time the fuel cell operation is restarted, the fuel cell temperature will not reach the high-efficiency operating temperature, or it will take time to reach the high-efficiency operating temperature, causing the fuel cell to generate power. The longer the operation time is at a low efficiency temperature, the lower the power generation efficiency of the fuel cell is.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel cell-equipped vehicle that can improve the power generation efficiency of a fuel cell.
[0006]
[Means for Solving the Problems]
[Invention of claim 1]
The fuel cell vehicle according to claim 1, further comprising control means for intermittently switching the mounted fuel cell between an operating state and a stopped state,
Heating means for heating the vehicle interior with the retained heat of the cooling fluid for cooling the fuel cell is provided,
The control means intermittently switches the fuel cell between an operating state and a stopped state so that the time during which the fuel cell is stopped is shorter during the heating operation of the heating means than during the stop. The configuration is a feature configuration.
That is, when the heating unit performs the heating operation, the vehicle interior is heated by the retained heat of the cooling fluid that cools the fuel cell, and the control unit causes the fuel cell to be in a stopped state during the heating operation of the heating unit rather than during the stop. The fuel cell is intermittently switched between the operation state and the stop state so that the time for performing the operation is shortened.
Then, during the heating operation of the heating means, it is possible to suppress a decrease in the temperature of the fuel cell while the fuel cell is in the stopped state, so that the operation of the fuel cell was restarted next. Sometimes, it is possible to improve the power generation efficiency of the fuel cell by shortening the time during which the fuel cell is operated at a temperature at which the power generation efficiency is low, and to suppress the temperature of the fuel cell from decreasing. Since it becomes possible to suppress the temperature of the cooling fluid from decreasing, the heating capacity of the heating unit can be improved.
By the way, in the conventional fuel cell vehicle, the fuel cell operation is started when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than the set remaining capacity regardless of whether the heating means is in the heating operation or during the stop. Then, under the same condition that the operation of the fuel cell is stopped when the detected remaining capacity becomes larger than the set remaining capacity, the fuel cell is intermittently switched between the operating state and the stopped state. During the heating operation, when the power consumption of the electric motor decreases due to fluctuations in the running state and the amount of discharge of the secondary battery decreases, the time during which the fuel cell is in the stop state increases, and the temperature of the fuel cell decreases. Since the temperature of the cooling fluid is apt to decrease, the power generation efficiency of the fuel cell is low as described above. Heating capacity of the heating means for heating the inner there is a problem in that low.
Therefore, it has become possible to provide a fuel cell-equipped vehicle capable of improving the power generation efficiency of the fuel cell and improving the heating capacity.
[0007]
[Invention of claim 2]
According to a second aspect of the present invention, in the vehicle equipped with a fuel cell according to the first aspect, a remaining capacity detection unit is provided for detecting a remaining capacity of a secondary battery that stores a surplus of power generated by the fuel cell,
The control means starts the operation of the fuel cell when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than a set remaining capacity for operation start, and the detected remaining capacity becomes the set remaining capacity for operation stop. When the above operation is completed, the operation of the fuel cell is stopped, the fuel cell is intermittently switched between an operating state and a stopped state, and the set remaining capacity for starting the operation is changed to the heating operation of the heating means. During the heating operation of the heating means, the time during which the fuel cell is stopped is shorter than during the heating operation of the heating means.
That is, in a state where the set remaining capacity for the operation start is set larger by the control means during the heating operation of the heating means than during the stop of the heating means, the detected remaining capacity is determined based on the detected remaining capacity of the remaining capacity detection means. When the remaining capacity becomes equal to or less than the set remaining capacity for starting operation, the operation of the fuel cell is started, and when the detected remaining capacity becomes equal to or more than the set remaining capacity for stopping the operation, the operation of the fuel cell is stopped, whereby the heating operation of the heating means is performed. During the stop, the fuel cell is intermittently switched between the operating state and the stopped state so that the time for stopping the fuel cell is shorter than during the stop.
That is, when the control unit is configured to intermittently switch the fuel cell between the operating state and the stopped state based on the remaining capacity detected by the remaining capacity detecting unit, while using the basic control configuration as it is, As the set remaining capacity for the operation start, only two values, one corresponding to the heating unit during stoppage of the heating unit and the other corresponding to the heating unit during the heating operation of the heating unit larger than that during the stoppage, are set. With a simple change and without adding new parts, the fuel cell is turned on and off during the heating operation of the heating means so that the time to stop the fuel cell is shorter than during the stop. It is possible to switch to the state intermittently.
Therefore, it is possible to provide a preferred specific configuration for implementing the characteristic configuration of claim 1 while reducing the cost.
[0008]
[Invention of claim 3]
The vehicle with a fuel cell according to claim 3 is provided with control means for intermittently switching the mounted fuel cell between an operating state and a stopped state,
Heating means for heating the interior of the vehicle with retained heat of a cooling fluid for cooling the fuel cell,
Fuel cell temperature detection means for detecting the temperature of the fuel cell is provided,
During the heating operation of the heating means, when the temperature of the fuel cell detected by the fuel cell temperature detection means becomes equal to or lower than a set temperature for starting operation, the control means puts the fuel cell into an operating state. Is a feature configuration.
That is, when the heating means performs the heating operation, the vehicle interior is heated by the retained heat of the cooling fluid for cooling the fuel cell, and during the heating operation of the heating means, the control means detects the temperature in the fuel cell temperature detection means. When the temperature of the fuel cell becomes equal to or lower than the set temperature for starting operation, the fuel cell is brought into the operating state.
Then, by setting the set temperature for the operation start to a temperature at which the fuel cell can be operated at a temperature at which power generation efficiency is low when the operation of the fuel cell is restarted next time. Since it is possible to improve the power generation efficiency of the fuel cell and to suppress a decrease in the temperature of the fuel cell, it is also possible to suppress a decrease in the temperature of the cooling fluid. As a result, the heating capacity of the heating means can be improved.
By the way, in the conventional fuel cell vehicle, when the remaining capacity detected by the remaining capacity detecting means becomes equal to or less than the set remaining capacity regardless of the temperature of the fuel cell, the operation of the fuel cell is started, and the detected remaining capacity is started. The fuel cell is intermittently switched between the operating state and the stopped state under the condition that the operation of the fuel cell is stopped when the remaining capacity becomes larger than the set remaining capacity. When the power consumption of the electric motor is reduced due to fluctuations of the electric motor and the amount of discharge of the secondary battery is reduced, the time during which the fuel cell is stopped is increased, and the temperature of the fuel cell is likely to decrease. Since the temperature of the cooling fluid is apt to decrease, in addition to the problem that the power generation efficiency of the fuel cell is low as described above, in addition to the problem of heating the vehicle interior by the heat retained by the cooling fluid, Heating capacity there is a problem that becomes lower.
Therefore, it has become possible to provide a fuel cell-equipped vehicle capable of improving the power generation efficiency of the fuel cell and improving the heating capacity.
