JP2021089012A - Power transmission component, manufacturing method of the same, and power transmission mechanism - Google Patents

Power transmission component, manufacturing method of the same, and power transmission mechanism Download PDF

Info

Publication number
JP2021089012A
JP2021089012A JP2019218775A JP2019218775A JP2021089012A JP 2021089012 A JP2021089012 A JP 2021089012A JP 2019218775 A JP2019218775 A JP 2019218775A JP 2019218775 A JP2019218775 A JP 2019218775A JP 2021089012 A JP2021089012 A JP 2021089012A
Authority
JP
Japan
Prior art keywords
power transmission
bearing
interface
metal
connection portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019218775A
Other languages
Japanese (ja)
Inventor
章 中込
Akira Nakagome
章 中込
峻義 海老原
Takayoshi Ebihara
峻義 海老原
裕秋 森
Hiroaki Mori
裕秋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2019218775A priority Critical patent/JP2021089012A/en
Publication of JP2021089012A publication Critical patent/JP2021089012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

To provide a power transmission component which is formed by combining members formed by different metals and enables improvement of vibration and sound damping effect.SOLUTION: A power transmission component has: an annular bearing; an annular power transmission part in which teeth are arranged in a circumferential direction on an outer peripheral surface and which is formed of a metal; and an annular connection part which is disposed between the bearing and the power transmission part, connects the bearing with the power transmission part, and is formed of a metal. The connection part is formed of a metal different from that of the power transmission part. Cavities are partially formed on an interface between the bearing and the connection part and an interface between the connection part and the power transmission part.SELECTED DRAWING: Figure 3

Description

本開示は、動力伝達部品、動力伝達部品の製造方法および動力伝達機構に関する。 The present disclosure relates to a power transmission component, a method for manufacturing the power transmission component, and a power transmission mechanism.

複数のギアを組み合わせて動力を伝達する動力伝達機構が知られている。たとえば、車両には、原動機が生じた動力を車体に伝えるための変速機などに、金属製のギアを組み合わせてなる動力伝達機構が用いられている。 A power transmission mechanism that transmits power by combining a plurality of gears is known. For example, a vehicle uses a power transmission mechanism in which a metal gear is combined with a transmission or the like for transmitting the power generated by the prime mover to the vehicle body.

ギアは、隣り合うギアとかみ合う時に振動および音が発生する。特に金属製の歯を有するギアでは、上記振動および音が顕著に発生する。上記振動や音の発生を減衰させるため、異なる材料を一部に組み合わせたギアが研究されている。 Gears generate vibrations and noise when they engage adjacent gears. Especially in gears having metal teeth, the above-mentioned vibration and sound are remarkably generated. In order to attenuate the generation of vibration and sound, gears that combine different materials in part are being studied.

たとえば、特許文献1には、軸穴を有する金属製の支持部と、他のギアとかみ合う外歯を有する金属製の外歯部とを、これらの間に充填された樹脂製の連結部により連結したギアが記載されている。特許文献1には、上記樹脂製の連結部は、外歯部に加えられた振動を減衰させる作用を有すると記載されている。 For example, in Patent Document 1, a metal support portion having a shaft hole and a metal external tooth portion having external teeth that mesh with other gears are provided by a resin connecting portion filled between them. The connected gears are listed. Patent Document 1 describes that the resin-made connecting portion has an action of attenuating the vibration applied to the external tooth portion.

また、特許文献2には、炭素鋼、クロム鋼、クロムモリブデン鋼などの高硬度の材料で形成された本体部の表面に環状溝部を設け、ダクタイル鋳鉄や熱間圧延鋼板などの固有振動推移がより低い材料で形成された防振プレートを上記環状溝部に圧入させた、ギアが記載されている。特許文献2によれば、上記圧入された防振プレートは、本体部に接着されていないため、本体部とは異なる振動数で振動して本体部の振動を減衰させると記載されている。 Further, in Patent Document 2, an annular groove portion is provided on the surface of the main body portion made of a high hardness material such as carbon steel, chrome steel, and chrome molybdenum steel, and the natural vibration transition of ductile cast iron, hot rolled steel sheet, etc. is observed. A gear is described in which a vibration-proof plate made of a lower material is press-fitted into the annular groove. According to Patent Document 2, since the press-fitted anti-vibration plate is not adhered to the main body portion, it is described that the press-fitted anti-vibration plate vibrates at a frequency different from that of the main body portion to attenuate the vibration of the main body portion.

特開2014−214833号公報Japanese Unexamined Patent Publication No. 2014-214833 特開2016−056815号公報Japanese Unexamined Patent Publication No. 2016-056815

特許文献1および特許文献2に記載のように、振動を減衰させるために異なる材料から形成された部材を組み合わせたギアは公知である。 As described in Patent Document 1 and Patent Document 2, gears that combine members formed of different materials in order to dampen vibration are known.

しかし、特許文献1に記載のように樹脂から形成された部材を組み合わせるギアは、製造時に樹脂を硬化させる際に樹脂が収縮してしまい、外歯部と連結部との接続強度が低下してしまう。 However, as described in Patent Document 1, in a gear that combines members formed of resin, the resin shrinks when the resin is cured during manufacturing, and the connection strength between the external tooth portion and the connecting portion decreases. It ends up.

また、異なる金属から形成された部材を組み合わせたギアは、樹脂部材を組み合わせたギアに比べると減衰効果が劣る傾向がある。また、特許文献2に記載のように異なる金属から形成された防振プレートを本体部に嵌め込むギアは、防振プレートと本体部とが回転時に衝突することによる振動および音が発生するため、期待されるほどの振動抑制効果が発揮されていなかった。 Further, a gear in which members made of different metals are combined tends to have a inferior damping effect as compared with a gear in which members made of resin members are combined. Further, as described in Patent Document 2, the gear that fits the anti-vibration plate made of different metals into the main body generates vibration and sound due to the collision between the anti-vibration plate and the main body during rotation. The expected vibration suppression effect was not exhibited.

