JP5741402B2 - Continuous casting method for circular section slabs - Google Patents

Continuous casting method for circular section slabs Download PDF

Info

Publication number
JP5741402B2
JP5741402B2 JP2011257066A JP2011257066A JP5741402B2 JP 5741402 B2 JP5741402 B2 JP 5741402B2 JP 2011257066 A JP2011257066 A JP 2011257066A JP 2011257066 A JP2011257066 A JP 2011257066A JP 5741402 B2 JP5741402 B2 JP 5741402B2
Authority
JP
Japan
Prior art keywords
slab
reduction
continuous casting
diameter
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011257066A
Other languages
Japanese (ja)
Other versions
JP2013111587A (en
Inventor
真二 永井
真二 永井
村上 敏彦
敏彦 村上
山中 章裕
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011257066A priority Critical patent/JP5741402B2/en
Publication of JP2013111587A publication Critical patent/JP2013111587A/en
Application granted granted Critical
Publication of JP5741402B2 publication Critical patent/JP5741402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1281Vertical removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell

Description

本発明は、円形の断面を有する鋳片の連続鋳造方法に関し、特に内質に優れた鋳片を製造可能な垂直式の連続鋳造方法に関する。   The present invention relates to a continuous casting method of a slab having a circular cross section, and more particularly to a vertical continuous casting method capable of producing a slab excellent in internal quality.

現在、鋼の製品は、連続鋳造により製造された鋳片を素材とし、この素材を分塊圧延し、熱間圧延等の加工により最終製品とするのが一般的である。   At present, a steel product is generally made of a slab produced by continuous casting, and this material is divided and rolled into a final product by processing such as hot rolling.

しかし、最終製品が大断面となる場合、例えば最終製品がボイラータンクや大型の鍛鋼ロールの場合には、小ロットであり、素材も大断面とならざるを得ない。このため、このような場合には素材として、連続鋳造により製造された鋳片ではなく、造塊法によって鋳造した大型のインゴットを使用し、これに分塊圧延や熱間圧延を行ったものを最終製品としているのが現状である。ここで、鋳片やインゴットについて大断面とは、横断面の直径が600mm以上のものをいう。   However, when the final product has a large cross section, for example, when the final product is a boiler tank or a large forged steel roll, it is a small lot and the material must have a large cross section. For this reason, in such a case, not a slab produced by continuous casting, but a large ingot cast by the ingot-making method is used as a raw material. The current state is the final product. Here, the large cross section of the slab or ingot means a cross section having a diameter of 600 mm or more.

造塊法は、連続鋳造法に対してエネルギー消費量やコストの面で不利であるため、近年では、従来困難とされてきた大断面鋳片への連続鋳造の適用が試みられてきている。   Since the ingot-making method is disadvantageous in terms of energy consumption and cost compared to the continuous casting method, in recent years, attempts have been made to apply continuous casting to large-section slabs that have been considered difficult in the past.

ところが、大断面鋳片を連続鋳造した場合、鋳片中心部に生成するセンターポロシティやザクが大きくなりやすく、鋳造された鋳片は内部品質が低いという問題が生じやすい。また、鋳型への給湯の停止後、凝固収縮に伴って鋳片のトップ部に引け巣やザクが発生するため、歩留りが低いという問題がある。   However, when a large-section slab is continuously cast, the center porosity and zaku generated at the center of the slab tend to increase, and the cast slab tends to have a problem that the internal quality is low. In addition, after the hot water supply to the mold is stopped, there is a problem that the yield is low because shrinkage cavities and zack are generated in the top portion of the slab along with the solidification shrinkage.

特許文献1では、垂直型の連続鋳造方法でセンターポロシティ、中心偏析等の内部欠陥の少ない高合金鋼を含む特殊鋼を鋳造する方法として、鋳型を鋳片の幅方向、厚さ方向に拡げながら鋳造し、鋳片にテーパを付与する方法が提案されている。   In Patent Document 1, as a method of casting special steel including high alloy steel with few internal defects such as center porosity and center segregation by the vertical continuous casting method, while expanding the mold in the width direction and thickness direction of the slab, A method of casting and imparting a taper to a slab has been proposed.

しかし、本発明者らの調査の結果、特許文献1で提案された方法では、鋳片にテーパを付与することで従来の押湯によるポロシティ抑制の役割を担うものの、設備費用が高価であるのに比べて内部欠陥の発生を抑制する効果は限定的であることがわかった。   However, as a result of the investigation by the present inventors, the method proposed in Patent Document 1 plays a role of controlling porosity by a conventional feeder by giving a taper to the slab, but the equipment cost is expensive. It was found that the effect of suppressing the occurrence of internal defects was limited compared to.

特許文献2では、中心偏析やポロシティのない内質の優れた鋳片の製造方法として、連続鋳造機内の凝固末期部に電磁攪拌装置を配置し、所定の電磁力で未凝固溶鋼を攪拌する方法が提案されている。   In Patent Document 2, as a method for producing a slab having excellent inner quality without center segregation or porosity, a method in which an electromagnetic stirrer is disposed at the end of solidification in a continuous casting machine, and unsolidified molten steel is stirred with a predetermined electromagnetic force. Has been proposed.

特許文献2で提案された方法では、電磁攪拌によって鋳片の内質の改善は可能である。しかし、この方法を大断面鋳片に適用する場合、鋳片が厚いため、磁場の減衰が大きく、残溶鋼を充分に攪拌するには磁場強度を大きくする必要があることから、より高価な電磁攪拌装置が必要となり、設備コストが上昇する。   In the method proposed in Patent Document 2, the quality of the slab can be improved by electromagnetic stirring. However, when this method is applied to large-section slabs, the slab is thick, so the attenuation of the magnetic field is large, and it is necessary to increase the magnetic field strength to sufficiently stir the molten steel. A stirrer is required, increasing the equipment cost.

特許文献3では、連続鋳造鋳片のトップ部の収縮による歩留りの低下を抑制する方法として、鋳片トップ部が鋳型を通過した後にその鋳片トップ部をバーナーまたはアークによって保温または加熱し、トップ部の収縮面を減少させる方法が提案されている。   In Patent Document 3, as a method for suppressing a decrease in yield due to shrinkage of the top portion of a continuous cast slab, the slab top portion is heated or heated by a burner or an arc after the slab top portion passes through the mold, A method of reducing the contraction surface of the part has been proposed.

特許文献3で提案された方法は、特許文献1で提案された方法と同様に、鋳片トップ部の押し湯によるポロシティ抑制と同様の効果を目的とした方法であるが、鋳片が長い場合には鋳片の中央部までこの効果を得ることは困難であり、さらに、設備が高価であり、エネルギーの面からも不経済であるため、有効な手段とはいえない。   Similar to the method proposed in Patent Document 1, the method proposed in Patent Document 3 is a method aiming at the same effect as the porosity suppression by the hot water of the slab top, but when the slab is long However, it is difficult to obtain this effect up to the center of the slab, and the equipment is expensive and uneconomical in terms of energy.

センターポロシティやザクの生成を抑制し、鋳片の内質を改善するには、インライン圧下法、すなわち通常の連続鋳造機内に設置されたロール等の圧下装置により鋳片を圧下するのが有効である。しかし、この方法を大断面鋳片に適用する場合には以下の問題がある。   In order to suppress the generation of center porosity and zaku and improve the quality of the slab, it is effective to reduce the slab by an in-line reduction method, that is, by a roll or other reduction device installed in a normal continuous casting machine. is there. However, when this method is applied to a large-section slab, there are the following problems.

まず、インライン圧下法で鋳片の内質を改善するには、鋳片の圧下を鋳片の凝固状態が最適であるときに行うことが重要である。そのため、最適凝固状態の鋳片を、固定された圧下装置まで引き抜く必要がある。また、大断面鋳片の場合には、圧下装置の固定位置を鋳片の最適凝固時期に合わせるために必要な連続鋳造機の機長を確保することが困難である。   First, in order to improve the quality of the slab by the in-line reduction method, it is important to perform the reduction of the slab when the solidified state of the slab is optimum. Therefore, it is necessary to draw out the slab of the optimal solidification state to a fixed reduction device. In the case of a large-section slab, it is difficult to secure the length of the continuous casting machine necessary for adjusting the fixing position of the reduction device to the optimum solidification time of the slab.

一方、鋳造速度を極めて低速とすれば、連続鋳造機の機長は短くても鋳片の最適凝固時期を圧下装置の設置位置に合わせることができる。しかし、この場合には、湯面皮張り、リップルマーク(湯じわ)、モールドパウダーの巻き込み等が発生し、表面品質および内部品質が著しく損なわれる。湯面皮張りは、鋳型内の湯面における熱供給不足によって発生し、リップルマークは、凝固シェルの収縮によって鋳型内で溶湯が鋳型と凝固シェルとの間でオーバーフローすることに起因して発生する。   On the other hand, if the casting speed is extremely low, the optimum solidification time of the slab can be matched with the installation position of the reduction device even if the length of the continuous casting machine is short. However, in this case, hot water skinning, ripple marks (water bath), entrainment of mold powder, etc. occur, and the surface quality and internal quality are significantly impaired. The molten metal skinning occurs due to insufficient heat supply on the molten metal surface in the mold, and the ripple mark occurs due to the molten metal overflowing between the mold and the solidified shell in the mold due to the shrinkage of the solidified shell.

鋳造速度を極めて低速とした場合の問題は、特許文献3で提案された方法で解決する場合、設備が複雑となり、不経済である。   When the problem when the casting speed is extremely low is solved by the method proposed in Patent Document 3, the facilities become complicated, which is uneconomical.

特開2002−361374号公報JP 2002-361374 A 特開昭58−97470号公報JP 58-97470 A 特許第1963157号公報Japanese Patent No. 1963157

本発明は、上記の問題に鑑みてなされたものであり、鋳片の定常鋳造部におけるセンターポロシティやザクの生成、鋳片トップ部での引け巣やザクの生成が抑制された、内質が良好な鋳片を、円形大断面を有する鋳片であっても低い設備コストで安定して連続鋳造できる方法を提供することを目的とする。ここで、鋳片トップ部とは、連続鋳造機での引き抜きの最終部分をいう。   The present invention has been made in view of the above-described problems, and the inner quality of the slab is suppressed in the generation of the center porosity and zaku in the steady casting portion of the slab, and the formation of the shrinkage nest and zaku in the slab top portion. An object of the present invention is to provide a method capable of stably casting a good slab at a low equipment cost even if it is a slab having a circular large cross section. Here, the slab top portion refers to the final portion of drawing with a continuous casting machine.

本発明者らは、上記の問題について検討した結果、円形大断面を有する鋳片でも、鋳造を完了した後、鋳片を静止した状態で未凝固部の凝固を進行させ、凝固状態を鋳片の内質の改善に最適な状態した上で、移動可能な圧下装置によって圧下することにより、最適凝固状態で鋳片を圧下することが可能であることを知見した。この場合、最適凝固状態の鋳片を、固定された圧下装置まで引き抜く必要はなく、連続鋳造機の機長は鋳造長さ相当分で済むため、上述のように長い機長を有する連続鋳造機を使用する必要もない。また、鋳造速度を極めて低速とする必要もない。   As a result of studying the above problems, the present inventors have found that even with a slab having a large circular cross section, after the casting is completed, solidification of the unsolidified portion proceeds while the slab is stationary, and the solidified state is determined as a slab. It was found that the slab can be squeezed in the optimum solidified state by reducing it with a movable squeezing device after making it optimal for improving the quality of the steel. In this case, it is not necessary to draw the slab in the optimally solidified state to a fixed reduction device, and the length of the continuous casting machine can be as long as the casting length, so use a continuous casting machine with a long length as described above. There is no need to do. Moreover, it is not necessary to make the casting speed very low.

また、本発明者らは、種々の試験および検討を重ねた結果、固相率0.8の等温線で定義される固液界面を凝固界面としたとき、鋳片トップ部での鋳片の圧下量r1と圧下開始時の未凝固部の直径d1の比の値r1/d1を0.4以上とすることで、鋳片トップ部(連続鋳造機での引き抜きの最終部分)での引け巣やザクの生成を抑制することが可能であることを知見した。また、鋳片トップ部を除く定常鋳造部でのr1/d1を0.8以上とすることで、定常鋳造部での鋳片の中心部におけるセンターポロシティやザクの生成を抑制することが可能であることを知見した。   In addition, as a result of repeated various tests and studies, the present inventors have determined that when the solid-liquid interface defined by the isotherm with a solid phase ratio of 0.8 is the solidification interface, Shrinkage at the top of the slab (final part of drawing in the continuous casting machine) by setting the ratio r1 / d1 of the ratio of the reduction amount r1 and the diameter d1 of the unsolidified part at the start of reduction to 0.4 or more And found that it is possible to suppress the generation of zaku. In addition, by setting r1 / d1 in the steady casting part excluding the slab top part to 0.8 or more, it is possible to suppress the generation of center porosity and zaku in the center part of the slab in the steady casting part. I found out that there was.

本発明は、この知見に基づいてなされたものであり、その要旨は、下記の(1)および(2)に示す円形断面鋳片の連続鋳造方法にある。 This invention is made | formed based on this knowledge, The summary exists in the continuous casting method of the circular cross-section slab shown to following (1) and (2) .

(1)垂直型の連続鋳造機を用い、直径が300mm以上の横断面を有する鋳片を連続鋳造する方法であって、鋳造を完了した後、内部に未凝固部を有する鋳片を、鉛直方向に移動可能な圧下装置によって鋳片の下方から上方に向けて圧下する際に、圧下開始時の未凝固部の直径d1と鋳片の直径D1の比の値d1/D1を0.367以下とし、圧下しない状態で引け巣が形成される鋳片トップ部のうち圧下完了位置より下部を除く下流側の定常鋳造部において、圧下量r1と圧下開始時の未凝固部の直径d1の比の値r1/d1を0.8以上1.5以下とすることを特徴とする円形断面鋳片の連続鋳造方法。 (1) A method of continuously casting a slab having a cross section with a diameter of 300 mm or more using a vertical continuous casting machine, and after casting is completed, a slab having an unsolidified portion inside is vertically When rolling down from the bottom of the slab to the top by a rolling device that can move in the direction, the ratio d1 / D1 of the diameter d1 of the unsolidified portion and the diameter D1 of the slab at the start of rolling is 0.367 or less and then, in a state where no pressure at constant casting portion on the downstream side except for the lower than reduction completion position of the slab top portion shrinkage cavities are formed, reduction rate r1 and pressure at the start of the ratio of the unsolidified portion of diameter d1 A continuous casting method of a circular cross-section slab, wherein the value r1 / d1 is set to 0.8 or more and 1.5 or less.

(2)前記鋳片トップ部のうち圧下完了位置より下流側の部分から、r1/d1を0.4以上1.5以下とすることを特徴とする、上記(1)に記載の円形断面鋳片の連続鋳造方法。 (2) The circular cross-section casting according to (1) above , wherein r1 / d1 is set to 0.4 or more and 1.5 or less from a portion downstream of the reduction completion position in the slab top portion. Method for continuous casting of pieces.

本発明の円形断面鋳片の連続鋳造方法によれば、円形大断面を有する鋳片でも、従来の垂直型連続鋳造機に鉛直方向に移動可能な圧下装置を追加するだけで、鋳片の内質の改善に最適な凝固状態のときに鋳片を圧下することが可能である。そのため、造塊法に比べて合理的な連続鋳造方法で、鋳片の中心部におけるセンターポロシティやザクの生成、鋳片トップ部での引け巣やザクの生成が抑制された、円形大断面を有する鋳片を、低い設備コストで製造することが可能である。   According to the continuous casting method of a circular cross-section slab of the present invention, even a slab having a large circular cross section can be obtained by adding a reduction device that can move in the vertical direction to a conventional vertical continuous casting machine. It is possible to reduce the slab when it is in a solidified state optimal for quality improvement. For this reason, a circular continuous cross-section with a reasonable continuous casting method compared to the ingot-making method, which suppresses the formation of center porosity and zaku at the center of the slab and the formation of shrinkage nest and zaku at the top of the slab. It is possible to manufacture the slab having a low equipment cost.

鉛直方向に移動可能な圧下装置を備える垂直型の連続鋳造機の一例を示す構成図であり、同図(a)は鋳造開始直後、同図(b)は鋳造途中を示す図である。It is a block diagram which shows an example of a vertical type continuous casting machine provided with the reduction | decrease apparatus which can move to a perpendicular direction, The figure (a) is a figure which shows the middle of casting immediately after the start of casting, and the figure (b). 鋳片を圧下する際の連続鋳造機の構成図であり、同図(a)は圧下開始直前、同図(b)は圧下途中、同図(c)は圧下完了時を示す図である。It is a block diagram of the continuous casting machine at the time of rolling down a slab, The figure (a) is a figure just before a rolling start, the figure (b) is in the middle of rolling, and the figure (c) is a figure which shows the time of rolling completion. 圧下量と内部欠陥量との関係を示す図であり、同図(a)は圧下量とトップ部の引け巣の面積率との関係、同図(b)は圧下量と定常鋳造部のセンターポロシティとの関係を示す図である。It is a figure which shows the relationship between the amount of rolling reduction, and the amount of internal defects, The figure (a) is a relationship between the amount of rolling reduction and the area ratio of the shrinkage | contraction nest of a top part, The figure (b) is a center of rolling reduction amount and a steady casting part. It is a figure which shows the relationship with a porosity.

1.連続鋳造機の構成および鋳片の鋳造方法
1−1.鋳片の鋳造方法
図1は、鉛直方向に移動可能な圧下装置を備える垂直型の連続鋳造機の一例を示す構成図であり、同図(a)は鋳造開始直後、同図(b)は鋳造途中を示す図である。同図に示すように、溶鋼は、取鍋1から浸漬ノズル2を経て、鋳床に設置された無底の鋳型3内へ注入される。鋳造中の鋳型3には、図示しないオシレーション装置を用いて上下動が付与される。鋳型3への溶鋼の注入は、取鍋1と浸漬ノズル2の間にタンディッシュ設け、これを介して行ってもよい。
1. 1. Configuration of continuous casting machine and casting method of slab 1-1. FIG. 1 is a block diagram showing an example of a vertical continuous casting machine equipped with a reduction device that is movable in the vertical direction. FIG. It is a figure which shows the middle of casting. As shown in the figure, molten steel is poured from a ladle 1 through an immersion nozzle 2 into a bottomless mold 3 installed on a cast floor. The casting mold 3 is subjected to vertical movement using an oscillation device (not shown). Injection of molten steel into the mold 3 may be performed through a tundish provided between the ladle 1 and the immersion nozzle 2.

鋳造時には、ダミーバー4によって底部が塞がれた鋳型3に溶鋼を注入し、鋳型3を上下動させながらダミーバー4を下降させ、鋳片をフットロール5でサポートしながら鋳型3の下方に引き抜いて、所定の長さまで鋳造し、鋳造を完了する。このとき、鋳造速度は溶鋼静圧によって鋳片にバルジングが生じない範囲とする。鋳型3から引き抜かれる際の鋳片は、表面に凝固シェル6が形成され内部に未凝固溶鋼7が存在する状態である。   At the time of casting, molten steel is poured into the mold 3 whose bottom is closed by the dummy bar 4, the dummy bar 4 is lowered while the mold 3 is moved up and down, and the cast piece is pulled out below the mold 3 while being supported by the foot roll 5. Cast to a predetermined length and complete the casting. At this time, the casting speed is set in a range in which bulging is not generated in the slab by the molten steel static pressure. The slab when drawn from the mold 3 is in a state in which the solidified shell 6 is formed on the surface and the unsolidified molten steel 7 exists inside.

続いて、鋳片の圧下が完了したら、連続鋳造機から鋳片を取り除き、連続鋳造作業を完了する。鋳片の圧下については次に説明する。   Subsequently, when the slab reduction is completed, the slab is removed from the continuous casting machine to complete the continuous casting operation. The slab reduction will be described next.

1−2.鋳片の圧下方法
1−2−1.圧下装置の構成
前記図1に示すように、連続鋳造機には、鉛直方向に移動可能な圧下装置8が設けられており、圧下装置8が移動可能な範囲内であれば鋳片に圧下を施すことができる。圧下装置8には、フレーム8aと、フレーム8a内に配置された一対の駆動式の圧下ロール8bが設けられている。
1-2. Casting reduction method 1-2-1. As shown in FIG. 1, the continuous casting machine is provided with a reduction device 8 that is movable in the vertical direction. If the reduction device 8 is within a movable range, the reduction is performed on the slab. Can be applied. The reduction device 8 is provided with a frame 8a and a pair of drive-type reduction rollers 8b disposed in the frame 8a.

圧下ロール8bの直径は、圧下の内部浸透率を十分な値とし、鋳片への噛みこみ角を安定した圧下が可能な値とするには450mm以上が好ましい。また、圧下量を充分確保するため1000mm以下が好ましい。   The diameter of the reduction roll 8b is preferably 450 mm or more so that the internal permeability under reduction is a sufficient value and the angle of engagement with the slab is a value that enables stable reduction. Moreover, 1000 mm or less is preferable in order to ensure a sufficient amount of reduction.

圧下の内部浸透率とは、下記(1)式で表される値である。
η=(d1−d2)/(D1−D2)×100 …(1)
ここで、η:圧下の内部浸透率(%)、D1:圧下前の鋳片の直径(mm)、D2:圧下後の鋳片の直径(mm)、d1:圧下前の未凝固部の直径(mm)、d2:圧下後の未凝固部の厚さ(mm)である。
The internal permeability under rolling is a value represented by the following formula (1).
η = (d1−d2) / (D1−D2) × 100 (1)
Here, η: internal permeability (%) under reduction, D1: diameter of slab before reduction (mm), D2: diameter of slab after reduction (mm), d1: diameter of unsolidified part before reduction (Mm), d2: thickness (mm) of the unsolidified portion after the reduction.

圧下ロール8bの形状はクラウン形状またはカリバー形状であってもよいが、圧下力および成形性を確保することを考慮すると、フラットロールが好ましい。   The shape of the reduction roll 8b may be a crown shape or a caliber shape, but a flat roll is preferable in consideration of ensuring the reduction force and formability.

圧下ロール8bの回転の駆動力は、圧下装置8に設けられた図示しない電動モーターおよび減速機によって付与される。圧下ロール8bの圧下力は、圧下装置8に設けられた図示しない油圧式シリンダーによって付与される。圧下装置8のフレーム8aは、この圧下力に耐えうる剛性を有する。   The driving force for rotation of the rolling-down roll 8b is applied by an electric motor and a speed reducer (not shown) provided in the rolling-down device 8. The reduction force of the reduction roll 8 b is applied by a hydraulic cylinder (not shown) provided in the reduction device 8. The frame 8a of the reduction device 8 has rigidity that can withstand this reduction force.

圧下装置8の鉛直方向への上下動は、電動モーターに接続された、図示しないジャッキによって行う。圧下装置8をワイヤーに吊して巻き上げる機構を用いて行ってもよい。   The vertical movement of the reduction device 8 in the vertical direction is performed by a jack (not shown) connected to an electric motor. You may carry out using the mechanism which suspends and rolls down the rolling-down apparatus 8 on a wire.

上述のダミーバー4の上下動は、独立した駆動装置を用いて行うことができる。しかし、前記図1に示すように、圧下装置8を用いて行えば、新たな設備を設ける必要がなく、好ましい。   The above-described vertical movement of the dummy bar 4 can be performed using an independent driving device. However, as shown in FIG. 1, using the reduction device 8 is preferable because it is not necessary to provide new equipment.

鋳片のサポートは、圧下装置8の干渉を考慮すると、できる限り少ないことが好ましい。前記図1では、鋳片をサポートする部材として、鋳型直下にフットロール5のみを配置した場合を示す。   The slab support is preferably as small as possible in consideration of the interference of the reduction device 8. FIG. 1 shows a case where only the foot roll 5 is disposed directly under the mold as a member for supporting the cast slab.

1−2−2.圧下方法
図2は、鋳片を圧下する際の連続鋳造機の構成図であり、同図(a)は圧下開始直前、同図(b)は圧下途中、同図(c)は圧下完了時を示す図である。
1-2-2. FIG. 2 is a configuration diagram of a continuous casting machine when the slab is crushed. FIG. 2 (a) shows the state immediately before the tumbling starts, FIG. 2 (b) shows the state of the crushed, and FIG. FIG.

鋳片の鋳造が完了したら、同図(a)に示すように、断面が円形または多角形の中空管である溶鋼流出防止管9を、鋳片の上部に排出溶鋼の受容器として配置する。圧下装置8は、ダミーバー4を開放した後、圧下開始位置まで上昇させる。鋳片を静止した状態とし、未凝固溶鋼7の凝固が進行して所定の凝固状態となったら、圧下ロール8bを回転させるとともに、圧下装置8を上昇させて所定の圧下量で鋳片の圧下を開始する。圧下装置8の上昇速度の制御は、圧下ロール8bの回転の周速度に同調するように行う。圧下装置8が上昇し、鋳片の圧下が進行するとともに、鋳片内部の未凝固溶鋼7は鋳片の上方へ搾り上げられ、排出された溶鋼10は溶鋼流出防止管9に収容される。   When the casting of the slab is completed, as shown in FIG. 5A, a molten steel outflow prevention pipe 9 having a circular or polygonal cross section is disposed as an outlet for the discharged molten steel at the upper part of the slab. . The reduction device 8 lifts the dummy bar 4 and then raises it to the reduction start position. When the slab is in a stationary state and solidification of the unsolidified molten steel 7 proceeds to a predetermined solidified state, the rolling roll 8b is rotated and the rolling device 8 is raised to reduce the slab by a predetermined rolling amount. To start. Control of the ascending speed of the rolling-down device 8 is performed in synchronization with the peripheral speed of rotation of the rolling-down roll 8b. While the reduction device 8 is raised and the slab is being reduced, the unsolidified molten steel 7 inside the slab is squeezed upward from the slab, and the discharged molten steel 10 is accommodated in the molten steel outflow prevention pipe 9.

圧下開始時の鋳片の凝固状態は、圧下による内部割れ発生を抑制するため、固相率0.8の等温線で定義される固液界面を凝固界面としたとき、圧下開始時の未凝固部の直径d1と鋳片の直径D1の比の値d1/D1が0.3以下となる状態とすることが好ましい。   The solidification state of the slab at the start of reduction is to prevent the occurrence of internal cracks due to reduction, so that the solid-liquid interface defined by the isotherm with a solid phase ratio of 0.8 is the solidification interface, and the solidification state at the start of reduction The ratio d1 / D1 of the ratio of the diameter d1 of the part and the diameter D1 of the slab is preferably 0.3 or less.

鋳片の圧下量r1は、圧下開始時の未凝固部の直径d1との関係が、鋳片トップ部(連続鋳造機での引き抜きの最終部分)でのr1とd1の比の値r1/d1が0.4以上となるように設定することにより、鋳片トップ部での引け巣やザクは抑制することができる。また、鋳片を圧下しない場合に引け巣が形成される鋳片トップ部を除く定常鋳造部では、r1/d1を0.8以上とすることにより、定常鋳造部での鋳片の中心部におけるセンターポロシティやザクの生成を抑制することができる。   The reduction amount r1 of the slab is related to the diameter d1 of the unsolidified portion at the start of reduction, and the ratio r1 / d1 of the ratio between r1 and d1 at the slab top portion (final portion of drawing in the continuous casting machine) By setting so that it may become 0.4 or more, the shrinkage cavity and zaku in a slab top part can be suppressed. Moreover, in the steady casting part excluding the slab top part where the shrinkage cavity is formed when the slab is not squeezed, by setting r1 / d1 to 0.8 or more, the center part of the slab in the steady casting part The generation of center porosity and zaku can be suppressed.

このように、鋳片トップ部での引け巣やザクを抑制する場合と、鋳片トップ部を除く定常鋳造部でのセンターポロシティやザクの生成を抑制する場合とで、r1/d1の適正値が異なる理由は、以下のように推察される。すなわち、未凝固圧下の進行に伴って鋳片の下部から搾り上げられる等軸晶がある程度存在し、搾り上げの積算距離が長い鋳片トップ部では、搾り上げられてきた等軸晶によって空隙が充填されるため、圧下量が小さく、r1/d1の値が小さくても、センターポロシティおよびザクの生成を抑制できるためと推察される。   Thus, the appropriate value of r1 / d1 in the case where the shrinkage cavity or zaku is suppressed at the slab top portion and the case where the center porosity or zaku generation is suppressed in the steady casting portion excluding the slab top portion. The reason for the difference is presumed as follows. In other words, there are some equiaxed crystals that are squeezed from the bottom of the slab as it progresses under unsolidified pressure, and at the top of the slab where the accumulated distance of squeezing is long, voids are caused by the squeezed equiaxed crystals. It is presumed that because the filling is small, the generation of center porosity and zaku can be suppressed even if the amount of reduction is small and the value of r1 / d1 is small.

鋳片の内質の改善には、鋳片の圧下量は大きいほど好ましいが、r1/d1を1.5よりも大きくするには非常に大きな圧下力が必要であり、設備コストが増大するため、r1/d1は1.5以下とする。   For improving the quality of the slab, it is preferable that the amount of slab reduction is as large as possible. However, in order to increase r1 / d1 beyond 1.5, a very large reduction force is required, which increases equipment costs. R1 / d1 is 1.5 or less.

鋳片の圧下は、必ずしも鋳片の下端から上端まで行う必要はなく、必要に応じて圧下の対象を鋳片トップ部の付近だけとしてもよい。   The slab reduction is not necessarily performed from the lower end to the upper end of the slab, and the reduction target may be limited to the vicinity of the slab top portion as necessary.

2.スケールアップした場合についての検討
後述する実施例では、本発明の効果を確認するため、円形断面鋳片の直径D1が300mm、圧下開始時の未凝固部の直径d1が70mmであって、鋼種が後述する表1に示す13%Cr鋼である場合についての試験を行った。その結果、鋳片トップ部でのr1/d1を0.4以上とすることにより、鋳片トップ部での引け巣の発生を抑制することができ、鋳片トップ部を除く定常鋳造部でのr1/d1を0.8以上とすることにより、定常鋳造部での鋳片の中心部におけるセンターポロシティ生成を抑制し、内質が良好な鋳片を得ることができることを確認した。
2. Examination for scale-up In the examples described later, in order to confirm the effect of the present invention, the diameter D1 of the circular cross-section slab is 300 mm, the diameter d1 of the unsolidified portion at the start of rolling is 70 mm, and the steel type is A test was conducted for the case of 13% Cr steel shown in Table 1 described later. As a result, by setting r1 / d1 at the slab top part to 0.4 or more, generation of shrinkage cavities at the slab top part can be suppressed, and in the steady casting part excluding the slab top part. By setting r1 / d1 to be 0.8 or more, it was confirmed that the center porosity generation at the center portion of the slab in the steady casting portion was suppressed, and a slab having a good internal quality could be obtained.

ここでは、3次元有限要素法によるシミュレーションにより、鋳片の直径が300mmよりも大きい場合(スケールアップした場合)における、本発明による内部欠陥の抑制効果について検討した。   Here, the effect of suppressing internal defects according to the present invention when the diameter of the slab was larger than 300 mm (when scaled up) was examined by simulation using a three-dimensional finite element method.

2−1.第1のシミュレーション
前記図1に示す垂直型の連続鋳造機を用いて鋳造した鋳片を、内部に未凝固部を有する状態で圧下した場合について変形解析を行った。変形解析は、鋳片の直径D1が300mm、600mmおよび800mmの場合について行い、圧下時の凝固界面の挙動を比較した。このとき、いずれの場合も圧下開始時の未凝固部の直径d1を、d1とD1の比の値d1/D1が70/300≒0.233となるようにd1を設定した。
2-1. First Simulation Deformation analysis was performed when a slab cast using the vertical continuous casting machine shown in FIG. 1 was rolled down with an unsolidified portion inside. Deformation analysis was performed when the diameter D1 of the slab was 300 mm, 600 mm, and 800 mm, and the behavior of the solidification interface during reduction was compared. At this time, in each case, the diameter d1 of the unsolidified portion at the start of the reduction was set so that the value d1 / D1 of the ratio between d1 and D1 was 70 / 300≈0.233.

その結果、上述の(1)式で表される圧下の内部浸透率ηが圧下開始時の未凝固部の直径d1および凝固シェルの厚さ(D1−d1)/2に依存すること、および、d1/D1の値が一定であればηは鋳片の直径D1の大きさによらず一定であることがわかった。すなわち、鋳片の大径化は、d1/D1の値が一定であれば鋳片内部変形効率には影響を及ぼさないことが判明した。   As a result, the internal permeability η under the reduction expressed by the above formula (1) depends on the diameter d1 of the unsolidified portion at the start of the reduction and the thickness (D1−d1) / 2 of the solidified shell, and It was found that if the value of d1 / D1 is constant, η is constant regardless of the diameter D1 of the slab. That is, it has been found that increasing the diameter of the slab does not affect the internal deformation efficiency of the slab if the value of d1 / D1 is constant.

このことから、d1/D1を所定の値とすれば、D1>600mmである大断面の鋳片を含め、D1>300mmの場合も、D1=300mmの場合と同様に、本発明の連続鋳造方法によって内部欠陥の生成を抑制し、内質が良好な鋳片を得ることができることがわかった。   Therefore, if d1 / D1 is set to a predetermined value, the continuous casting method of the present invention can be applied to the case of D1> 300 mm including D1> 600 mm, as in the case of D1 = 300 mm. Thus, it was found that the production of internal defects can be suppressed and a slab having a good internal quality can be obtained.

2−2.第2のシミュレーション
第1のシミュレーションと同様のシミュレーションを、異なる鋼種の圧下を想定して行った。ここでは、材料の強度特性(降伏強度および加工硬化係数)のみを第1のシミュレーションと異なる種々の値に設定して行った。その結果、材料の強度特性によらず、ηは一定であることがわかった。すなわち、後述する表1に示す13%Cr鋼以外の鋼種であっても、後述する図3に示す圧下量と内部欠陥量の関係が成立すると考えられる。
2-2. Second Simulation A simulation similar to the first simulation was performed assuming a reduction of different steel types. Here, only the strength characteristics (yield strength and work hardening coefficient) of the material were set to various values different from those in the first simulation. As a result, it was found that η was constant regardless of the strength characteristics of the material. That is, it is considered that the relationship between the reduction amount and the amount of internal defects shown in FIG.

2−3.第3のシミュレーション
第1のシミュレーションと同様のシミュレーションを、以下の条件で行って圧下力を推定した。
2-3. Third simulation A simulation similar to the first simulation was performed under the following conditions to estimate the rolling force.

鋳片は、直径を800mm、長さを所定の長さ、鋼種を13%Cr鋼とした。鋳造速度は0.50m/minとし、圧下装置の備える圧下ロールは直径650mmとした。鋳片の圧下開始時の未凝固部の直径d1は190mm、圧下量r1は190mmとし、鋳片の表面温度は720℃とした。この場合、d1/D1=0.238であり、ほぼ70/300と同じ値であった。このシミュレーションの結果、推定された必要な圧下力は750tであった。   The slab was made to have a diameter of 800 mm, a length of a predetermined length, and a steel type of 13% Cr steel. The casting speed was 0.50 m / min, and the reduction roll included in the reduction device was 650 mm in diameter. The diameter d1 of the unsolidified portion at the start of slab reduction was 190 mm, the reduction amount r1 was 190 mm, and the surface temperature of the slab was 720 ° C. In this case, d1 / D1 = 0.238, which is almost the same value as 70/300. As a result of this simulation, the estimated necessary rolling force was 750 t.

このとき、r1/d1は1.0であるため、後述する図3に示す圧下量と内部欠陥量の関係から、この条件で定常鋳造部および鋳片トップ部に圧下を施すことにより、鋳片トップ部での引け巣の発生および定常鋳造部での鋳片の中心部におけるセンターポロシティおよびザクの生成をほぼ完全に抑制できると予測できる。   At this time, since r1 / d1 is 1.0, from the relationship between the amount of reduction shown in FIG. 3 described later and the amount of internal defects, by rolling down the steady cast part and the slab top part under these conditions, It can be predicted that the generation of shrinkage cavities in the top part and the generation of center porosity and zaku in the center part of the slab in the steady casting part can be suppressed almost completely.

本発明の円形断面鋳片の連続鋳造方法の効果を確認するため、以下に示す試験を実施して、その結果を評価した。   In order to confirm the effect of the continuous casting method of the circular cross-section slab of the present invention, the following tests were conducted and the results were evaluated.

1.試験条件
前記図1に示す垂直型の連続鋳造機を用いて直径D1が300mm、長さが1800mmの円形の断面を有する鋳片を鋳造した。この鋳片を鋳造完了後、静止した状態とし、凝固が進行して所定の凝固状態になったとき、圧下装置を上昇させて、鋳片を下端からその1300mm上方まで圧下した。圧下装置の上昇速度は0.8m/minとし、鋳片の圧下は未凝固部の直径d1が70mm(d1/D1=0.233)および110mm(d1/D1=0.367)となる時点で、種々の圧下量r1で行った。
1. Test Conditions A slab having a circular cross section with a diameter D1 of 300 mm and a length of 1800 mm was cast using the vertical continuous casting machine shown in FIG. The cast slab was brought into a stationary state after completion of casting, and when solidification progressed to a predetermined solidified state, the reduction device was raised to lower the slab from its lower end to 1300 mm above. The ascending speed of the reduction device is 0.8 m / min, and when the slab is reduced, the diameter d1 of the unsolidified portion becomes 70 mm (d1 / D1 = 0.233) and 110 mm (d1 / D1 = 0.367). Various reductions r1 were performed.

未凝固部の直径d1は、非定常1次元伝熱解析で算出した固相率0.8に相当する等温線で評価した。伝熱解析の精度が十分であることは、鋳片の表面温度、熱電対による内部温度の測定、トレーサの添加による未凝固部の直径の測定試験によってあらかじめ確認した。   The diameter d1 of the unsolidified portion was evaluated by an isotherm corresponding to a solid phase ratio of 0.8 calculated by unsteady one-dimensional heat transfer analysis. The accuracy of the heat transfer analysis was confirmed in advance by measuring the surface temperature of the slab, measuring the internal temperature with a thermocouple, and measuring the diameter of the unsolidified part by adding a tracer.

使用した圧下ロールは、直径450mmのフラットロールとし、圧下力は最大100tであった。鋳片の鋼種は、ザクおよびポロシティが発生しやすい、表1に示す成分の13%Cr鋼とした。   The reduction roll used was a flat roll having a diameter of 450 mm, and the reduction force was a maximum of 100 t. The steel type of the slab was a 13% Cr steel having the components shown in Table 1 that is likely to generate zaku and porosity.

Figure 0005741402
Figure 0005741402

未凝固部を含む部分の圧下により、鋳片内部の未凝固溶鋼が鋳片下方から上昇し、上部から排出されるが、溶鋼流出防止管により、排出された溶鋼はあふれることなく圧下を完了した(前記図2参照)。   The unsolidified molten steel inside the slab rises from the bottom of the slab and is discharged from the upper part due to the reduction of the part including the unsolidified part, but the discharged molten steel has been reduced without overflowing by the molten steel outflow prevention pipe. (See FIG. 2 above).

得られた鋳片は、軸中心を通る断面で切断し、切断面を研磨して、鋳片トップ部の引け巣および定常鋳造部でのセンターポロシティの空隙の状況を調査した。空隙の状況を把握するため、切断面の写真を撮影し、この写真に画像解析を適用して空隙面積を算出した。また、この空隙面積を用いて、引け巣およびセンターポロシティの面積率を算出した。   The obtained slab was cut along a cross section passing through the center of the shaft, the cut surface was polished, and the state of the voids of the center porosity in the shrinkage nest of the slab top part and the steady casting part was investigated. In order to grasp the situation of the void, a photograph of the cut surface was taken, and image analysis was applied to this photograph to calculate the void area. Moreover, the area ratio of shrinkage nest and center porosity was calculated using this void area.

鋳片トップ部の試験片は、鋳片の圧下完了部から鋳片の下流側へ300mmまでの範囲から採取した。定常鋳造部でのセンターポロシティの調査用の試験片は、鋳片の長手方向の中央から下流側へ300mmまでの範囲から採取した。 The test piece at the top of the slab was taken from the range from 300 mm to the downstream side of the slab from the rolling completion part of the slab. Test specimens for investigation of the center porosity in the steady casting part were collected from a range of 300 mm from the center in the longitudinal direction of the slab to the downstream side .

鋳片の直径が大きいほど鋳片トップ部の引け巣の影響を受ける部分が大きい傾向にあるため、鋳片の直径が300mmよりも大きい場合には、鋳片の圧下完了部から鋳片の下流側へ300mmまでの範囲よりも広い範囲で試験片を採取することが好ましい。 As the diameter of the slab increases, the portion affected by the shrinkage cavity at the top of the slab tends to be larger. Therefore, when the diameter of the slab is larger than 300 mm, the slab reaches the downstream of the slab it is preferred to collect the specimens in a range wider than the range of up to 300mm to the side.

ここで、引け巣およびセンターポロシティの面積率とは、鋳片の圧下量r1と圧下開始時の未凝固部の直径d1の比の値r1/d1が0である試験片、すなわち圧下を施していない鋳片試験片(非圧下材)の引け巣またはセンターポロシティの面積を100%とした場合のそれぞれの面積の割合である。   Here, the area ratio of the shrinkage cavity and the center porosity is a test piece in which the ratio r1 / d1 of the ratio of the reduction amount r1 of the slab to the diameter d1 of the unsolidified portion at the start of the reduction is 0, that is, reduction. It is the ratio of each area when the area of the shrinkage cavity or the center porosity of the slab test piece (non-rolled material) is 100%.

2.試験結果
図3は、圧下量と内部欠陥量との関係を示す図であり、同図(a)は圧下量とトップ部の引け巣の面積率との関係、同図(b)は圧下量と定常鋳造部のセンターポロシティとの関係を示す図である。同図では、横軸をr1/d1とし、縦軸を同図(a)では引け巣の面積率、同図(b)ではセンターポロシティの面積率とした。
2. Test Results FIG. 3 is a diagram showing the relationship between the amount of reduction and the amount of internal defects. FIG. 3A shows the relationship between the amount of reduction and the area ratio of the shrinkage nest of the top portion, and FIG. 3B shows the amount of reduction. It is a figure which shows the relationship between the center porosity of a stationary casting part. In the figure, the horizontal axis is r1 / d1, and the vertical axis is the shrinkage nest area ratio in the figure (a), and the center porosity area ratio in the figure (b).

図3から、引け巣の面積率およびセンターポロシティの面積率は、圧下量が少ないときはほぼ変化がなく、圧下量が多くなるに従って減少し始め、ある程度の圧下量に達するとそれ以上減少しなくなるという結果を得た。圧下量が少ないときほぼ変化がないのは、圧下の効果がほとんどないためと考えられる。   From FIG. 3, the area ratio of the shrinkage nest and the area ratio of the center porosity hardly change when the amount of reduction is small, starts to decrease as the amount of reduction increases, and does not decrease further when reaching a certain amount of reduction. The result was obtained. The reason why there is almost no change when the amount of reduction is small is considered that there is almost no reduction effect.

また、図3から、r1/d1が0.4以上となるように圧下量r1を設定して圧下した場合に、鋳片トップ部の引け巣が非圧下材の5%程度であったことがわかる。また、r1/d1が0.8以上となるように圧下量r1を設定して圧下した場合に、定常鋳造部のセンターポロシティが非圧下材の10〜30%であったことがわかる。   Further, from FIG. 3, when the reduction amount r1 is set so that r1 / d1 is 0.4 or more, the shrinkage nest of the slab top portion is about 5% of the non-reduction material. Recognize. Further, it can be seen that when the reduction amount r1 is set so that r1 / d1 is 0.8 or more and the reduction is performed, the center porosity of the steady cast part is 10 to 30% of the non-reduced material.

2.製品製造試験
本発明例として、r1/d1が0.8である条件で未凝固部を有する状態で圧下を施し、定常鋳造部のセンターポロシティの面積率が30%程度の鋳片を作製した。また、比較例として、圧下を施さない鋳片を作製した。鋳片の直径は、いずれも300mmとした。各鋳片に、鍛伸比を2として鍛伸を施し、穿孔圧延により中空管を製造する試験を行った。
2. Product Production Test As an example of the present invention, reduction was performed with an unsolidified part under the condition that r1 / d1 was 0.8, and a slab having an area ratio of the center porosity of the steady cast part of about 30% was produced. Moreover, the slab which does not give reduction as a comparative example was produced. The diameter of each slab was 300 mm. Each slab was subjected to forging with a forging ratio of 2, and a test for producing a hollow tube by piercing and rolling was performed.

比較例ではポロシティに起因する疵が中空管の内面に発生したのに対して、本発明例ではこのような内面疵は皆無であった。このように、本発明の方法によって製造した鋳片を素材として用いることによって、内面性状の良好な製品を製造することができた。   In the comparative example, wrinkles due to porosity occurred on the inner surface of the hollow tube, whereas in the present invention example, there were no such inner surface wrinkles. Thus, by using the slab manufactured by the method of the present invention as a raw material, a product having good inner surface properties could be manufactured.

本発明の円形断面鋳片の連続鋳造方法によれば、円形大断面を有する鋳片でも、従来の垂直型連続鋳造機に鉛直方向に移動可能な圧下装置を追加してインライン圧下法を適用するだけで、鋳片の内質の改善に最適な凝固状態のときに鋳片を圧下することが可能である。そのため、造塊法に比べて合理的な連続鋳造方法で、鋳片の中心部におけるセンターポロシティやザクの生成、鋳片トップ部での引け巣やザクの生成が抑制された、円形大断面を有する鋳片を、低い設備コストで製造することが可能である。   According to the continuous casting method for a circular cross-section slab of the present invention, an in-line reduction method is applied to a conventional vertical continuous casting machine by adding a reduction device that can move in the vertical direction even for a slab having a large circular cross section. As a result, it is possible to reduce the slab when it is in a solidified state optimal for improving the quality of the slab. For this reason, a circular continuous cross-section with a reasonable continuous casting method compared to the ingot-making method, which suppresses the formation of center porosity and zaku at the center of the slab and the formation of shrinkage nest and zaku at the top of the slab. It is possible to manufacture the slab having a low equipment cost.

1:取鍋、 2:浸漬ノズル、 3:鋳型、 4:ダミーバー、 5:フットロール、
6:凝固シェル、 7:未凝固溶鋼、 8:圧下装置、 8a:フレーム、
8b:圧下ロール、 9:溶鋼流出防止管、 10:排出された溶鋼
1: ladle, 2: immersion nozzle, 3: mold, 4: dummy bar, 5: foot roll,
6: Solidified shell, 7: Unsolidified molten steel, 8: Reduction device, 8a: Frame,
8b: Rolling roll, 9: Molten steel outflow prevention pipe, 10: Discharged molten steel

Claims (2)

垂直型の連続鋳造機を用い、直径が300mm以上の横断面を有する鋳片を連続鋳造する方法であって、
鋳造を完了した後、内部に未凝固部を有する鋳片を、鉛直方向に移動可能な圧下装置によって鋳片の下方から上方に向けて圧下する際に、
圧下開始時の未凝固部の直径d1と鋳片の直径D1の比の値d1/D1を0.367以下とし、
圧下しない状態で引け巣が形成される鋳片トップ部のうち圧下完了位置より下部を除く下流側の定常鋳造部において、圧下量r1と圧下開始時の未凝固部の直径d1の比の値r1/d1を0.8以上1.5以下とすることを特徴とする円形断面鋳片の連続鋳造方法。
A method of continuously casting a slab having a cross section with a diameter of 300 mm or more using a vertical continuous casting machine,
After the casting is completed, when the slab having an unsolidified portion inside is squeezed downward from the bottom of the slab by a reduction device that is movable in the vertical direction,
The value d1 / D1 of the ratio of the diameter d1 of the unsolidified portion at the start of rolling and the diameter D1 of the slab is set to 0.367 or less,
Of the slab top portion where the shrinkage cavity is formed without being reduced, the ratio r1 between the reduction amount r1 and the diameter d1 of the unsolidified portion at the start of reduction in the downstream steady casting portion excluding the lower portion from the reduction completion position. / D1 is 0.8 or more and 1.5 or less, The continuous casting method of the circular section slab characterized by the above-mentioned.
前記鋳片トップ部のうち圧下完了位置より下流側の部分から、r1/d1を0.4以上1.5以下とすることを特徴とする、請求項1に記載の円形断面鋳片の連続鋳造方法。 2. The continuous casting of a circular cross-section slab according to claim 1, wherein r1 / d1 is set to be 0.4 or more and 1.5 or less from a portion of the slab top portion downstream from the reduction completion position. Method.
JP2011257066A 2011-11-25 2011-11-25 Continuous casting method for circular section slabs Active JP5741402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257066A JP5741402B2 (en) 2011-11-25 2011-11-25 Continuous casting method for circular section slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257066A JP5741402B2 (en) 2011-11-25 2011-11-25 Continuous casting method for circular section slabs

Publications (2)

Publication Number Publication Date
JP2013111587A JP2013111587A (en) 2013-06-10
JP5741402B2 true JP5741402B2 (en) 2015-07-01

Family

ID=48707704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257066A Active JP5741402B2 (en) 2011-11-25 2011-11-25 Continuous casting method for circular section slabs

Country Status (1)

Country Link
JP (1) JP5741402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120919A1 (en) * 2018-12-13 2020-06-18 Safran Aircraft Engines Semi-continuous casting of an ingot with compression of the metal during solidification

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN08553A (en) * 2012-05-24 2015-05-15 Nippon Steel & Sumitomo Metal Corp
CN109848383B (en) * 2017-11-30 2020-12-22 宝山钢铁股份有限公司 Flexible reduction method for improving internal quality of casting blank
CN110993040B (en) * 2019-11-28 2023-03-14 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from cast state to forged state

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333163A (en) * 1986-07-26 1988-02-12 Kawasaki Steel Corp Production for large size ingot
JP2964560B2 (en) * 1989-08-16 1999-10-18 大同特殊鋼株式会社 Vertical continuous casting equipment
JP2894131B2 (en) * 1992-12-26 1999-05-24 住友金属工業株式会社 Large slab production method
JPH07144255A (en) * 1993-11-22 1995-06-06 Kobe Steel Ltd Vertical semicontinuous casting device for large cross section cast slab and carrying out method of cast slab
JP5477269B2 (en) * 2010-12-03 2014-04-23 新日鐵住金株式会社 Continuous casting method for slabs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120919A1 (en) * 2018-12-13 2020-06-18 Safran Aircraft Engines Semi-continuous casting of an ingot with compression of the metal during solidification
FR3089833A1 (en) * 2018-12-13 2020-06-19 Safran Aircraft Engines Semi-continuous casting of an ingot with compression of the metal during solidification
CN113272085A (en) * 2018-12-13 2021-08-17 赛峰飞机发动机公司 Semi-continuous casting of ingots by compressing the metal during solidification
CN113272085B (en) * 2018-12-13 2023-11-24 赛峰飞机发动机公司 Semi-continuous casting of ingots by compression of metal during solidification

Also Published As

Publication number Publication date
JP2013111587A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
RU2663661C2 (en) Method and installation for manufacture of large diameter ingots
CN108907130B (en) Automatic casting method for thin slab continuous casting machine
EP2974810B1 (en) Casting equipment and casting method using same
JP5741402B2 (en) Continuous casting method for circular section slabs
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP5477269B2 (en) Continuous casting method for slabs
KR102297879B1 (en) Method of continuous casting of steel
RU2681232C1 (en) Method for continuous casting of a varietal billets and unit for its implementation
EP2857122B1 (en) Continuous casting method for slab
JP5691949B2 (en) Continuous casting method for large-section slabs
JP6784222B2 (en) Manufacturing method of thin-walled slabs
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP5712685B2 (en) Continuous casting method
RU2403121C1 (en) Method of continuous steel casting
JP6816523B2 (en) Continuous steel casting method
RU2492021C1 (en) Method of steel continuous casting
JP6000930B2 (en) Method for producing flat ingot for nickel steel plate without shrinkage defect
JP2003340553A (en) Continuous casting method for magnesium alloy sheet
JP7283633B2 (en) Steel continuous casting method
JP3507263B2 (en) Continuous casting method of molten steel
JP7273307B2 (en) Steel continuous casting method
RU2700979C1 (en) Continuous steel casting method
Guthrie et al. Continuous Casting Practices for Steel: Past, Present and Future. Metals 2022, 12, 862
JP2021087972A (en) Manufacturing method of thin cast piece
RU2245754C1 (en) Metal semi-continuous casting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350