[0009]
[Invention of claim 4]
The vehicle equipped with a fuel cell according to claim 4, further comprising control means for intermittently switching the mounted fuel cell between an operating state and a stopped state,
Remaining capacity detection means for detecting the remaining capacity of the secondary battery that stores the surplus of the generated power of the fuel cell,
Fuel cell temperature detection means for detecting the temperature of the fuel cell is provided,
The control means starts the operation of the fuel cell when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than a set remaining capacity for operation start, and the detected remaining capacity becomes the set remaining capacity for operation stop. When the above operation is performed, the operation of the fuel cell is stopped, the fuel cell is intermittently switched between an operating state and a stopped state, and the fuel cell temperature detection is performed when the fuel cell is in the stopped state. When the detected temperature of the means is equal to or lower than the set temperature for operation switching, the set remaining capacity for operation stop when the fuel cell is next switched to the operation state is higher than when the detected temperature is higher than the set temperature. Is set to be large.
That is, when the detected temperature of the fuel cell temperature detecting means when the fuel cell is stopped is equal to or lower than the set temperature for operation switching by the control means, the fuel temperature is higher than when the detected temperature is higher than the set temperature. When the set remaining capacity for stopping operation when the battery is switched to the operating state is set to a large value, the detected remaining capacity is set for operation start based on the detected remaining capacity detected by the remaining capacity detecting means. When the remaining capacity becomes equal to or less than the remaining capacity, the operation of the fuel cell is started, and when the detected remaining capacity becomes equal to or more than the set remaining capacity for stopping the operation, the operation of the fuel cell is stopped, and the fuel cell is intermittently switched between the operating state and the stopped state. Is switched to.
That is, when the detected temperature of the fuel cell temperature detecting means when the fuel cell is stopped is equal to or lower than the set temperature for operation switching, the fuel cell is operated in the next operating state more than when the detected temperature is higher than the set temperature. Since the fuel cell temperature is raised to the high-efficiency operating temperature in the operating state, the fuel cell can be switched intermittently between the operating state and the stopped state. Accordingly, the time for operating the fuel cell at the high-efficiency operating temperature can be prolonged, and the power generation efficiency of the fuel cell can be improved.
Therefore, it is possible to provide a fuel cell-equipped vehicle capable of improving the power generation efficiency of the fuel cell.
[0010]
[Invention according to claim 5]
The vehicle equipped with a fuel cell according to claim 5, further comprising control means for intermittently switching the mounted fuel cell between an operating state and a stopped state,
Fuel cell temperature detecting means for detecting the temperature of the fuel cell is provided,
The invention is characterized in that the control means is configured to put the fuel cell into an operation state when the temperature of the fuel cell detected by the fuel cell temperature detection means falls below a set temperature for starting operation. And
That is, when the temperature of the fuel cell detected by the fuel cell temperature detecting means falls below the set temperature for operation start by the control means, the fuel cell is brought into the operating state.
Then, by setting the set temperature for the operation start to a temperature at which the fuel cell can be operated at a temperature at which power generation efficiency is low when the operation of the fuel cell is restarted next time. As a result, the power generation efficiency of the fuel cell can be improved.
Therefore, it is possible to provide a fuel cell-equipped vehicle capable of improving the power generation efficiency of the fuel cell.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the vehicle equipped with a fuel cell is configured as an electric vehicle that travels a vehicle body (not shown) using an electric motor M for driving the vehicle as a drive source, and a fuel for supplying electric power to the electric motor M. A fuel cell system F including a battery 1 and an auxiliary facility for generating and operating the battery, a battery 2 as a secondary battery for storing a surplus of power generated by the fuel cell 1, and supplied from the fuel cell 1 and the battery 2 An inverter 3 that converts the DC power into three-phase AC power and supplies the three-phase AC power to the electric motor M, and a vehicle control unit 5 that controls and manages the operation of the entire vehicle. The battery 2 is configured to be capable of storing regenerative electric power generated from the electric motor M when the vehicle 2 is decelerated by a brake operation while the vehicle is running, in addition to the surplus electric power generated by the fuel cell 1. It is.
The output DC power of the fuel cell 1 is configured to be converted into a predetermined voltage by a converter 31 and supplied to the battery 2 and the inverter 3.
[0012]
The power of the electric motor M is transmitted to the transmission 4, and after being shifted by a transmission mechanism inside the transmission 4, the power is transmitted to the left and right wheels W.
[0013]
The fuel cell 1 is well known and will not be described in detail. For example, the fuel cell 1 is configured as a solid polymer type in which a plurality of cells (not shown) having a solid polymer membrane as an electrolyte layer (not shown) are provided in a stacked state. Then, a hydrogen-containing gas is supplied as a fuel gas to a fuel electrode (not shown) of each cell, air is supplied to an oxygen electrode (not shown) of each cell, and power is generated by an electrochemical reaction between hydrogen and oxygen. Is performed. Incidentally, each cell is configured such that the fuel electrode and the oxygen electrode are distributed and arranged on both surfaces of the electrolyte layer.
[0014]
Next, auxiliary equipment for operating the fuel cell 1 in the fuel cell system F to generate electric power will be described.
As shown in FIG. 1, the auxiliary equipment includes a fuel gas supply equipment 6 for supplying a hydrogen-containing gas as a fuel gas to the fuel electrode of the fuel cell 1 and an air supply for the oxygen electrode of the fuel cell 1. The air supply equipment 7, the fuel electrode exhaust gas discharged from the fuel electrode of the fuel cell 1, the oxygen electrode exhaust gas discharged from the oxygen electrode of the fuel cell 1, and the water generated by the electrochemical reaction are discharged to the outside. , A cooling system 9 for cooling the fuel cell 1, and a fuel cell control unit 10 for electrically controlling the operation of each unit. A control means for intermittently switching the fuel cell 1 between an operating state and a stopped state using the fuel cell control unit 10 is configured.
[0015]
More specifically, as shown in FIG. 1, a hydrogen cylinder 11 for storing hydrogen gas, which is an example of a hydrogen-containing gas as a fuel gas supplied to the fuel cell 1, at a high pressure is provided. A hydrogen gas is supplied from the fuel cell 11 to the fuel cell 1 through a hydrogen gas supply pipe 12. The hydrogen gas supply pipe 12 is provided with a regulator 13 and an electromagnetic shut-off valve 14. The fuel gas supply facility 6 is constituted by a gas supply pipe 12, a regulator 13, an electromagnetic shut-off valve 14, and the like. When the amount of hydrogen stored in the hydrogen cylinder 11 is reduced, it is necessary to fill hydrogen gas. The filling operation of hydrogen gas is performed through a supply pipe (not shown).
[0016]
A motor-driven compressor 15 sucks air from outside the vehicle body through an air cleaner 16 and an intake pipe 17, and supplies the air to the oxygen electrode of the fuel cell 1 through an air supply pipe 18. The compressor 15, the air cleaner 16, the intake pipe 17, the air supply pipe 18 and the like constitute the air supply equipment 7. The air supplied from the air supply facility 7 is supplied to the oxygen electrode of the fuel cell 1 after being humidified by the humidifier 19.