本開示の目的は、異なる金属から形成された部材を組み合わせてなり、かつ振動および音の減衰効果を高めることができる動力伝達部品、当該動力伝達部品の製造方法、および当該動力伝達部品を有する動力伝達機構を提供することにある。 An object of the present disclosure is a power transmission component formed by combining members made of different metals and capable of enhancing the damping effect of vibration and sound, a method for manufacturing the power transmission component, and a power having the power transmission component. The purpose is to provide a transmission mechanism.

一態様に係る動力伝達部品は、環状の軸受けと、外周面に複数の歯が周方向に配列された、金属製かつ環状の動力伝達部と、前記軸受けと前記動力伝達部との間に配置されて、前記軸受けと前記動力伝達部とを接続する、金属製かつ環状の接続部と、を有する。前記接続部は、前記動力伝達部とは異なる金属からなり、前記軸受けと前記接続部との界面、または前記接続部と前記動力伝達部との界面には、部分的に空隙が形成されている The power transmission component according to one aspect is arranged between the annular bearing, a metal and annular power transmission portion in which a plurality of teeth are arranged in the circumferential direction on the outer peripheral surface, and the bearing and the power transmission portion. It has a metal and annular connecting portion that connects the bearing and the power transmitting portion. The connection portion is made of a metal different from the power transmission portion, and a gap is partially formed at the interface between the bearing and the connection portion or the interface between the connection portion and the power transmission portion.

また、一態様に係る動力伝達部品の製造方法は、外周面に複数の歯が周方向に配列された金属製かつ環状の動力伝達部と、前記動力伝達部と同軸の円環となるように配置された環状の軸受けと、を用意する工程と、前記動力伝達部とは異なる金属からなる金属部材を、前記動力伝達部と前記軸受けとの間に挿通させて配置する工程と、前記金属部材を、挿通方向両側から加圧する工程と、を有し、前記加圧により、前記軸受けと前記接続部との界面、または前記接続部と前記動力伝達部との界面に、部分的に空隙を形成する。 Further, the method for manufacturing a power transmission component according to one aspect is to form a metal and annular power transmission portion in which a plurality of teeth are arranged in the circumferential direction on the outer peripheral surface and a ring coaxial with the power transmission portion. A step of preparing an arranged annular bearing, a step of inserting and arranging a metal member made of a metal different from the power transmission portion between the power transmission portion and the bearing, and the metal member. The step of pressurizing from both sides in the insertion direction, and the pressurization partially forms a gap at the interface between the bearing and the connecting portion or the interface between the connecting portion and the power transmission portion. To do.

また、一態様に係る動力伝達機構は、上記動力伝達部品、または上記方法で製造された動力伝達部品を、有する。 Further, the power transmission mechanism according to one aspect includes the power transmission component described above or a power transmission component manufactured by the above method.

本開示によれば、異なる金属から形成された部材を組み合わせてなり、かつ振動および音の減衰効果を高めることができる動力伝達部品、当該動力伝達部品の製造方法、および当該動力伝達部品を有する動力伝達機構が提供される。 According to the present disclosure, a power transmission component formed by combining members made of different metals and capable of enhancing the damping effect of vibration and sound, a method for manufacturing the power transmission component, and a power having the power transmission component. A transmission mechanism is provided.

図1は、一実施形態に関するギアの模式的な構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of a gear according to an embodiment. 図2は、図1に示す二点鎖線の領域A−Aに沿った、ギアの径方向に平行な平面で切断した断面図である。FIG. 2 is a cross-sectional view cut along a plane parallel to the radial direction of the gear along the region AA of the alternate long and short dash line shown in FIG. 図3は、図1に示す一点鎖線の領域B−Bに沿った、ギア100の軸方向に平行な平面で切断した断面図である。FIG. 3 is a cross-sectional view cut along a plane parallel to the axial direction of the gear 100 along the region BB of the alternate long and short dash line shown in FIG. 図4Aは、一実施形態に関するギアの製造方法において、軸受けおよび動力伝達部を型にセットする様子を示す模式断面図であり、図4Bは、軸受けと動力伝達部との間に金属部材を配置する様子を示す模式断面図であり、図4Cは、金型を用いて、軸方向両側(挿通方向両側)から金属部材を加圧する様子を示す模式断面図である。FIG. 4A is a schematic cross-sectional view showing how the bearing and the power transmission unit are set in the mold in the gear manufacturing method according to the embodiment, and FIG. 4B shows a metal member arranged between the bearing and the power transmission unit. FIG. 4C is a schematic cross-sectional view showing how the metal member is pressed from both sides in the axial direction (both sides in the insertion direction) using a mold. 図5Aは、一実施形態に関するギアの製造方法において、軸受けと動力伝達部との間の空間が金属部材で充填された複合体が得られる様子を示す模式断面図であり、図5Bは、外側面を部分的に被覆する金属部材を取り除いてギアを得る様子を示す模式断面図である。FIG. 5A is a schematic cross-sectional view showing how a composite in which the space between the bearing and the power transmission portion is filled with a metal member is obtained in the gear manufacturing method according to the embodiment, and FIG. 5B is a schematic cross-sectional view showing the outside. It is a schematic cross-sectional view which shows the mode that the metal member which partially covers a side surface is removed, and the gear is obtained. 図6は、動力伝達部の内周面側に、第二界面を周方向に不連続とする切り欠き部が設けられたギアを示す模式平面図である。FIG. 6 is a schematic plan view showing a gear provided with a notch portion that discontinues the second interface in the circumferential direction on the inner peripheral surface side of the power transmission portion.

