JP2021088483A - Apparatus and method for manufacturing single crystal - Google Patents

Apparatus and method for manufacturing single crystal Download PDF

Info

Publication number
JP2021088483A
JP2021088483A JP2019219532A JP2019219532A JP2021088483A JP 2021088483 A JP2021088483 A JP 2021088483A JP 2019219532 A JP2019219532 A JP 2019219532A JP 2019219532 A JP2019219532 A JP 2019219532A JP 2021088483 A JP2021088483 A JP 2021088483A
Authority
JP
Japan
Prior art keywords
single crystal
induction heating
heating coil
dopant
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019219532A
Other languages
Japanese (ja)
Other versions
JP7259722B2 (en
Inventor
亮輔 上田
Ryosuke Ueda
亮輔 上田
庫一 下村
Kuraichi Shimomura
庫一 下村
圭謙 杉田
Yoshikane Sugita
圭謙 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2019219532A priority Critical patent/JP7259722B2/en
Priority to CN202011405782.9A priority patent/CN112899771B/en
Publication of JP2021088483A publication Critical patent/JP2021088483A/en
Application granted granted Critical
Publication of JP7259722B2 publication Critical patent/JP7259722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • C30B13/12Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials in the gaseous or vapour state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/20Heating of the molten zone by induction, e.g. hot wire technique
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide an apparatus and method for manufacturing a single crystal by a FZ method, capable of uniformizing the in-plane distribution of resistivity of the single crystal as much as possible while stably installing a dopant supply pipe.SOLUTION: An apparatus 1 for manufacturing a single crystal comprises: an upper shaft 11 for rotatably and elevatably supporting a raw material rod 2; a lower shaft 13 for coaxially arranged with the upper shaft 11 and for rotatably and elevatably supporting a seed crystal 3 arranged below the raw material rod 2; an induction heating coil 20 for heating the raw material rod 2 to form a molten zone 5; and a dopant supply pipe 31 installed on the upper surface side of the induction heating coil 20 and for supplying a dopant gas to the molten zone 5. The induction heating coil 20 includes an opening penetrating from the upper surface to the lower surface, and the tip of the dopant supply pipe 31 is inserted into the opening.SELECTED DRAWING: Figure 1

Description

本発明は、FZ法(Floating Zone法)による単結晶製造装置及び単結晶の製造方法に関し、特に、シリコン単結晶中にドーパントを添加するための装置及び方法に関する。 The present invention relates to a single crystal manufacturing apparatus and a method for producing a single crystal by the FZ method (Floating Zone method), and more particularly to an apparatus and method for adding a dopant to a silicon single crystal.

シリコン単結晶の製造方法としてFZ法が知られている。FZ法は、多結晶シリコンからなる原料ロッドの一部を誘導加熱コイルで加熱して溶融帯を生成し、溶融帯の上方及び下方にそれぞれ位置する原料ロッド及び種結晶を徐々に降下させることにより、種結晶の上方に大きな単結晶を成長させる方法である。FZ法ではCZ法(Czochralski)法のように石英ルツボを使用しないため、酸素濃度が非常に低い単結晶を製造することができる。 The FZ method is known as a method for producing a silicon single crystal. In the FZ method, a part of a raw material rod made of polycrystalline silicon is heated by an induction heating coil to generate a melting zone, and the raw material rod and the seed crystal located above and below the melting zone are gradually lowered. , A method of growing a large single crystal above a seed crystal. Unlike the CZ method (Czochralski) method, the FZ method does not use a quartz crucible, so that a single crystal having a very low oxygen concentration can be produced.

シリコン単結晶中にドーパントを添加する方法として、溶融帯にドーパントを含むガスを吹き付けてドーパントを添加する方法が知られている。例えば特許文献1には、誘導加熱コイルの上方に設けたドーパントガス吹き付け用ノズルから溶融帯のネック部に向けてArベースのPHガスを吹き付けることが記載されている。 As a method of adding a dopant to a silicon single crystal, a method of spraying a gas containing a dopant on a melting zone to add the dopant is known. For example, Patent Document 1 describes that Ar-based PH 3 gas is blown from a nozzle for blowing a dopant gas provided above the induction heating coil toward the neck of the melting zone.

また特許文献2及び3には、FZ法による単結晶の製造方法おいて、誘導加熱コイルの下方に配置されたドーピングノズルから単結晶側の溶融帯に向けてドーパントガスを吹き付けることが記載されている。 Further, Patent Documents 2 and 3 describe that in the method for producing a single crystal by the FZ method, a dopant gas is blown from a doping nozzle arranged below the induction heating coil toward the melting zone on the single crystal side. There is.

特開2011−88758号公報Japanese Unexamined Patent Publication No. 2011-88758 特開2015−229612号公報JP-A-2015-229612 特開2011−225451号公報Japanese Unexamined Patent Publication No. 2011-225451

FZ法によるシリコン単結晶の製造方法において、単結晶の抵抗率の面内分布の均一化は重要な課題の一つである。本発明者らは、特許文献1のように溶融帯のネック部に向けてドーパントガスを供給した場合には、シリコン単結晶の外周部のドーパント濃度が低くなり、単結晶の外周部における抵抗率が高くなりやすいという問題があることを知見した。 In the method for producing a silicon single crystal by the FZ method, uniformization of the in-plane distribution of the resistivity of the single crystal is one of the important issues. When the dopant gas is supplied toward the neck portion of the fusion zone as in Patent Document 1, the dopant concentration in the outer peripheral portion of the silicon single crystal becomes low, and the resistivity in the outer peripheral portion of the single crystal becomes low. It was found that there is a problem that it tends to be high.

一方、特許文献2のように誘導加熱コイルの下方かつ単結晶より外側に配置したドーパント供給管から溶融帯にドーパントガスを供給した場合は、常に単結晶の最外周部に位置する溶融帯に向かう流れによるドーパント供給しか実現できず、単結晶面内のドーパント分布を任意に調整することができない。しかも、特許文献2のような供給形態では、溶融帯に取り込まれることなくそのまま排出されるドーパント量が増大してしまい、製造コストの上昇を招いてしまう問題がある。 On the other hand, when the dopant gas is supplied to the melting zone from the dopant supply pipe arranged below the induction heating coil and outside the single crystal as in Patent Document 2, it always goes to the melting zone located at the outermost periphery of the single crystal. Only the dopant supply by the flow can be realized, and the dopant distribution in the single crystal plane cannot be adjusted arbitrarily. Moreover, in the supply form as in Patent Document 2, there is a problem that the amount of dopant discharged as it is without being incorporated into the melting zone increases, which leads to an increase in manufacturing cost.

また、特許文献3では誘導加熱コイルと単結晶との空間内にドーパント供給管を設置した例が示されているが、誘導加熱コイルと単結晶との隙間が狭く、この隙間にドーピングノズルを安定的に設置することは困難であり、ドーパント供給管が溶融帯と接触するおそれがある。ドーパント供給管が溶融帯と接触してしまうと、単結晶成長そのものが行えなくなってしまう。 Further, Patent Document 3 shows an example in which a dopant supply tube is installed in the space between the induction heating coil and the single crystal, but the gap between the induction heating coil and the single crystal is narrow, and the doping nozzle is stabilized in this gap. It is difficult to install the dopant supply pipe, and the dopant supply pipe may come into contact with the melting zone. If the dopant supply tube comes into contact with the melting zone, the single crystal growth itself cannot be performed.

したがって、本発明の目的は、ドーパント供給管を安定的に設置しつつ、単結晶の抵抗率の面内分布をできるだけ均一にすることが可能な単結晶製造装置及び単結晶の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a single crystal manufacturing apparatus and a single crystal manufacturing method capable of making the in-plane distribution of the resistivity of a single crystal as uniform as possible while stably installing a dopant supply tube. There is.

上記課題を解決するため、本発明による単結晶製造装置は、FZ法による単結晶の製造に用いられる装置であって、原料ロッドを回転可能及び昇降可能に支持する上軸と、前記上軸と同軸配置され、前記原料ロッドの下方に配置された種結晶を回転可能及び昇降可能に支持する下軸と、前記原料ロッドを加熱して溶融帯を生成する誘導加熱コイルと、前記誘導加熱コイルの上面側に設置され、前記溶融帯にドーパントガスを供給するドーパント供給管とを備え、前記誘導加熱コイルは、上面から下面まで貫通する開口部を有し、前記ドーパント供給管の先端部は、前記開口部内に挿入されていることを特徴とする。 In order to solve the above problems, the single crystal manufacturing apparatus according to the present invention is an apparatus used for producing a single crystal by the FZ method, and includes an upper shaft that rotatably and vertically supports the raw material rod, and the upper shaft. A lower shaft that is coaxially arranged and rotatably and vertically supports a seed crystal arranged below the raw material rod, an induction heating coil that heats the raw material rod to generate a melting zone, and an induction heating coil. The induction heating coil is provided on the upper surface side and includes a dopant supply pipe that supplies the dopant gas to the melting zone, the induction heating coil has an opening that penetrates from the upper surface to the lower surface, and the tip portion of the dopant supply pipe is the said. It is characterized by being inserted into the opening.

また、本発明による単結晶の製造方法は、原料ロッドを誘導加熱コイルで加熱して溶融帯を形成し、前記溶融帯の上方及び下方にそれぞれ位置する前記原料ロッド及び単結晶を降下させて前記単結晶を成長させるFZ法による単結晶の製造方法であって、前記誘導加熱コイルの上面側から前記誘導加熱コイルの下面側に位置する前記溶融帯に向けてドーパントガスを吹き付けることを特徴とする。 Further, in the method for producing a single crystal according to the present invention, the raw material rod is heated by an induction heating coil to form a melting zone, and the raw material rod and the single crystal located above and below the melting zone are lowered to form the melting zone. A method for producing a single crystal by the FZ method for growing a single crystal, which comprises blowing a dopant gas from the upper surface side of the induction heating coil toward the melting zone located on the lower surface side of the induction heating coil. ..

本発明によれば、誘導加熱コイルよりも下方に位置する溶融帯の単結晶側溶融部にドーパントを供給することができる。単結晶側溶融部から導入されたドーパントは中心部に向かって拡散するため、単結晶の外周部のドーパント濃度を高めつつ、抵抗率の面内分布が均一な単結晶を製造することができる。また、ドーパント供給管は誘導加熱コイルの上面側に設置されているため、ドーパント供給管を安定的に設置することができ、単結晶側溶融部の上方から下向きにドーパントガスを供給することができる。 According to the present invention, the dopant can be supplied to the single crystal side melting portion of the melting zone located below the induction heating coil. Since the dopant introduced from the melting portion on the single crystal side diffuses toward the central portion, it is possible to produce a single crystal having a uniform in-plane distribution of resistivity while increasing the dopant concentration on the outer peripheral portion of the single crystal. Further, since the dopant supply pipe is installed on the upper surface side of the induction heating coil, the dopant supply pipe can be stably installed, and the dopant gas can be supplied downward from above the melting portion on the single crystal side. ..

本発明において、前記ドーパント供給管の先端部は、前記単結晶の中心から0.7R以上1R以下の領域内(ただしRは前記単結晶の最大半径)の直上に配置されていることが好ましく、前記単結晶の中心から0.7R以上1R以下の領域内に存在する前記溶融帯に向けて前記ドーパントガスを供給する好ましい。これにより、単結晶面内の抵抗率分布を十分に均一化させることができる。 In the present invention, the tip of the dopant supply tube is preferably arranged directly above the region of 0.7R or more and 1R or less (where R is the maximum radius of the single crystal) from the center of the single crystal. It is preferable to supply the dopant gas toward the melting zone existing in the region of 0.7R or more and 1R or less from the center of the single crystal. Thereby, the resistivity distribution in the single crystal plane can be sufficiently made uniform.

本発明による単結晶の製造方法は、前記誘導加熱コイルの内側開口部から最外周まで伸びるスリットを通じて前記溶融帯にドーパントガスを吹き付けることが好ましい。このように、誘導加熱コイルのスリットを利用することで、専用の開口部を用意することなくドーパント供給管の先端部が誘導加熱コイルを貫通するように構成することができる。 In the method for producing a single crystal according to the present invention, it is preferable to blow a dopant gas onto the molten zone through a slit extending from the inner opening of the induction heating coil to the outermost periphery. In this way, by using the slit of the induction heating coil, it is possible to configure the tip of the dopant supply tube to penetrate the induction heating coil without preparing a dedicated opening.

本発明によれば、ドーパント供給管を安定的に設置しつつ、単結晶の抵抗率の面内分布をできるだけ均一にすることが可能なFZ法による単結晶製造装置及び単結晶の製造方法を提供することができる。 According to the present invention, there is provided a single crystal manufacturing apparatus and a single crystal manufacturing method by the FZ method capable of making the in-plane distribution of the resistivity of a single crystal as uniform as possible while stably installing a dopant supply tube. can do.

図1は、本発明の実施の形態による単結晶製造装置の構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention. 図2は、誘導加熱コイル及びドーパント供給管の構成の一例を詳細に示す図であって、(a)は平面図、(b)は(a)のX−X線に沿った断面図、(c)は(a)の矢印X方向から見た側面図である。Figure 2 is a diagram showing in detail an example of the configuration of the induction heating coil and a dopant feed pipe, (a) is a plan view, (b) is a sectional view taken along the X 1 -X 1 line in (a) is a side view seen from an arrow X 0 direction (c) is (a). 図3は、誘導加熱コイル及びドーパント供給管の構成の他の例を詳細に示す図であって、(a)は平面図、(b)は(a)のX−X線に沿った断面図である。Figure 3 is a diagram showing in detail another example of the configuration of the induction heating coil and a dopant feed pipe, (a) is a plan view, the (b) along the X 1 -X 1 line in (a) It is a sectional view. 図4は、本発明例及び比較例によるウェーハサンプルの抵抗率の面内分布の最大偏差を示す図である。FIG. 4 is a diagram showing the maximum deviation of the in-plane distribution of the resistivity of the wafer sample according to the examples of the present invention and the comparative example. 図5は、シリコンウェーハ面内の抵抗率分布((抵抗率測定値−抵抗率目標値)/抵抗目標値)を示すグラフであって、(a)は比較例、(b)は本発明例をそれぞれ示している。FIG. 5 is a graph showing the resistivity distribution in the surface of the silicon wafer ((resistivity measurement value-resistivity target value) / resistivity target value), (a) is a comparative example, and (b) is an example of the present invention. Are shown respectively.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態による単結晶製造装置の構成を示す模式図である。 FIG. 1 is a schematic view showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.

図1に示すように、この単結晶製造装置1は、FZ法によりシリコン単結晶を育成するための装置であって、原料ロッド2を回転可能及び昇降可能に支持する上軸11と、上軸11と共に原料ロッド2を回転させながら下方に送る原料送り機構12と、上軸11と同軸配置され、原料ロッド2の下方に配置された種結晶3を回転可能及び昇降可能に支持する下軸13と、下軸13と共に種結晶3を回転させながら下方に送る結晶送り機構14と、結晶成長が進んで大型化したシリコン単結晶4のテーパー部4aに当接してシリコン単結晶4の重量を支える単結晶重量保持具17と、原料ロッド2の下端部を加熱する誘導加熱コイル20と、原料ロッド2とシリコン単結晶4との間の溶融帯5(シリコン融液)にドーパントを供給するドーパント供給装置30とを有している。 As shown in FIG. 1, this single crystal manufacturing apparatus 1 is an apparatus for growing a silicon single crystal by the FZ method, and has an upper shaft 11 that rotatably and vertically supports the raw material rod 2 and an upper shaft. A raw material feeding mechanism 12 that rotates the raw material rod 2 together with 11 and feeds it downward, and a lower shaft 13 that is coaxially arranged with the upper shaft 11 and supports the seed crystal 3 arranged below the raw material rod 2 so as to be rotatable and elevating. The crystal feeding mechanism 14 that rotates the seed crystal 3 together with the lower shaft 13 and sends it downward, and the tapered portion 4a of the silicon single crystal 4 that has grown in size due to the progress of crystal growth, abuts on the tapered portion 4a to support the weight of the silicon single crystal 4. Supplying a dopant that supplies a dopant to the single crystal weight holder 17, the induction heating coil 20 that heats the lower end of the raw material rod 2, and the fusion zone 5 (silicon melt) between the raw material rod 2 and the silicon single crystal 4. It has a device 30 and.

原料ロッド2はモノシラン等のシリコン原料を精製して得られた高純度多結晶シリコンからなり、原料ロッド2の上端部は原料保持具15を介して上軸11の下端部に取り付けられている。また種結晶3の下端部は種結晶保持具16を介して下軸13の上端部に取り付けられている。通常、原料ロッド2の最大直径はシリコン単結晶4の最大直径よりも小さい。 The raw material rod 2 is made of high-purity polycrystalline silicon obtained by purifying a silicon raw material such as monosilane, and the upper end portion of the raw material rod 2 is attached to the lower end portion of the upper shaft 11 via the raw material holder 15. The lower end of the seed crystal 3 is attached to the upper end of the lower shaft 13 via the seed crystal holder 16. Usually, the maximum diameter of the raw material rod 2 is smaller than the maximum diameter of the silicon single crystal 4.

誘導加熱コイル20は、原料ロッド2又は溶融帯5を取り囲む高周波コイルである。誘導加熱コイル20に高周波電圧を印加することにより、原料ロッド2の一部は誘導加熱されて溶融帯5が生成される。こうして生成された溶融帯5に種結晶3を融着させた後、原料ロッド2及びシリコン単結晶4を回転させながら下降させることにより、溶融帯5からシリコン単結晶4を成長させることができる。 The induction heating coil 20 is a high-frequency coil that surrounds the raw material rod 2 or the melting zone 5. By applying a high frequency voltage to the induction heating coil 20, a part of the raw material rod 2 is induced to be heated to form a melting zone 5. After the seed crystal 3 is fused to the molten zone 5 thus generated, the silicon single crystal 4 can be grown from the molten zone 5 by lowering the raw material rod 2 and the silicon single crystal 4 while rotating them.

ドーパント供給装置30は、溶融帯5にドーパントガスを吹き付けるドーパント供給管31を有している。図示のように、溶融帯5は、誘導加熱コイル20の上方に位置する原料側溶融部5aと、誘導加熱コイル20の内側開口部内に位置するネック部5bと、誘導加熱コイル20の下方に位置する単結晶側溶融部5cとを有しており、ドーパント供給管31は単結晶側溶融部5cにドーパントガスを吹き付ける。溶融帯5へのドーパントの供給量はドーパントガスの濃度を変えることによって調整される。ドーパントの供給量を安定的に制御するためにはドーパントガスの流量を一定に維持し、ドーパントガスの濃度のみを調整することが好ましい。 The dopant supply device 30 has a dopant supply pipe 31 that blows a dopant gas onto the melting zone 5. As shown in the figure, the melting zone 5 is located below the induction heating coil 20, the raw material side melting portion 5a located above the induction heating coil 20, the neck portion 5b located inside the inner opening of the induction heating coil 20, and the induction heating coil 20. The single crystal side melting portion 5c is provided, and the dopant supply pipe 31 blows the dopant gas onto the single crystal side melting portion 5c. The amount of dopant supplied to the melting zone 5 is adjusted by changing the concentration of the dopant gas. In order to stably control the supply amount of the dopant, it is preferable to keep the flow rate of the dopant gas constant and adjust only the concentration of the dopant gas.

ドーパント供給管31は、石英ガラス製の細長い配管である。本実施形態によるドーパント供給管31は略L字型の配管であって、誘導加熱コイル20の上面に沿って略水平方向に伸びた後、略直角に折り曲げられた下向きの先端部を有している。ドーパント供給管31の先端部は、誘導加熱コイル20を貫通してその下面よりも下方に突出しており、単結晶側溶融部5cの外周部にドーパントガスを吹き付けることができるように構成されている(図1参照)。ドーパント供給管31の先端部は、単結晶側溶融部5cから離間して設けられると共に、平面視にてシリコン単結晶4の中心から好ましくは0.7R以上1R以下の領域内(ただしRは単結晶の最大半径)、より好ましくは0.8R以上0.95R以下の領域内に配置されている。 The dopant supply pipe 31 is an elongated pipe made of quartz glass. The dopant supply pipe 31 according to the present embodiment is a substantially L-shaped pipe, and has a downward tip portion that is bent at a substantially right angle after extending in a substantially horizontal direction along the upper surface of the induction heating coil 20. There is. The tip of the dopant supply pipe 31 penetrates the induction heating coil 20 and projects below the lower surface thereof, and is configured so that the dopant gas can be sprayed on the outer peripheral portion of the single crystal side melting portion 5c. (See FIG. 1). The tip of the dopant supply tube 31 is provided apart from the single crystal side melting portion 5c, and is preferably within a region of 0.7R or more and 1R or less from the center of the silicon single crystal 4 in a plan view (however, R is simple). The maximum radius of the crystal), more preferably 0.8R or more and 0.95R or less.

図2は、誘導加熱コイル20及びドーパント供給管31の構成の一例を詳細に示す図であって、(a)は平面図、(b)は(a)のX−X線に沿った断面図、(c)は(a)の矢印X方向から見た側面図である。 Figure 2 is a diagram showing in detail an example of the configuration of the induction heating coil 20 and the dopant feed pipe 31, (a) is a plan view, the (b) along the X 1 -X 1 line in (a) sectional view, a side view seen from an arrow X 0 direction (c) is (a).

図2(a)〜(c)に示すように、誘導加熱コイル20は、略円環状の導体板からなるコイル導体21と、コイル導体21に高周波電圧を印加するための一対の端子電極22,22とを有している。コイル導体21は主に銅又は銀からなり、一対の端子電極22,22は図示しない交流電源に接続されている。 As shown in FIGS. 2A to 2C, the induction heating coil 20 includes a coil conductor 21 made of a substantially annular conductor plate and a pair of terminal electrodes 22 for applying a high frequency voltage to the coil conductor 21. It has 22 and. The coil conductor 21 is mainly made of copper or silver, and the pair of terminal electrodes 22 and 22 are connected to an AC power supply (not shown).

コイル導体21は、円板状の導体の中心部に内側開口部23が形成され、さらに内側開口部23から径方向に伸びるスリット24によって円環状の導体の一部が周方向に分断されている。スリット24は周方向に近接する一対の端子電極22,22の間に配置されており、一対の端子電極22,22の接続位置を周方向に分断している。コイル導体21の外径は原料ロッド2及びシリコン単結晶4の直径(直胴部4bの直径)よりも大きく、コイル導体21の内径(内側開口部23の直径)は原料ロッド2及びシリコン単結晶4の直径よりも小さい。 In the coil conductor 21, an inner opening 23 is formed in the center of the disk-shaped conductor, and a part of the annular conductor is divided in the circumferential direction by a slit 24 extending in the radial direction from the inner opening 23. .. The slit 24 is arranged between the pair of terminal electrodes 22 and 22 that are close to each other in the circumferential direction, and divides the connection position of the pair of terminal electrodes 22 and 22 in the circumferential direction. The outer diameter of the coil conductor 21 is larger than the diameter of the raw material rod 2 and the silicon single crystal 4 (diameter of the straight body portion 4b), and the inner diameter of the coil conductor 21 (diameter of the inner opening 23) is larger than the diameter of the raw material rod 2 and the silicon single crystal. It is smaller than the diameter of 4.

ドーパント供給管31は、誘導加熱コイル20の上面に沿って略水平方向に伸びるストレート部31aと、ストレート部31aの先端部が略直角に折り曲げられてなる下向きの先端部31bとを有している。ドーパント供給管31のストレート部31aは、平面視でスリット24の延在方向(X方向)と異なる方向に延設されていることが好ましい。このようにすることで、ドーパント供給管31を誘導加熱コイル20の上面に安定的に設置することができる。 The dopant supply pipe 31 has a straight portion 31a extending in a substantially horizontal direction along the upper surface of the induction heating coil 20, and a downward tip portion 31b in which the tip portion of the straight portion 31a is bent at a substantially right angle. .. It is preferable that the straight portion 31a of the dopant supply pipe 31 extends in a direction different from the extending direction (X direction) of the slit 24 in a plan view. By doing so, the dopant supply pipe 31 can be stably installed on the upper surface of the induction heating coil 20.

また誘導加熱コイル20に設けられたスリット24を開口部として利用してドーパント供給管31を設けることにより、専用の開口部を設けることなく下向きのドーパント供給管31を設置することができる。ドーパント供給管31の先端部31bは、誘導加熱コイル20の上面側からスリット24を通って下面側に達しており、下面よりも下方に突出している。単結晶側溶融部5cの外周部(肩部)の上方から下方に向けてドーパントガスを吹き付けることにより、ドーパントガスは単結晶側溶融部5cに取り込まれやすくなるので、単結晶側溶融部5cに取り込まれるドーパントの量を増やすことができる。 Further, by providing the dopant supply pipe 31 by using the slit 24 provided in the induction heating coil 20 as an opening, the downward dopant supply pipe 31 can be installed without providing a dedicated opening. The tip portion 31b of the dopant supply pipe 31 reaches the lower surface side from the upper surface side of the induction heating coil 20 through the slit 24, and projects downward from the lower surface side. By spraying the dopant gas from above to below the outer peripheral portion (shoulder portion) of the single crystal side melting portion 5c, the dopant gas is easily taken into the single crystal side melting portion 5c, so that the dopant gas is easily taken into the single crystal side melting portion 5c. The amount of dopant incorporated can be increased.

誘導加熱コイル20のスリット24内には放電防止用の絶縁部材25が充填されていることが好ましい。この場合、ドーパント供給管31の挿入位置には絶縁部材25を設けず、径方向に伸びるスリット24の一部を開口部として残しておくことにより、スリット24を開口部として利用することができ、さらに絶縁部材25をドーパント供給管31の位置決め部材及び固定部材として利用することができる。なお説明の便宜上、図2(c)では絶縁部材25の図示を省略している。 It is preferable that the slit 24 of the induction heating coil 20 is filled with an insulating member 25 for preventing electric discharge. In this case, the slit 24 can be used as an opening by not providing the insulating member 25 at the insertion position of the dopant supply pipe 31 and leaving a part of the slit 24 extending in the radial direction as an opening. Further, the insulating member 25 can be used as a positioning member and a fixing member of the dopant supply pipe 31. For convenience of explanation, the insulating member 25 is not shown in FIG. 2 (c).

誘導加熱コイル20と単結晶側溶融部5cとの間隔は狭いため、従来のように誘導加熱コイル20の下面側にドーパント供給管31を配置することは非常に困難である。誘導加熱コイル20の上面側にドーパント供給管31を設置することも難しいが、原料ロッド2のサイズ(直径)がシリコン単結晶4よりも小さいため、誘導加熱コイル20の外周部寄りであればドーパント供給管31の設置は可能であり、これにより単結晶側溶融部5cへの局所的なドーパント供給が可能である。 Since the distance between the induction heating coil 20 and the single crystal side melting portion 5c is narrow, it is very difficult to arrange the dopant supply pipe 31 on the lower surface side of the induction heating coil 20 as in the conventional case. It is difficult to install the dopant supply pipe 31 on the upper surface side of the induction heating coil 20, but since the size (diameter) of the raw material rod 2 is smaller than that of the silicon single crystal 4, the dopant is located near the outer periphery of the induction heating coil 20. The supply pipe 31 can be installed, whereby the dopant can be locally supplied to the single crystal side molten portion 5c.

図3は、誘導加熱コイル20及びドーパント供給管31の構成の他の例を詳細に示す図であって、(a)は平面図、(b)は(a)のX−X線に沿った断面図である。 Figure 3 is a diagram showing in detail another example of the configuration of the induction heating coil 20 and the dopant feed pipe 31, (a) is a plan view, (b) the X 1 -X 1 line in (a) It is a cross-sectional view along.

図3(a)及び(b)に示すように、誘導加熱コイル20には、ドーパント供給管31の先端部31bを貫通させるための専用の開口部26がスリット24とは別に設けられていてもよい。このような構成であっても、ドーパント供給管31を誘導加熱コイル20の上方に配置しつつ、単結晶側溶融部5cにドーパントガスを吹き付けることができる。 As shown in FIGS. 3A and 3B, even if the induction heating coil 20 is provided with a dedicated opening 26 for penetrating the tip portion 31b of the dopant supply pipe 31 separately from the slit 24. Good. Even with such a configuration, the dopant gas can be sprayed on the single crystal side melting portion 5c while arranging the dopant supply pipe 31 above the induction heating coil 20.

以上説明したように、本実施形態による単結晶製造装置1は、原料ロッド2を誘導加熱コイル20により加熱して溶融帯5を生成すると共に、誘導加熱コイル20を貫通するように下向きに配置されたドーパント供給管31を用いて溶融帯5の単結晶側溶融部5cにドーパントガスを吹き付けるので、ドーパントを単結晶側溶融部5cの隅々まで均一に行き渡らせることができ、シリコン単結晶4の外周部の抵抗率の増加を抑えて面内均一な抵抗率分布を実現することができる。またドーパント供給管31は誘導加熱コイル20の上面側に設置され、ドーパント供給管31の先端部31bが誘導加熱コイル20を貫通するように設けられているので、ドーパント供給管31を安定的に設置することができ、単結晶側溶融部5cの上方から下向きにドーパントガスを供給することができる。 As described above, the single crystal manufacturing apparatus 1 according to the present embodiment heats the raw material rod 2 by the induction heating coil 20 to generate a melting zone 5, and is arranged downward so as to penetrate the induction heating coil 20. Since the dopant gas is sprayed onto the single crystal side melting portion 5c of the melting zone 5 by using the dopant supply pipe 31, the dopant can be uniformly distributed to every corner of the single crystal side melting portion 5c, and the silicon single crystal 4 can be uniformly distributed. It is possible to realize a uniform in-plane resistance distribution by suppressing an increase in the resistance of the outer peripheral portion. Further, since the dopant supply pipe 31 is installed on the upper surface side of the induction heating coil 20 and the tip portion 31b of the dopant supply pipe 31 is provided so as to penetrate the induction heating coil 20, the dopant supply pipe 31 is stably installed. The dopant gas can be supplied downward from above the single crystal side melting portion 5c.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. Needless to say, it is included in the range.

例えば、上記実施形態においてはシリコン単結晶の製造方法を例に挙げたが、本発明はシリコン単結晶に限定されず、種々の単結晶を対象とすることができる。 For example, in the above embodiment, the method for producing a silicon single crystal has been given as an example, but the present invention is not limited to the silicon single crystal, and various single crystals can be targeted.

本発明例として、図1に示す誘導加熱コイルを貫通するドーパント供給管を用いて溶融帯の単結晶側溶融部の外周部にドーパントガスを吹き付けて、直径200mmのシリコン単結晶の育成を行った。具体的には、単結晶の中心から0.8R位置にドーパント供給管先端部の外径が位置するようにして、ホスフィンガスをアルゴンガスで希釈したドーパントガスを吹き付けた。 As an example of the present invention, a dopant gas was sprayed on the outer peripheral portion of the single crystal side melting portion of the melting zone using a dopant supply pipe penetrating the induction heating coil shown in FIG. 1 to grow a silicon single crystal having a diameter of 200 mm. .. Specifically, the dopant gas obtained by diluting the phosphine gas with argon gas was sprayed so that the outer diameter of the tip of the dopant supply tube was located 0.8R from the center of the single crystal.

比較例として、誘導加熱コイルの上側に設けたドーパント供給管から溶融帯のネック部に向けてホスフィンガスをアルゴンガスで希釈したドーパントガスを吹き付けて、直径200mmのシリコン単結晶の育成を行った。なお、ドーパントガスの吹き付け態様を変更した以外は、本発明例と比較例の単結晶育成条件は同条件とした。 As a comparative example, a dopant gas obtained by diluting phosphine gas with argon gas was sprayed from a dopant supply pipe provided on the upper side of the induction heating coil toward the neck portion of the melting zone to grow a silicon single crystal having a diameter of 200 mm. The single crystal growth conditions of the examples of the present invention and the comparative examples were the same except that the spraying mode of the dopant gas was changed.

次に、本発明例及び比較例で育成したシリコン単結晶をそれぞれ加工してシリコンウェーハのサンプルを25枚ずつ用意した。ウェーハサンプルの抵抗率を直径方向にスキャンし、ウェーハの一方の外周位置(最外周から内側に6mmの位置)、一方の中間位置(−R/2)、ウェーハ中心位置(C)、他方の中間位置(+R/2)、ウェーハの他方の外周位置(最外周から内側に6mmの位置)の合計5点の抵抗率を測定した。その後、25枚のウェーハサンプルの抵抗率の面内分布の最大偏差を比較した。その結果、図4に示すように、本発明例では比較例と比べて良化傾向にあることが分かった。 Next, 25 silicon wafer samples were prepared by processing the silicon single crystals grown in the examples of the present invention and the comparative examples. The resistivity of the wafer sample is scanned in the radial direction, and one outer peripheral position (6 mm inward from the outermost circumference) of the wafer, one intermediate position (-R / 2), the wafer center position (C), and the other intermediate position. The resistivity at a total of 5 points was measured at the position (+ R / 2) and the other outer peripheral position of the wafer (position 6 mm inward from the outermost circumference). Then, the maximum deviation of the in-plane distribution of the resistivity of 25 wafer samples was compared. As a result, as shown in FIG. 4, it was found that the examples of the present invention tended to improve as compared with the comparative examples.

図5は、シリコンウェーハ面内の抵抗率分布((抵抗率測定値−抵抗率目標値)/抵抗目標値)を示すグラフであって、(a)は比較例、(b)は本発明例をそれぞれ示している。 FIG. 5 is a graph showing the resistivity distribution in the surface of the silicon wafer ((resistivity measurement value-resistivity target value) / resistivity target value), (a) is a comparative example, and (b) is an example of the present invention. Are shown respectively.

図5(a)に示す比較例によるシリコンウェーハの抵抗率分布はウェーハ外周部における抵抗率の増加が大きいのに対して、図5(b)に示す本発明例によるシリコンウェーハの抵抗率分布はウェーハ外周部における抵抗率の増加が小さく、抵抗率の面内ばらつきが小さいことが確認された。 The resistivity distribution of the silicon wafer according to the comparative example shown in FIG. 5 (a) shows a large increase in the resistivity at the outer peripheral portion of the wafer, whereas the resistivity distribution of the silicon wafer according to the example of the present invention shown in FIG. 5 (b) is It was confirmed that the increase in resistivity at the outer periphery of the wafer was small and the in-plane variation in resistivity was small.

1 単結晶製造装置
2 原料ロッド
3 種結晶
4 シリコン単結晶
4a テーパー部
4b 直胴部
5 溶融帯
5a 原料側溶融部
5b ネック部
5c 単結晶側溶融部
11 上軸
12 料送り機構
13 下軸
14 晶送り機構
15 原料保持具
16 種結晶保持具
17 単結晶重量保持具
20 誘導加熱コイル
21 コイル導体
22 端子電極
23 内側開口部
24 スリット
25 絶縁部材
26 開口部
30 ドーパント供給装置
31 ドーパント供給管
31a ストレート部
31b ノズル部
1 Single crystal manufacturing equipment 2 Raw material rod 3 Seed crystal 4 Silicon single crystal 4a Tapered part 4b Straight body part 5 Melting zone 5a Raw material side melting part 5b Neck part 5c Single crystal side melting part 11 Upper shaft 12 Feeding mechanism 13 Lower shaft 14 Crystal feed mechanism 15 Raw material holder 16 Seed crystal holder 17 Single crystal weight holder 20 Inductive heating coil 21 Coil conductor 22 Terminal electrode 23 Inner opening 24 Slit 25 Insulation member 26 Opening 30 Dopant supply device 31 Dopant supply pipe 31a Straight Part 31b Nozzle part

Claims (6)

FZ法による単結晶の製造に用いられる単結晶製造装置であって、
原料ロッドを回転可能及び昇降可能に支持する上軸と、
前記上軸と同軸配置され、前記原料ロッドの下方に配置された種結晶を回転可能及び昇降可能に支持する下軸と、
前記原料ロッドを加熱して溶融帯を生成する誘導加熱コイルと、
前記誘導加熱コイルの上面側に設置され、前記溶融帯にドーパントガスを供給するドーパント供給管とを備え、
前記誘導加熱コイルは、上面から下面まで貫通する開口部を有し、
前記ドーパント供給管の先端部は、前記開口部内に挿入されていることを特徴とする単結晶製造装置。
A single crystal manufacturing apparatus used for manufacturing a single crystal by the FZ method.
An upper shaft that supports the raw material rod so that it can rotate and move up and down,
A lower shaft coaxially arranged with the upper shaft and rotatably and vertically supporting a seed crystal arranged below the raw material rod,
An induction heating coil that heats the raw material rod to generate a melting zone,
A dopant supply pipe which is installed on the upper surface side of the induction heating coil and supplies a dopant gas to the melting zone is provided.
The induction heating coil has an opening that penetrates from the upper surface to the lower surface.
A single crystal manufacturing apparatus characterized in that the tip end portion of the dopant supply tube is inserted into the opening portion.
前記ドーパント供給管の先端部は、前記単結晶の中心から0.7R以上1R以下の領域内(ただしRは前記単結晶の最大半径)の直上に配置されている、請求項1に記載の単結晶製造装置。 The single according to claim 1, wherein the tip of the dopant supply tube is arranged directly above the region of 0.7R or more and 1R or less (where R is the maximum radius of the single crystal) from the center of the single crystal. Crystal manufacturing equipment. 前記開口部は、前記誘導加熱コイルの内側開口部から最外周まで伸びるスリットである、請求項1又は2に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 1 or 2, wherein the opening is a slit extending from the inner opening of the induction heating coil to the outermost circumference. 原料ロッドを誘導加熱コイルで加熱して溶融帯を形成し、前記溶融帯の上方及び下方にそれぞれ位置する前記原料ロッド及び単結晶を降下させて前記単結晶を成長させるFZ法による単結晶の製造方法であって、
前記誘導加熱コイルの上面側から前記誘導加熱コイルの下面側に位置する前記溶融帯に向けてドーパントガスを吹き付けることを特徴とする単結晶の製造方法。
Production of a single crystal by the FZ method in which a raw material rod is heated by an induction heating coil to form a melting zone, and the raw material rod and the single crystal located above and below the melting zone are lowered to grow the single crystal. It ’s a method,
A method for producing a single crystal, which comprises blowing a dopant gas from the upper surface side of the induction heating coil toward the melting zone located on the lower surface side of the induction heating coil.
前記単結晶の中心から0.7R以上1R以下の領域内(ただしRは前記単結晶の最大半径)に存在する前記溶融帯に向けて前記ドーパントガスを供給する、請求項4に記載の単結晶の製造方法。 The single crystal according to claim 4, wherein the dopant gas is supplied toward the melting zone existing in a region of 0.7R or more and 1R or less from the center of the single crystal (where R is the maximum radius of the single crystal). Manufacturing method. 前記誘導加熱コイルの内側開口部から最外周まで伸びるスリットを通じて前記溶融帯に前記ドーパントガスを吹き付ける、請求項4又は5に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 4 or 5, wherein the dopant gas is blown onto the molten zone through a slit extending from the inner opening of the induction heating coil to the outermost periphery.
JP2019219532A 2019-12-04 2019-12-04 Single crystal manufacturing apparatus and single crystal manufacturing method Active JP7259722B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019219532A JP7259722B2 (en) 2019-12-04 2019-12-04 Single crystal manufacturing apparatus and single crystal manufacturing method
CN202011405782.9A CN112899771B (en) 2019-12-04 2020-12-04 Single crystal production apparatus and single crystal production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219532A JP7259722B2 (en) 2019-12-04 2019-12-04 Single crystal manufacturing apparatus and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2021088483A true JP2021088483A (en) 2021-06-10
JP7259722B2 JP7259722B2 (en) 2023-04-18

Family

ID=76111382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219532A Active JP7259722B2 (en) 2019-12-04 2019-12-04 Single crystal manufacturing apparatus and single crystal manufacturing method

Country Status (2)

Country Link
JP (1) JP7259722B2 (en)
CN (1) CN112899771B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266386A (en) * 1985-05-20 1986-11-26 シ−メンス、アクチエンゲゼルシヤフト Semiconductor rod doping device
JPH09142988A (en) * 1995-10-12 1997-06-03 Wacker Siltronic G Fuer Halbleitermaterialien Ag Method and apparatus for forming silicon single crystal
JP2015229612A (en) * 2014-06-05 2015-12-21 株式会社Sumco Manufacturing method of single crystal
CN110438558A (en) * 2019-08-14 2019-11-12 天津中环领先材料技术有限公司 It is a kind of improve zone melting single-crystal uniformity gas mix coil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029637B2 (en) * 2009-03-13 2012-09-19 信越半導体株式会社 Manufacturing method of semiconductor single crystal
DK2679706T3 (en) * 2011-02-23 2018-12-17 Shinetsu Handotai Kk PROCEDURE FOR MANUFACTURING N-TYPE SILICON MONO CRYSTAL
JP5234148B2 (en) * 2011-08-04 2013-07-10 信越半導体株式会社 Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
CN202246977U (en) * 2011-08-08 2012-05-30 中国电子科技集团公司第四十六研究所 Crystal supporting device for growing zone-melting monocrystal
CN105177698A (en) * 2015-10-19 2015-12-23 天津市环欧半导体材料技术有限公司 Gas blowing coil for zone-melting gas-doped monocrystalline
CN107177882A (en) * 2016-03-11 2017-09-19 上海新昇半导体科技有限公司 Zone-melting process growing silicon single crystal gas injection and radio frequency heating integrated device and method
CN106995935B (en) * 2017-05-23 2023-04-18 天津中环领先材料技术有限公司 Doping device for improving radial resistivity distribution of zone-melting silicon single crystal
CN107937978A (en) * 2017-12-11 2018-04-20 中国电子科技集团公司第四十六研究所 A kind of impurity gas charging device for being used to produce vapor doping zone-melted silicon single crystal
JP6954088B2 (en) * 2017-12-19 2021-10-27 株式会社Sumco Method for manufacturing silicon single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266386A (en) * 1985-05-20 1986-11-26 シ−メンス、アクチエンゲゼルシヤフト Semiconductor rod doping device
JPH09142988A (en) * 1995-10-12 1997-06-03 Wacker Siltronic G Fuer Halbleitermaterialien Ag Method and apparatus for forming silicon single crystal
JP2015229612A (en) * 2014-06-05 2015-12-21 株式会社Sumco Manufacturing method of single crystal
CN110438558A (en) * 2019-08-14 2019-11-12 天津中环领先材料技术有限公司 It is a kind of improve zone melting single-crystal uniformity gas mix coil

Also Published As

Publication number Publication date
JP7259722B2 (en) 2023-04-18
CN112899771B (en) 2023-12-29
CN112899771A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
JP5240191B2 (en) Silicon single crystal pulling device
CN110573661A (en) method for producing single crystal silicon, rectifying member, and single crystal pulling apparatus
KR20050083602A (en) Graphite heater for producing single crystal, single crystal production system and single crystal production method
CN109778313B (en) Apparatus and method for manufacturing silicon single crystal
JP4862826B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2015229612A (en) Manufacturing method of single crystal
JP7259722B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
US7077905B2 (en) Apparatus for pulling a single crystal
JP6998460B2 (en) Manufacturing equipment and method for manufacturing tubular single crystals
JP7552498B2 (en) Induction heating coil, single crystal manufacturing apparatus using the same, and method for manufacturing single crystal
JP7120464B2 (en) Induction heating coil and single crystal manufacturing apparatus using the same
JP2007204332A (en) Device and method for manufacturing single crystal
KR20100015251A (en) Apparatus and method for manufacturing semiconductor single crystal ingot using cusp magnetic field
JP7255468B2 (en) Induction heating coil and single crystal manufacturing apparatus using the same
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
JP2005231958A (en) Apparatus for growing sapphire single crystal
JP2021075425A (en) Method for manufacturing silicon single crystal
WO2023112550A1 (en) Induction heating coil and single crystal production device using same
JP2007210865A (en) Silicon single crystal pulling device
JP5345511B2 (en) Silicon single crystal manufacturing apparatus and silicon single crystal manufacturing method
JP2024018607A (en) silicon single crystal
JP2004315292A (en) Graphite heater for manufacturing single crystal, single crystal manufacturing unit, and manufacturing method of single crystal
TW202223175A (en) Method for producing single crystal, magnetic field generator and apparatus for producing single crystal
JP2004217503A (en) Graphite heater for producing single crystal, single crystal production device, and single crystal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7259722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150