JP2004217503A - Graphite heater for producing single crystal, single crystal production device, and single crystal production method - Google Patents

Graphite heater for producing single crystal, single crystal production device, and single crystal production method Download PDF

Info

Publication number
JP2004217503A
JP2004217503A JP2003285312A JP2003285312A JP2004217503A JP 2004217503 A JP2004217503 A JP 2004217503A JP 2003285312 A JP2003285312 A JP 2003285312A JP 2003285312 A JP2003285312 A JP 2003285312A JP 2004217503 A JP2004217503 A JP 2004217503A
Authority
JP
Japan
Prior art keywords
single crystal
width
slit
graphite heater
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003285312A
Other languages
Japanese (ja)
Other versions
JP4148060B2 (en
Inventor
Masahiro Sakurada
昌弘 櫻田
Izumi Fusegawa
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003285312A priority Critical patent/JP4148060B2/en
Publication of JP2004217503A publication Critical patent/JP2004217503A/en
Application granted granted Critical
Publication of JP4148060B2 publication Critical patent/JP4148060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a graphite heater for producing single crystals by which, at the time when silicon single crystals are pulled up in a prescribed non-defective region or a prescribed defective region, the silicon single crystals can be produced at high productive efficiency. <P>SOLUTION: The graphite heater used for producing single crystals by the Czochralski method is at least provided with a terminal part fed with electric current and a cylindrical heat generation part by resistance heating, and is arranged so as to surround a crucible housing a raw material melt. In the heat generation part, a heat generation slit part is formed in such a manner that upper slits elongating downward from the upper ends thereof and lower slits elongating upward from the lower ends thereof are alternatively provided. Also, the upper slits consist of long and short two kinds. The width of the lower end of each long upper slit is wider than the width of the upper end, and/or the width of the lower end of each lower slit is wider than the width of the upper end, and the heat generation distribution in the heat generation part is changed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、チョクラルスキー法によって単結晶を製造する際に用いる単結晶製造用黒鉛ヒーター及びそれを用いた単結晶製造装置ならびに単結晶製造方法に関し、特に単結晶の結晶欠陥を高精度に制御し且つその単結晶を生産効率良く製造するのに適した単結晶製造用黒鉛ヒーター及びそれを用いた単結晶製造装置並びに単結晶製造方法に関する。   The present invention relates to a graphite heater for producing a single crystal used when producing a single crystal by the Czochralski method, a single crystal production apparatus using the same, and a single crystal production method, and in particular, to precisely control a crystal defect of a single crystal. The present invention relates to a graphite heater for producing a single crystal which is suitable for producing the single crystal with high production efficiency, a single crystal producing apparatus and a single crystal producing method using the same.

半導体デバイスの基板として用いられる単結晶は、例えばシリコン単結晶があり、主にチョクラルスキー法(Czochralski Method、以下CZ法と略称する)により製造されている。   A single crystal used as a substrate of a semiconductor device includes, for example, a silicon single crystal, and is mainly manufactured by a Czochralski method (hereinafter abbreviated as a CZ method).

CZ法により単結晶を製造する際には、例えば図6に示すような単結晶製造装置10を用いて製造される。この単結晶製造装置10は、例えばシリコンのような原料多結晶を収容して溶融するための部材や、熱を遮断するための断熱部材などを有しており、これらは、メインチャンバー11内に収容されている。メインチャンバー11の天井部からは上に伸びる引き上げチャンバー12が連接されており、この上部に単結晶13をワイヤー14で引上げる機構(不図示)が設けられている。   When a single crystal is manufactured by the CZ method, the single crystal is manufactured using, for example, a single crystal manufacturing apparatus 10 as shown in FIG. The single crystal manufacturing apparatus 10 includes a member for accommodating and melting a raw material polycrystal such as silicon, a heat insulating member for shutting off heat, and the like. Is housed. A pulling chamber 12 extending upward from the ceiling of the main chamber 11 is connected, and a mechanism (not shown) for pulling a single crystal 13 by a wire 14 is provided above the pulling chamber 12.

メインチャンバー11内には、溶融された原料融液15を収容する石英ルツボ16とその石英ルツボ16を支持する黒鉛ルツボ17が設けられ、これらのルツボ16、17は駆動機構(不図示)によって回転昇降自在にシャフト18で支持されている。このルツボ16、17の駆動機構は、単結晶13の引き上げに伴う原料融液15の液面低下を補償すべく、ルツボ16、17を液面低下分だけ上昇させるようにしている。   In the main chamber 11, a quartz crucible 16 for accommodating the melted raw material melt 15 and a graphite crucible 17 for supporting the quartz crucible 16 are provided, and these crucibles 16 and 17 are rotated by a driving mechanism (not shown). It is supported by a shaft 18 so as to be able to move up and down. The drive mechanism of the crucibles 16 and 17 raises the crucibles 16 and 17 by an amount corresponding to the lowering of the liquid level in order to compensate for the lowering of the liquid level of the raw material melt 15 due to the pulling of the single crystal 13.

そして、ルツボ16、17を囲繞するように、原料を溶融させるための黒鉛ヒーター19が配置されている。この黒鉛ヒーター19の外側には、黒鉛ヒーター19からの熱がメインチャンバー11に直接輻射されるのを防止するために、断熱部材20がその周囲を取り囲むように設けられている。   A graphite heater 19 for melting the raw material is arranged so as to surround the crucibles 16 and 17. Outside the graphite heater 19, a heat insulating member 20 is provided so as to surround the periphery thereof in order to prevent heat from the graphite heater 19 from being directly radiated to the main chamber 11.

また、引き上げた単結晶を冷却する冷却筒23とその下部に黒鉛筒24が設けられ、これに上部より冷却ガスを下流して引き上げた単結晶を冷却できるようにしている。さらに、黒鉛筒24の内側下端に原料融液15と対向するように内側断熱筒25を設けて融液面からの輻射をカットするとともに結晶からの輻射熱を上方に逃がす構造とし、さらに黒鉛筒24の外側下端に原料融液15と対向するように外側断熱材26を設けて融液面からの輻射をカットするとともに原料融液表面を保温するようにしている。   Further, a cooling cylinder 23 for cooling the pulled single crystal and a graphite cylinder 24 provided below the cooling cylinder 23 are provided so that the cooling gas can be cooled downstream from the upper part to cool the pulled single crystal. Further, an inner heat insulating tube 25 is provided at the lower end on the inner side of the graphite tube 24 so as to face the raw material melt 15 so as to cut off radiation from the melt surface and to radiate radiant heat from the crystal upward. An outer heat insulating material 26 is provided at the lower end of the outside so as to face the raw material melt 15 so as to cut off radiation from the melt surface and keep the surface of the raw material melt warm.

尚、通常用いられる黒鉛ヒーター19を図7に示した。この黒鉛ヒーターの形状は、円筒形状であり、主に等方性黒鉛でできている。現在主流である直流方式では、端子部27を2本配し、その端子部27で黒鉛ヒーター19を支える構造になっている。黒鉛ヒーター19の発熱部28は、より効率的に発熱できるように、発熱部28の上端から下へ延びる上スリット29と、発熱部28の下端から上へ延びる下スリット30の2種類のスリット29、30が数箇所から数十箇所刻まれている。このような黒鉛ヒーター19は、発熱部28のうち、特に、上スリット29の下端と下スリット30の上端の間の部分である各発熱スリット部31から主に発熱する。   FIG. 7 shows a commonly used graphite heater 19. The shape of this graphite heater is cylindrical, and is mainly made of isotropic graphite. In the current mainstream DC system, two terminal portions 27 are arranged, and the terminal portion 27 supports the graphite heater 19. The heating portion 28 of the graphite heater 19 has two types of slits 29, an upper slit 29 extending downward from the upper end of the heating portion 28 and a lower slit 30 extending upward from the lower end of the heating portion 28, so as to generate heat more efficiently. , 30 are carved from several places to tens of places. Such a graphite heater 19 mainly generates heat mainly from the respective heat generating slit portions 31 which are portions between the lower end of the upper slit 29 and the upper end of the lower slit 30 among the heat generating portions 28.

以上のような図6に示した単結晶製造装置内に配置された石英ルツボ16に原料塊を収容し、このルツボ16を、上記のような黒鉛ヒーター19により加熱し、石英ルツボ16内の原料塊を溶融させる。このように原料塊を溶融させたものである原料融液15に、ワイヤー14の下端に接続している種ホルダー21で固定された種結晶22を着液させ、その後、種結晶22を回転させながら引き上げることにより、種結晶22の下方に所望の直径と品質を有する単結晶13を育成する。この際、種結晶22を原料融液15に着液させた後に、直径を3mm程度に一旦細くして絞り部を形成するいわゆる種絞り(ネッキング)を行い、次いで、所望の口径になるまで太らせて、無転位の結晶を引き上げている。   The raw material mass is accommodated in the quartz crucible 16 arranged in the single crystal manufacturing apparatus shown in FIG. 6 as described above, and this crucible 16 is heated by the graphite heater 19 as described above. Melt the mass. The seed crystal 22 fixed by the seed holder 21 connected to the lower end of the wire 14 is immersed in the raw material melt 15 obtained by melting the raw material lump as described above, and then the seed crystal 22 is rotated. The single crystal 13 having a desired diameter and quality is grown below the seed crystal 22 by pulling. At this time, after the seed crystal 22 is immersed in the raw material melt 15, so-called seed drawing (necking) is performed, in which the diameter is once reduced to about 3 mm to form a drawn portion, and then the diameter is increased until a desired diameter is obtained. To pull up dislocation-free crystals.

このようなCZ法によって製造される単結晶、例えばシリコン単結晶は、主として半導体デバイスの製造に用いられる。近年、半導体デバイスでは高集積化が進み、素子の微細化が進んでいる。素子の微細化が進むことで、結晶成長中に導入されるGrown−in結晶欠陥の問題がより重要となっている。   A single crystal manufactured by such a CZ method, for example, a silicon single crystal is mainly used for manufacturing a semiconductor device. 2. Description of the Related Art In recent years, semiconductor devices have been highly integrated, and elements have been miniaturized. With the progress of miniaturization of devices, the problem of grown-in crystal defects introduced during crystal growth has become more important.

ここで、Grown−in結晶欠陥について説明する。
シリコン単結晶において、結晶成長速度が比較的高速の場合には、空孔型の点欠陥が集合したボイド起因とされているFPD(Flow Pattern Defect)等のGrown−in欠陥が結晶径方向全域に高密度に存在し、これら欠陥が存在する領域はV(Vacancy)領域と呼ばれている。また、成長速度を低めていくと成長速度の低下に伴いOSF(酸化誘起積層欠陥、Oxidation Induced Stacking Fault)領域が結晶の周辺からリング状に発生し、このリングの外側に格子間シリコンが集合した転位ループ起因と考えられているLEP(Large Etch Pit)等の欠陥が低密度に存在し、この欠陥が存在する領域はI(Interstitial)領域と呼ばれている。さらに、成長速度を低速にすると、OSFリングがウェーハの中心に収縮して消滅し、全面がI領域となる。
Here, the grown-in crystal defect will be described.
In a silicon single crystal, when the crystal growth rate is relatively high, a grown-in defect such as an FPD (Flow Pattern Defect), which is considered to be caused by voids in which vacancy-type point defects are gathered, extends over the entire area in the crystal radial direction. A region that exists at high density and has these defects is called a V (vacancy) region. Further, as the growth rate was reduced, an OSF (Oxidation Induced Stacking Fault) region was formed in a ring shape from the periphery of the crystal with the decrease in the growth rate, and interstitial silicon was gathered outside the ring. Defects such as LEP (Large Etch Pit), which are considered to be caused by dislocation loops, exist at low density, and the region where this defect exists is called an I (Interstitial) region. Further, when the growth rate is reduced, the OSF ring contracts to the center of the wafer and disappears, and the entire surface becomes the I region.

近年、V領域とI領域の中間でOSFリングの外側に、空孔起因のFPD等も、格子間シリコン起因のLEP等も存在しない領域の存在が発見されている。この領域はN(ニュートラル、Neutral)領域と呼ばれる。さらに、OSF領域の外側でN領域の一部にCuデポジション処理で検出される欠陥が存在する領域があることも発見されている。   In recent years, it has been discovered that a region where neither FPDs or the like due to holes nor LEPs or the like due to interstitial silicon exists outside the OSF ring between the V region and the I region. This region is called an N (Neutral) region. Further, it has been discovered that there is a region outside the OSF region where a defect detected by Cu deposition processing exists in a part of the N region.

これらのGrown−in欠陥は、引き上げ速度(V)と単結晶の固液界面近傍の温度勾配(G)の比であるV/Gというパラメーターにより、その導入量が決定されると考えられている(例えば、非特許文献1。)。すなわち、V/Gが一定になるように、引き上げ速度と温度勾配を調節すれば、所望の欠陥領域、あるいは所望の無欠陥領域で単結晶を引き上げることができる。しかしながら、例えば、N領域といった所定無欠陥領域に引き上げ速度を制御して単結晶を引き上げる場合、その単結晶は低速育成となるため、生産性の大幅な低下による製造コストの上昇が免れなかった。そのため、この単結晶の製造コストを下げるために、より高速で単結晶を育成して生産性を上げることが望まれているが、これは、理論的には単結晶の固液界面近傍の温度勾配(G)を大きくすることで達成できる。   It is believed that the amount of these grown-in defects is determined by the parameter V / G, which is the ratio of the pulling rate (V) to the temperature gradient (G) near the solid-liquid interface of the single crystal. (For example, Non-Patent Document 1.) That is, if the pulling speed and the temperature gradient are adjusted so that V / G becomes constant, the single crystal can be pulled in a desired defect region or a desired defect-free region. However, for example, when a single crystal is pulled by controlling the pulling speed to a predetermined defect-free region such as an N region, the single crystal grows at a low speed, and a rise in manufacturing cost due to a drastic decrease in productivity was unavoidable. Therefore, in order to reduce the manufacturing cost of this single crystal, it is desired to grow the single crystal at a higher speed to increase the productivity, but this is theoretically the temperature near the solid-liquid interface of the single crystal. This can be achieved by increasing the gradient (G).

従来、効果的な冷却体を備えたチャンバーおよびホットゾーン構造を用いて、さらにはヒーターからの輻射熱を効率的に遮断することで、引き上げ中の単結晶を冷却して単結晶の固液界面近傍の温度勾配(G)を大きいものとし、高速成長を達成しようとする方法が提案されている(例えば、特許文献1。)。これらは、主としてルツボ内に収容された原料融液の表面より上部の炉内構造を変更することにより行うものである。   Conventionally, by using a chamber and a hot zone structure equipped with an effective cooling body, and further efficiently cutting off the radiant heat from the heater, the single crystal being pulled is cooled and the vicinity of the solid-liquid interface of the single crystal A method has been proposed in which the temperature gradient (G) is increased to achieve high-speed growth (for example, Patent Document 1). These are mainly performed by changing the structure inside the furnace above the surface of the raw material melt accommodated in the crucible.

また、熱伝導輻射部材を黒鉛ルツボの下部に配置し、黒鉛ヒーターからの輻射熱を受けて熱伝導により熱を伝えルツボに向かって輻射熱を放出する方法によって、効率良く黒鉛ルツボを囲む黒鉛ヒーターの消費電力を下げ、全体の熱量を下げることにより引き上げ中のシリコン単結晶への輻射熱を低減して固液界面近傍の温度勾配(G)を大きいものとし、高速成長を達成しようとする方法も提案されている(例えば、特許文献2)。
しかしこれらの方法だけでは、十分に単結晶の高速成長を達成したとは言い難くまだ改良の余地があった。
In addition, by arranging the heat conducting radiating member below the graphite crucible and radiating heat from the graphite heater to transmit the heat by heat conduction and radiating the radiant heat toward the crucible, it is possible to efficiently consume the graphite heater surrounding the graphite crucible. A method has also been proposed in which the power is reduced, the amount of heat is reduced, the radiant heat to the silicon single crystal being pulled is reduced, the temperature gradient (G) near the solid-liquid interface is increased, and high-speed growth is achieved. (For example, Patent Document 2).
However, it is difficult to say that high-speed single crystal growth was sufficiently achieved by these methods alone, and there is still room for improvement.

国際公開第97/21853号パンフレットWO 97/21853 pamphlet 特開平12−53486号公報JP-A-12-53486 V.V.Voronkov,Journal of Crystal Growth,59(1982),625〜643V. V. Voronkov, Journal of Crystal Growth, 59 (1982), 625-643.

本発明はこのような問題点に鑑みてなされたもので、例えば、OSF領域の外側に存在し、かつCuデポジション処理により検出される欠陥領域が存在しない、高耐圧で優れた電気特性を持つN領域といった所定無欠陥領域、又は所定欠陥領域でシリコン単結晶を引き上げる場合に、温度分布を高精度に制御して所望の品質の結晶を得るとともに、そのシリコン単結晶を高い生産効率で製造することを可能にする単結晶製造用黒鉛ヒーター及びそれを用いた単結晶製造装置ならびに単結晶製造方法を提供することを目的とする。   The present invention has been made in view of such a problem. For example, the present invention has a high withstand voltage and excellent electric characteristics that exists outside the OSF region and has no defect region detected by Cu deposition processing. When pulling a silicon single crystal in a predetermined defect-free region or a predetermined defect region such as an N region, a temperature distribution is controlled with high precision to obtain a crystal of desired quality, and the silicon single crystal is manufactured with high production efficiency. It is an object of the present invention to provide a graphite heater for manufacturing a single crystal, a single crystal manufacturing apparatus using the same, and a single crystal manufacturing method using the same.

本発明は、上記課題を解決するためになされたもので、少なくとも、電流が供給される端子部と、抵抗加熱による円筒状発熱部とが設けられ、原料融液を収容するルツボを囲繞するように配置される、チョクラルスキー法により単結晶を製造する場合に用いられる黒鉛ヒーターであって、前記発熱部は、その上端から下へ延びる上スリットと、その下端から上へ延びる下スリットが交互に設けられて発熱スリット部を形成したものであり、かつ前記上スリットの長さは、長短2種類のものからなり、前記長い方の上スリットの下端の幅が、その上端の幅よりも広く、及び/又は、前記下スリットの下端の幅が、その上端の幅よりも広いものとして前記発熱部の発熱分布を変更したものであることを特徴とする単結晶製造用黒鉛ヒーターを提供する(請求項1)。   The present invention has been made in order to solve the above-mentioned problems, and at least a terminal portion to which a current is supplied and a cylindrical heating portion formed by resistance heating are provided so as to surround a crucible accommodating a raw material melt. A graphite heater used for producing a single crystal by the Czochralski method, wherein the heating portion has an upper slit extending downward from an upper end thereof and a lower slit extending upward from a lower end thereof alternately. And the length of the upper slit is made of two types, the width of the lower end of the longer upper slit is wider than the width of the upper end thereof. And / or wherein the width of the lower end of the lower slit is wider than the width of the upper end and the heat generation distribution of the heat generating portion is changed, and a graphite heater for producing a single crystal is provided. That (claim 1).

このように、前記上スリットの長さは、長短2種類のものからなり、前記長い方の上スリットの下端の幅が、その上端の幅よりも広く、及び/又は、前記下スリットの下端の幅が、その上端の幅よりも広いものとして前記発熱部の発熱分布を変更することで、ヒーター自体が有する発熱分布によって原料融液にルツボ底の方から原料融液表面への縦方向の対流を起こすことができる。この縦方向の対流により、引き上げ中のシリコン単結晶の固液界面近傍の温度勾配(G)を上昇させて結晶成長界面が上凸形状に変化し易くなり、例えばN領域のシリコン単結晶の成長の高速化が達成できる。また、このヒーターの発熱分布による対流の調節により、製造する単結晶中の酸素濃度を低酸素から高酸素まで幅広い濃度に調節でき、所望酸素濃度の単結晶を高精度で製造できる。   In this way, the length of the upper slit is made of two types, long and short, and the width of the lower end of the longer upper slit is wider than the width of the upper end thereof, and / or the lower end of the lower slit. By changing the heat generation distribution of the heat generating portion as the width is larger than the width of the upper end, the convection in the vertical direction from the bottom of the crucible to the surface of the raw material melt due to the heat generation distribution of the heater itself. Can be caused. Due to the convection in the vertical direction, the temperature gradient (G) near the solid-liquid interface of the silicon single crystal being pulled is increased, so that the crystal growth interface is easily changed to an upwardly convex shape. Speedup can be achieved. Further, by adjusting the convection by the heat generation distribution of the heater, the oxygen concentration in the single crystal to be produced can be adjusted to a wide range from low oxygen to high oxygen, and a single crystal having a desired oxygen concentration can be produced with high accuracy.

この場合、前記長い方の上スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであり、前記下スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであることが好ましい(請求項2)。   In this case, the width of the lower end of the longer upper slit is wider than the width of the upper end by 1.5 times or more and 2.5 times or less, and the width of the lower end of the lower slit is set to the upper end. It is preferable that the width is 1.5 times or more and 2.5 times or less than the width (claim 2).

このように、前記長い方の上スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであり、前記下スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであることで、発熱スリット部の発熱中心が、発熱部を高さ方向に上下に2分する中心線の下側の方に位置させることができるため、ルツボ底あるいはルツボR部への集中加熱の効果により、原料融液内でのルツボ底の方から原料融液表面への縦方向の対流を確実に促進することができる。また、この範囲内であれば対流が適度であるために、結晶内の固液界面近傍の温度勾配(G)を半径方向でほぼ均一にすることができる。従って、例えばN領域といった所定無欠陥領域の製造マージンを拡大することができ、安定してしかも高速で所定無欠陥領域の単結晶を製造することができる。   Thus, the width of the lower end of the longer upper slit is wider than the width of the upper end in a range of 1.5 times or more and 2.5 times or less, and the lower end width of the lower slit is Since the width of the heating slit is 1.5 to 2.5 times the width of the upper end, the center of heat generation of the heat generating slit portion is below the center line that divides the heat generating portion vertically into two in the height direction. , The effect of concentrated heating on the crucible bottom or the crucible R portion reliably promotes vertical convection from the crucible bottom to the surface of the raw material melt in the raw material melt. be able to. Further, since the convection is appropriate within this range, the temperature gradient (G) near the solid-liquid interface in the crystal can be made substantially uniform in the radial direction. Therefore, the manufacturing margin of the predetermined defect-free region such as the N region can be expanded, and a single crystal of the predetermined defect-free region can be manufactured stably and at high speed.

この場合、前記短い方の上スリットは、前記発熱部の上端から下端の長さの50%より短い長さのものであることが好ましく(請求項3)、また、前記長い方の上スリットは、前記発熱部の上端から下端の長さの70%以上の長さのものであることが好ましい(請求項4)。   In this case, it is preferable that the shorter upper slit has a length shorter than 50% of the length from the upper end to the lower end of the heat generating portion (Claim 3). It is preferable that the length is 70% or more of the length from the upper end to the lower end of the heat generating portion (claim 4).

このように、前記短い方の上スリットは、前記発熱部の上端から下端の長さの50%より短い長さのものであることで、また、前記長い方の上スリットは、前記発熱部の上端から下端の長さの70%以上の長さであることで、発熱部を高さ方向に上下に2分する中心線の上側及び下側に、発熱スリット部の発熱中心を分布させることができる。
尚、短い方の上スリットは、発熱部の上端から下端の長さの10%程度以上の長さのものとすることで、発熱効率を保持することができる。また長い方の上スリットは、発熱部の上端から下端の長さの90%程度以下の長さのものとすることでヒーター本体の強度を維持できる。
As described above, the shorter upper slit has a length shorter than 50% of the length from the upper end to the lower end of the heat generating portion, and the longer upper slit has the length of the heat generating portion. By having a length of 70% or more of the length from the upper end to the lower end, the heat generating centers of the heat generating slits can be distributed above and below the center line that vertically divides the heat generating portion into two in the height direction. it can.
The shorter upper slit has a heating efficiency of about 10% or more of the length from the upper end to the lower end of the heat-generating portion. The strength of the heater body can be maintained by setting the length of the longer upper slit to about 90% or less of the length from the upper end to the lower end of the heat generating portion.

この場合、前記2種類の上スリットが、円周方向に周期的に形成され、前記発熱部の発熱分布が、円周方向に高温部と低温部が周期的に分布したものであることが好ましく(請求項5)、例えば、前記発熱分布の周期は、1周期が180°であることが好ましい(請求項6)。   In this case, it is preferable that the two types of upper slits are formed periodically in the circumferential direction, and the heat generation distribution of the heat generating portion is such that high-temperature portions and low-temperature portions are periodically distributed in the circumferential direction. (Claim 5) For example, it is preferable that one cycle of the heat generation distribution is 180 ° (Claim 6).

このように、前記2種類の上スリットが、円周方向に周期的に形成され、前記発熱部の発熱分布が、円周方向に高温部と低温部が周期的に分布したものとすることで、原料融液内での対流を上下方向のみならず円周方向に促進することができる。   In this manner, the two types of upper slits are formed periodically in the circumferential direction, and the heat generation distribution of the heat generating portion is such that the high temperature portion and the low temperature portion are periodically distributed in the circumferential direction. In addition, convection in the raw material melt can be promoted not only in the vertical direction but also in the circumferential direction.

さらに本発明は、少なくとも、上記単結晶製造用黒鉛ヒーターを具備する単結晶製造装置を提供し(請求項7)、また、該単結晶製造装置を用いてチョクラルスキー法により結晶を製造する単結晶製造方法を提供する(請求項8)。   Further, the present invention provides a single crystal production apparatus provided with at least the graphite heater for producing a single crystal (Claim 7), and a single crystal production apparatus for producing a crystal by the Czochralski method using the single crystal production apparatus. A crystal manufacturing method is provided (claim 8).

このような本発明の単結晶製造用ヒーターを具備する結晶製造装置を用いて、CZ法により単結晶を製造すれば、高品質の単結晶を生産性良く製造することができる。   If a single crystal is manufactured by the CZ method using such a crystal manufacturing apparatus provided with the single crystal manufacturing heater of the present invention, a high-quality single crystal can be manufactured with high productivity.

以上説明したように、本発明によれば、例えば、OSF領域の外側に存在し、かつCuデポジション処理により検出される欠陥領域が存在しない、高耐圧で優れた電気特性を持つN領域といった所定無欠陥領域、又は所定欠陥領域でシリコン単結晶を引き上げる場合に、そのシリコン単結晶を高い生産効率で供給することができる。   As described above, according to the present invention, for example, a predetermined region such as an N region having a high withstand voltage and excellent electrical characteristics, which is present outside the OSF region and has no defect region detected by the Cu deposition process. When a silicon single crystal is pulled in a defect-free region or a predetermined defect region, the silicon single crystal can be supplied with high production efficiency.

以下、本発明について説明する。
本発明者らは、CZ法によりシリコン単結晶を製造する場合につき、黒鉛ヒーターが石英ルツボを加熱した時に生じる原料融液の温度分布が引き起こす対流と、引き上げ中のシリコン単結晶の固液界面近傍の温度勾配(G)との関係についてFEMAGやSTHAMAS−3D等のソフトウエアーによるシミュレーション解析を行った。
Hereinafter, the present invention will be described.
The inventors of the present invention have proposed a method for producing a silicon single crystal by the CZ method, in which a convection caused by a temperature distribution of a raw material melt generated when a graphite heater heats a quartz crucible and a vicinity of a solid-liquid interface of a silicon single crystal being pulled. Simulation analysis was performed on the relationship with the temperature gradient (G) using software such as FEMAG or STHAMAS-3D.

ここで、FEMAGは、文献(F.Dupret,P.Nicodeme,Y.Ryckmans,P.Wouters,and M.J.Crochet,Int.J.Heat Mass Transfer,33,1849(1990))に、またSTHAMAS−3Dは、文献(D.Vizman,O.Graebner,G.Mueller,Journal of Crystal Growth,233,687−698(2001))に開示されている総合伝熱解析ソフトである。   Here, FEMAG is described in a literature (F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters, and MJ. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)) and STHAMAS. -3D is comprehensive heat transfer analysis software disclosed in the literature (D. Vizman, O. Graebner, G. Mueller, Journal of Crystal Growth, 233, 687-698 (2001)).

このシミュレーション解析の結果、本発明者らは、黒鉛ルツボの底の方から原料融液の表面の方向へ縦方向の対流を促進させ、さらにこの対流をヘリカルな方向に促進させることも温度勾配(G)の上昇に有効であることを見出した。   As a result of the simulation analysis, the present inventors found that the convection in the vertical direction was promoted from the bottom of the graphite crucible toward the surface of the raw material melt, and the convection was further promoted in the helical direction by the temperature gradient ( G) was found to be effective in increasing the concentration.

この縦方向の対流を促進させる手段として、通常の黒鉛ヒーターの他にルツボの底の方からルツボ中の原料融液を熱するためのボトムヒーターを設置する方法、あるいはルツボ中の原料融液を上下から熱するための上下2段の黒鉛ヒーターを設置する方法等が考えられる。しかし、これらの方法は、炉内設備が複雑化し、また消費電力が嵩むために、経済的メリットが期待できない。そこで、本発明者らは、ルツボを囲繞するように配置される黒鉛ヒーター単体で、ルツボの底の方から原料融液の表面の方向へ縦方向の対流を促進させ、さらにその対流をヘリカルな方向に促進させることができれば生産性良く、かつ低コストで目標とする品質を有する単結晶を製造可能であることに想到し、本発明を完成した。   As means for promoting this vertical convection, a method of installing a bottom heater for heating the raw material melt in the crucible from the bottom of the crucible in addition to the usual graphite heater, or A method of installing two-stage graphite heaters for heating from above and below can be considered. However, these methods cannot be expected to have an economic merit because the equipment in the furnace becomes complicated and the power consumption increases. Then, the present inventors promoted convection in the vertical direction from the bottom of the crucible toward the surface of the raw material melt with a single graphite heater disposed so as to surround the crucible, and further reduced the convection by a helical flow. The present inventors have completed the present invention by conceiving that a single crystal having a target quality can be manufactured with good productivity and at low cost if it can be promoted in the direction.

以下、本発明の実施の形態について説明するが、本発明はこれらに限定されるものではない。
本発明の黒鉛ヒーターは、従来のように発熱部の発熱分布を円周方向に均一に分布させたものではなく、1個の黒鉛ヒーターがルツボの上部あるいはルツボの底またはルツボR部にも発熱分布のピークを持つよう不均一な温度分布を有するように設計したものである。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
The graphite heater of the present invention does not uniformly distribute the heat distribution of the heat generating portion in the circumferential direction as in the prior art, but one graphite heater generates heat even at the top of the crucible, at the bottom of the crucible, or at the crucible R portion. It is designed to have an uneven temperature distribution so as to have a distribution peak.

図1及び図2に本発明の黒鉛ヒーターの1例を示す。この黒鉛ヒーターは、端子部27からの電流の電流路が発熱部28で上下方向にジグザグ形状となるように、発熱部28の上端から下へ延びる上スリット及び発熱部の下端から上へ延びる下スリットを交互に設けている。そして、これらのスリットの寸法および配置を変更して発熱部の発熱分布を変更している。そのために、ここでは、3種類のスリットを設けている。すなわち、上スリットとして、上スリットAと、該上スリットAより長い上スリットBとの2種類のスリットを設け、また下スリットとして、下スリットCを設けた。   1 and 2 show an example of the graphite heater of the present invention. The graphite heater has an upper slit extending downward from the upper end of the heat generating portion 28 and a lower slit extending upward from the lower end of the heat generating portion so that the current path of the current from the terminal portion 27 has a zigzag shape in the vertical direction at the heat generating portion 28. The slits are provided alternately. The size and arrangement of these slits are changed to change the heat generation distribution of the heat generating portion. For this purpose, three types of slits are provided here. That is, two types of slits, an upper slit A and an upper slit B longer than the upper slit A, were provided as the upper slits, and a lower slit C was provided as the lower slit.

さらに、上スリットBの下端の幅が、その上端の幅よりも広く(図2(a)参照)、及び/又は、下スリットCの下端の幅が、その上端の幅よりも広く(図2(b)参照)なるように設計している。この時、上スリットBの下端の幅は、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広く、下スリットCの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広くなるように設計するのが好ましい。1.5倍以上とすれば、ルツボ底またはルツボR部への集中加熱効果により、原料融液内でのルツボ底の方から原料融液表面への縦方向の対流を効果的に促進することができ、引き上げ中の単結晶の固液界面近傍の温度勾配(G)を高める効果を得られる。一方、2.5倍以下とすれば、隣り合うスリット間の間隔が十分にとられるため、黒鉛ヒーターの発熱量が適度であり、従って、ヒーターの黒鉛材が自身の発熱により劣化するのを防ぐことができ、黒鉛ヒーターの寿命を長くできる。また、この範囲内であれば対流が適度であるために、結晶内の固液界面近傍の温度勾配(G)を半径方向でほぼ均一にすることができる。従って、例えばN領域といった所定無欠陥領域の製造マージンを拡大することができ、安定してしかも高速で所定無欠陥領域の単結晶を製造することができる。   Further, the width of the lower end of the upper slit B is wider than the width of the upper end thereof (see FIG. 2A), and / or the width of the lower end of the lower slit C is wider than the width of the upper end thereof (FIG. 2). (See (b)). At this time, the width of the lower end of the upper slit B is wider than the width of the upper end by 1.5 times or more and 2.5 times or less, and the width of the lower end of the lower slit C is 1.times. It is preferable to design so as to be wider in the range of 5 times to 2.5 times. When 1.5 times or more, the concentrated heating effect on the crucible bottom or crucible R portion effectively promotes the vertical convection from the crucible bottom to the surface of the raw material melt in the raw material melt. And the effect of increasing the temperature gradient (G) near the solid-liquid interface of the single crystal being pulled can be obtained. On the other hand, if the ratio is 2.5 times or less, the interval between adjacent slits is sufficient, so that the calorific value of the graphite heater is moderate, and therefore, the graphite material of the heater is prevented from being deteriorated by its own heat generation. Can prolong the life of the graphite heater. Further, since the convection is appropriate within this range, the temperature gradient (G) near the solid-liquid interface in the crystal can be made substantially uniform in the radial direction. Therefore, the manufacturing margin of the predetermined defect-free region such as the N region can be expanded, and a single crystal of the predetermined defect-free region can be manufactured stably and at high speed.

この時、上スリットAは、黒鉛ヒーターの円筒状発熱部の上端から下端の長さの50%より短い長さになるように設計するのが好ましく、また、上スリットBは、黒鉛ヒーターの円筒状発熱部の上端から下端の長さの70%以上の長さになるように設計するのが好ましい。これにより、上スリットAとそれに対応する下スリットCとが形成する発熱スリット部を、発熱部を高さ方向に上下に2分する中心線の上側に位置させることができ、また、上スリットBとそれに対応する下スリットCとが形成する発熱スリット部の発熱中心を、該発熱スリット部の下側の幅が上側と比較してより狭くなるために、発熱部を高さ方向に上下に2分する中心線の下側に位置させることができる。   At this time, the upper slit A is preferably designed to have a length shorter than 50% of the length from the upper end to the lower end of the cylindrical heating portion of the graphite heater. It is preferable to design so that the length is 70% or more of the length from the upper end to the lower end of the heat generating portion. Thereby, the heat generating slit portion formed by the upper slit A and the corresponding lower slit C can be positioned above the center line that divides the heat generating portion vertically into two in the height direction. In order to make the center of heat generation of the heating slit formed by the lower slit C and the lower slit C corresponding thereto smaller than the width of the lower side of the heating slit in comparison with the upper side, the heat generating part is moved up and down in the height direction by two. It can be located below the dividing center line.

さらに、各スリットは、円周方向に周期的に形成され、発熱部の発熱分布が、円周方向に高温部と低温部が周期的に分布しており、その1周期が180°になるようにしている。また、この黒鉛ヒーターの発熱部の発熱分布が、発熱部を上下に2分する中心線の上側と下側とで、発熱分布が90°ずれるようにしている。   Furthermore, each slit is formed periodically in the circumferential direction, and the heat generation distribution of the heat generating part is such that the high temperature part and the low temperature part are periodically distributed in the circumferential direction, and one cycle thereof is 180 °. I have to. Further, the heat generation distribution of the heat generating portion of the graphite heater is shifted by 90 ° between the upper side and the lower side of the center line which vertically divides the heat generating portion into two.

このような黒鉛ヒーターで加熱した時の、ルツボ内に収容された原料融液の温度分布を図3に示す。図3(a)に示すように、上スリットA及び下スリットCにより形成される発熱スリット部は、ルツボを真上から見た時に第1象限と第3象限にあたる部分で、かつ原料融液の表面付近を加熱する役割を果たしている。一方、図3(b)に示すように、上スリットB及び下スリットCにより形成される発熱スリット部の発熱中心は、第2象限と第4象限にあたる部分で、かつルツボ底あるいはルツボR部を加熱する役割を果たしている。従って、ルツボ内の原料融液は、全体として図3(c)に示すような温度分布となる。   FIG. 3 shows the temperature distribution of the raw material melt contained in the crucible when heated by such a graphite heater. As shown in FIG. 3A, the heating slit formed by the upper slit A and the lower slit C is a portion corresponding to the first quadrant and the third quadrant when the crucible is viewed from directly above, and is a portion of the raw material melt. It plays the role of heating near the surface. On the other hand, as shown in FIG. 3B, the heat generation center of the heat generation slit formed by the upper slit B and the lower slit C corresponds to the second quadrant and the fourth quadrant, and is located at the crucible bottom or the crucible R. Plays the role of heating. Therefore, the raw material melt in the crucible has a temperature distribution as shown in FIG. 3C as a whole.

このような原料融液内の温度分布が、結果的に、原料融液内部の対流をルツボ底から原料融液表面へと縦方向ヘ、さらにはヘリカルな方向へ促進させる。これにより、2次的に発生する単結晶固液界面直下の対流が促進され、単結晶固液界面近傍の温度勾配(G)を上昇させる。従って、単結晶固液界面の形状がより上凸形に変化し易く、OSFがより高速の成長速度領域で消滅し、例えば、N領域の結晶を高速で引き上げることができる。   As a result, the temperature distribution in the raw material melt promotes the convection in the raw material melt from the crucible bottom to the raw material melt surface in a vertical direction and further in a helical direction. This promotes convection immediately below the single crystal solid-liquid interface, which is generated secondarily, and increases the temperature gradient (G) near the single crystal solid-liquid interface. Therefore, the shape of the single crystal solid-liquid interface is more likely to change to an upward convex shape, and the OSF disappears in the higher growth rate region. For example, the crystal in the N region can be pulled up at a high speed.

また、従来の黒鉛ヒーターは、発熱部が円周方向で均一な発熱分布を有したものであるので、原料融液の対流を変化させることによる単結晶中の酸素濃度の制御は、ルツボと黒鉛ヒーターの高さ方向における相対的位置関係を変えることくらいしかできなかった。しかし、本発明では、黒鉛ヒーターの発熱部の発熱分布自体を、種々目的に応じて変更できるので、原料融液の対流も自在に変更でき、単結晶中の酸素濃度も自在に制御できる。   Further, in the conventional graphite heater, since the heat generating portion has a uniform heat generation distribution in the circumferential direction, the control of the oxygen concentration in the single crystal by changing the convection of the raw material melt is performed by using a crucible and graphite. I could only change the relative positional relationship in the height direction of the heater. However, in the present invention, since the heat generation distribution itself of the heat generating portion of the graphite heater can be changed according to various purposes, the convection of the raw material melt can be freely changed, and the oxygen concentration in the single crystal can be freely controlled.

さらに、本発明は、上記結晶製造用黒鉛ヒーターを具備する結晶製造装置を提供し、また、その結晶製造装置を用いてチョクラルスキー法により単結晶を製造する方法を提供する。本発明は、上記のような特性を有するヒーターを従来の炉内構造を有する単結晶製造装置にセットするだけで、例えばN領域といった所望無欠陥領域、あるいは所望欠陥領域の単結晶を高速で引き上げて生産性を上げることができる。また、既存の装置の設計変更等が不要であるため、非常に簡単かつ安価に構成できる。   Further, the present invention provides a crystal manufacturing apparatus equipped with the above-described graphite manufacturing graphite heater, and also provides a method for manufacturing a single crystal by the Czochralski method using the crystal manufacturing apparatus. In the present invention, a heater having the above-described characteristics is simply set in a single crystal manufacturing apparatus having a conventional in-furnace structure, and a single crystal in a desired defect-free region such as an N region or a single crystal in a desired defect region is pulled up at a high speed. And increase productivity. Further, since there is no need to change the design of the existing device, the configuration can be made very simply and inexpensively.

以下、本発明を実施例および比較例を挙げて具体的に説明する。
(実施例1)
図6に示した単結晶製造装置を用いてシリコン単結晶を製造した。直径24インチ(600mm)の石英ルツボに、原料多結晶シリコン150Kgをチャージし、直径8インチ(200mm)、方位<100>のシリコン単結晶を引き上げた。単結晶を引き上げる際、成長速度を0.7mm/minから0.3mm/minの範囲で結晶頭部から尾部にかけて漸減させるよう制御した。また、酸素濃度が22〜23ppma(ASTM’79)となるようにシリコン単結晶を製造した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Example 1)
A silicon single crystal was manufactured using the single crystal manufacturing apparatus shown in FIG. A quartz crucible having a diameter of 24 inches (600 mm) was charged with 150 kg of raw material polycrystalline silicon, and a silicon single crystal having a diameter of 8 inches (200 mm) and an orientation of <100> was pulled. When the single crystal was pulled, the growth rate was controlled so as to gradually decrease from the head to the tail in the range of 0.7 mm / min to 0.3 mm / min. In addition, a silicon single crystal was manufactured such that the oxygen concentration was 22 to 23 ppma (ASTM '79).

この際、黒鉛ヒーターは、図1に示したものを用いた。すなわち、この黒鉛ヒーターは、発熱部の全長が500mmであり、上スリットAが6本、上スリットBが4本、下スリットCが12本設けられている。上スリットAは、長さ200mmであり、上スリットBと下スリットCは、それぞれ、長さ400mmである。さらに、上スリットAと上スリットBは、その上端から下端まで幅が均一になるように設計した。一方、図2(b)に示したように下スリットCは、その下端の幅が、その上端の幅よりも広くなるように設計した。端子部側から1本目と2本目(計8本)の下スリットCの下端の幅が、上端の幅よりも1.7倍広くなるように設計しており、残り(計4本)の下スリットCの下端の幅が、上端の幅よりも2.0倍広くなるように設計している。   At this time, the graphite heater shown in FIG. 1 was used. That is, this graphite heater has a heating section with a total length of 500 mm, and is provided with six upper slits A, four upper slits B, and twelve lower slits C. The upper slit A has a length of 200 mm, and the upper slit B and the lower slit C each have a length of 400 mm. Further, the upper slit A and the upper slit B were designed so that the width was uniform from the upper end to the lower end. On the other hand, as shown in FIG. 2B, the lower slit C is designed such that the width of the lower end is wider than the width of the upper end. The width of the lower end of the first and second (six in total) lower slits C from the terminal side is designed to be 1.7 times wider than the width of the upper end, and the remaining (four in total) lower slits The width of the lower end of the slit C is designed to be 2.0 times wider than the width of the upper end.

そして、このようにして製造したシリコン単結晶を、OSF、FPD、LEP、およびCuデポジションについて調査した。
すなわち、結晶固化率約10%以上(本実施例の条件の場合、結晶直胴部が10cm以上)のところで、結晶軸方向10cm毎の長さのところでウェーハを切り出した後、平面研削及び研磨を行って、下記のように調査した。
Then, the silicon single crystal thus manufactured was examined for OSF, FPD, LEP, and Cu deposition.
That is, at a crystal solidification rate of about 10% or more (in the case of the conditions of the present embodiment, the crystal straight body is 10 cm or more), a wafer is cut at a length of every 10 cm in the crystal axis direction, and then surface grinding and polishing are performed. Investigation was conducted as follows.

(a) FPD(V領域)およびLEP(I領域)の調査:
30分間セコエッチング(無攪拌)の後、サンプル面内密度を測定した。
(b) OSF領域の調査:
Wet−O雰囲気中、1100℃で100分間熱処理後、サンプル面内密度を測定した。
(c) Cuデポジション処理による欠陥の調査:
処理方法は以下のとおりである。
1)酸化膜 :25nm 2)電界強度:6MV/cm
3)通電時間:5分間
(A) FPD (V region) and LEP (I region) investigation:
After seco etching (without stirring) for 30 minutes, the in-plane density of the sample was measured.
(B) OSF area survey:
After heat treatment at 1100 ° C. for 100 minutes in a Wet-O 2 atmosphere, the in-plane density of the sample was measured.
(C) Inspection of defects by Cu deposition processing:
The processing method is as follows.
1) Oxide film: 25 nm 2) Electric field strength: 6 MV / cm
3) Energizing time: 5 minutes

その結果、各領域の分布状況は図4(a)に示す分布となった。すなわち、各領域の境界の成長速度は、次のようになった。
V領域とOSF領域との境界の成長速度=0.63mm/min。
OSF領域とCuデポジション処理により欠陥が検出されたN領域との境界の成長速度=0.62mm/min。
Cuデポジション処理により欠陥が検出されたN領域とCuデポジション処理により欠陥が検出されなかったN領域との境界の成長速度=0.61mm/min。
Cuデポジション処理により欠陥が検出されなかったN領域とI領域との境界の成長速度=0.59mm/min。
As a result, the distribution state of each area was as shown in FIG. That is, the growth rate at the boundary of each region was as follows.
Growth rate at the boundary between the V region and the OSF region = 0.63 mm / min.
The growth rate at the boundary between the OSF region and the N region where a defect was detected by the Cu deposition process = 0.62 mm / min.
The growth rate at the boundary between the N region where a defect was detected by the Cu deposition process and the N region where no defect was detected by the Cu deposition process = 0.61 mm / min.
The growth rate at the boundary between the N region and the I region where no defect was detected by the Cu deposition process = 0.59 mm / min.

次に、上記結果を踏まえて、Cuデポジション処理により欠陥が検出されなかったN領域が狙えるように、成長速度を直胴10cmから直胴尾部まで0.60〜0.59mm/minに制御し、シリコン単結晶を引き上げた(図5(a)、(b)参照)。この引き上げたシリコン単結晶から鏡面仕上げのウエーハに加工し酸化膜耐圧特性の評価を行った。なお、Cモード測定条件は次のとおりである。
1)酸化膜:25nm 2)測定電極:リン・ドープ・ポリシリコン
3)電極面積:8mm 4)判定電流:1mA/cm
その結果、酸化膜耐圧レベルは100%の良品率であった。
Next, based on the above results, the growth rate was controlled from 0.60 to 0.59 mm / min from the straight body 10 cm to the straight body tail so as to aim at the N region where no defect was detected by the Cu deposition process. Then, the silicon single crystal was pulled up (see FIGS. 5A and 5B). The mirror-finished wafer was processed from the pulled silicon single crystal, and the oxide film breakdown voltage characteristics were evaluated. The C mode measurement conditions are as follows.
1) Oxide film: 25 nm 2) Measurement electrode: phosphorus-doped polysilicon 3) Electrode area: 8 mm 2 4) Judgment current: 1 mA / cm 2
As a result, the oxide film breakdown voltage level was 100% non-defective.

(比較例1)
黒鉛ヒーターとして、図7に示したものを用いた。この黒鉛ヒーターは、発熱部の全長が500mmであり、上スリットが10本、下スリットが12本設けられている。上スリットは、全部長さ400mmであり、その上端から下端まで幅が均一になるように設計した。また、下スリットは、全部長さ400mmであり、その上端から下端まで幅が均一になるように設計した。この黒鉛ヒーターを用いること以外は実施例1と同様の条件でシリコン単結晶を製造した。そして実施例1と同様に、OSF、FPD、LEP、およびCuデポジションについて調査した。
(Comparative Example 1)
The graphite heater shown in FIG. 7 was used. This graphite heater has a heating section with a total length of 500 mm, and is provided with 10 upper slits and 12 lower slits. The upper slits were all 400 mm long and designed to have a uniform width from the upper end to the lower end. The lower slits were all 400 mm long, and were designed to have a uniform width from the upper end to the lower end. A silicon single crystal was manufactured under the same conditions as in Example 1 except that this graphite heater was used. Then, as in Example 1, the OSF, FPD, LEP, and Cu deposition were investigated.

その結果、各領域の分布状況は図4(b)に示す分布となった。すなわち、各領域の境界の成長速度は、次のようになった。
V領域とOSF領域との境界の成長速度=0.50mm/min。
OSF領域とCuデポジション処理により欠陥が検出されたN領域との境界の成長速度=0.48mm/min。
Cuデポジション処理により欠陥が検出されたN領域とCuデポジション処理により欠陥が検出されなかったN領域との境界の成長速度=0.47mm/min。
Cuデポジション処理により欠陥が検出されなかったN領域とI領域との境界の成長速度=0.45mm/min。
As a result, the distribution state of each area was as shown in FIG. That is, the growth rate at the boundary of each region was as follows.
Growth rate at the boundary between the V region and the OSF region = 0.50 mm / min.
The growth rate at the boundary between the OSF region and the N region where a defect was detected by the Cu deposition process = 0.48 mm / min.
The growth rate at the boundary between the N region where a defect was detected by the Cu deposition process and the N region where no defect was detected by the Cu deposition process = 0.47 mm / min.
The growth rate at the boundary between the N region and the I region where no defect was detected by the Cu deposition process = 0.45 mm / min.

次に、上記結果を踏まえて、Cuデポジション処理により欠陥が検出されなかったN領域が狙えるように、成長速度を直胴10cmから直胴尾部まで0.46〜0.45mm/minに制御し、シリコン単結晶を引き上げた(図5(a)、(b)参照)。この引き上げたシリコン単結晶から鏡面仕上げのウエーハに加工し、実施例1と同様に酸化膜耐圧特性の評価を行った。
その結果、酸化膜耐圧レベルは100%の良品率であった。
Next, based on the above results, the growth rate was controlled from 0.46 to 0.45 mm / min from the straight body 10 cm to the straight body tail so that the N region where no defect was detected by the Cu deposition process could be aimed. Then, the silicon single crystal was pulled up (see FIGS. 5A and 5B). The mirror-finished wafer was processed from the pulled silicon single crystal, and the oxide film breakdown voltage characteristics were evaluated in the same manner as in Example 1.
As a result, the oxide film breakdown voltage level was 100% non-defective.

図4は、実施例1と比較例1の、成長速度に対する各種欠陥の分布状況を示している。これによると、Cuデポジション処理により欠陥が検出されなかったN領域の単結晶を育成する場合、比較例1では、成長速度を0.46〜0.45mm/minとして低速で育成する必要があるのに対して、実施例1では、成長速度を0.60〜0.59mm/minとして非常に高速で育成することができることが判る(図5参照)。従って、本発明の黒鉛ヒーターを用いた場合、生産性を向上でき、さらには製造コストを下げることができる。   FIG. 4 shows the distribution of various defects with respect to the growth rate in Example 1 and Comparative Example 1. According to this, when growing a single crystal in the N region where no defect was detected by the Cu deposition process, in Comparative Example 1, it was necessary to grow at a low speed with a growth rate of 0.46 to 0.45 mm / min. On the other hand, in Example 1, it can be seen that the growth can be performed at a very high speed with the growth rate being 0.60 to 0.59 mm / min (see FIG. 5). Therefore, when the graphite heater of the present invention is used, the productivity can be improved, and the manufacturing cost can be reduced.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device having the same operation and effect can be realized by the present invention. It is included in the technical scope of the invention.

例えば、本発明の実施例では、シリコン単結晶の引き上げ時に磁場を印加しない通常のCZ法について例を挙げて説明したが、本発明はこれに限定されず、磁場を印加するMCZ法にも適用できる。   For example, in the embodiments of the present invention, the ordinary CZ method in which a magnetic field is not applied when pulling a silicon single crystal is described with an example. However, the present invention is not limited to this, and the present invention is also applicable to the MCZ method in which a magnetic field is applied. it can.

本発明の黒鉛ヒーターの1例を示す概略図である。 (a)展開図、 (b)側面図。It is the schematic which shows an example of the graphite heater of this invention. (A) Development view, (b) Side view. 本発明の黒鉛ヒーターのスリットの拡大図である。 (a)上スリットBの下端の幅が、その上端の幅よりも広いもの、(b)下スリットCの下端の幅が、その上端の幅よりも広いもの。It is an enlarged view of the slit of the graphite heater of the present invention. (A) The width of the lower end of the upper slit B is wider than its upper end, and (b) the width of the lower end of the lower slit C is wider than its upper end. 図1の黒鉛ヒーターによりルツボを加熱した時の、ルツボ内の原料融液の温度分布を示した概念図である。 (a)原料融液表層側の温度分布、 (b)原料融液のルツボ底側の温度分布、 (c)原料融液の全体の温度分布。FIG. 2 is a conceptual diagram showing a temperature distribution of a raw material melt in the crucible when the crucible is heated by the graphite heater of FIG. 1. (A) Temperature distribution on the surface side of the raw material melt, (b) Temperature distribution on the crucible bottom side of the raw material melt, (c) Temperature distribution of the entire raw material melt. 単結晶の成長速度と結晶欠陥分布を示す説明図である。 (a)実施例1、(b)比較例1。FIG. 3 is an explanatory diagram showing a growth rate and a crystal defect distribution of a single crystal. (a) Example 1, (b) Comparative Example 1. 単結晶の成長速度と結晶欠陥分布の関係を調査して判明した、Cuデポジション処理により欠陥が検出されなかったN領域の成長速度に制御してシリコン単結晶を育成した時の単結晶の成長速度を、実施例1と比較例1で比較した比較図である((a)、(b))。Investigation of the relationship between the growth rate of single crystals and the distribution of crystal defects revealed that the growth of single crystals when silicon single crystals were grown by controlling the growth rate of N regions where no defects were detected by Cu deposition processing. It is the comparison figure which compared the speed between Example 1 and Comparative Example 1 ((a), (b)). 単結晶製造装置の概略図である。It is the schematic of a single crystal manufacturing apparatus. 従来の黒鉛ヒーターの1例を示す概略図である。 (a)展開図、 (b)側面図。It is the schematic which shows an example of the conventional graphite heater. (A) Development view, (b) Side view.

符号の説明Explanation of reference numerals

10…単結晶製造装置、 11…メインチャンバー、 12…引き上げチャンバー、
13…単結晶、 14…ワイヤー、 15…原料融液、 16…石英ルツボ、
17…黒鉛ルツボ、 18…シャフト、 19…黒鉛ヒーター、 20…断熱部材、
21…種ホルダー、 22…種結晶、 23…冷却筒、 24…黒鉛筒、
25…内側断熱筒、 26…外側断熱材、
27…端子部、 28…発熱部、 29…上スリット、 30…下スリット、
31…発熱スリット部。
10: Single crystal manufacturing apparatus, 11: Main chamber, 12: Pulling chamber,
13: single crystal, 14: wire, 15: raw material melt, 16: quartz crucible,
17: graphite crucible, 18: shaft, 19: graphite heater, 20: heat insulating member,
21: seed holder, 22: seed crystal, 23: cooling cylinder, 24: graphite cylinder,
25: inner heat insulating cylinder, 26: outer heat insulating material,
27 terminal part, 28 heating part, 29 upper slit, 30 lower slit,
31: Heat generation slit part.

Claims (8)

少なくとも、電流が供給される端子部と、抵抗加熱による円筒状発熱部とが設けられ、原料融液を収容するルツボを囲繞するように配置される、チョクラルスキー法により単結晶を製造する場合に用いられる黒鉛ヒーターであって、前記発熱部は、その上端から下へ延びる上スリットと、その下端から上へ延びる下スリットが交互に設けられて発熱スリット部を形成したものであり、かつ前記上スリットの長さは、長短2種類のものからなり、前記長い方の上スリットの下端の幅が、その上端の幅よりも広く、及び/又は、前記下スリットの下端の幅が、その上端の幅よりも広いものとして前記発熱部の発熱分布を変更したものであることを特徴とする単結晶製造用黒鉛ヒーター。   When a single crystal is manufactured by the Czochralski method, at least a terminal portion to which a current is supplied and a cylindrical heating portion by resistance heating are provided and arranged so as to surround a crucible containing a raw material melt. In the graphite heater used in the heating unit, the heating unit, the upper slit extending downward from the upper end, the lower slit extending upward from the lower end is provided alternately to form a heating slit portion, and the The length of the upper slit is made of two types, long and short, and the width of the lower end of the longer upper slit is wider than the width of its upper end, and / or the width of the lower end of the lower slit is its upper end. A graphite heater for producing a single crystal, characterized in that the heat generation distribution of the heat generating portion is changed as a width wider than the width of the graphite heater. 前記長い方の上スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであり、前記下スリットの下端の幅が、その上端の幅よりも1.5倍以上2.5倍以下の範囲で広いものであることを特徴とする請求項1に記載の単結晶製造用黒鉛ヒーター。   The width of the lower end of the longer upper slit is wider than the width of the upper end by 1.5 times or more and 2.5 times or less, and the width of the lower end of the lower slit is larger than the width of the upper end. 2. The graphite heater for producing a single crystal according to claim 1, wherein the width is also 1.5 times or more and 2.5 times or less. 前記短い方の上スリットは、前記発熱部の上端から下端の長さの50%より短い長さのものであることを特徴とする請求項1又は請求項2に記載の単結晶製造用黒鉛ヒーター。   The graphite heater for producing a single crystal according to claim 1, wherein the shorter upper slit has a length shorter than 50% of a length from an upper end to a lower end of the heat generating portion. 4. . 前記長い方の上スリットは、前記発熱部の上端から下端の長さの70%以上の長さのものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶製造用黒鉛ヒーター。   4. The unit according to claim 1, wherein the longer upper slit has a length of 70% or more of a length from an upper end to a lower end of the heat generating unit. 5. Graphite heater for crystal production. 前記2種類の上スリットが、円周方向に周期的に形成され、前記発熱部の発熱分布が、円周方向に高温部と低温部が周期的に分布したものであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の単結晶製造用黒鉛ヒーター。   The two types of upper slits are formed periodically in a circumferential direction, and a heat generation distribution of the heat generating portion is a high temperature portion and a low temperature portion periodically distributed in a circumferential direction. The graphite heater for producing a single crystal according to any one of claims 1 to 4. 前記発熱分布の周期は、1周期が180°であることを特徴とする請求項5に記載の単結晶製造用黒鉛ヒーター。   The graphite heater according to claim 5, wherein one cycle of the heat generation distribution is 180 °. 少なくとも、請求項1乃至請求項6のいずれか1項に記載の単結晶製造用黒鉛ヒーターを具備することを特徴とする単結晶製造装置。   A single crystal production apparatus comprising at least the graphite heater for producing a single crystal according to any one of claims 1 to 6. 請求項7に記載の単結晶製造装置を用いてチョクラルスキー法により結晶を製造することを特徴とする単結晶製造方法。   A method for producing a single crystal, comprising producing a crystal by the Czochralski method using the apparatus for producing a single crystal according to claim 7.
JP2003285312A 2002-12-27 2003-08-01 Graphite heater for single crystal production, single crystal production apparatus and single crystal production method Expired - Fee Related JP4148060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285312A JP4148060B2 (en) 2002-12-27 2003-08-01 Graphite heater for single crystal production, single crystal production apparatus and single crystal production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382291 2002-12-27
JP2003285312A JP4148060B2 (en) 2002-12-27 2003-08-01 Graphite heater for single crystal production, single crystal production apparatus and single crystal production method

Publications (2)

Publication Number Publication Date
JP2004217503A true JP2004217503A (en) 2004-08-05
JP4148060B2 JP4148060B2 (en) 2008-09-10

Family

ID=32911357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285312A Expired - Fee Related JP4148060B2 (en) 2002-12-27 2003-08-01 Graphite heater for single crystal production, single crystal production apparatus and single crystal production method

Country Status (1)

Country Link
JP (1) JP4148060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040081A1 (en) * 2005-09-30 2007-04-12 Komatsu Denshi Kinzoku Kabushiki Kaisha Single-crystal semiconductor fabrication device and fabrication method
JP2016098121A (en) * 2014-11-18 2016-05-30 住友電気工業株式会社 Apparatus for producing silicon carbide single crystal
JP2017506206A (en) * 2014-02-21 2017-03-02 モーメンティブ・パフォーマンス・マテリアルズ・インク Multi-zone variable power density heater, apparatus including the heater and method of using the heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040081A1 (en) * 2005-09-30 2007-04-12 Komatsu Denshi Kinzoku Kabushiki Kaisha Single-crystal semiconductor fabrication device and fabrication method
JPWO2007040081A1 (en) * 2005-09-30 2009-04-16 Sumco Techxiv株式会社 Single crystal semiconductor manufacturing apparatus and manufacturing method
JP5343272B2 (en) * 2005-09-30 2013-11-13 Sumco Techxiv株式会社 Single crystal semiconductor manufacturing apparatus and manufacturing method
KR101391057B1 (en) * 2005-09-30 2014-04-30 사무코 테크시부 가부시키가이샤 Single-crystal semiconductor fabrication device and fabrication method
JP2017506206A (en) * 2014-02-21 2017-03-02 モーメンティブ・パフォーマンス・マテリアルズ・インク Multi-zone variable power density heater, apparatus including the heater and method of using the heater
US10934633B2 (en) 2014-02-21 2021-03-02 Momentive Performance Materials Inc. Multi-zone variable power density heater apparatus containing and methods of using the same
JP2016098121A (en) * 2014-11-18 2016-05-30 住友電気工業株式会社 Apparatus for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP4148060B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
KR101048831B1 (en) Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method
JPH1179889A (en) Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP2007261846A (en) Method for manufacturing defect-free silicon single crystal
CN101040068A (en) Single-crystal production apparatus
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
US7384477B2 (en) Method for producing a single crystal and a single crystal
EP1624094B1 (en) Method for producing single crystal
JP4844127B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2010254487A (en) Method for growing single crystal
KR20060093645A (en) Process for producing single crystal and single crystal
KR101105547B1 (en) Heater used for manufacturing single crystal, Apparatus and Method of manufacturing single crystal using the same
JPH09221380A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JP4457584B2 (en) Method for producing single crystal and single crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2004217503A (en) Graphite heater for producing single crystal, single crystal production device, and single crystal production method
JP4461776B2 (en) Method for producing silicon single crystal
JP4134800B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2004217502A (en) Graphite heater for producing single crystal, single crystal production apparatus, and single crystal production method
JPH06211591A (en) Method for producing single crystalline body and apparatus therefor
JP5051044B2 (en) Method for growing silicon single crystal
CN1782143A (en) Method and apparatus of growing silicon single crystal and silicon wafer fabricated thereby
JP3203343B2 (en) Cooling control cylinder for single crystal production
JP2008019129A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JP2005047758A (en) Manufacturing method of single crystal and single crystal manufacturing unit
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees