JP2021087972A - Manufacturing method of thin cast piece - Google Patents

Manufacturing method of thin cast piece Download PDF

Info

Publication number
JP2021087972A
JP2021087972A JP2019219382A JP2019219382A JP2021087972A JP 2021087972 A JP2021087972 A JP 2021087972A JP 2019219382 A JP2019219382 A JP 2019219382A JP 2019219382 A JP2019219382 A JP 2019219382A JP 2021087972 A JP2021087972 A JP 2021087972A
Authority
JP
Japan
Prior art keywords
pair
cooling drums
sum load
cooling
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019219382A
Other languages
Japanese (ja)
Other versions
JP7364887B2 (en
Inventor
新井 貴士
Takashi Arai
貴士 新井
雅文 宮嵜
Masafumi Miyazaki
雅文 宮嵜
直嗣 吉田
Naotada Yoshida
直嗣 吉田
忠幸 藤井
Tadayuki Fujii
忠幸 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019219382A priority Critical patent/JP7364887B2/en
Publication of JP2021087972A publication Critical patent/JP2021087972A/en
Application granted granted Critical
Publication of JP7364887B2 publication Critical patent/JP7364887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide a manufacturing method of a thin cast piece, capable of suppressing breakage of a thin cast piece, and stably starting casting in a twin-drum type continuous casting apparatus.SOLUTION: A manufacturing method of a thin cast piece includes: supplying molten metal to a molten metal accumulation part formed by a pair of rotary cooling drums and a pair of side weirs; and forming/growing coagulation shell on peripheral surfaces of the cooling drums so as to manufacture the thin case piece. When measuring a sum load as a total value of reaction force of one end side and reaction force of the other end side in a rotary axis direction of the pair of cooling drums, and performing pressure control of the pair of cooling drums according to a sum load difference as a difference between an actual measured sum load and a target sum load, pressure control of the pair of cooling drums is performed so that the actual measured sum load becomes the target sum load when the sum load difference is equal to or less than a limit value, and the pressure control of the pair of cooling drums is performed by ignoring a portion exceeding the limit value when the sum load difference exceeds the limit value.SELECTED DRAWING: None

Description

本発明は、一対の冷却ドラムと一対のサイド堰によって形成された溶融金属溜まり部に、溶融金属を供給して薄肉鋳片を製造する薄肉鋳片の製造方法に関するものである。 The present invention relates to a method for producing a thin-walled slab, which supplies a molten metal to a molten metal reservoir formed by a pair of cooling drums and a pair of side weirs to produce a thin-walled slab.

金属の薄肉鋳片を製造する方法として、例えば、特許文献1、2に示すように、内部に水冷構造を有する冷却ドラムを備え、回転する一対の冷却ドラム間に形成された溶融金属溜まり部に溶融金属を供給し、前記冷却ドラムの周面に凝固シェルを形成・成長させ、一対の冷却ドラムの外周面にそれぞれ形成された凝固シェル同士をドラムキス点で接合し、圧下して所定の厚さの薄肉鋳片を製造する双ドラム式連続鋳造装置を用いた製造方法が提供されている。このような双ドラム式連続鋳造装置を用いた製造方法は、各種金属において適用されている。 As a method for producing a thin-walled metal slab, for example, as shown in Patent Documents 1 and 2, a cooling drum having a water-cooled structure inside is provided, and a molten metal reservoir formed between a pair of rotating cooling drums is provided. A molten metal is supplied to form and grow a solidified shell on the peripheral surface of the cooling drum, and the solidified shells formed on the outer peripheral surfaces of the pair of cooling drums are joined at a drum kiss point and reduced to a predetermined thickness. A manufacturing method using a twin-drum type continuous casting apparatus for manufacturing thin-walled slabs is provided. The manufacturing method using such a twin drum type continuous casting apparatus is applied to various metals.

ここで、上述の双ドラム式連続鋳造装置においては、板幅方向の厚さが均一な薄肉鋳片を製造するために、一対の冷却ドラムの互いの回転軸が平行に保持されるように、圧力制御を行う必要がある。
例えば、特許文献1においては、一方の冷却ドラムの両端部の押付力を検出加算し、これに基づく信号により、一方の冷却ドラムの両端の押付力の和が所定の値となるように、他方の冷却ドラムの両端を油圧シリンダーによって平行に移動させる方法が提案されている。
Here, in the above-mentioned twin drum type continuous casting apparatus, in order to produce a thin-walled slab having a uniform thickness in the plate width direction, the rotation axes of the pair of cooling drums are held in parallel with each other. It is necessary to control the pressure.
For example, in Patent Document 1, the pressing forces at both ends of one cooling drum are detected and added, and a signal based on this is used so that the sum of the pressing forces at both ends of one cooling drum becomes a predetermined value. A method has been proposed in which both ends of the cooling drum of the above are moved in parallel by a hydraulic cylinder.

また、特許文献2,3においては、鋳造開始直後と定常状態とで、一対の冷却ドラム間の圧力制御を切り替える方法が提案されている。
特許文献2においては、冷却ドラムを回転起動した後に薄肉鋳片の肉厚部が冷却ドラムの最近接点(ドラムキス点)を通過するまでの第1ステップでは、冷却ドラムの平行制御を行うことなく、一対の冷却ドラムが近接する方向に比較的低圧で押圧し、第1ステップの後からノズルからの溶鋼の吐出流によるシェル洗いの影響がなくなるまでの第2ステップでは、冷却ドラムの平行制御を行うことなく、第1ステップよりも高い圧力で押圧し、第2ステップの後の第3ステップでは、一対の冷却ドラムの回転軸が互いに平行となるように平行制御を実施している。
Further, Patent Documents 2 and 3 propose a method of switching the pressure control between the pair of cooling drums immediately after the start of casting and in the steady state.
In Patent Document 2, in the first step from the rotation start of the cooling drum until the thick portion of the thin-walled slab passes through the latest contact (drum kiss point) of the cooling drum, the cooling drum is not controlled in parallel. The pair of cooling drums are pressed in a direction close to each other at a relatively low pressure, and in the second step from after the first step until the influence of shell washing by the discharge flow of molten steel from the nozzle disappears, parallel control of the cooling drums is performed. Instead, the pressing is performed with a pressure higher than that of the first step, and in the third step after the second step, parallel control is performed so that the rotation axes of the pair of cooling drums are parallel to each other.

また、特許文献3においては、鋳造開始時において前記一対の冷却ドラムを停止した状態で前記溶融金属溜まり部に前記溶融金属を供給した際に形成される前記薄肉鋳片の肉厚部が、前記冷却ドラムの回転起動後に前記一対の冷却ドラムの最近接点を通過するまでの第1ステップにおいては、冷却ドラムの平行制御を行うことなく、一対の冷却ドラムが近接する方向に比較的低圧で押圧し、前記第1ステップ後から前記冷却ドラムが1回転以上するまでの第2ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の圧力で、かつ、前記第1ステップよりも高い所定の圧力(第2圧力)で、前記一対の冷却ドラムが互いに近接する方向に押圧し、前記第2ステップ以後の第3ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値が所定の値となるように、かつ、前記一対の冷却ドラムの互いの回転軸が平行に保持されるように圧力制御を行う構成とされている。 Further, in Patent Document 3, the thick portion of the thin-walled slab formed when the molten metal is supplied to the molten metal pool portion with the pair of cooling drums stopped at the start of casting is described as described above. In the first step from the start of rotation of the cooling drums to the passage through the recent contacts of the pair of cooling drums, the pair of cooling drums are pressed at a relatively low pressure in the direction in which the pair of cooling drums are close to each other without controlling the parallelism of the cooling drums. In the second step from after the first step until the cooling drum makes one or more rotations, one end side and the other end side of the pair of cooling drums in the rotation axis direction have the same pressure and the first step. At a predetermined pressure (second pressure) higher than the step, the pair of cooling drums press in a direction close to each other, and in the third step after the second step, in the rotation axis direction of the pair of cooling drums. The pressure is controlled so that the total value of the reaction forces on the one end side and the other end side becomes a predetermined value and the rotation axes of the pair of cooling drums are held in parallel with each other. ..

これら特許文献2,3においては、凝固シェルの厚みの偏差が大きい鋳造開始直後の非定常時においては、一対の冷却ドラムを単純に押圧しているので、ドラムキス点において凝固シェル同士を十分に圧下することができ、薄肉鋳片の厚み中央部分に未凝固部が形成されることを抑制できる。 In these Patent Documents 2 and 3, since the pair of cooling drums are simply pressed in the non-stationary state immediately after the start of casting in which the deviation in the thickness of the solidified shells is large, the solidified shells are sufficiently pressed down at the drum kiss point. It is possible to prevent the formation of an unsolidified portion in the central portion of the thickness of the thin-walled slab.

特開平01−166863号公報Japanese Unexamined Patent Publication No. 01-166863 特許第2957040号公報Japanese Patent No. 2957040 特開2018−176251号公報Japanese Unexamined Patent Publication No. 2018-176251

しかしながら、特許文献1や特許文献2,3の第3ステップのように、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御を実施した場合であっても、薄肉鋳片の材質によっては、鋳造時に薄肉鋳片の破断が生じることがあった。 However, as in the third step of Patent Document 1 and Patent Documents 2 and 3, the sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured and actually measured. Even when the pressure control of the pair of cooling drums is performed according to the sum load difference, which is the difference between the sum load and the target sum load, the thin wall slab breaks during casting depending on the material of the thin wall slab. Could occur.

本発明は、前述した状況に鑑みてなされたものであって、双ドラム式連続鋳造装置において、薄肉鋳片の破断を抑制でき、鋳造を安定して開始することが可能な薄肉鋳片の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned situation, and in a twin-drum type continuous casting apparatus, a thin-walled slab can be produced which can suppress the breakage of the thin-walled slab and can start casting stably. The purpose is to provide a method.

上述の課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。
双ドラム式連続鋳造装置においては、鋳造開始後には、上述のように、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御を実施することになる。
As a result of diligent studies by the present inventors in order to solve the above-mentioned problems, the following findings were obtained.
In the twin-drum type continuous casting device, after the start of casting, as described above, the sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured and actually measured. The pressure control of the pair of cooling drums is performed according to the sum load difference, which is the difference between the sum load and the target sum load.

ここで、図5(a)に示すように、一対の冷却ドラム11,11に地金Mの噛み込みが発生した場合には、反力が一時的に大きく上昇し、和荷重も大きくなる。このため、一対の冷却ドラム11,11が離間する方向に制御される。
すると、地金Mが冷却ドラム間に存在する状態では、図5(b)に示すように、薄肉鋳片1の温度が相対的に高くなった第1高温領域1aが形成される。
そして、地金Mが冷却ドラム11,11の間から抜けた時点では、薄肉鋳片1を冷却ドラム11で十分に押圧することができなくなってさらに薄肉鋳片1の温度が上昇した第2高温領域1bが形成されることになり、この第2高温領域1bにおいて薄肉鋳片1の破断が生じることが分かった。
Here, as shown in FIG. 5A, when the metal M is bitten into the pair of cooling drums 11 and 11, the reaction force temporarily increases significantly and the sum load also increases. Therefore, the pair of cooling drums 11 and 11 are controlled in a direction in which they are separated from each other.
Then, in a state where the bare metal M exists between the cooling drums, as shown in FIG. 5B, a first high temperature region 1a in which the temperature of the thin-walled slab 1 is relatively high is formed.
Then, when the metal M comes out between the cooling drums 11 and 11, the thin-walled slab 1 cannot be sufficiently pressed by the cooling drum 11, and the temperature of the thin-walled slab 1 rises further to the second high temperature. It was found that the region 1b was formed, and the thin-walled slab 1 was broken in the second high temperature region 1b.

本発明は、上述の知見に基づいてなされたものであって、本発明に係る薄肉鋳片の製造方法は、回転する一対の冷却ドラムと一対のサイド堰によって形成された溶融金属溜まり部に溶融金属を供給し、前記冷却ドラムの周面に凝固シェルを形成・成長させて薄肉鋳片を製造する薄肉鋳片の製造方法であって、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御を行う際に、前記和荷重差が限界値以下の場合には、前記実測和荷重が前記目標和荷重となるように前記一対の冷却ドラムの圧力制御を行い、前記和荷重差が限界値を超えた場合には、前記限界値を超えた分を無視して、前記一対の冷却ドラムの圧力制御を行うことを特徴としている。 The present invention has been made based on the above findings, and the method for producing a thin-walled slab according to the present invention melts in a molten metal reservoir formed by a pair of rotating cooling drums and a pair of side dams. A method for producing a thin-walled slab by supplying metal and forming and growing a solidified shell on the peripheral surface of the cooling drum to produce a thin-walled slab. When the sum load, which is the total value of the reaction forces on the end side, is measured and the pressure control of the pair of cooling drums is performed according to the sum load difference, which is the difference between the measured sum load and the target sum load, the sum is said. When the load difference is equal to or less than the limit value, the pressure of the pair of cooling drums is controlled so that the measured sum load becomes the target sum load, and when the sum load difference exceeds the limit value, the said It is characterized in that the pressure of the pair of cooling drums is controlled ignoring the amount exceeding the limit value.

この構成の薄肉鋳片の製造方法によれば、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御を行う際に、前記和荷重差が限界値を超えた場合には、前記限界値を超えた分を無視して、前記一対の冷却ドラムの圧力制御を行う構成としているので、例えば、地金の噛み込みによって、反力が一時的に大きく上昇し、上述の和荷重差が限界値を超えても、冷却ドラムが必要以上に離間することがなくなり、地金が通過した後に薄肉鋳片を冷却ドラムによって十分に押圧して冷却することができ、薄肉鋳片の局所的な高温領域の発生を抑制できる。よって、薄肉鋳片の破断を抑制することができ、安定して薄肉鋳片の鋳造を行うことができる。 According to the method for manufacturing a thin-walled slab having this configuration, the sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured, and the actual sum load and the target sum load are measured. When the pressure control of the pair of cooling drums is performed according to the sum load difference, which is the difference between the above and the above, if the sum load difference exceeds the limit value, the amount exceeding the limit value is ignored. Since the pressure of the pair of cooling drums is controlled, for example, even if the reaction force temporarily increases significantly due to the biting of the bare metal and the above-mentioned sum load difference exceeds the limit value, the cooling drums. Is not separated more than necessary, and the thin-walled slab can be sufficiently pressed by the cooling drum to be cooled after the bare metal has passed, and the generation of a local high-temperature region of the thin-walled slab can be suppressed. Therefore, the breakage of the thin-walled slab can be suppressed, and the thin-walled slab can be stably cast.

ここで、本発明に係る薄肉鋳片の製造方法においては、前記和荷重差の限界値は、前記冷却ドラムのドラム幅1m当たり1kN以上8kN以下の範囲内であることが好ましい。
この場合、前記和荷重差の限界値が前記冷却ドラムのドラム幅1m当たり1kN以上とされているので、目標和荷重となるように精度良く圧力制御が可能となる。同時に、前記和荷重差の限界値が前記冷却ドラムのドラム幅1m当たり8kN以下とされているので、地金の噛み込みが発生した場合でも、冷却ドラムが必要以上に離間することがなく、地金が通過した後に薄肉鋳片を冷却ドラムによって十分に押圧して冷却することができる。よって、薄肉鋳片の破断をさらに抑制することができ、さらに安定して薄肉鋳片の鋳造を行うことができる。
Here, in the method for producing a thin-walled slab according to the present invention, the limit value of the sum load difference is preferably in the range of 1 kN or more and 8 kN or less per 1 m of the drum width of the cooling drum.
In this case, since the limit value of the sum load difference is 1 kN or more per 1 m of the drum width of the cooling drum, the pressure can be accurately controlled so as to reach the target sum load. At the same time, since the limit value of the sum load difference is 8 kN or less per 1 m of the drum width of the cooling drum, even if the bullion is bitten, the cooling drums do not separate more than necessary, and the ground is not separated. After the gold has passed, the thin-walled slab can be sufficiently pressed by the cooling drum to be cooled. Therefore, the breakage of the thin-walled slab can be further suppressed, and the thin-walled slab can be cast more stably.

また、本発明に係る薄肉鋳片の製造方法においては、鋳造開始時において前記一対の冷却ドラムを停止した状態で前記溶融金属溜まり部に前記溶融金属を供給した際に形成される前記薄肉鋳片の肉厚部が、前記冷却ドラムの回転起動後に前記一対の冷却ドラムの最近接点を通過するまでの第1ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の圧力で、前記一対の冷却ドラムが互いに近接する方向に向けて押圧し、前記第1ステップ後から前記冷却ドラムが1回転乃至2回転するまでの第2ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の圧力で、かつ、前記第1ステップよりも高い圧力で、前記一対の冷却ドラムが互いに近接する方向に押圧し、前記第2ステップ以後の第3ステップにおいて、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御する構成としてもよい。 Further, in the method for producing a thin-walled slab according to the present invention, the thin-walled slab formed when the molten metal is supplied to the molten metal reservoir with the pair of cooling drums stopped at the start of casting. In the first step from the start of rotation of the cooling drums to the passage of the recent contacts of the pair of cooling drums, one end side and the other end side of the pair of cooling drums in the rotation axis direction are the same. With the pressure of, the pair of cooling drums are pressed toward each other in a direction close to each other, and in the second step from after the first step until the cooling drums make one or two rotations, the pair of cooling drums The pair of cooling drums press the one end side and the other end side in the rotation axis direction at the same pressure and at a pressure higher than that of the first step in a direction close to each other, and the third step after the second step. In the step, the sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured, and according to the sum load difference, which is the difference between the measured sum load and the target sum load. Therefore, the pressure of the pair of cooling drums may be controlled.

この場合、鋳造開始時において前記一対の冷却ドラムを停止した状態で前記溶融金属溜まり部に前記溶融金属を供給した際に形成される前記薄肉鋳片の肉厚部が、前記冷却ドラムの回転起動後に前記冷却ドラムの最近接点を通過するまでの第1ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の所定の圧力(第1圧力)で、前記一対の冷却ドラムが互いに近接する方向に向けて押圧しているので、肉厚部を比較的安定して冷却ドラム間を通過させることができる。
さらに、第2ステップでは、第1ステップよりも高い所定の圧力(第2圧力)で冷却ドラムを押圧しているので、ドラムキス点において凝固シェル同士を十分に圧下することができ、薄肉鋳片の厚み中央部分に未凝固部が形成されることを抑制できる。
In this case, the thick portion of the thin-walled slab formed when the molten metal is supplied to the molten metal pool portion with the pair of cooling drums stopped at the start of casting rotates the cooling drum. Later, in the first step until the cooling drum recently passes through the contact point, the pair of cooling drums are subjected to the same predetermined pressure (first pressure) on one end side and the other end side in the rotation axis direction of the pair of cooling drums. Since the cooling drums are pressed toward each other in a direction close to each other, the thick portion can be passed between the cooling drums relatively stably.
Further, in the second step, since the cooling drum is pressed at a predetermined pressure (second pressure) higher than that in the first step, the solidified shells can be sufficiently reduced at the drum kiss point, and the thin-walled slab can be sufficiently pressed. It is possible to suppress the formation of an unsolidified portion in the central portion of the thickness.

上述のように、本発明によれば、双ドラム式連続鋳造装置において、薄肉鋳片の破断を抑制でき、鋳造を安定して開始することが可能な薄肉鋳片の製造方法を提供することが可能となる。 As described above, according to the present invention, it is possible to provide a method for producing a thin-walled slab that can suppress the breakage of the thin-walled slab and can start casting stably in the twin-drum type continuous casting apparatus. It will be possible.

本発明の実施形態である薄肉鋳片の製造方法に用いられる双ドラム式連続鋳造装置の一例を示す説明図である。It is explanatory drawing which shows an example of the twin drum type continuous casting apparatus used in the manufacturing method of the thin-walled slab which is an embodiment of this invention. 図1に示す双ドラム式連続鋳造装置の一部拡大説明図である。It is a partially enlarged explanatory view of the twin drum type continuous casting apparatus shown in FIG. 第1ステップ及び第2ステップ、並びに、第3ステップにおける冷却ドラムの圧力制御方法を示す説明図である。It is explanatory drawing which shows the pressure control method of the cooling drum in 1st step, 2nd step, and 3rd step. 実施例における冷却ドラムの圧力制御の条件を示すグラフである。It is a graph which shows the condition of the pressure control of the cooling drum in an Example. 従来の薄肉鋳片の製造方法において、地金噛み込み時における薄肉鋳片の温度分布を示す説明図である。It is explanatory drawing which shows the temperature distribution of the thin-walled slab at the time of biting a bullion in the conventional method of manufacturing a thin-walled slab.

以下に、本発明の実施形態である薄肉鋳片の製造方法について、添付した図面を参照して説明する。なお、本発明は、以下の実施形態に限定されるものではない。
ここで、本実施形態では、溶融金属として溶鋼を用いており、鋼材からなる薄肉鋳片1を製造するものとされている。また、本実施形態では、製造される薄肉鋳片1の幅が200mm以上1800mm以下の範囲内、厚さが0.8mm以上5mm以下の範囲内とされている。
Hereinafter, a method for producing a thin-walled slab according to an embodiment of the present invention will be described with reference to the attached drawings. The present invention is not limited to the following embodiments.
Here, in the present embodiment, molten steel is used as the molten metal, and the thin-walled slab 1 made of a steel material is manufactured. Further, in the present embodiment, the width of the thin-walled slab 1 to be manufactured is within the range of 200 mm or more and 1800 mm or less, and the thickness is within the range of 0.8 mm or more and 5 mm or less.

まず、本実施形態である薄肉鋳片の製造方法に用いられる双ドラム式連続鋳造装置10について説明する。
図1に示す双ドラム式連続鋳造装置10は、一対の冷却ドラム11、11と、薄肉鋳片1を支持するピンチロール12、13と、一対の冷却ドラム11、11の幅方向端部に配設されたサイド堰15と、これら一対の冷却ドラム11、11とサイド堰15とによって画成された溶鋼プール部16に供給される溶鋼3を保持するタンディッシュ18と、このタンディッシュ18から溶鋼プール部16へと溶鋼3を供給する浸漬ノズル19と、を備えている。
First, the twin-drum type continuous casting apparatus 10 used in the method for producing a thin-walled slab according to the present embodiment will be described.
The twin drum type continuous casting apparatus 10 shown in FIG. 1 is arranged at the widthwise ends of the pair of cooling drums 11 and 11, the pinch rolls 12 and 13 supporting the thin-walled slab 1, and the pair of cooling drums 11 and 11. A tundish 18 that holds the molten steel 3 supplied to the side weir 15 provided, the molten steel pool portion 16 defined by the pair of cooling drums 11, 11 and the side weir 15, and the molten steel from the tundish 18. A dipping nozzle 19 for supplying the molten steel 3 to the pool portion 16 is provided.

この双ドラム式連続鋳造装置10においては、溶鋼3が回転する冷却ドラム11,11に接触して冷却されることにより、冷却ドラム11,11の周面の上で凝固シェル5、5が成長し、一対の冷却ドラム11,11にそれぞれ形成された凝固シェル5、5同士がドラムキス点で圧着されることによって、所定厚みの薄肉鋳片1が鋳造される。 In the twin drum type continuous casting apparatus 10, the solidified shells 5 and 5 grow on the peripheral surfaces of the cooling drums 11 and 11 when the molten steel 3 comes into contact with the rotating cooling drums 11 and 11 and is cooled. , The solidified shells 5 and 5 formed on the pair of cooling drums 11 and 11, respectively, are pressure-bonded to each other at the drum kiss point to cast a thin-walled slab 1 having a predetermined thickness.

ここで、図2に示すように、冷却ドラム11の端面にサイド堰15が配設されることによって、溶鋼プール部16が画成されている。
溶鋼プール部16の湯面は、図2に示すように、一対の冷却ドラム11,11の周面と一対のサイド堰15,15によって四方を囲まれた矩形状をなしており、この矩形状をなす湯面の中央部に浸漬ノズル19が配設されている。
Here, as shown in FIG. 2, the molten steel pool portion 16 is defined by disposing the side weir 15 on the end surface of the cooling drum 11.
As shown in FIG. 2, the molten metal surface of the molten steel pool portion 16 has a rectangular shape surrounded on all sides by the peripheral surfaces of the pair of cooling drums 11 and 11 and the pair of side weirs 15 and 15. The immersion nozzle 19 is arranged at the center of the hot water surface forming the water.

上述の双ドラム式連続鋳造装置10において鋳造開始時には、一対の冷却ドラム11,11が停止した状態で、冷却ドラム11、11の間にダミーシート(図示なし)が挿入され、溶鋼プール部16に向けて溶鋼3が供給される。
そして、冷却ドラム11,11を回転起動し、薄肉鋳片1が冷却ドラム11,11の下方側から引抜かれていく。
At the start of casting in the above-mentioned twin drum type continuous casting apparatus 10, a dummy sheet (not shown) is inserted between the cooling drums 11 and 11 with the pair of cooling drums 11 and 11 stopped, and the molten steel pool portion 16 is filled with a dummy sheet (not shown). The molten steel 3 is supplied toward the target.
Then, the cooling drums 11 and 11 are rotationally activated, and the thin-walled slab 1 is pulled out from the lower side of the cooling drums 11 and 11.

このとき、鋳造開始直後は、溶鋼プール部16の溶鋼3が凝固して薄肉鋳片1の厚みは厚くなり、こぶ状の肉厚部が形成される。
また、溶鋼プール部16においては、浸漬ノズル19からの溶鋼3の吐出流が凝固シェル5を洗い流すシェル洗いが発生する。このシェル洗いは、溶鋼プール部16における湯面高さが高くなると発生しなくなる。
At this time, immediately after the start of casting, the molten steel 3 in the molten steel pool portion 16 solidifies, the thickness of the thin-walled slab 1 becomes thicker, and a hump-shaped thickened portion is formed.
Further, in the molten steel pool portion 16, shell washing occurs in which the discharge flow of the molten steel 3 from the immersion nozzle 19 flushes the solidified shell 5. This shell washing does not occur when the height of the molten metal in the molten steel pool portion 16 becomes high.

そこで、本実施形態においては、冷却ドラム11,11の圧力制御を、以下のようにして実施している。 Therefore, in the present embodiment, the pressure control of the cooling drums 11 and 11 is carried out as follows.

まず、一対の冷却ドラム11,11を停止した状態から、一対の冷却ドラム11,11を回転起動させて、薄肉鋳片1の肉厚部が一対の冷却ドラム11,11の最近接点(ドラムキス点)を通過するまでの第1ステップにおいては、図3(a)に示すように、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側に配設された油圧シリンダー21A,21Bによって、所定の圧力(第1圧力)で一対の冷却ドラム11,11が互いに近接する方向に向けて押圧する。本実施形態では、図3(a)に示すように、移動側の冷却ドラム11aに油圧シリンダー21A、21Bが配設されており、固定側の冷却ドラム11bに向けて移動側の冷却ドラム11aを押圧するように構成されている。第1圧力は、冷却ドラム11の起動に影響を与えない範囲で出来るだけ高い値を狙いとするが、その具体的数値は、主に、冷却ドラム11の幅、直径、溶融金属種類、ドラム最大駆動力から決まるものである。現実的には、事前の計算等にて適正値を求めるのは難しいため、実際の試験にて適正値を求めて設定される。 First, from the state where the pair of cooling drums 11 and 11 are stopped, the pair of cooling drums 11 and 11 are rotationally started, and the thick portion of the thin-walled slab 1 is the latest contact (drum kiss point) of the pair of cooling drums 11 and 11. ), As shown in FIG. 3A, the hydraulic cylinders 21A and 21B arranged on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction. The pair of cooling drums 11 and 11 are pressed toward each other at a predetermined pressure (first pressure). In the present embodiment, as shown in FIG. 3A, the hydraulic cylinders 21A and 21B are arranged on the cooling drum 11a on the moving side, and the cooling drum 11a on the moving side is moved toward the cooling drum 11b on the fixed side. It is configured to press. The first pressure is aimed at a value as high as possible within a range that does not affect the start-up of the cooling drum 11, but the specific values are mainly the width, diameter, molten metal type, and drum maximum of the cooling drum 11. It is determined by the driving force. In reality, it is difficult to obtain an appropriate value by prior calculation, etc., so an appropriate value is obtained and set in an actual test.

次に、上述の第1ステップの後、冷却ドラム11,11が1回転乃至2回転するまでの第2ステップにおいては、図3(a)に示すように、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側に配設された油圧シリンダー21A,21Bによって、所定の圧力(第2圧力)で一対の冷却ドラム11,11が互いに近接する方向に向けて押圧する。なお、第2圧力は、冷却ドラム11の表面に変形等の損傷を与えない範囲で出来るだけ高い値を狙いとするが、主に冷却ドラム11の幅、直径、表面形状、表面材質、溶融金属種類、から決まるものである、現実的には、第1圧力と同様に、実際の試験にて適正値を求めて設定される。ここで、第2ステップにおける第2圧力は、第1ステップにおける第1圧力よりも高く設定されている。 Next, after the first step described above, in the second step until the cooling drums 11 and 11 make one or two rotations, as shown in FIG. 3A, the pair of cooling drums 11 and 11 rotate. The hydraulic cylinders 21A and 21B arranged on one end side and the other end side in the axial direction press the pair of cooling drums 11 and 11 toward each other at a predetermined pressure (second pressure). The second pressure is aimed at a value as high as possible within a range that does not cause damage such as deformation to the surface of the cooling drum 11, but mainly the width, diameter, surface shape, surface material, and molten metal of the cooling drum 11. It is determined by the type, and in reality, it is set by obtaining an appropriate value in an actual test as in the case of the first pressure. Here, the second pressure in the second step is set higher than the first pressure in the first step.

次に、第2ステップ以後の第3ステップにおいては、図3(b)に示すように、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側の反力の合計値(すなわち、和荷重)が所定の値となるように、かつ、一対の冷却ドラム11,11の互いの回転軸が平行に保持されるように圧力制御を行う。具体的には、図3(b)に示すように、移動側の冷却ドラム11aに油圧シリンダー21A、21Bが配設され、固定側の冷却ドラム11bにロードセル22A、22Bが配設されており、ロードセル22A、22Bによって測定された反力信号が反力制御部24に送信され、この反力制御部24において、和荷重が所定値になるように、油圧シリンダー21A、21Bにおいて前後進するように指令を与える。これにより、一対の冷却ドラム11,11の互いの回転軸が平行に保持され、板厚制御された薄肉鋳片1が製造されることになる。なお、前記和荷重の所定値は、主に薄肉鋳片1の品質を満足する範囲で、操業の安定性の維持を狙いとするが、主に冷却ドラム11の幅、直径、溶融金属種類から決まるものである。現実的には、第1圧力、第2圧力と同様に、実際の試験にて適正値を求めて設定される。 Next, in the third step after the second step, as shown in FIG. 3B, the total value of the reaction forces on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction (that is, The pressure is controlled so that the sum load) becomes a predetermined value and the rotation axes of the pair of cooling drums 11 and 11 are held in parallel with each other. Specifically, as shown in FIG. 3B, hydraulic cylinders 21A and 21B are arranged on the cooling drum 11a on the moving side, and load cells 22A and 22B are arranged on the cooling drum 11b on the fixed side. The reaction force signal measured by the load cells 22A and 22B is transmitted to the reaction force control unit 24 so that the reaction force control unit 24 moves forward and backward in the hydraulic cylinders 21A and 21B so that the sum load becomes a predetermined value. Give a command. As a result, the rotation axes of the pair of cooling drums 11 and 11 are held in parallel with each other, and the thin-walled slab 1 having a controlled plate thickness is manufactured. The predetermined value of the sum load is mainly aimed at maintaining the stability of operation within the range satisfying the quality of the thin-walled slab 1, but mainly from the width, diameter, and type of molten metal of the cooling drum 11. It is decided. In reality, as with the first pressure and the second pressure, an appropriate value is obtained and set in an actual test.

ここで、第3ステップにおいては、上述のように、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、一対の冷却ドラム11,11の圧力制御を実施している。 Here, in the third step, as described above, the sum load, which is the total value of the reaction forces on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction, is measured and combined with the measured sum load. The pressure of the pair of cooling drums 11 and 11 is controlled according to the sum load difference, which is the difference from the target sum load.

このとき、一対の冷却ドラム11,11の間に地金を噛み込んだ場合には、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側の反力の合計値(和荷重)が上昇し、実測和荷重と目標和荷重との差である和荷重差が大きくなる。
地金の噛み込みによる和荷重の上昇に応じて、一対の冷却ドラム11,11の圧力制御を行うと、地金が一対の冷却ドラム11,11の間から抜けたときに冷却ドラム11,11によって薄肉鋳片1を十分に押圧することができなくなり、薄肉鋳片1の温度が上昇して破断するおそれがある。
At this time, when the bare metal is caught between the pair of cooling drums 11 and 11, the total value (sum load) of the reaction forces on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction. ) Increases, and the sum load difference, which is the difference between the measured sum load and the target sum load, increases.
When the pressure of the pair of cooling drums 11 and 11 is controlled according to the increase in the sum load due to the biting of the bullion, the cooling drums 11 and 11 when the bullion comes out between the pair of cooling drums 11 and 11. As a result, the thin-walled slab 1 cannot be sufficiently pressed, and the temperature of the thin-walled slab 1 may rise and break.

そこで、本実施形態においては、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、一対の冷却ドラム11,11の圧力制御を実施する際に、和荷重差の限界値を設定し、和荷重差が限界値以下の場合には、実測和荷重が目標和荷重となるように一対の冷却ドラム11,11の圧力制御を行い、前記和荷重差が限界値を超えた場合には、前記限界値を超えた分を無視して、一対の冷却ドラム11,11の圧力制御を行う構成とされている。 Therefore, in the present embodiment, the sum load, which is the total value of the reaction forces on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction, is measured, and the difference between the actually measured sum load and the target sum load. When the pressure control of the pair of cooling drums 11 and 11 is performed according to the sum load difference, the limit value of the sum load difference is set, and if the sum load difference is less than or equal to the limit value, the measured sum load is measured. The pressure of the pair of cooling drums 11 and 11 is controlled so that is the target sum load, and when the sum load difference exceeds the limit value, the amount exceeding the limit value is ignored and the pair of cooling is performed. It is configured to control the pressure of the drums 11 and 11.

ここで、和荷重差の限界値は、和荷重検出上限値と目標和荷重との差よりも小さく、かつ、和荷重変化の検出下限よりも大きくする必要がある。
和荷重差の限界値は、上述の範囲内の中でも、地金の噛み込み等の突発的な和荷重の上昇に対して冷却ドラム11,11の圧力制御を行うことを抑制するためには、和荷重差の限界値の上限を、冷却ドラム11のドラム幅1m当たり8kN以下とすることが好ましく、5kN以下とすることがさらに好ましい。一方、目標和荷重となるようにさらに精度良く冷却ドラム11,11の圧力制御を行うためには、和荷重差の限界値の下限を、冷却ドラム11のドラム幅1m当たり1kN以上とすることが好ましく、3kN以上とすることがさらに好ましい。
Here, the limit value of the sum load difference needs to be smaller than the difference between the sum load detection upper limit value and the target sum load and larger than the detection lower limit of the sum load change.
The limit value of the sum load difference is set in order to suppress the pressure control of the cooling drums 11 and 11 against a sudden increase in the sum load such as the biting of the bullion, even within the above range. The upper limit of the limit value of the sum load difference is preferably 8 kN or less per 1 m of the drum width of the cooling drum 11, and more preferably 5 kN or less. On the other hand, in order to control the pressure of the cooling drums 11 and 11 more accurately so as to achieve the target sum load, the lower limit of the limit value of the sum load difference may be set to 1 kN or more per 1 m of the drum width of the cooling drum 11. It is preferably 3 kN or more, and more preferably 3 kN or more.

以上のような構成とされた本実施形態である薄肉鋳片1の製造方法によれば、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、一対の冷却ドラム11,11の圧力制御を行う際に、和荷重差が限界値を超えた場合には、限界値を超えた分を無視して、一対の冷却ドラム11,11の圧力制御を行う構成としているので、例えば、地金の噛み込みによって反力が一時的に大きく上昇し、上述の和荷重差が限界値を超えても、一対の冷却ドラム11,11が必要以上に離間することがなくなり、地金が通過した後に薄肉鋳片1を一対の冷却ドラム11,11によって十分に押圧して冷却することができ、薄肉鋳片1の局所的な温度上昇を抑制することができる。よって、薄肉鋳片1の破断を抑制することができ、安定して鋳造を行うことができる。 According to the method for manufacturing the thin-walled slab 1 according to the present embodiment having the above configuration, it is the total value of the reaction forces on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction. When the sum-load difference exceeds the limit value when the sum-load is measured and the pressure of the pair of cooling drums 11 and 11 is controlled according to the sum-load difference, which is the difference between the measured sum-load and the target sum-load. Since the pressure of the pair of cooling drums 11 and 11 is controlled ignoring the amount exceeding the limit value, for example, the reaction force temporarily greatly increases due to the biting of the bare metal, and the above-mentioned Even if the sum load difference of the above exceeds the limit value, the pair of cooling drums 11 and 11 will not be separated more than necessary, and the thin-walled slab 1 will be sufficiently separated by the pair of cooling drums 11 and 11 after the bare metal has passed. It can be pressed and cooled, and the local temperature rise of the thin-walled slab 1 can be suppressed. Therefore, the breakage of the thin-walled slab 1 can be suppressed, and stable casting can be performed.

本実施形態において、和荷重差の限界値を、冷却ドラム11のドラム幅1m当たり1kN以上とした場合には、地金の噛み込み等の突発的な事象によって和荷重が一時的に上昇しても、一対の冷却ドラム11,11が必要以上に離間することをさらに抑制することができ、定常状態に戻った際に薄肉鋳片1を一対の冷却ドラム11,11によって十分に押圧することができ、薄肉鋳片1の鋳造をさらに安定して実施することが可能となる。
また、本実施形態において、和荷重差の限界値を、冷却ドラム11のドラム幅1m当たり8kN以下とした場合には、一対の冷却ドラム11,11の圧力制御をさらに精度良く行うことができ、薄肉鋳片1の鋳造をさらに安定して実施することが可能となる。
In the present embodiment, when the limit value of the sum load difference is set to 1 kN or more per 1 m of the drum width of the cooling drum 11, the sum load temporarily increases due to a sudden event such as biting of the bullion. However, it is possible to further prevent the pair of cooling drums 11 and 11 from being separated more than necessary, and when the state returns to a steady state, the thin-walled slab 1 can be sufficiently pressed by the pair of cooling drums 11 and 11. This makes it possible to more stably cast the thin-walled slab 1.
Further, in the present embodiment, when the limit value of the sum load difference is set to 8 kN or less per 1 m of the drum width of the cooling drum 11, the pressure control of the pair of cooling drums 11 and 11 can be performed more accurately. Casting of the thin-walled slab 1 can be performed more stably.

また、本実施形態において、一対の冷却ドラム11,11を停止した状態から、一対の冷却ドラム11,11を回転起動させて、薄肉鋳片1の肉厚部が一対の冷却ドラム11,11の最近接点(ドラムキス点)を通過するまでの第1ステップにおいて、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側に配設された油圧シリンダー21A,21Bによって、所定の圧力(第1圧力)で一対の冷却ドラム11,11が互いに近接する方向に向けて押圧した場合には、薄肉鋳片1の肉厚部を、比較的安定して冷却ドラム11,11間を通過させることができる。 Further, in the present embodiment, the pair of cooling drums 11 and 11 are rotated and started from the state where the pair of cooling drums 11 and 11 are stopped, and the thick portion of the thin-walled slab 1 is formed by the pair of cooling drums 11 and 11. In the first step until the contact (drum kiss point) is passed recently, the hydraulic cylinders 21A and 21B arranged on one end side and the other end side of the pair of cooling drums 11 and 11 in the rotation axis direction provide a predetermined pressure ( When the pair of cooling drums 11 and 11 are pressed toward each other by the first pressure), the thick portion of the thin-walled slab 1 is relatively stably passed between the cooling drums 11 and 11. be able to.

さらに、本実施形態において、上述の第1ステップの後、冷却ドラム11,11が1回転乃至2回転するまでの第2ステップにおいては、一対の冷却ドラム11,11の回転軸方向の一端側及び他端側に配設された油圧シリンダー21A,21Bによって、所定の圧力(第2圧力)で一対の冷却ドラム11,11が互いに近接する方向に向けて押圧し、第2ステップにおける第2圧力を、第1ステップにおける第1圧力よりも高く設定した場合には、ドラムキス点において凝固シェル同士を十分に圧下することができ、薄肉鋳片の厚み中央部分に未凝固部が形成されることを抑制できる。 Further, in the present embodiment, after the above-mentioned first step, in the second step until the cooling drums 11 and 11 make one or two rotations, one end side of the pair of cooling drums 11 and 11 in the rotation axis direction and The hydraulic cylinders 21A and 21B arranged on the other end side press the pair of cooling drums 11 and 11 toward each other at a predetermined pressure (second pressure) to apply the second pressure in the second step. , When the pressure is set higher than the first pressure in the first step, the solidified shells can be sufficiently reduced at the drum kiss point, and the formation of an unsolidified portion in the central portion of the thickness of the thin-walled slab is suppressed. it can.

以上、本発明の実施形態である薄肉鋳片の製造方法について具体的に説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、図1に示す双ドラム式連続鋳造装置を例に挙げて説明したが、これに限定されることはない。
また、冷却ドラムの押圧方式は、図3に示すものに限定されることはなく、実施形態で示したように圧力制御が実施可能な構成であればよい。
Although the method for producing a thin-walled slab according to the embodiment of the present invention has been specifically described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention. is there.
In the present embodiment, the twin drum type continuous casting apparatus shown in FIG. 1 has been described as an example, but the present invention is not limited thereto.
Further, the pressing method of the cooling drum is not limited to the one shown in FIG. 3, and any configuration may be used as long as the pressure control can be performed as shown in the embodiment.

以下に、本発明の効果を確認すべく、実施した実験結果について説明する。
図1に示す双ドラム式連続鋳造装置を用いて、炭素量0.05mass%の炭素鋼からなる薄肉鋳片の製造を行った。
ここで、冷却ドラム径を600mm、冷却ドラム幅を400mmとした。また、定常鋳造の鋳片厚さを2.0mmとした。
そして、図4に示すように、第1ステップ、第2ステップ、第3ステップを設定し、実施形態の欄に記載した方法で冷却ドラムの圧力制御を実施した。
The results of experiments carried out in order to confirm the effects of the present invention will be described below.
Using the twin-drum type continuous casting apparatus shown in FIG. 1, a thin-walled slab made of carbon steel having a carbon content of 0.05 mass% was produced.
Here, the diameter of the cooling drum was set to 600 mm, and the width of the cooling drum was set to 400 mm. Further, the slab thickness of the steady casting was set to 2.0 mm.
Then, as shown in FIG. 4, the first step, the second step, and the third step were set, and the pressure control of the cooling drum was performed by the method described in the column of the embodiment.

第3ステップにおいて、本発明例1−3では、和荷重差の限界値(冷却ドラムのドラム幅1m当たり)を、表1に示すように設定し、和荷重差が限界値を超えた場合には、限界値を超えた分を無視して、一対の冷却ドラムの圧力制御を実施した。
一方、比較例では、和荷重差の限界値を設定せずに、測定された和荷重差に応じて、一対の冷却ドラムの圧力制御を実施した。
In the third step, in Example 1-3 of the present invention, the limit value of the sum load difference (per 1 m of the drum width of the cooling drum) is set as shown in Table 1, and when the sum load difference exceeds the limit value. Performed pressure control of a pair of cooling drums, ignoring the amount exceeding the limit value.
On the other hand, in the comparative example, the pressure control of the pair of cooling drums was performed according to the measured sum load difference without setting the limit value of the sum load difference.

そして、本発明例1−3及び比較例において、鋳造回数、薄肉鋳片の破断が発生した回数、破断率、地金噛み込み後の反力の低下、鋳造状況について評価した。評価結果を表1に示す。 Then, in Examples 1-3 and Comparative Examples of the present invention, the number of times of casting, the number of times thin-walled slabs were broken, the breaking rate, the decrease in reaction force after the bullion was bitten, and the casting situation were evaluated. The evaluation results are shown in Table 1.

Figure 2021087972
Figure 2021087972

和荷重差の限界値を設定せずに、測定された和荷重差に応じて一対の冷却ドラムの圧力制御を実施した比較例においては、破断率が63%と高く、安定して鋳造を行うことができなかった。また、地金噛み込み直後に大きく反力が低下した。
これに対して、和荷重差の限界値を設定し、和荷重差が限界値を超えた場合には、限界値を超えた分を無視して一対の冷却ドラムの圧力制御を実施した本発明例1−3においては、破断率が低くなった。なお、和荷重差の限界値が10kNと比較的大きく設定された本発明例1では、地金噛み込み後の反力低下がわずかにあった。
In the comparative example in which the pressure of the pair of cooling drums was controlled according to the measured sum load difference without setting the limit value of the sum load difference, the breaking rate was as high as 63%, and stable casting was performed. I couldn't. In addition, the reaction force decreased significantly immediately after the bullion was bitten.
On the other hand, the present invention in which the limit value of the sum load difference is set, and when the sum load difference exceeds the limit value, the pressure of the pair of cooling drums is controlled ignoring the excess of the limit value. In Example 1-3, the breaking rate was low. In Example 1 of the present invention in which the limit value of the sum load difference was set to a relatively large value of 10 kN, there was a slight decrease in the reaction force after the bullion was bitten.

以上の結果から、本発明に係る薄肉鋳片の製造方法によれば、双ドラム式連続鋳造装置において、薄肉鋳片の破断を抑制でき、鋳造を安定して開始することが可能な薄肉鋳片の製造方法を提供できることが確認された。 From the above results, according to the thin-walled slab manufacturing method according to the present invention, in the twin-drum type continuous casting apparatus, the thin-walled slab can be suppressed from breaking and the casting can be started stably. It was confirmed that the manufacturing method of

1 薄肉鋳片
3 溶鋼(溶融金属)
5 凝固シェル
10 双ドラム式連続鋳造装置
11 冷却ドラム
15 サイド堰
16 溶鋼プール部(溶融金属溜まり部)
1 Thin-walled slab 3 Molten steel (molten metal)
5 Solidification shell 10 Twin drum type continuous casting equipment 11 Cooling drum 15 Side weir 16 Molten steel pool part (molten metal pool part)

Claims (3)

回転する一対の冷却ドラムと一対のサイド堰によって形成された溶融金属溜まり部に溶融金属を供給し、前記冷却ドラムの周面に凝固シェルを形成・成長させて薄肉鋳片を製造する薄肉鋳片の製造方法であって、
前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御を行う際に、
前記和荷重差が限界値以下の場合には、前記実測和荷重が前記目標和荷重となるように前記一対の冷却ドラムの圧力制御を行い、
前記和荷重差が限界値を超えた場合には、前記限界値を超えた分を無視して、前記一対の冷却ドラムの圧力制御を行うことを特徴とする薄肉鋳片の製造方法。
A thin-walled slab for producing a thin-walled slab by supplying molten metal to a molten metal reservoir formed by a pair of rotating cooling drums and a pair of side dams and forming and growing a solidified shell on the peripheral surface of the cooling drum. It is a manufacturing method of
The sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured, and the sum load difference, which is the difference between the measured sum load and the target sum load, is described. When controlling the pressure of a pair of cooling drums
When the sum load difference is equal to or less than the limit value, the pressure of the pair of cooling drums is controlled so that the measured sum load becomes the target sum load.
A method for producing a thin-walled slab, which comprises controlling the pressure of the pair of cooling drums when the sum load difference exceeds the limit value, ignoring the amount exceeding the limit value.
前記和荷重差の限界値は、前記冷却ドラムのドラム幅1m当たり1kN以上8kN以下の範囲内とすることを特徴とする請求項1に記載の薄肉鋳片の製造方法。 The method for producing a thin-walled slab according to claim 1, wherein the limit value of the sum load difference is within a range of 1 kN or more and 8 kN or less per 1 m of the drum width of the cooling drum. 鋳造開始時において前記一対の冷却ドラムを停止した状態で前記溶融金属溜まり部に前記溶融金属を供給した際に形成される前記薄肉鋳片の肉厚部が、前記冷却ドラムの回転起動後に前記一対の冷却ドラムの最近接点を通過するまでの第1ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の圧力で、前記一対の冷却ドラムが互いに近接する方向に向けて押圧し、
前記第1ステップ後から前記冷却ドラムが1回転乃至2回転するまでの第2ステップにおいては、前記一対の冷却ドラムの回転軸方向の一端側及び他端側を同一の圧力で、かつ、前記第1ステップよりも高い圧力で、前記一対の冷却ドラムが互いに近接する方向に押圧し、
前記第2ステップ以後の第3ステップにおいて、前記一対の冷却ドラムの回転軸方向の一端側及び他端側の反力の合計値である和荷重を測定し、実測和荷重と目標和荷重との差である和荷重差に応じて、前記一対の冷却ドラムの圧力制御することを特徴とする請求項1又は請求項2に記載の薄肉鋳片の製造方法。
The thick portion of the thin-walled slab formed when the molten metal is supplied to the molten metal reservoir with the pair of cooling drums stopped at the start of casting is formed after the rotation of the cooling drum is started. In the first step until the recent contact of the cooling drums is passed, one end side and the other end side of the pair of cooling drums in the rotation axis direction are pressed at the same pressure so that the pair of cooling drums are close to each other. Press toward
In the second step from after the first step until the cooling drum makes one or two rotations, one end side and the other end side of the pair of cooling drums in the rotation axis direction have the same pressure and the first step. At a pressure higher than one step, the pair of cooling drums press in a direction close to each other,
In the third step after the second step, the sum load, which is the total value of the reaction forces on one end side and the other end side in the rotation axis direction of the pair of cooling drums, is measured, and the actual sum load and the target sum load are combined. The method for producing a thin-walled slab according to claim 1 or 2, wherein the pressure of the pair of cooling drums is controlled according to the difference in sum load.
JP2019219382A 2019-12-04 2019-12-04 Method for producing thin slabs Active JP7364887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219382A JP7364887B2 (en) 2019-12-04 2019-12-04 Method for producing thin slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219382A JP7364887B2 (en) 2019-12-04 2019-12-04 Method for producing thin slabs

Publications (2)

Publication Number Publication Date
JP2021087972A true JP2021087972A (en) 2021-06-10
JP7364887B2 JP7364887B2 (en) 2023-10-19

Family

ID=76218924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219382A Active JP7364887B2 (en) 2019-12-04 2019-12-04 Method for producing thin slabs

Country Status (1)

Country Link
JP (1) JP7364887B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305399A (en) * 1992-05-06 1993-11-19 Nippon Steel Corp Method and apparatus for twin roll type continuous strip casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957040B2 (en) 1992-02-21 1999-10-04 新日本製鐵株式会社 Twin drum type continuous casting apparatus for thin sheet and casting method therefor
JP2005111522A (en) 2003-10-08 2005-04-28 Nippon Steel Corp Method for controlling rolling-reduction of rolls in twin-roll type strip continuous casting apparatus
JP6784222B2 (en) 2017-04-19 2020-11-11 日本製鉄株式会社 Manufacturing method of thin-walled slabs
WO2020079783A1 (en) 2018-10-17 2020-04-23 日本製鉄株式会社 Cast piece manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305399A (en) * 1992-05-06 1993-11-19 Nippon Steel Corp Method and apparatus for twin roll type continuous strip casting

Also Published As

Publication number Publication date
JP7364887B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP5741402B2 (en) Continuous casting method for circular section slabs
JP5477269B2 (en) Continuous casting method for slabs
JP6784222B2 (en) Manufacturing method of thin-walled slabs
JP2021087972A (en) Manufacturing method of thin cast piece
KR102526952B1 (en) Cast steel manufacturing method
JP2017159322A (en) Thin cast strip manufacturing facility and thin cast strip manufacturing method
JP3994848B2 (en) Continuous casting method of steel
EP2857122B1 (en) Continuous casting method for slab
JP6740767B2 (en) Method for manufacturing thin cast piece and apparatus for manufacturing thin cast piece
JPS59193740A (en) Continuous casting method of metallic plate
JP2018103196A (en) Thin slab production device and thin slab production method
TWI696506B (en) Manufacturing method of cast strip
JP2023025988A (en) Control method for pressing load of cooling roll and manufacturing method for thin cast piece
JP3394730B2 (en) Continuous casting method of steel slab
JPS61189850A (en) Continuous casting method of steel slab
JP2024004032A (en) Continuous casting method
JP2023026036A (en) Manufacturing method for thin cast piece
JP3294987B2 (en) Continuous casting to prevent segregation and internal cracking
JP2023057665A (en) Poring nozzle for twin-roll continuous caster, twin roll continuous caster and method of producing thin-walled slab
JP4706507B2 (en) Continuous casting method
JPH09225612A (en) Continuous casting method
JP2006239769A (en) Continuous casting device
JPH10211550A (en) Method for continuously casting thin cast slab
JP2017177143A (en) Method for manufacturing aluminum alloy material
JPH05154612A (en) Method for preventing eccentricity of core material in continuous casting for complex cast billet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7364887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151