以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明は以下の実施形態により限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below are examples, and the present invention is not limited to the following embodiments.

図1は、一実施形態に関するギアの模式的な構成を示す平面図である。 FIG. 1 is a plan view showing a schematic configuration of a gear according to an embodiment.

ギア100は、円環状の軸受け110と、外周面に複数の歯が周方向に配列された円環状かつ金属製の動力伝達部120と、軸受け110と動力伝達部120との間に配置された円環状かつ金属製の接続部130と、を有する。 The gear 100 is arranged between the annular bearing 110, the annular and metal power transmission unit 120 in which a plurality of teeth are arranged in the circumferential direction on the outer peripheral surface, and the bearing 110 and the power transmission unit 120. It has an annular and metal connection 130.

軸受け110、動力伝達部120および接続部は、いずれも同一の回転軸Oを中心とした円環状であり、回転軸Oを中心として同軸回転する。本明細書において、ギアの回転軸Oに沿う方向を「軸方向」といいい、ギアの回転軸Oを中心とする放射方向を「径方向」といい、ギアの回転軸Oの周りに沿う方向を「周方向」という。 The bearing 110, the power transmission unit 120, and the connection unit all have an annular shape centered on the same rotation shaft O, and rotate coaxially around the rotation shaft O. In the present specification, the direction along the rotation axis O of the gear is referred to as "axial direction", the radial direction centered on the rotation axis O of the gear is referred to as "diametrical direction", and the direction along the rotation axis O of the gear. Is called "circumferential direction".

軸受け110は、円環状の部材であり、その中心部には、不図示の回転軸が挿通される孔112が設けられている。軸受け110の材料は限定されないものの、回転軸との摩擦による摩耗を抑制するため、低炭素鋼、中炭素鋼、クロム鋼、ステンレス鋼、黄銅、青銅などの金属により形成されることが好ましい。また、軸受け110の材料は、熱処理や化成処理などの表面処理を施されていてもよい。 The bearing 110 is an annular member, and a hole 112 through which a rotating shaft (not shown) is inserted is provided in the center thereof. Although the material of the bearing 110 is not limited, it is preferably formed of a metal such as low carbon steel, medium carbon steel, chrome steel, stainless steel, brass, and bronze in order to suppress wear due to friction with the rotating shaft. Further, the material of the bearing 110 may be subjected to surface treatment such as heat treatment or chemical conversion treatment.

動力伝達部120は、軸受け110よりも大きい径の円環状の部材である本体部122と、本体部122の外周に突出して配列された複数の歯124とを有する。動力伝達部120の内径(本体部122の内径)は、軸受け110の外径よりも大きく、動力伝達部120の内周の内側(本体部122の内周の内側)に軸受け110を配置可能とされている。動力伝達部120は、他のギアの歯との接触による摩耗を抑制するため、低炭素鋼、中炭素鋼、クロム鋼、ステンレス鋼、黄銅、青銅などの金属により形成される。 The power transmission unit 120 has a main body portion 122 which is an annular member having a diameter larger than that of the bearing 110, and a plurality of teeth 124 which are arranged so as to project from the outer periphery of the main body portion 122. The inner diameter of the power transmission unit 120 (inner diameter of the main body 122) is larger than the outer diameter of the bearing 110, and the bearing 110 can be arranged inside the inner circumference of the power transmission unit 120 (inside the inner circumference of the main body 122). Has been done. The power transmission unit 120 is made of a metal such as low carbon steel, medium carbon steel, chrome steel, stainless steel, brass, and bronze in order to suppress wear due to contact with the teeth of other gears.

接続部130は、軸受け110と動力伝達部120との間に配置されてこれらを接続する円環状の部材であり、軸受け110と動力伝達部120との間の空間を充填している。接続部130は、内周が軸受け110の外周と略一致し、外周が動力伝達部120の内周と略一致してこれらを接続し、軸受け110と動力伝達部120とを同期して回転させる。 The connecting portion 130 is an annular member arranged between the bearing 110 and the power transmitting portion 120 and connecting them, and fills the space between the bearing 110 and the power transmitting portion 120. The inner circumference of the connecting portion 130 substantially coincides with the outer circumference of the bearing 110, the outer circumference substantially coincides with the inner circumference of the power transmission unit 120, and these are connected, and the bearing 110 and the power transmission unit 120 are rotated in synchronization with each other. ..

接続部130は、軸受け110および動力伝達部120のいずれとも異なる金属により形成される。接続部130の材料の例には、アルミニウム、マグネシウム、銅および鉄などが含まれる。後述する塑性流動による作製を容易にし、かつ接続部130の材料による振動および音の減衰効果をも発揮させる観点から、接続部130の材料は、動力伝達部120の材料よりも軟質の材料であることが好ましく、かつ、軸受け110の材料よりも軟質の材料であることが好ましい。特に、アルミニウムなどの低密度の材料を用いると、ギア100を軽量化して、隣り合うギアとかみ合う時の歯の打音を軽減したり、摩擦力を低減したりすることができる。 The connection portion 130 is made of a metal different from both the bearing 110 and the power transmission portion 120. Examples of materials for the connection 130 include aluminum, magnesium, copper and iron. The material of the connection portion 130 is softer than the material of the power transmission portion 120 from the viewpoint of facilitating the production by the plastic flow described later and also exerting the vibration and sound damping effect of the material of the connection portion 130. It is preferable that the material is softer than the material of the bearing 110. In particular, when a low-density material such as aluminum is used, the weight of the gear 100 can be reduced, the tapping sound of teeth when meshing with adjacent gears can be reduced, and the frictional force can be reduced.

軸受け110、動力伝達部120および接続部130は、同一の回転軸Oを中心とした円環状であり、回転軸Oを中心として同軸回転する。 The bearing 110, the power transmission unit 120, and the connection unit 130 have an annular shape centered on the same rotation shaft O, and rotate coaxially around the rotation shaft O.

図2は、図1に示す二点鎖線の領域A−Aに沿った、ギア100の径方向に平行な平面で切断した断面図である。図3は、図1に示す一点鎖線の領域B−Bに沿った、ギア100の軸方向に平行な平面で切断した断面図である。 FIG. 2 is a cross-sectional view cut along a plane parallel to the radial direction of the gear 100 along the region AA of the alternate long and short dash line shown in FIG. FIG. 3 is a cross-sectional view cut along a plane parallel to the axial direction of the gear 100 along the region BB of the alternate long and short dash line shown in FIG.

ギア100は、回転軸Oから径方向に沿って、(孔112)、軸受け110、接続部130および動力伝達部120がこの順に連続して配置されている。軸受け110と接続部130とは互いに接触しており、接続部130と動力伝達部120とは互いに接触している。 In the gear 100, the (hole 112), the bearing 110, the connection portion 130, and the power transmission portion 120 are continuously arranged in this order along the radial direction from the rotation shaft O. The bearing 110 and the connecting portion 130 are in contact with each other, and the connecting portion 130 and the power transmitting portion 120 are in contact with each other.

軸受け110と接続部130との界面である第一界面140は、軸受け110と接続部130との間に周方向に連続して形成された面である。第一界面140には、軸受け110または接続部130の一方が他方に入り込んだ抜け止め部142(円周溝)が周方向に連続して設けられている(図3参照)。 The first interface 140, which is the interface between the bearing 110 and the connecting portion 130, is a surface formed continuously in the circumferential direction between the bearing 110 and the connecting portion 130. The first interface 140 is provided with a retaining portion 142 (circumferential groove) in which one of the bearing 110 or the connecting portion 130 enters the other continuously in the circumferential direction (see FIG. 3).

また、第一界面140には、抜け止め部142よりも内部側に、軸受け110または接続部130の一方が他方に入り込んだ複数のへこみ部144(縦溝)が軸方向に設けられている(図2、図3参照)。そして、第一界面140のへこみ部144には、軸受け110を構成する材料および接続部130を構成する金属のいずれによっても充填されていない空隙146が、部分的に形成されている。 Further, the first interface 140 is provided with a plurality of dented portions 144 (vertical grooves) in which one of the bearing 110 or the connecting portion 130 has entered the other on the inner side of the retaining portion 142 (vertical groove). (See FIGS. 2 and 3). Then, in the recessed portion 144 of the first interface 140, a void 146 that is not filled with either the material constituting the bearing 110 or the metal constituting the connecting portion 130 is partially formed.

抜け止め部142は、第一界面140の軸方向における両端部の近辺にそれぞれ設けられており、上記両端部の近辺で軸受け110と接続部130とを互いに食い込ませて、ギア100からの、軸受け110または接続部130の軸方向への抜け(脱離)を抑制する。 The retaining portions 142 are provided in the vicinity of both end portions in the axial direction of the first interface 140, and the bearing 110 and the connecting portion 130 are made to bite into each other in the vicinity of the both end portions, and the bearing from the gear 100 is provided. The axial disconnection (disengagement) of the 110 or the connection portion 130 is suppressed.

空隙146は、へこみ部144の内部の一部に不連続に複数設けられており、内部に空気が充填されている。空隙146では、接続部130から軸受け110へ、あるいは軸受け110から接続部130へ、振動および音が伝達されにくい。そのため、空隙146は、ギア100の内部での振動および音の伝達経路を狭窄して、ギア100から他部材へのこれらの伝達を抑制する。 A plurality of voids 146 are discontinuously provided in a part of the inside of the dent portion 144, and the inside is filled with air. In the gap 146, vibration and sound are difficult to be transmitted from the connection portion 130 to the bearing 110 or from the bearing 110 to the connection portion 130. Therefore, the gap 146 narrows the transmission path of vibration and sound inside the gear 100, and suppresses these transmissions from the gear 100 to other members.

なお、空隙146は、接続部130と軸受け110との間の振動および音の伝達を抑制できればよく、液体などで充填されていてもよい。 The gap 146 may be filled with a liquid or the like as long as it can suppress vibration and sound transmission between the connection portion 130 and the bearing 110.

接続部130と動力伝達部120との界面である第二界面150は、接続部130と動力伝達部120との間に周方向に連続して形成された面である。第二界面150には、接続部130または動力伝達部120の一方が他方に入り込んだ抜け止め部152(円周溝)が周方向に連続して設けられている(図3参照)。 The second interface 150, which is the interface between the connecting portion 130 and the power transmitting portion 120, is a surface formed continuously in the circumferential direction between the connecting portion 130 and the power transmitting portion 120. The second interface 150 is provided with a retaining portion 152 (circumferential groove) in which one of the connecting portion 130 or the power transmitting portion 120 enters the other, which is continuous in the circumferential direction (see FIG. 3).

また、第二界面150には、抜け止め部152よりも内部側に、接続部130または動力伝達部120の一方が他方に入り込んだ複数のへこみ部154(縦溝)が軸方向に設けられている(図2、図3参照)。そして、第二界面150のへこみ部154には、接続部130を構成する金属および動力伝達部120を構成する金属のいずれによっても充填されていない空隙156が、部分的に形成されている。 Further, the second interface 150 is provided with a plurality of dented portions 154 (vertical grooves) in which one of the connecting portion 130 or the power transmission portion 120 has entered the other on the inner side of the retaining portion 152 in the axial direction. (See FIGS. 2 and 3). Then, in the recessed portion 154 of the second interface 150, a void 156 that is not filled with either the metal constituting the connecting portion 130 or the metal constituting the power transmission portion 120 is partially formed.

抜け止め部152は、第二界面150の軸方向における両端部の近辺にそれぞれ設けられており、上記両端部の近辺で接続部130を構成する金属と動力伝達部120を構成する金属とを互いに食い込ませて、ギア100からの、接続部130または動力伝達部120の軸方向への抜け(脱離)を抑制する。 The retaining portions 152 are provided in the vicinity of both ends in the axial direction of the second interface 150, and the metal forming the connecting portion 130 and the metal forming the power transmission portion 120 are mutually provided in the vicinity of both ends. It is made to bite into the gear 100 to prevent the connection portion 130 or the power transmission portion 120 from coming off (disconnecting) in the axial direction.

空隙156は、へこみ部154の内部の一部に不連続に複数設けられており、内部に空気が充填されている。空隙156では、動力伝達部120から接続部130へ、あるいは接続部130から動力伝達部120へ、振動および音が伝達されにくい。そのため、空隙156は、ギア100の内部での振動および音の伝達経路を狭窄して、ギア100から他部材へのこれらの伝達を抑制する。 A plurality of voids 156 are discontinuously provided in a part of the inside of the dent portion 154, and the inside is filled with air. In the gap 156, vibration and sound are difficult to be transmitted from the power transmission unit 120 to the connection unit 130, or from the connection unit 130 to the power transmission unit 120. Therefore, the gap 156 narrows the transmission path of vibration and sound inside the gear 100, and suppresses these transmission from the gear 100 to other members.

なお、空隙156は、接続部130と軸受け110との間の振動および音の伝達を抑制できればよく、液体などで充填されていてもよい。 The gap 156 may be filled with a liquid or the like as long as it can suppress vibration and sound transmission between the connection portion 130 and the bearing 110.

図4および図5は、ギア100の製造方法を示す模式図である。図4A〜図4Cおよび図5A〜図5Bはいずれも、図1に示す二点鎖線の領域A−Aに沿った、ギア100の軸方向に平行な平面で切断した断面図である。 4 and 5 are schematic views showing a method of manufacturing the gear 100. 4A to 4C and 5A to 5B are cross-sectional views cut along a plane parallel to the axial direction of the gear 100 along the region AA of the alternate long and short dash line shown in FIG.

まず、図4Aに示すように、軸受け110および動力伝達部120を用意し、動力伝達部120の内部に軸受け110が配置されるように、これらを型にセットする。軸受け110および動力伝達部120は、回転軸Oを中心とした同軸の円環となるように、配置される。 First, as shown in FIG. 4A, a bearing 110 and a power transmission unit 120 are prepared, and these are set in a mold so that the bearing 110 is arranged inside the power transmission unit 120. The bearing 110 and the power transmission unit 120 are arranged so as to form a coaxial ring centered on the rotating shaft O.

また、軸受け110の外周面には、ギア100の抜け止め部142となる位置に、環状の溝242が形成されており、ギア100のへこみ部144となる位置に、縦方向への溝244が形成されている。同様に、動力伝達部120の内周面には、ギア100の抜け止め部152となる位置に、環状の溝252が形成されており、ギア100のへこみ部154となる位置に、縦方向への溝254が形成されている。 Further, on the outer peripheral surface of the bearing 110, an annular groove 242 is formed at a position serving as a retaining portion 142 of the gear 100, and a groove 244 in the vertical direction is formed at a position serving as a dent portion 144 of the gear 100. It is formed. Similarly, on the inner peripheral surface of the power transmission unit 120, an annular groove 252 is formed at a position serving as a retaining portion 152 of the gear 100, and in the vertical direction at a position serving as a dent portion 154 of the gear 100. Groove 254 is formed.

次に、図4Bに示すように、軸受け110と動力伝達部120との間に、接続部130と同じ材料からなる金属部材330を配置する。 Next, as shown in FIG. 4B, a metal member 330 made of the same material as the connecting portion 130 is arranged between the bearing 110 and the power transmitting portion 120.

金属部材330は、軸受け110と動力伝達部120との間に嵌め込み可能な形状20した、円環状の部材である。具体的には、金属部材330は、内径が軸受け110の外径(抜け止め部142となる部位の外径)よりも大きく、かつ外径が動力伝達部120の内径(抜け止め部152となる部位の内径)よりも小さい形状を有する。また、金属部材330の軸方向への厚みは、軸受け110の厚みおよび動力伝達部120の厚みのいずれよりも大きい。これにより、金属部材330は、軸受け110と動力伝達部120との間の空間に挿通され、かつ軸方向の両端が軸受け110および動力伝達部120のいずれよりも軸方向外側となるように、配置される。 The metal member 330 is an annular member having a shape 20 that can be fitted between the bearing 110 and the power transmission unit 120. Specifically, the inner diameter of the metal member 330 is larger than the outer diameter of the bearing 110 (the outer diameter of the portion that becomes the retaining portion 142), and the outer diameter is the inner diameter of the power transmission portion 120 (the retaining portion 152). It has a shape smaller than the inner diameter of the part). Further, the thickness of the metal member 330 in the axial direction is larger than both the thickness of the bearing 110 and the thickness of the power transmission unit 120. As a result, the metal member 330 is arranged so as to be inserted into the space between the bearing 110 and the power transmission unit 120, and both ends in the axial direction are axially outside the bearing 110 and the power transmission unit 120. Will be done.

次に、図4Cに示すように、金型360を用いて、軸方向両側(挿通方向両側)から金属部材330を加圧する。 Next, as shown in FIG. 4C, the metal member 330 is pressurized from both sides in the axial direction (both sides in the insertion direction) using the mold 360.

金型360は、加圧面のうち、接続部130と動力伝達部120との界面を加圧する部位、および接続部130と軸受け110との界面を加圧する部位、が加圧方向に突出した形状を有する。このような金型360を用いることで、上記それぞれの界面の近傍を、より強い応力で加圧することができる。 The mold 360 has a shape in which a portion of the pressurizing surface that pressurizes the interface between the connection portion 130 and the power transmission portion 120 and a portion that pressurizes the interface between the connection portion 130 and the bearing 110 project in the pressurizing direction. Have. By using such a mold 360, it is possible to pressurize the vicinity of each of the above interfaces with a stronger stress.

加圧された金属部材330は、塑性流動して軸受け110と動力伝達部120との間の空間を充填する。これにより、軸受け110の外周面に形成された溝242に金属部材330が入り込んで抜け止め部142となり、動力伝達部120の内周面に形成された溝252に金属部材330が入り込んで抜け止め部152となる。 The pressurized metal member 330 plastically flows to fill the space between the bearing 110 and the power transmission unit 120. As a result, the metal member 330 enters the groove 242 formed on the outer peripheral surface of the bearing 110 to form the retaining portion 142, and the metal member 330 enters the groove 252 formed on the inner peripheral surface of the power transmission portion 120 to prevent the metal member 330 from coming off. It becomes part 152.

軸方向両側(挿通方向両側)から金属部材330を加圧するため、塑性流動した金属部材330は、軸受け110と動力伝達部120との間の空間を軸方向両側から埋めていく。このとき、金型360による応力の大きさを調整することで、軸受け110の外周面に形成された溝244に入り込む金属部材330の量を調整し、溝244の全体が金属部材330で埋めきられないようにすることで、溝244の内部に空気346を残留させることができる。同様に、金型360による応力の大きさを調整することで、動力伝達部120の外周面に形成された溝254に入り込む金属部材330の量を調整し、溝254の全体が金属部材330で埋めきられないようにすることで、溝254の内部に空気356を残留させることができる。 In order to pressurize the metal member 330 from both sides in the axial direction (both sides in the insertion direction), the plastically fluidized metal member 330 fills the space between the bearing 110 and the power transmission unit 120 from both sides in the axial direction. At this time, by adjusting the magnitude of stress by the mold 360, the amount of the metal member 330 that enters the groove 244 formed on the outer peripheral surface of the bearing 110 is adjusted, and the entire groove 244 is filled with the metal member 330. By preventing this, air 346 can be left inside the groove 244. Similarly, by adjusting the magnitude of stress by the mold 360, the amount of the metal member 330 that enters the groove 254 formed on the outer peripheral surface of the power transmission unit 120 is adjusted, and the entire groove 254 is formed by the metal member 330. By preventing it from being filled, air 356 can remain inside the groove 254.

また、このとき、接続部130と動力伝達部120との界面となる部位の近傍、および接続部130と軸受け110との界面となる部位の近を、他の部位よりも強い応力で加圧することで、これらの部位における金属部材330をより流動させやすくし、溝252の内部にまで十分に金属部材330を流入させることができる。一方で、このときに加圧する応力を適度に調整することで、溝254の内部を充填しきらない程度に金属部材330を流動させることができる。 At this time, the vicinity of the interface between the connection portion 130 and the power transmission portion 120 and the vicinity of the interface between the connection portion 130 and the bearing 110 are pressurized with a stronger stress than the other portions. Therefore, the metal member 330 in these portions can be made easier to flow, and the metal member 330 can be sufficiently flowed into the groove 252. On the other hand, by appropriately adjusting the stress to be pressed at this time, the metal member 330 can be made to flow to the extent that the inside of the groove 254 is not completely filled.

このようにして、図5Aに示すような、軸受け110と動力伝達部120との間の空間が金属部材330で充填され、軸受け110と金属部材330との間の溝244に空気346が残留し、かつ動力伝達部120と金属部材330との間の溝254に空気356が残留した、複合体400が得られる。 In this way, as shown in FIG. 5A, the space between the bearing 110 and the power transmission unit 120 is filled with the metal member 330, and air 346 remains in the groove 244 between the bearing 110 and the metal member 330. In addition, the composite 400 is obtained in which air 356 remains in the groove 254 between the power transmission unit 120 and the metal member 330.

複合体400では、組成流動した金属部材330が軸受け110および動力伝達部120の外側面を部分的に被覆している。図5Bに示すように、これらの外側面を部分的に被覆する金属部材330を取り除くことで、ギア100を得ることができる。このとき、残留した空気346および空気356は、それぞれ、空隙146および空隙156となる。 In the complex 400, the composition-flowing metal member 330 partially covers the outer surfaces of the bearing 110 and the power transmission unit 120. As shown in FIG. 5B, the gear 100 can be obtained by removing the metal member 330 that partially covers these outer surfaces. At this time, the remaining air 346 and air 356 become voids 146 and voids 156, respectively.

以上説明したギアは、各種の動力伝達機構に好適に用いることができる。 The gears described above can be suitably used for various power transmission mechanisms.

以上、本開示の実施形態について説明したが、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.

例えば、上述の実施形態では、軸受け110と接続部130との界面である第一界面140、および接続部130と動力伝達部120との界面である第二界面150は、いずれも周方向に連続して形成された面であるとしたが、これに限定されない。たとえば、軸受け110の外周面側または動力伝達部120の内周面側には、第一界面140または第二界面を周方向に不連続とする切り欠き部または突出部が設けられてもよい。 For example, in the above-described embodiment, the first interface 140, which is the interface between the bearing 110 and the connection portion 130, and the second interface 150, which is the interface between the connection portion 130 and the power transmission portion 120, are both continuous in the circumferential direction. However, the surface is not limited to this. For example, a notch or a protruding portion may be provided on the outer peripheral surface side of the bearing 110 or the inner peripheral surface side of the power transmission portion 120 so that the first interface 140 or the second interface is discontinuous in the circumferential direction.

たとえば、図6に示すように、動力伝達部120の内周面側には、第二界面150を周方向に不連続とする切り欠き部126が設けられてもよい。このようにすれば、動力伝達部120と接続部130との周方向への相対回転が規制される。そのため、動力伝達部120と接続部130との間で回転力を確実に伝達させることができる。 For example, as shown in FIG. 6, a notch 126 may be provided on the inner peripheral surface side of the power transmission unit 120 so that the second interface 150 is discontinuous in the circumferential direction. In this way, the relative rotation of the power transmission unit 120 and the connection unit 130 in the circumferential direction is restricted. Therefore, the rotational force can be reliably transmitted between the power transmission unit 120 and the connection unit 130.

また、軸受けは、不図示の滑り軸受け部材や転がり軸受けを有してもよい。あるいは、軸受け110は、回転軸と一体的に構成されてもよい。 Further, the bearing may have a sliding bearing member (not shown) or a rolling bearing. Alternatively, the bearing 110 may be integrally configured with the rotating shaft.

また、上述の実施形態では、軸受け110と動力伝達部120とは別個の別部材としたが、これらは一体化されていてもよい。 Further, in the above-described embodiment, the bearing 110 and the power transmission unit 120 are separate members, but these may be integrated.

また上述の実施形態では、へこみ部144および154の一部のみに空隙146および156が形成されているとしたが、へこみ部144および154の全体が空隙146および156となっていてもよい。 Further, in the above-described embodiment, it is assumed that the voids 146 and 156 are formed only in a part of the dents 144 and 154, but the entire dents 144 and 154 may be the voids 146 and 156.

また、上述の実施形態では、第一界面140および第二界面150の両方には溝であるへこみ部144およびへこみ部154がそれぞれ形成されているとしたが、これらのへこみ部は、一方の界面のみに形成されていてもよい。あるいは、これらのへこみ部を形成せず、製造時の金型300による加圧の応力を小さくして、軸受け110と動力伝達部120との間のうち内部側において金属部材330を流動しにくくすることで、部分的な空隙を形成してもよい。 Further, in the above-described embodiment, it is assumed that the dented portion 144 and the dented portion 154, which are grooves, are formed at both the first interface 140 and the second interface 150, respectively, but these dented portions are formed at one interface. It may be formed only on. Alternatively, these dents are not formed, the stress of pressurization by the mold 300 at the time of manufacturing is reduced, and the metal member 330 is made difficult to flow on the inner side between the bearing 110 and the power transmission portion 120. This may form a partial void.

また、上述の実施形態では、動力伝達部品として、ギアを例に説明を行ったが、これに限定されず、プーリ、スプロケットなどでもよい。 Further, in the above-described embodiment, the gear has been described as an example of the power transmission component, but the present invention is not limited to this, and a pulley, a sprocket, or the like may be used.

本開示によれば、異なる金属から形成された部材を組み合わせてなる動力伝達部品においても、振動および音の減衰効果を高めることができる。そのため、動力伝達部品に使用できる材料の選択可能性を増やし、動力伝達部品の用途拡大および効率向上に貢献することが期待される。 According to the present disclosure, it is possible to enhance the damping effect of vibration and sound even in a power transmission component formed by combining members made of different metals. Therefore, it is expected to increase the selectability of materials that can be used for power transmission parts and contribute to the expansion of applications and efficiency improvement of power transmission parts.

100 ギア
110 軸受け
112 孔
120 動力伝達部
122 本体部
124 歯
126 切り欠き部
130 接続部
140 第一界面
142 抜け止め部
144 へこみ部
146 空隙
150 第二界面
152 抜け止め部
154 へこみ部
156 空隙
242、244 溝
252、254 溝
330 金属部材
346 空気
356 空気
360 金型
100 Gear 110 Bearing 112 Hole 120 Power transmission part 122 Main body part 124 Tooth 126 Notch part 130 Connection part 140 First interface 142 Retaining part 144 Dent part 146 Void 150 Second interface 152 Retaining part 154 Dent part 156 Void 242, 244 Grooves 252, 254 Grooves 330 Metal Parts 346 Air 356 Air 360 Mold

Claims (7)

環状の軸受けと、
外周面に複数の歯が周方向に配列された、金属製かつ環状の動力伝達部と、
前記軸受けと前記動力伝達部との間に配置されて、前記軸受けと前記動力伝達部とを接続する、金属製かつ環状の接続部と、を有し、
前記接続部は、前記動力伝達部とは異なる金属からなり、
前記軸受けと前記接続部との界面、または前記接続部と前記動力伝達部との界面には、部分的に空隙が形成されている、
動力伝達部品。
With an annular bearing,
A metal and annular power transmission unit with multiple teeth arranged in the circumferential direction on the outer peripheral surface.
It has a metal and annular connecting portion that is disposed between the bearing and the power transmitting portion and connects the bearing and the power transmitting portion.
The connection part is made of a metal different from the power transmission part, and is made of a different metal.
A gap is partially formed at the interface between the bearing and the connection portion, or at the interface between the connection portion and the power transmission portion.
Power transmission parts.
前記接続部は、前記動力伝達部の材料よりも軟質の金属からなる、請求項1に記載の動力伝達部品。 The power transmission component according to claim 1, wherein the connection portion is made of a metal softer than the material of the power transmission portion. 前記接続部は、前記軸受けとの界面において前記軸受けと前記接続部とのうち一方が他方に入り込んだへこみ部、または前記動力伝達部との界面において前記動力伝達部と前記接続部とのうち一方が他方に入り込んだへこみ部、を有し、
前記空隙は、前記へこみ部の一部または全体に形成されている、
請求項1または2に記載の動力伝達部品。
The connection portion is a dented portion in which one of the bearing and the connection portion enters the other at the interface with the bearing, or one of the power transmission portion and the connection portion at the interface with the power transmission portion. Has a dent, which has penetrated into the other,
The void is formed in a part or the whole of the dented portion.
The power transmission component according to claim 1 or 2.
前記接続部は、前記軸受けとの界面において前記軸受けと前記接続部とが互いに食い込んでなる抜け止め部、または前記動力伝達部との界面において前記動力伝達部と前記接続部とが互いに食い込んでなる抜け止め部、を有する、
請求項1〜3のいずれか1項に記載の動力伝達部品。
The connection portion is a retaining portion in which the bearing and the connection portion bite into each other at the interface with the bearing, or the power transmission portion and the connection portion bite into each other at the interface with the power transmission portion. Has a retaining part,
The power transmission component according to any one of claims 1 to 3.
外周面に複数の歯が周方向に配列された金属製かつ環状の動力伝達部と、前記動力伝達部と同軸の円環となるように配置された環状の軸受けと、を用意する工程と、
前記動力伝達部とは異なる金属からなる金属部材を、前記動力伝達部と前記軸受けとの間に挿通させて配置する工程と、
前記金属部材を、挿通方向両側から加圧する工程と、
を有し、
前記加圧により、前記軸受けと前記接続部との界面、または前記接続部と前記動力伝達部との界面に、部分的に空隙を形成する、
動力伝達部品の製造方法。
A step of preparing a metal and annular power transmission unit in which a plurality of teeth are arranged in the circumferential direction on the outer peripheral surface, and an annular bearing arranged so as to form a ring coaxial with the power transmission unit.
A step of inserting and arranging a metal member made of a metal different from the power transmission unit between the power transmission unit and the bearing.
The step of pressurizing the metal member from both sides in the insertion direction and
Have,
By the pressurization, a gap is partially formed at the interface between the bearing and the connection portion or the interface between the connection portion and the power transmission portion.
Manufacturing method of power transmission parts.
前記動力伝達部または前記軸受けの、前記金属部材と接する面には、前記金属部材が挿通される方向に溝が形成されている、
請求項5に記載の動力伝達部品の製造方法。
A groove is formed on the surface of the power transmission unit or the bearing in contact with the metal member in the direction in which the metal member is inserted.
The method for manufacturing a power transmission component according to claim 5.
請求項1〜4のいずれか1項に記載の動力伝達部品、または請求項5もしくは6に記載の動力伝達部品の製造方法により製造された動力伝達部品を有する、動力伝達機構。

A power transmission mechanism comprising the power transmission component according to any one of claims 1 to 4, or a power transmission component manufactured by the method for manufacturing a power transmission component according to claim 5 or 6.

JP2019218775A 2019-12-03 2019-12-03 Power transmission component, manufacturing method of the same, and power transmission mechanism Pending JP2021089012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218775A JP2021089012A (en) 2019-12-03 2019-12-03 Power transmission component, manufacturing method of the same, and power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218775A JP2021089012A (en) 2019-12-03 2019-12-03 Power transmission component, manufacturing method of the same, and power transmission mechanism

Publications (1)

Publication Number Publication Date
JP2021089012A true JP2021089012A (en) 2021-06-10

Family

ID=76219732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218775A Pending JP2021089012A (en) 2019-12-03 2019-12-03 Power transmission component, manufacturing method of the same, and power transmission mechanism

Country Status (1)

Country Link
JP (1) JP2021089012A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608559U (en) * 1983-06-30 1985-01-21 中野 昭夫 rotating member
JPS626560U (en) * 1985-06-27 1987-01-16
JP2003213364A (en) * 2002-01-18 2003-07-30 Hitachi Metals Ltd Cast-in member of excellent damping performance, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608559U (en) * 1983-06-30 1985-01-21 中野 昭夫 rotating member
JPS626560U (en) * 1985-06-27 1987-01-16
JP2003213364A (en) * 2002-01-18 2003-07-30 Hitachi Metals Ltd Cast-in member of excellent damping performance, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2017053385A (en) Power transmission device for vehicle
JP6468176B2 (en) Vehicle power transmission device
US20090042655A1 (en) Power transmission device and method of producing the same
JP2005081351A (en) Friction pressure welding member and differential gear equipped with member
JP2013124697A (en) Torque converter
JP2005521000A (en) Device for coupling housing device of coupling device with rotor device of electric machine
EP2578904B1 (en) Fastening structure for ring-gear and differential case, and differential device using same
JP2017057884A (en) Torsional vibration reduction device
JP5552359B2 (en) Reduction gear
JP2013061008A (en) Worm wheel
JP2021089012A (en) Power transmission component, manufacturing method of the same, and power transmission mechanism
KR101055839B1 (en) Torque converter of car
JP2010281419A (en) Drive plate
JP6127037B2 (en) Bearing device, halved bearing used for the same, and motor provided with bearing device
JP2016153285A (en) Connection structure
JP2001132822A (en) Gear device
JP5998332B2 (en) Spline shaft coupling for construction machinery
JP2002235836A (en) Vibration damping gear
WO2015182579A1 (en) Lockup device in torque converter
JP2012211707A (en) Lockup clutch of fluid coupling device
KR101546746B1 (en) Constant velocity joint for a vehicle
JP2004211789A (en) Flexible shaft coupling
KR101176121B1 (en) Method of manufacturing layered spinning pulley
JP2016141311A (en) Support structure of rotating shaft of vehicle
JP2016160975A (en) Gear transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829