[0017]
On the other hand, a fuel electrode exhaust pipe 20 for guiding fuel electrode exhaust gas discharged from the fuel electrode of the fuel cell 1 and an oxygen electrode exhaust pipe 21 for guiding oxygen electrode exhaust gas discharged from the oxygen electrode of the fuel cell 1 are provided. Further, the fuel electrode exhaust gas is supplied from the fuel electrode exhaust pipe 20, the oxygen electrode exhaust gas is supplied from the oxygen electrode exhaust pipe 21, and the supplied fuel electrode exhaust gas and the oxygen electrode exhaust gas are mixed. An exhaust pipe 22 for exhausting air into the atmosphere is provided. The fuel electrode exhaust pipe 20 is provided with a fuel electrode exhaust shutoff valve 23 that can open and close its flow path. The fuel electrode exhaust pipe 20, the oxygen electrode exhaust pipe 21, the exhaust pipe 22, the fuel electrode exhaust shutoff valve 23, and the like constitute the exhaust equipment 8.
Further, water generated by the electrochemical reaction at the oxygen electrode of the fuel cell 1 is also guided to the exhaust pipe 22 through the oxygen electrode exhaust pipe 21 together with the oxygen exhaust gas, and is discharged to the outside at the exhaust pipe 22. Has become.
The fuel electrode exhaust shutoff valve 23 is normally in a closed state, and opens the flow path every time a set time elapses to discharge impurities in the fuel electrode.
[0018]
Further, a cooling water circulation path 25 for circulating cooling water as a cooling fluid for cooling the inside of the fuel cell 1 with a cooling water circulation pump 24 is provided. A radiator 27 for dissipating the heat of the cooling water to the air blown to the vehicle; and a heating unit for dissipating the heat of the cooling water to the air blown into the vehicle interior through a ventilation path (not shown) by a heating fan 28. A heat exchanger 29 is provided in parallel with each other, and a three-way valve 30 is provided, in which cooling water is diverted to the radiator 27 and the heating heat exchanger 29, and the diverting ratio of which is adjustable. is there.
The cooling equipment 9 is constituted by the cooling water circulation pump 24, the cooling water circulation path 25, the radiator fan 26, the radiator 27, the heating fan 28, the heating heat exchanger 29, the three-way valve 30, and the like.
The three-way valve 30, the heating heat exchanger 29, and the heating fan 28 constitute heating means D for heating the vehicle interior with the heat retained by the cooling water as the cooling fluid for cooling the fuel cell 1. By operating the heating fan 28, the heating means D is switched to the heating operation state, and by stopping the heating fan 28, the heating means D is switched to the stopped state.
[0019]
The auxiliary equipment such as the compressor 15 and the cooling water circulation pump 24 is also configured to be supplied with electric power from the fuel cell 1 and the battery 2.
[0020]
Hereinafter, the vehicle control unit 5 and the fuel cell control unit 10 will be described.
Various control information is communicated between the vehicle control unit 5 and the fuel cell control unit 10.
The vehicle control unit 5 includes a shift position sensor S1 for detecting the position of the shift position lever 32, a vehicle interior temperature sensor S2 for detecting the temperature in the vehicle interior, and a potentiometer type for detecting the operation amount of an accelerator operation tool (not shown). Various kinds of detection information by an accelerator operation amount detection sensor S3, a rotation speed sensor S4 for detecting the rotation speed of the electric motor M, a vehicle speed sensor S5 for detecting the vehicle speed based on the rotation speed of the wheel W, and an electric motor Various command information from an accelerator switch (not shown) for commanding the operation of the M, an air conditioning command switch 33 for commanding air conditioning in the vehicle compartment, and a temperature setting unit 34 for setting a target temperature for air conditioning in the vehicle compartment are input. It is configured as follows.
[0021]
The position of the shift position lever 32 includes a "parking position", a "reverse traveling position", a "neutral position", and a "forward traveling position", which are switched by the driver in accordance with the driving situation. .
[0022]
The vehicle control unit 5 controls the motor to control the output of the electric motor M according to the operation amount of the accelerator operation tool, and air-conditions the vehicle cabin to reach the target air-conditioning temperature set by the temperature setting unit 34. The control and the like are executed, and each of those controls is well known and will be briefly described.
In the motor control, when the accelerator switch is turned on, the vehicle control unit 5 obtains a target traveling driving force based on detection information of each of an accelerator operation amount detection sensor S3, a rotation speed sensor S4, and a vehicle speed sensor S5. The inverter 3 is controlled so that the target traveling driving force is output from the motor M.
In the motor control, the vehicle control unit 5 detects a state where the operation amount of the accelerator operation tool is zero by the accelerator operation amount detection sensor S3, and detects a state where the vehicle speed is zero by the vehicle speed sensor S5. If so, the inverter 3 is controlled based on the detection information of the rotation speed sensor S4 so that the rotation speed of the electric motor M becomes the set idling rotation speed.
As the set idling rotation speed, a normal setting idling rotation speed and a heating setting idling rotation speed higher than the normal setting idling rotation speed are set. During operation, when an idle-up command is issued from the fuel cell control unit 10, the heating-time set idling rotation speed is used as the set idling rotation speed. When the up command is not instructed, the normal idling rotational speed is used as the set idling rotational speed. Incidentally, the normal setting idling rotation speed includes 0 rpm, and the idling state when the heating means D is stopped includes the state in which the electric motor M is stopped.
[0023]
Further, when the accelerator switch is on, the vehicle control unit 5 detects that the operation amount of the accelerator operation tool is not zero by the accelerator operation amount detection sensor S3, or the vehicle speed sensor S5 detects the vehicle speed. When a non-zero state is detected, load state information indicating a load state is transmitted to the fuel cell control unit 10. When the accelerator switch is turned on, the accelerator operation amount detection sensor S3 When the state where the operation amount of the accelerator operation tool is zero is detected and the state where the vehicle speed is zero is detected by the vehicle speed sensor S5, idling state information indicating that the vehicle is idling is transmitted. When the accelerator switch is turned off, a power generation stop command is transmitted to the fuel cell control unit 10.
[0024]
In the air-conditioning control, the vehicle control unit 5 determines whether or not a cooling operation of a cooling device (not shown) is necessary and whether or not the heating operation of the heating means D is based on the detected temperature of the vehicle interior temperature sensor S2 and the target air-conditioning temperature. When the necessity of the cooling operation is determined, the cooling operation of the cooling device is controlled based on the determination result of the necessity of the cooling operation, and based on the determination result of the necessity of the heating operation, when the heating operation is required, Activating the heating fan 28 to heat the heating means D and controlling the air flow of the heating fan 28 so that the temperature detected by the vehicle interior temperature sensor S2 becomes the target air conditioning temperature. Heating operation state information indicating that the heating means D is performing a heating operation is transmitted to the fuel cell control unit 10, and when the heating operation is unnecessary, the heating fan 28 is stopped and the heating means D is turned off. Stop it, Transmits to the fuel cell control unit 10 heating stop state information indicating that the heating means D of is stopped.
[0025]
The fuel cell control unit 10 includes a remaining capacity detection unit S6 that detects a remaining capacity of the battery 2, and cooling water that flows out of the fuel cell 1 and before flowing into the heating heat exchanger 29 and the radiator 27. Various detection information from the cooling water outlet temperature sensor S7 and the like for detecting the temperature is input, and based on the various detection information and various control information transmitted from the vehicle control unit 5, the electromagnetic shut-off valve 14, the compressor 15, the operation of the cooling water circulation pump 24, the radiator fan 26, the three-way valve 30, and the like is controlled.
The temperature of the cooling water flowing out of the fuel cell 1 and before flowing into the heating heat exchanger 29 and the radiator 27 is the same or substantially the same as the temperature of the fuel cell 1, and is lower than the temperature of the fuel cell 1. Since it corresponds, the cooling water outlet temperature sensor S7 constitutes fuel cell temperature detecting means for detecting the temperature of the fuel cell 1.
[0026]
In the following description, a point where the fuel cell control unit 10 intermittently switches the fuel cell 1 between an operating state and a stopped state will be described. In the operating state, the electromagnetic shut-off valve 14 is opened, the compressor 15 and the radiator The stopped state is a state in which the electromagnetic shut-off valve 14 is closed and the compressor 15 and the radiator fan 26 are stopped.
In addition, the fuel cell control unit 10 sends the cooling water circulation pump 24 the heating operation state information from the vehicle control unit 5 when the fuel cell 1 is in the operating state and when the fuel cell 1 is in the stopped state. Is transmitted until the heating stop state information is transmitted, the operation is performed under a preset operating condition, and the operation is stopped at other times.
[0027]
The remaining capacity detection unit S6 is configured to calculate the remaining capacity (i.e., SOC) based on the voltage, temperature, charge power amount, discharge power amount, and the like of the battery 2.
[0028]
The fuel cell control unit 10 will be described.
The fuel cell control unit 10 executes on-load power generation control when the load state information is transmitted from the vehicle control unit 5, and executes the on-idle power generation control when the vehicle control unit 5 transmits the idling state information. When the power generation stop command is transmitted from the vehicle control unit 5 and executed, the fuel cell 1 is switched to a stopped state.
[0029]
In the on-load power generation control, the fuel cell control unit 10 controls the fuel cell so that the time during which the heating unit D is in the stop state during the heating operation of the heating unit D is shorter than when the heating unit D is stopped. 1 is switched intermittently between the operating state and the stopped state.
When the fuel cell 1 is intermittently switched between the operating state and the stopped state so that the time during which the fuel cell 1 is stopped during the heating operation of the heating unit D is shorter than when the heating unit D is stopped. When the electric power consumption of the electric motor M is the same, the time during which the fuel cell 1 is stopped during the heating operation of the heating means D is shorter than during the stop of the heating means D.
By the way, the fuel cell control unit 10 determines that the heating unit D is performing the heating operation by transmitting the heating operation state information from the vehicle control unit 5, and the heating control state information is transmitted from the vehicle control unit 5 to the heating stop state information. When transmitted, it is determined that heating means D is stopped.
[0030]
Specifically, in the on-load power generation control, the fuel cell control unit 10 starts the operation of the fuel cell 1 when the detected remaining capacity detected by the remaining capacity detection unit S6 becomes equal to or less than the set remaining capacity for starting operation. When the detected remaining capacity is equal to or larger than the set remaining capacity for operation stop, the operation of the fuel cell 1 is stopped, the fuel cell 1 is switched intermittently between the operation state and the stop state, and The set remaining capacity is set larger during the heating operation of the heating means D than during the stop, and the time during which the fuel cell 1 is stopped during the heating operation of the heating means D is shorter than during the stop.
[0031]
Further, in the idling power generation control, the fuel cell control unit 10 operates the fuel cell 1 when the detected remaining capacity is smaller than the set remaining capacity for operation stop, and the detected remaining capacity is used for the operation stop. When the remaining capacity is equal to or greater than the set remaining capacity, the operation of the fuel cell 1 is stopped, and when the heating means D is operated for heating, the idle-up command is transmitted to the vehicle control unit 5 and the heating means D is stopped. Is transmitted to the vehicle control unit 5.
[0032]
When the vehicle control unit 5 receives the idle-up command from the fuel cell control unit 10, the vehicle control unit 5 changes the rotation speed of the electric motor M to the heating setting idling rotation speed by using the heating setting idling rotation speed as the setting idling rotation speed. When the inverter 3 is controlled so as to be at the speed, and the idle-up stop command is received from the fuel cell control unit 10, the set idling rotation speed is changed to the normal setting idling rotation speed, and the rotation speed of the electric motor M is reduced. The inverter 3 is controlled so that the idling rotation speed set at the normal time is obtained. By the way, when the normal setting idling rotation speed is set to 0 rpm, the electric motor M is stopped.
[0033]
In each of the above-described on-load power generation control and idling power generation control, when the fuel cell 1 is in the operating state, the fuel cell control unit 10 sets the temperature detected by the cooling water outlet temperature sensor S7 to a predetermined target operation. The three-way valve 30 is controlled so as to reach a temperature. Specifically, since the heat radiation amount by the radiator 27 is configured to be larger than the heat radiation amount by the heating heat exchanger 29, the lower the temperature detected by the cooling water outlet temperature sensor S7, the higher the heat radiation for heating. The three-way valve 30 is controlled so that the flow rate of the cooling water flowing through the exchanger 29 increases. Therefore, when the heating fan 28 is operated and the heating means D is performing the heating operation, the amount of heat radiation in the heating heat exchanger 29 becomes larger than when the heating means D is stopped, and the cooling water outlet temperature sensor Since the detected temperature in S7 tends to be lower, the three-way valve 30 is controlled so that the flow rate of the cooling water flowing through the heating heat exchanger 29 becomes larger than when the heating means D is stopped. .
[0034]
Incidentally, the target operating temperature is set to the temperature of the cooling water corresponding to the state where the temperature of the fuel cell 1 is in the high-efficiency operating temperature range, and the fuel cell 1 is configured as a solid polymer type. Is set to, for example, about 70 ° C.
[0035]
Next, the control operation of the fuel cell control unit 10 in each of the on-load power generation control and the idling power generation control will be described with reference to FIGS.
In addition, as the set remaining capacity Pu for operation stop, for example, a value smaller than the maximum charging power is set, and the set remaining capacity Pd for operation start is set to a value smaller than the set remaining capacity Pu for operation stop. The set remaining capacity Pd is set as the remaining capacity Pd1 for starting the lower operation corresponding to the stop of the heating means D, and is larger than the remaining capacity Pd1 for starting the lower operation, and the heating operation of the heating means D is performed. And the upper-level operation start set remaining capacity Pd2 corresponding thereto.
In the figure showing the temperature of the cooling water, the temperature range Th indicates the temperature range of the cooling water corresponding to the high-efficiency operating temperature range.
[0036]
In the on-load power generation control, the fuel cell control unit 10 operates the fuel cell 1 when the detected remaining capacity becomes equal to or less than the lower-level operation start set remaining capacity Pd1 while the heating unit D is stopped, as shown in FIG. When the detected remaining capacity becomes equal to or more than the set remaining capacity Pu for stopping operation, the operation of the fuel cell 1 is stopped, and when the fuel cell 1 is in the operating state, the temperature detected by the cooling water outlet temperature sensor S7 is The operation of the three-way valve 30 is controlled so as to reach the target operating temperature Tp. During the heating operation of the heating means D, as shown in FIG. When the operation of the battery 1 is started, the operation of the fuel cell 1 is stopped when the detected remaining capacity becomes equal to or larger than the set remaining capacity Pu for operation stop, and when the fuel cell 1 is in the operating state, the cooling water outlet temperature sensor S7 of Out temperature to control the operation of the three-way valve 30 so that the target operating temperature Tp.
[0037]
Next, a control operation in the idling power generation control will be described with reference to FIG.
As shown in FIG. 4, for example, when the detected remaining capacity is equal to or larger than the set remaining capacity Pu for operation stop and the fuel cell 1 is in the stop state, the heating unit D changes from the stop state to the heating operation state. When switched, the fuel cell control unit 10 transmits an idle-up command to the vehicle control unit 5. Then, the vehicle controller 5 increases the idling rotation speed of the electric motor M from the normal setting idling rotation speed Rd to the heating setting idling rotation speed Ru.
Then, the load increases due to the increase in the idling rotation speed, and the detected remaining capacity becomes smaller than the set remaining capacity Pu for operation stop. Therefore, the fuel cell control unit 10 switches the fuel cell 1 to the operating state. . Since the power generated by the fuel cell 1 is consumed by the load increase due to the increase in the idling rotation speed, the state where the detected remaining capacity is smaller than the set remaining capacity Pu for operation stop is maintained, and the fuel cell control unit In step 10, the operation of the fuel cell 1 is continued.
[0038]
Then, in this state, when the heating unit D is switched from the heating operation state to the stop state, the fuel cell control unit 10 transmits an idle-up stop command to the vehicle control unit 5. Then, the idling rotation speed of the electric motor M is reduced from the heating setting idling rotation speed Ru to the normal setting idling rotation speed Rd by the vehicle control unit 5, the load is reduced, and the surplus power generated by the fuel cell 1 is reduced. Is stored in the battery 2. Then, when the detected remaining capacity increases and becomes equal to or larger than the set remaining capacity Pu for operation stop, the fuel cell control unit 10 switches the fuel cell 1 to the stop state.
When the fuel cell 1 is in the operating state, the fuel cell control unit 10 controls the operation of the three-way valve 30 so that the temperature detected by the cooling water outlet temperature sensor S7 becomes the target operating temperature Tp.
[0039]
Therefore, while the vehicle is traveling, that is, a state where the operation amount of the accelerator operation tool is not zero is detected by the accelerator operation amount detection sensor S3, or a state where the vehicle speed is not zero is detected by the vehicle speed sensor S5. When the heating means D is in the heating operation, the time during which the fuel cell 1 is stopped is shorter than when the heating means D is stopped, assuming that the electric power consumption of the electric motor M is the same. In addition, since the fuel cell 1 is intermittently switched between the operating state and the stopped state, during the heating operation of the heating means D, the temperature of the cooling water decreases while the fuel cell 1 is in the stopped state. This makes it possible to reduce the time that the fuel cell 1 is operated at a temperature lower than the high-efficiency operation temperature when the operation of the fuel cell 1 is restarted next, and And then the fuel cell 1 When the rolling is resumed, the power generation efficiency of the fuel cell 1 becomes possible to suppress a decrease also becomes possible to improve the heating capacity of the heating means D.
Further, when the vehicle stops and is in an idling state, that is, a state where the operation amount of the accelerator operation tool is zero by the accelerator operation amount detection sensor S3 and a state where the vehicle speed is zero by the vehicle speed sensor S5. When the heating means D is operated for heating in the state where it is detected, the idling rotation speed of the electric motor M is increased and the load is increased, so that the fuel cell 1 generates the increased load. As a result, the temperature of the cooling water can be increased, so that the heating capacity of the heating means D can be improved.
[0040]
[Second embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
In the second embodiment, the configuration of the fuel cell vehicle is the same as that of the first embodiment described with reference to FIG.
Further, the control configuration of the vehicle control unit 5 is the same as that of the above-described first embodiment, and a description thereof will be omitted.
As in the first embodiment, when the load state information is transmitted from the vehicle control unit 5, the fuel cell control unit 10 executes on-load power generation control, and transmits the idling state information from the vehicle control unit 5. Then, the power generation control during idling is executed, and when the power generation stop command is transmitted from the vehicle control unit 5, the fuel cell 1 is switched to the stop state. Since this is different from the first embodiment, the on-load power generation control will be described below.
[0041]
In the on-load power generation control, the fuel cell control unit 10 activates the fuel cell 1 when the remaining capacity detected by the remaining capacity detection unit S6 becomes equal to or less than the set remaining capacity for operation start while the heating unit D is stopped. When the operation is started and the detected remaining capacity becomes equal to or more than the set remaining capacity for stopping the operation, the operation of the fuel cell 1 is stopped, the fuel cell 1 is switched intermittently between the operating state and the stopped state, During the heating operation, the operation of the fuel cell 1 is started when the temperature detected by the cooling water outlet temperature sensor S7 becomes equal to or lower than a set temperature for operation start while the fuel cell 1 is stopped, and the detected remaining capacity is used for the operation stop. When the remaining capacity is equal to or greater than the set remaining capacity, the operation of the fuel cell 1 is stopped, and the fuel cell 1 is intermittently switched between the operating state and the stopped state.
[0042]
As the set temperature for the operation start, when the detected remaining capacity becomes equal to or less than the set remaining capacity for the operation start, the power consumption of the electric motor M is assumed to be the same as compared with the case where the operation of the fuel cell 1 is started. At this time, when the operation of the fuel cell 1 is restarted next time, the temperature is set to a temperature at which the time during which the fuel cell 1 is operated at a low power generation efficiency can be shortened.
[0043]
Next, the control operation of the fuel cell control unit 10 in the on-load power generation control will be described.
The set remaining capacity Pu for operation stop is set to the same value as in the first embodiment, and the set remaining capacity for operation start is set to the same value as the set remaining capacity Pd1 for lower operation start in the first embodiment. I have.
The control operation of the on-load power generation control while the heating means D is stopped is the same as that of the first embodiment described with reference to FIG. The control operation of the control will be described with reference to FIG. In FIG. 5, in the diagram showing the cooling water temperature, the temperature range Th indicates the temperature range of the cooling water corresponding to the high efficiency operation temperature range.
[0044]
When the temperature detected by the cooling water outlet temperature sensor S7 becomes equal to or lower than the set temperature Ta for operation start when the fuel cell 1 is stopped, the operation of the fuel cell 1 is started, and the remaining capacity detected by the remaining capacity detection unit S6 When the fuel cell capacity becomes equal to or more than the set remaining capacity Pu for operation stop, the operation of the fuel cell 1 is stopped. When the fuel cell 1 is in the operating state, the temperature detected by the cooling water outlet temperature sensor S7 is set to the target operating temperature Tp. The operation of the cooling water circulation pump 24 is controlled.
[0045]
Therefore, when the fuel cell 1 is stopped while the heating unit D is stopped, it is possible to prevent the temperature of the fuel cell 1 from excessively lowering, and thus the power generation efficiency of the fuel cell 1 is improved. This also makes it possible to prevent the temperature of the cooling water from being too low, so that the heating capacity of the heating means D can be improved.
[0046]
[Third embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
In the third embodiment, the configuration of the vehicle equipped with a fuel cell is the same as that of the first embodiment described with reference to FIG.
Further, the control configuration of the vehicle control unit 5 is the same as that of the above-described first embodiment, and a description thereof will be omitted.
As in the first embodiment, when the load state information is transmitted from the vehicle control unit 5, the fuel cell control unit 10 executes on-load power generation control, and transmits the idling state information from the vehicle control unit 5. Then, the power generation control during idling is executed, and when the power generation stop command is transmitted from the vehicle control unit 5, the fuel cell 1 is switched to the stop state. Since this is different from the first embodiment, the on-load power generation control will be described below.
[0047]
In the on-load power generation control, the fuel cell control unit 10 determines that the remaining capacity detected by the remaining capacity detection unit S6 is equal to or less than the set remaining capacity for operation regardless of whether the heating unit D is stopped or during the heating operation. Then, the operation of the fuel cell 1 is started, and when the detected remaining capacity becomes equal to or more than the set remaining capacity for stopping operation, the operation of the fuel cell 1 is stopped, and the fuel cell 1 is intermittently switched between the operating state and the stopped state. When the detected temperature of the cooling water outlet temperature sensor S7 when the fuel cell 1 is switched and the fuel cell 1 is in the stopped state is equal to or lower than the set temperature for operation switching, the detected temperature is higher than when the detected temperature is higher than the set temperature for operation switching. Also, the set remaining capacity for operation stop when the fuel cell 1 is next switched to the operation state is set to be large.
[0048]
Next, the control operation of the fuel cell control unit 10 in the on-load power generation control will be described with reference to FIG. In FIG. 6, a temperature range Th indicates a temperature range of the cooling water corresponding to the high-efficiency operation temperature range.
As the set remaining capacity Pu for operation stop, for example, in a state of being smaller than the maximum charging power amount, the set remaining capacity Pu1 for lower operation stop which is equal to or substantially equal to the set remaining capacity Pu for operation stop in the first embodiment. And an upper operation stop set remaining capacity Pu2 which is larger than the lower operation stop set remaining capacity PU1. The set operation start remaining capacity Pd is set to the two set operation stop remaining capacity PUd. It is set to a value smaller than the capacitances Pu1 and Pu2.
When the fuel cell 1 is operated from the set remaining capacity Pd for starting operation to the set remaining capacity Pu1 for lower operation stop when the detected remaining capacity becomes the set remaining capacity Pu1 for lower order operation, the temperature range over which the fuel cell 1 can be heated is determined. Assuming that the temperature can be raised, the set temperature Tb for switching the operation is set to a temperature slightly higher than the temperature lower than the temperature range capable of raising the temperature than the high-efficiency operation temperature range.
[0049]
In the on-load power generation control, when the detected remaining capacity when the fuel cell 1 is stopped is equal to or less than the set remaining capacity Pd for starting operation, the fuel cell control unit 10 controls the cooling water outlet temperature sensor S7 at that time. When the detected temperature is equal to or lower than the operation switching set temperature Tb, the fuel cell 1 is operated and stopped until the detected remaining capacity becomes the upper operation stop set remaining capacity Pu2, and the fuel cell 1 is stopped. If the detected remaining capacity at this time is equal to or less than the set remaining capacity Pd for starting operation, if the detected temperature of the cooling water outlet temperature sensor S7 at that time is higher than the set temperature Tb for switching operation, the detected remaining capacity is When the fuel cell 1 is operated and stopped until the remaining capacity Pu1 for the lower operation stop is reached, and the fuel cell 1 is in the operating state, the temperature detected by the cooling water outlet temperature sensor S7 is detected. There controlling the operation of the three-way valve 30 so that the target operating temperature Tp.
[0050]
Therefore, when the temperature of the coolant outlet temperature sensor S7 when the fuel cell 1 is stopped is equal to or lower than the set temperature for switching the operation of the detected temperature, the fuel cell 1 is turned off next time when the detected temperature is higher than the set temperature. Since the operation state is extended, the fuel cell 1 may be intermittently switched between the operation state and the stop state in a state where the temperature of the fuel cell 1 is raised to the high-efficiency operation temperature in the operation state. As a result, the fuel cell 1 can be operated at a high-efficiency operating temperature for a longer time, and the power generation efficiency of the fuel cell 1 can be improved.
[0051]
[Fourth embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings.
In the fourth embodiment, the configuration of the vehicle equipped with a fuel cell is the same as the configuration in the first embodiment described with reference to FIG. 1, and a description thereof will be omitted.
Further, the control configuration of the vehicle control unit 5 is the same as that of the above-described first embodiment, and a description thereof will be omitted.
As in the first embodiment, when the load state information is transmitted from the vehicle control unit 5, the fuel cell control unit 10 executes on-load power generation control, and transmits the idling state information from the vehicle control unit 5. Then, the power generation control during idling is executed, and when the power generation stop command is transmitted from the vehicle control unit 5, the fuel cell 1 is switched to the stop state. Since this is different from the first embodiment, the on-load power generation control will be described below.
[0052]
In the on-load power generation control, when the fuel cell 1 is in the stopped state, the detected temperature of the cooling water outlet temperature sensor S7 is used for the operation start, regardless of whether the heating means D is stopped or in the heating operation. When the temperature becomes equal to or lower than the set temperature, the operation of the fuel cell 1 is started, and when the detected remaining capacity becomes equal to or higher than the set remaining capacity for stopping operation, the operation of the fuel cell 1 is stopped, and Switch intermittently.
The control operation of the fuel cell controller 10 in the on-load power generation control is the same as the control operation of the on-load power generation control during the heating operation of the heating unit D in the second embodiment described with reference to FIG. The description is omitted.
[0053]
Therefore, it is possible to prevent the temperature of the fuel cell 1 from excessively lowering while the fuel cell 1 is stopped, so that the power generation efficiency of the fuel cell 1 can be improved.
[0054]
[Another embodiment]
Next, another embodiment will be described.
(A) In the first embodiment, the control means 10 is configured to intermittently switch the fuel cell 1 between the operating state and the stopped state. The case where the switching is performed based on the detection information of the detecting means S6 has been described as an example. However, the present invention is not limited to the case where the switching is performed in this manner. When the state of charge detected by the detecting means S6 becomes equal to or more than the set state of charge for stopping the operation, the fuel cell 1 is brought into a stopped state during the set stop time, and the operation is started when the set stop time elapses. It may be configured to switch intermittently to the stop state. In this case, in order to make the time during which the fuel cell 1 is in the stop state during the heating operation of the heating means D shorter than during the stop, the set stop time is set to the time when the heating means D is in the heating operation. Set shorter than middle.
[0055]
(B) In the above embodiment, the case where the fuel cell 1 is operated so as to output a constant output has been described as an operation mode. However, the operation is performed by adjusting the output according to the detection information of the remaining capacity detection unit S6. May be configured.
[0056]
(C) In the above embodiment, the case has been described in which the vehicle control unit 5 automatically starts and stops the heating operation of the heating means D by using the artificially operated switch. It may be configured to be performed artificially.
[0057]
(D) The specific configuration of the remaining capacity detection unit S6 that detects the remaining capacity of the secondary battery 2 is not limited to the configuration illustrated in the above embodiment, and may be based on, for example, the voltage of the secondary battery 2. The remaining capacity may be detected.
[0058]
(E) In the above embodiment, the cooling water outlet temperature sensor detects the temperature of the cooling water flowing out of the fuel cell 1 and flowing into the heating heat exchanger 29 and the radiator 27 as the fuel cell temperature detecting means. Although the configuration in S7 has been described as an example, it may be configured with a temperature sensor that directly detects the temperature of the fuel cell 1.
[0059]
(F) The set remaining capacity for operation start, the set remaining capacity for operation stop, the target operating temperature, the set temperature for operation start, and the set temperature for operation switching are each a fuel cell 1, a battery 2, a cooling facility 9, and the like. Various settings can be made to adapt to the characteristics of
[0060]
(G) The fuel cell 1 is not limited to the solid polymer type illustrated in the above embodiment, and various types such as a phosphoric acid type using phosphoric acid as an electrolyte may be used. Is possible.
The hydrogen-containing gas supplied to the fuel cell 1 as a fuel gas is not limited to the pure hydrogen gas exemplified in the above embodiment. For example, a hydrocarbon-based raw fuel such as natural gas or alcohol is reformed into a reformed gas containing hydrogen gas using steam, and the reformed gas can be used as a hydrogen-containing gas. In this case, a storage unit such as a cylinder for storing the raw fuel and a reformer for reforming the raw fuel into a reformed gas using steam are mounted.
[Brief description of the drawings]
FIG. 1 is a block diagram of a fuel cell vehicle according to a first embodiment;
FIG. 2 is a diagram for explaining a control operation of the fuel cell vehicle according to the first embodiment;
FIG. 3 is a diagram for explaining a control operation of the fuel cell vehicle according to the first embodiment;
FIG. 4 is a diagram for explaining a control operation of the fuel cell vehicle according to the first embodiment;
FIG. 5 is a diagram for explaining a control operation of the fuel cell vehicle according to the second embodiment.
FIG. 6 is a diagram for explaining a control operation of the fuel cell vehicle according to the third embodiment.
[Explanation of symbols]
1 fuel cell
2 Secondary battery
10 control means
D heating means
S6 Remaining capacity detection means
S7 Fuel cell temperature detecting means

Claims (5)

搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられた燃料電池搭載車であって、
前記燃料電池を冷却する冷却用流体の保有熱にて車室内を暖房する暖房手段が設けられ、
前記制御手段が、前記暖房手段の暖房作動中はその停止中よりも前記燃料電池を停止状態にする時間が短くなるように、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成されている燃料電池搭載車。
A fuel cell-equipped vehicle provided with control means for intermittently switching a mounted fuel cell between an operating state and a stopped state,
Heating means for heating the vehicle interior with the retained heat of the cooling fluid for cooling the fuel cell is provided,
The control means intermittently switches the fuel cell between the operating state and the stopped state so that the time during which the fuel cell is stopped during the heating operation of the heating means is shorter than during the stop. The fuel cell vehicle that is configured.
前記燃料電池の発電電力の余剰分を蓄電する二次電池の残存容量を検出する残存容量検出手段が設けられ、
前記制御手段は、前記残存容量検出手段にて検出される検出残存容量が運転開始用の設定残存容量以下になると前記燃料電池の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると前記燃料電池の運転を停止して、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成され、且つ、前記運転開始用の設定残存容量を前記暖房手段の暖房作動中はその停止中よりも大きく設定して、前記暖房手段の暖房作動中はその停止中よりも前記燃料電池を停止状態にする時間を短くするように構成されている請求項1記載の燃料電池搭載車。
Remaining capacity detection means for detecting the remaining capacity of the secondary battery that stores the surplus of the power generated by the fuel cell is provided,
The control means starts the operation of the fuel cell when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than a set remaining capacity for operation start, and the detected remaining capacity becomes the set remaining capacity for operation stop. When the above operation is completed, the operation of the fuel cell is stopped, the fuel cell is intermittently switched between an operating state and a stopped state, and the set remaining capacity for starting the operation is changed to the heating operation of the heating means. 2. The fuel cell according to claim 1, wherein the fuel cell is set to be longer than during the stop, and the time during which the fuel cell is stopped during the heating operation of the heating unit is shorter than during the stop. 3. Onboard car.
搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられた燃料電池搭載車であって、
前記燃料電池を冷却する冷却用流体の保有熱にて車室内を暖房する暖房手段と、
前記燃料電池の温度を検出する燃料電池温度検出手段とが設けられ、
前記制御手段が、前記暖房手段の暖房作動中において、前記燃料電池温度検出手段にて検出される前記燃料電池の温度が運転開始用の設定温度以下になると、前記燃料電池を運転状態にするように構成されている燃料電池搭載車。
A fuel cell-equipped vehicle provided with control means for intermittently switching a mounted fuel cell between an operating state and a stopped state,
Heating means for heating the interior of the vehicle with retained heat of a cooling fluid for cooling the fuel cell,
Fuel cell temperature detection means for detecting the temperature of the fuel cell is provided,
During the heating operation of the heating means, when the temperature of the fuel cell detected by the fuel cell temperature detection means becomes equal to or lower than a set temperature for starting operation, the control means puts the fuel cell into an operating state. The vehicle is equipped with a fuel cell.
搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられた燃料電池搭載車であって、
前記燃料電池の発電電力の余剰分を蓄電する二次電池の残存容量を検出する残存容量検出手段と、
前記燃料電池の温度を検出する燃料電池温度検出手段とが設けられ、
前記制御手段は、前記残存容量検出手段にて検出される検出残存容量が運転開始用の設定残存容量以下になると前記燃料電池の運転を開始し、前記検出残存容量が運転停止用の設定残存容量以上になると前記燃料電池の運転を停止して、前記燃料電池を運転状態と停止状態とに間欠的に切り換えるように構成され、且つ、前記燃料電池が前記停止状態のときの前記燃料電池温度検出手段の検出温度が運転切り換え用の設定温度以下のときは、前記検出温度が前記設定温度より高いときよりも、次に前記燃料電池を運転状態に切り換えたときの前記運転停止用の設定残存容量を大きく設定するように構成されている燃料電池搭載車。
A fuel cell-equipped vehicle provided with control means for intermittently switching a mounted fuel cell between an operating state and a stopped state,
Remaining capacity detection means for detecting the remaining capacity of the secondary battery that stores the surplus of the generated power of the fuel cell,
Fuel cell temperature detection means for detecting the temperature of the fuel cell is provided,
The control means starts the operation of the fuel cell when the detected remaining capacity detected by the remaining capacity detecting means becomes equal to or less than a set remaining capacity for operation start, and the detected remaining capacity becomes the set remaining capacity for operation stop. When the above operation is performed, the operation of the fuel cell is stopped, the fuel cell is intermittently switched between an operating state and a stopped state, and the fuel cell temperature detection is performed when the fuel cell is in the stopped state. When the detected temperature of the means is equal to or lower than the set temperature for operation switching, the set remaining capacity for operation stop when the fuel cell is next switched to the operation state is higher than when the detected temperature is higher than the set temperature. A vehicle equipped with a fuel cell that is configured to set large.
搭載した燃料電池を運転状態と停止状態とに間欠的に切り換える制御手段が設けられた燃料電池搭載車であって、
前記燃料電池の温度を検出する燃料電池温度検出手段が設けられ、
前記制御手段が、前記燃料電池温度検出手段にて検出される前記燃料電池の温度が運転開始用の設定温度以下になると、前記燃料電池を運転状態にするように構成されている燃料電池搭載車。
A fuel cell-equipped vehicle provided with control means for intermittently switching a mounted fuel cell between an operating state and a stopped state,
Fuel cell temperature detecting means for detecting the temperature of the fuel cell is provided,
A fuel cell-equipped vehicle, wherein the control means sets the fuel cell to an operating state when the temperature of the fuel cell detected by the fuel cell temperature detecting means becomes equal to or lower than a set temperature for starting operation. .
JP2003140755A 2003-05-19 2003-05-19 Fuel cell vehicle Expired - Fee Related JP4484452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140755A JP4484452B2 (en) 2003-05-19 2003-05-19 Fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140755A JP4484452B2 (en) 2003-05-19 2003-05-19 Fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2004342558A true JP2004342558A (en) 2004-12-02
JP4484452B2 JP4484452B2 (en) 2010-06-16

Family

ID=33529389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140755A Expired - Fee Related JP4484452B2 (en) 2003-05-19 2003-05-19 Fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP4484452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165088A (en) * 2005-12-13 2007-06-28 Honda Motor Co Ltd Fuel cell system and cooling control method in fuel cell system
JP2013166413A (en) * 2012-02-14 2013-08-29 Denso Corp Vehicle air conditioner
CN111284302A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Air conditioner for fuel cell vehicle
JP2021093286A (en) * 2019-12-10 2021-06-17 株式会社東芝 Fuel cell power generation system and control method of fuel cell power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075389A (en) * 2000-09-04 2002-03-15 Equos Research Co Ltd Fuel cell device and fuel cell device composite body
JP2002283836A (en) * 2001-03-26 2002-10-03 Mitsubishi Heavy Ind Ltd Air conditioner for fuel cell battery vehicle and air- conditioning method for fuel cell battery vehicle
JP2003118396A (en) * 2001-10-12 2003-04-23 Hitachi Ltd Fuel cell automobile
JP2004146144A (en) * 2002-10-23 2004-05-20 Nissan Motor Co Ltd Heating system for fuel cell vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075389A (en) * 2000-09-04 2002-03-15 Equos Research Co Ltd Fuel cell device and fuel cell device composite body
JP2002283836A (en) * 2001-03-26 2002-10-03 Mitsubishi Heavy Ind Ltd Air conditioner for fuel cell battery vehicle and air- conditioning method for fuel cell battery vehicle
JP2003118396A (en) * 2001-10-12 2003-04-23 Hitachi Ltd Fuel cell automobile
JP2004146144A (en) * 2002-10-23 2004-05-20 Nissan Motor Co Ltd Heating system for fuel cell vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165088A (en) * 2005-12-13 2007-06-28 Honda Motor Co Ltd Fuel cell system and cooling control method in fuel cell system
JP2013166413A (en) * 2012-02-14 2013-08-29 Denso Corp Vehicle air conditioner
CN111284302A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Air conditioner for fuel cell vehicle
CN111284302B (en) * 2018-12-10 2022-12-16 丰田自动车株式会社 Air conditioner for fuel cell vehicle
JP2021093286A (en) * 2019-12-10 2021-06-17 株式会社東芝 Fuel cell power generation system and control method of fuel cell power generation system

Also Published As

Publication number Publication date
JP4484452B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CA2857129C (en) Fuel cell vehicle air-conditioning apparatus and control method thereof
US7527112B2 (en) Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
US8859157B2 (en) Fuel cell system and its control method
KR101136897B1 (en) Air conditioning control system
JP4656539B2 (en) Fuel cell system
JP5754346B2 (en) Fuel cell system
KR101151748B1 (en) Fuel cell system and fuel cell vehicle
JP3596468B2 (en) Control device for fuel cell vehicle
CN105609836A (en) Fuel cell system and operation control method of the same
JP2003079007A (en) Control device for fuel battery automobile
WO2008032497A1 (en) Mobile body
JP2010146749A (en) Fuel cell system
JP2020136205A (en) Fuel cell system
JP2013218789A (en) Fuel cell system
JP2008288149A (en) Fuel cell system
JP2006032169A (en) Fuel-cell vehicle
JP2007328933A (en) Fuel cell system
JP2007149450A (en) Fuel cell system, movable body, and its starting method
JP2008034309A (en) Fuel battery system
JP4114525B2 (en) FUEL CELL SYSTEM, VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING FUEL CELL SYSTEM
JP4484452B2 (en) Fuel cell vehicle
JP2011178365A (en) Air conditioner and air conditioning control method
JP2023090756A (en) fuel cell system
JP5315661B2 (en) Fuel cell-equipped vehicle, fuel cell control device, and control method
JP2008108538A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150402

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees