JP2021086896A - Insulated gate type semiconductor device and manufacturing method thereof - Google Patents

Insulated gate type semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2021086896A
JP2021086896A JP2019214032A JP2019214032A JP2021086896A JP 2021086896 A JP2021086896 A JP 2021086896A JP 2019214032 A JP2019214032 A JP 2019214032A JP 2019214032 A JP2019214032 A JP 2019214032A JP 2021086896 A JP2021086896 A JP 2021086896A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
semiconductor device
interface
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019214032A
Other languages
Japanese (ja)
Other versions
JP7304577B2 (en
Inventor
渡部 平司
Heiji Watabe
平司 渡部
志村 考功
Takayoshi Shimura
考功 志村
卓治 細井
Takuji Hosoi
卓治 細井
豊 寺尾
Yutaka Terao
豊 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka University NUC
Original Assignee
Fuji Electric Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka University NUC filed Critical Fuji Electric Co Ltd
Priority to JP2019214032A priority Critical patent/JP7304577B2/en
Publication of JP2021086896A publication Critical patent/JP2021086896A/en
Application granted granted Critical
Publication of JP7304577B2 publication Critical patent/JP7304577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an insulated gate type semiconductor device and a manufacturing method thereof that can reduce the interface state density and suppress the deterioration of reliability of a semiconductor device.SOLUTION: A manufacturing method of an insulated gate type semiconductor device includes the steps of forming a gate insulating film made of a silicon oxide film on the upper surface of a channel forming region made of silicon carbide, nitriding the gate insulating film by heat-treating the gate insulating film with gas containing nitrogen atoms to form an intermediate nitride layer at the interface between the channel forming region and the gate insulating film, heat-treating the gate insulating film with gas containing carbon dioxide to remove some of nitrogen atoms in the gate insulating film and form a nitriding terminal layer at the interface, and forming a gate electrode that controls the surface potential of the channel forming region on the gate insulating film.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法に係り、特に炭化シリコン(SiC)を用いた絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing an insulated gate type semiconductor device and an insulated gate type semiconductor device, and more particularly to a method for manufacturing an insulated gate type semiconductor device and an insulated gate type semiconductor device using silicon carbide (SiC).

SiCを用いたMOS電界効果トランジスタ(FET)では、半導体層上にゲート絶縁膜を形成する際に、高密度の界面準位ができる。そのため、チャネルの移動度が低くなり、MOSFETのオン抵抗等の電気的特性が劣化するという課題がある。ゲート絶縁膜形成後に窒素(N)を含有するガス中で加熱処理し、シリコン酸化(SiO2)膜とSiC界面に高濃度窒化領域を形成することで、ゲート絶縁膜界面の界面準位密度(Dit)を低減し、高移動度化することが提案されている。しかし、負バイアス印加ストレスに対して、デバイスのオン-オフ電圧であるゲート閾値電圧の変動が生じる負バイアス温度不安定性(NBTI)によって、駆動条件によっては半導体装置の動作信頼性が確保できないという問題がある。非特許文献1では、NBTIの問題の原因として、窒化領域形成プロセスにより、ゲート絶縁膜であるSiO2膜中に入った窒素原子による正孔トラップ生成の可能性が指摘されている。 In a MOS field effect transistor (FET) using SiC, a high-density interface state is formed when a gate insulating film is formed on a semiconductor layer. Therefore, there is a problem that the mobility of the channel becomes low and the electrical characteristics such as the on-resistance of the MOSFET deteriorate. After forming the gate insulating film, heat treatment is performed in a gas containing nitrogen (N) to form a high-concentration nitrided region at the interface between the silicon oxide (SiO 2 ) film and the SiC, thereby forming the interface state density (interface level density) at the interface of the gate insulating film. It has been proposed to reduce Dit) and increase the mobility. However, there is a problem that the operational reliability of the semiconductor device cannot be ensured depending on the driving conditions due to the negative bias temperature instability (NBTI) in which the gate threshold voltage, which is the on-off voltage of the device, fluctuates with respect to the stress applied to the negative bias. There is. Non-Patent Document 1 points out the possibility of hole trap generation by nitrogen atoms entering the SiO 2 film, which is a gate insulating film, as a cause of the problem of NBTI.

特許文献1では、NBTIを改善するために、SiO2膜とSiC界面近傍のN濃度を規定する技術を開示している。具体的には、酸素(O)濃度がSiO2膜中のO濃度の90%となる位置を界面と定義し、界面から±5nmの領域に含まれるN濃度を5×1013cm-2より高く、1.6×1014cm-2未満と規定している。しかし、特許文献1の技術では、界面のパッシベーションに寄与するN原子の量が減少するため、窒化効果が十分ではなく、チャネル移動度が低下し、また正バイアス温度不安定性(PBTI)が問題となる。 Patent Document 1 discloses a technique for defining the N concentration in the vicinity of the SiO 2 film and the SiC interface in order to improve NBTI. Specifically, the position where the oxygen (O) concentration is 90% of the O concentration in the SiO 2 film is defined as the interface, and the N concentration contained in the region ± 5 nm from the interface is defined as 5 × 10 13 cm- 2 . High, 1.6 x 10 14 cm -less than -2. However, in the technique of Patent Document 1, since the amount of N atoms contributing to the passivation of the interface is reduced, the nitriding effect is not sufficient, the channel mobility is lowered, and the positive bias temperature instability (PBTI) is a problem. Become.

特開2011‐82454号公報Japanese Unexamined Patent Publication No. 2011-82454

J. ローゼン(Rozen)他、「SiO2/SiC界面での窒素取り込みに関連した酸化物ホールトラップ密度の増加(Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface)」、ジャーナルオブアプライドフィジックス(J. Appl. Phys.)、第103巻、2008年、p.124513J. Rosen et al., "Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2 / SiC interface", Journal of Applied Physics (J. Appl. Phys.), Vol. 103, 2008, p. 124513

本発明は、上記問題点を鑑み、界面準位密度の低減ができ、半導体装置の信頼性の劣化を抑制することが可能な絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法を提供することを目的とする。 In view of the above problems, the present invention provides an insulated gate type semiconductor device and a method for manufacturing an insulated gate type semiconductor device, which can reduce the interface state density and suppress deterioration of the reliability of the semiconductor device. The purpose is.

上記目的を達成するために、本発明の一態様は、(a)炭化シリコンからなるチャネル形成領域の上面にシリコン酸化膜からなるゲート絶縁膜を形成する工程と、(b)窒素原子を含むガスでゲート絶縁膜を熱処理することで、ゲート絶縁膜と炭化シリコンとの界面を窒化処理して、チャネル形成領域とゲート絶縁膜との界面に中間窒化層を形成する工程と、(c)二酸化炭素を含むガスでゲート絶縁膜を熱処理することで、ゲート絶縁膜中の窒素原子の一部を除去し、界面に窒化終端層を形成する工程と、(d)ゲート絶縁膜の上に、チャネル形成領域の表面ポテンシャルを制御するゲート電極を形成する工程と、を含む絶縁ゲート型半導体装置の製造方法であることを要旨とする。 In order to achieve the above object, one aspect of the present invention includes (a) a step of forming a gate insulating film made of a silicon oxide film on the upper surface of a channel forming region made of silicon carbide, and (b) a gas containing a nitrogen atom. By heat-treating the gate insulating film in the above step, the interface between the gate insulating film and silicon carbide is nitrided to form an intermediate nitride layer at the interface between the channel forming region and the gate insulating film, and (c) carbon dioxide. By heat-treating the gate insulating film with a gas containing the above, a part of the nitrogen atom in the gate insulating film is removed to form a nitriding terminal layer at the interface, and (d) channel formation on the gate insulating film. The gist of the present invention is a method of manufacturing an insulated gate type semiconductor device including a step of forming a gate electrode for controlling the surface potential of the region.

本発明の他の態様は、(a)炭化シリコンからなるチャネル形成領域の上面に設けられたシリコン酸化膜からなるゲート絶縁膜と、(b)チャネル形成領域とゲート絶縁膜との界面に設けられた窒化シリコンからなる窒化終端層と、(c)ゲート絶縁膜の上に設けられ、チャネル形成領域の表面ポテンシャルを制御するゲート電極と、を備え、ゲート絶縁膜と炭化シリコンとの界面をX線光電子分光法で測定したとき、窒素の1s軌道に起因するスペクトルの強度INとチャネル形成領域に由来するシリコンの2p軌道に起因するスペクトルの強度ISiとの比IN/ISiが、ゲート絶縁膜を界面から2nm以上3nm以下の間の膜厚で残したときは0.02以上、0.03未満であり、ゲート絶縁膜を除去したときの窒化終端層では0.01より大きく、0.02未満である絶縁ゲート型半導体装置であることを要旨とする。 Another aspect of the present invention is provided at the interface between (a) a gate insulating film made of a silicon oxide film provided on the upper surface of a channel forming region made of silicon carbide and (b) a channel forming region and a gate insulating film. It is provided with a nitride termination layer made of silicon nitride and (c) a gate electrode provided on the gate insulating film and controlling the surface potential of the channel forming region, and X-rays the interface between the gate insulating film and silicon carbide. when measured by photoelectron spectroscopy, the ratio I N / I Si of the spectrum of the intensity I Si due to the 2p orbital of the silicon from the intensity I N and the channel formation region of the spectrum due to the 1s orbital of nitrogen, the gate When the insulating film is left with a film thickness between 2 nm and 3 nm from the interface, it is 0.02 or more and less than 0.03, and when the gate insulating film is removed, the nitride terminal layer is larger than 0.01 and 0. The gist is that the insulating gate type semiconductor device is less than .02.

本発明によれば、界面準位密度の低減ができ、半導体装置の信頼性の劣化を抑制することが可能な絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法を提供できる。 According to the present invention, it is possible to provide an insulated gate type semiconductor device and a method for manufacturing an insulated gate type semiconductor device, which can reduce the interface state density and suppress deterioration of the reliability of the semiconductor device.

本発明の実施形態に係る絶縁ゲート型半導体装置の一例を示す断面概略図である。It is sectional drawing which shows an example of the insulated gate type semiconductor device which concerns on embodiment of this invention. 実施形態に係る絶縁ゲート構造の評価に用いるMOSキャパシタの製造方法の工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the process of the manufacturing method of the MOS capacitor used for the evaluation of the insulating gate structure which concerns on embodiment. 実施形態に係る絶縁ゲート構造の評価に用いるMOSキャパシタの製造方法の図2に引き続く工程の一例を説明するための断面概略図である。FIG. 5 is a schematic cross-sectional view for explaining an example of a step following FIG. 2 of a method for manufacturing a MOS capacitor used for evaluating an insulated gate structure according to an embodiment. 実施形態に係る絶縁ゲート構造の評価に用いるMOSキャパシタの製造方法の図3に引き続く工程の一例を説明するための断面概略図である。FIG. 5 is a schematic cross-sectional view for explaining an example of a step following FIG. 3 of a method for manufacturing a MOS capacitor used for evaluating an insulated gate structure according to an embodiment. 実施形態に係る絶縁ゲート構造の評価に用いるMOSキャパシタの製造方法の図4に引き続く工程の一例を説明するための断面概略図である。FIG. 5 is a schematic cross-sectional view for explaining an example of a step following FIG. 4 of a method for manufacturing a MOS capacitor used for evaluating an insulated gate structure according to an embodiment. 比較例1のMOSキャパシタの一例を示す断面概略図である。It is sectional drawing which shows an example of the MOS capacitor of the comparative example 1. FIG. MOSゲート構造の界面近傍の評価に用いるSi2pのXPSスペクトルの一例を示す図である。It is a figure which shows an example of the XPS spectrum of Si2p used for the evaluation of the vicinity of the interface of a MOS gate structure. MOSゲート構造の界面近傍の評価に用いるN1sのXPSスペクトルの一例を示す図である。It is a figure which shows an example of the XPS spectrum of N1s used for the evaluation of the vicinity of the interface of a MOS gate structure. 実施形態に係る絶縁ゲート構造の界面近傍のXPS強度比の解析結果の一例を示す図である。It is a figure which shows an example of the analysis result of the XPS intensity ratio near the interface of the insulating gate structure which concerns on embodiment. 実施形態に係る絶縁ゲート構造の評価結果の一例を示す表である。It is a table which shows an example of the evaluation result of the insulation gate structure which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the process of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の図11に引き続く工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the process following FIG. 11 of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の図12に引き続く工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the process following FIG. 12 of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の図13に引き続く工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the steps following FIG. 13 of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の図14に引き続く工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the process following FIG. 14 of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 実施形態に係る絶縁ゲート型半導体装置の製造方法の図15に引き続く工程の一例を説明するための断面概略図である。It is sectional drawing for demonstrating an example of the steps following FIG. 15 of the manufacturing method of the insulated gate type semiconductor device which concerns on embodiment. 比較例2の絶縁ゲート型半導体装置の一例を示す断面概略図である。It is sectional drawing which shows an example of the insulated gate type semiconductor device of the comparative example 2. FIG. 実施形態に係る絶縁ゲート型半導体装置の評価結果の一例を示す表である。It is a table which shows an example of the evaluation result of the insulated gate type semiconductor device which concerns on embodiment.

以下、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は実際のものとは異なる場合がある。また、図面相互間においても寸法の関係や比率が異なる部分が含まれ得る。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same or similar parts are designated by the same or similar reference numerals, and duplicate description will be omitted. However, the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. may differ from the actual ones. In addition, parts having different dimensional relationships and ratios may be included between the drawings. In addition, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and arrangement of constituent parts. Etc. are not specified as the following.

本明細書においてMOSトランジスタのソース領域は絶縁ゲート型バイポーラトランジスタ(IGBT)のエミッタ領域として選択可能な「一方の主電極領域(第1主電極領域)」である。又、MOS制御静電誘導サイリスタ(SIサイリスタ)等のサイリスタにおいては、一方の主電極領域はカソード領域として選択可能である。MOSトランジスタのドレイン領域は、IGBTにおいてはコレクタ領域を、サイリスタにおいてはアノード領域として選択可能な半導体装置の「他方の主電極領域(第2主電極領域)」である。本明細書において単に「主電極領域」と言うときは、当業者の技術常識から妥当な第1主電極領域又は第2主電極領域のいずれかを意味する。 In the present specification, the source region of the MOS transistor is a “one main electrode region (first main electrode region)” that can be selected as the emitter region of the insulated gate bipolar transistor (IGBT). Further, in a thyristor such as a MOS-controlled electrostatic induction thyristor (SI thyristor), one of the main electrode regions can be selected as a cathode region. The drain region of the MOS transistor is the “other main electrode region (second main electrode region)” of the semiconductor device, which can be selected as the collector region in the IGBT and the anode region in the thyristor. In the present specification, the term "main electrode region" simply means either the first main electrode region or the second main electrode region, which is appropriate from the common general technical knowledge of those skilled in the art.

また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。また以下の説明では、第1導電型がp型、これと反対となる第2導電型がn型の場合について例示的に説明する。しかし、導電型を逆の関係に選択して、第1導電型をn型、第2導電型をp型としても構わない。またnやpに付す+や−は、+及び−が付記されていない半導体領域に比して、それぞれ相対的に不純物密度が高い又は低い半導体領域であることを意味する。ただし同じnとnとが付された半導体領域であっても、それぞれの半導体領域の不純物密度が厳密に同じであることを意味するものではない。また、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数をあらわしている。 Further, the definition of the vertical direction in the following description is merely a definition for convenience of explanation, and does not limit the technical idea of the present invention. For example, if the object is rotated by 90 ° and observed, the top and bottom are converted to left and right and read, and if the object is rotated by 180 ° and observed, the top and bottom are reversed and read. Further, in the following description, the case where the first conductive type is the p-type and the second conductive type, which is the opposite of the p-type, is the n-type will be exemplified. However, the conductive type may be selected in the opposite relationship, the first conductive type may be the n type, and the second conductive type may be the p type. Further, + and-attached to n and p mean that the impurity density is relatively high or low, respectively, as compared with the semiconductor region to which + and-are not added. However, even if the semiconductor regions have the same n and n, it does not mean that the impurity densities of the respective semiconductor regions are exactly the same. Further, in the present specification, in the notation of the Miller index, "-" means a bar attached to the index immediately after that, and "-" is added before the index to represent a negative index.

本発明の実施形態に係る絶縁ゲート型半導体装置は、ゲート絶縁膜にシリコン酸化膜(SiO)膜を用いた横型MOSFETである。図1に示すように第1導電型(p型)のチャネル形成領域(ベース領域)3を備え、チャネル形成領域3の表面に反転チャネルを形成する。チャネル形成領域3の上部には、高不純物密度の第2導電型(n+型)の主電極領域4a、4b、例えばソース領域(第1主電極領域)4a及びドレイン領域(第2主電極領域)4bが選択的に設けられる。ソース領域4a及びドレイン領域4bを跨いでチャネル形成領域3の上面に、窒素(N)で終端された窒化終端層6を介して絶縁ゲート型電極構造(5,7)が設けられる。絶縁ゲート型電極構造(5,7)は、SiO2膜からなるゲート絶縁膜5及びゲート絶縁膜5上のゲート電極(制御電極)7で構成される。ゲート電極7は、チャネル形成領域3の表面ポテンシャルを、ゲート絶縁膜5を介して静電的に制御して、チャネル形成領域3の表面に反転チャネルを形成する。 The insulated gate type semiconductor device according to the embodiment of the present invention is a horizontal MOSFET in which a silicon oxide film (SiO 2) film is used as the gate insulating film. As shown in FIG. 1, a first conductive type (p type) channel forming region (base region) 3 is provided, and an inverted channel is formed on the surface of the channel forming region 3. In the upper part of the channel formation region 3, a second conductive type (n + type) main electrode region 4a and 4b having a high impurity density, for example, a source region (first main electrode region) 4a and a drain region (second main electrode region) ) 4b is selectively provided. An insulated gate type electrode structure (5, 7) is provided on the upper surface of the channel forming region 3 across the source region 4a and the drain region 4b via a nitriding termination layer 6 terminated with nitrogen (N). The insulated gate type electrode structure (5, 7) is composed of a gate insulating film 5 made of a SiO 2 film and a gate electrode (control electrode) 7 on the gate insulating film 5. The gate electrode 7 electrostatically controls the surface potential of the channel forming region 3 via the gate insulating film 5 to form an inverted channel on the surface of the channel forming region 3.

窒化終端層6は、ゲート絶縁膜5及びチャネル形成領域3の界面を窒化処理した後に二酸化炭素(CO2)ガスによって熱処理して設けた窒素終端層である。MOSFETのゲート絶縁膜5であるシリコン酸化膜(SiO2膜)として、酸素(O2)ドライ酸化やウェット酸化等の熱酸化膜、あるいはスパッタ、熱化学気相堆積(CVD)、及びプラズマCVD等の堆積酸化膜が採用可能である。ゲート電極7の材料としては、アルミニウム(Al)等の金属膜、燐(P)等の不純物を高濃度に添加したポリシリコン層(ドープドポリシリコン層)等が使用可能である。 The nitriding terminal layer 6 is a nitrogen terminating layer provided by nitriding the interface between the gate insulating film 5 and the channel forming region 3 and then heat-treating with carbon dioxide (CO 2) gas. As the silicon oxide film (SiO 2 film) which is the gate insulating film 5 of the MOSFET, a thermal oxide film such as oxygen (O 2 ) dry oxidation or wet oxidation, or sputtering, thermochemical vapor deposition (CVD), plasma CVD, etc. Deposited oxide film can be adopted. As the material of the gate electrode 7, a metal film such as aluminum (Al), a polysilicon layer (doped polysilicon layer) in which impurities such as phosphorus (P) are added at a high concentration, and the like can be used.

チャネル形成領域3は、図1に示すように、n型のSiC半導体からなる基板1の上にエピタキシャル成長して設けられる。また、ソース領域4a及びドレイン領域4bにそれぞれ物理的に接するようにソース電極8a及びドレイン電極8bが設けられる。ソース電極8a及びドレイン電極8bは、それぞれソース領域4a及びドレイン領域4bにオーミック接続されている。ソース電極8a及びドレイン電極8bは、例えば、Alからなる単層膜や、ニッケルシリサイド(NiSix)、窒化チタン(TiN)、Alの順で積層された金属膜が使用可能である。なお、図示は省略したが、ソース電極8aとチャネル形成領域3とを電気的に接続するp+型のコンタクト領域がソース領域4aと分離して、チャネル形成領域3に配置されている。 As shown in FIG. 1, the channel formation region 3 is formed by epitaxially growing on a substrate 1 made of an n-type SiC semiconductor. Further, the source electrode 8a and the drain electrode 8b are provided so as to be in physical contact with the source region 4a and the drain region 4b, respectively. The source electrode 8a and the drain electrode 8b are ohmic-connected to the source region 4a and the drain region 4b, respectively. As the source electrode 8a and the drain electrode 8b, for example, a single-layer film made of Al or a metal film in which nickel silicide (NiSi x ), titanium nitride (TiN), and Al are laminated in this order can be used. Although not shown, a p + type contact region that electrically connects the source electrode 8a and the channel forming region 3 is separated from the source region 4a and arranged in the channel forming region 3.

SiC結晶には結晶多形が存在し、主なものは立方晶の3C、及び六方晶の4H、6Hである。室温における禁制帯幅は3C−SiCでは2.23eV、4H−SiCでは3.26eV、6H−SiCでは3.02eVの値が報告されている。本発明の実施形態に係る絶縁ゲート型半導体装置では、4H−SiCを用いて説明する。実施形態に係る絶縁ゲート型半導体装置においては、基板1はSiCからなる半導体基板(SiC基板)を用いる。SiC基板を用いた場合、チャネル形成領域3はSiCからなるエピタキシャル層(SiC層)で構成された構造を例示する。SiC基板の面方位は、(0001)面(Si面)を用いて説明するが、(11−20)面(a面)、(1−100)面(m面)、及び(000−1)面(C面)を用いてもよい。 Crystal polymorphs exist in SiC crystals, and the main ones are cubic 3C and hexagonal 4H and 6H. Forbidden band widths at room temperature have been reported to be 2.23 eV for 3C-SiC, 3.26 eV for 4H-SiC, and 3.02 eV for 6H-SiC. In the insulated gate type semiconductor device according to the embodiment of the present invention, 4H-SiC will be used for description. In the insulated gate type semiconductor device according to the embodiment, a semiconductor substrate (SiC substrate) made of SiC is used as the substrate 1. When a SiC substrate is used, the channel forming region 3 exemplifies a structure composed of an epitaxial layer (SiC layer) made of SiC. The plane orientation of the SiC substrate will be described using the (0001) plane (Si plane), but the (11-20) plane (a plane), the (1-100) plane (m plane), and (000-1). A surface (C surface) may be used.

図1に示すように、実施形態に係る絶縁ゲート型半導体装置では、ゲート電極7に電圧を印加してゲート絶縁膜5とチャネル形成領域3との界面にチャネルとなる反転層を形成する。このとき、ソース電極8aとドレイン電極8b間に電圧を印加することで、ソース領域4aからキャリア(電子)がチャネルに注入される。注入されたキャリアは、チャネルを走行してドレイン領域4bに流れ込む。 As shown in FIG. 1, in the insulated gate type semiconductor device according to the embodiment, a voltage is applied to the gate electrode 7 to form an inversion layer serving as a channel at the interface between the gate insulating film 5 and the channel forming region 3. At this time, by applying a voltage between the source electrode 8a and the drain electrode 8b, carriers (electrons) are injected into the channel from the source region 4a. The injected carrier travels through the channel and flows into the drain region 4b.

通常、ゲート絶縁膜5に用いるSiO2膜を熱酸化法等で形成すると、SiO2膜とSiC半導体層の界面にC原子が残留し、高密度の界面準位が形成される。界面準位に電子が捕獲されると、クーロン散乱等により電子移動度が低下する。SiO2膜とSiC半導体層の界面をN原子で終端することで、界面準位密度を低減する方法が提案されている。しかし、SiO2膜とSiC半導体層の界面に高濃度窒化領域が形成されると、ゲート負電圧印加ストレスに対して、半導体装置のゲート閾値電圧変動が生じる。 Normally, when the SiO 2 film used for the gate insulating film 5 is formed by a thermal oxidation method or the like, C atoms remain at the interface between the SiO 2 film and the SiC semiconductor layer, and a high-density interface state is formed. When electrons are captured at the interface state, the electron mobility decreases due to Coulomb scattering and the like. A method of reducing the interface state density has been proposed by terminating the interface between the SiO 2 film and the SiC semiconductor layer with N atoms. However, when a high-concentration nitrided region is formed at the interface between the SiO 2 film and the SiC semiconductor layer, the gate threshold voltage of the semiconductor device fluctuates in response to the gate negative voltage application stress.

実施形態に係る絶縁ゲート型半導体装置では、窒化処理してゲート絶縁膜5及びチャネル形成領域3の界面に形成した中間窒化終端層を二酸化炭素(CO2)ガスによる熱処理して窒化終端層6を設ける。後述するように、CO2熱処理によってSiO2膜中やSiC半導体層界面でのSi−N結合が切断されN原子が除去される。ゲート絶縁膜5をすべて除去したときに、窒化終端層6のNとSiのX線電子分光法(XPS)信号強度比IN/ISiを0.01より大きく、0.02未満となるようにCO2熱処理する。このとき、界面近傍のゲート絶縁膜5を2nm以上3nm以下残したときのXPS信号強度比IN/ISiは0.02以上、0.03未満となる。このように、CO2熱処理で窒化終端層6及びゲート絶縁膜5のSi−N結合が切断され、余剰のN原子を排除できゲート絶縁膜5中の正孔トラップを除去することができる。その結果、半導体装置のゲート閾値電圧変動を抑制することが可能となる。 In the insulated gate type semiconductor device according to the embodiment, the intermediate nitriding terminal layer formed at the interface between the gate insulating film 5 and the channel forming region 3 by nitriding treatment is heat-treated with carbon dioxide (CO 2 ) gas to form the nitriding terminal layer 6. Provide. As will be described later, the CO 2 heat treatment breaks the Si—N bond in the SiO 2 film and at the interface of the SiC semiconductor layer to remove N atoms. When removing all of the gate insulating film 5, X-ray photoelectron spectroscopy of N and Si nitride termination layer 6 (XPS) signal intensity ratio I N / I Si greater than 0.01, so as to be less than 0.02 CO 2 heat treatment. At this time, XPS signal intensity ratio I N / I Si when leaving the gate insulating film 5 near the interface 2nm or more 3nm or less than 0.02, less than 0.03. In this way, the Si—N bond between the nitriding terminal layer 6 and the gate insulating film 5 is broken by the CO 2 heat treatment, excess N atoms can be eliminated, and hole traps in the gate insulating film 5 can be removed. As a result, it becomes possible to suppress fluctuations in the gate threshold voltage of the semiconductor device.

半導体装置のゲート閾値電圧の変動は、例えば、MOSキャパシタのフラットバンド電圧(Vfb)のシフトによって評価できる。そこで、実施形態に係る絶縁ゲート構造に相当するMOSキャパシタを作製してMOSキャパシタの界面特性を評価した。図2〜図5に示す工程図を用いて、実施形態に係る絶縁ゲート構造に相当するMOSキャパシタの製造方法を説明する。なお、以下に述べるMOSキャパシタの製造方法は一例であり、特許請求の範囲に記載した趣旨の範囲であれば、この変形例を含めて、これ以外の種々の製造方法により実現可能であることは勿論である。 Fluctuations in the gate threshold voltage of the semiconductor device can be evaluated, for example, by shifting the flat band voltage (Vfb) of the MOS capacitor. Therefore, a MOS capacitor corresponding to the insulated gate structure according to the embodiment was produced and the interface characteristics of the MOS capacitor were evaluated. A method of manufacturing a MOS capacitor corresponding to the insulated gate structure according to the embodiment will be described with reference to the process diagrams shown in FIGS. 2 to 5. The MOS capacitor manufacturing method described below is an example, and it may be feasible by various other manufacturing methods including this modification as long as it is within the scope of the claims. Of course.

まず、窒素(N)等のn型不純物が添加されたn型のSiC基板(基板)2を用意する。基板2は4H−SiC基板であり、面方位が(0001)面(Si面)である。まず、基板2を過酸化水素にアルカリや酸を加えて加熱して洗浄するRCA洗浄し、フッ化水素(HF)処理して乾燥する。図2に示すように、洗浄した基板2の上面に、100%O2ガス雰囲気中、1200℃程度の温度で160分間程度加熱して50nm程度のSiO2からなる酸化膜5aを形成する。酸化膜5aとして、ドライ酸化膜を例示したが、ウェット酸化膜でもよく、また、熱CVD、プラズマCVD等による堆積酸化膜でもよい。例えば、減圧熱CVDでシラン(SiH4)ガスと酸素(O2)ガスを用いて、0.2Pa程度の圧力、600℃程度の温度で酸化膜5aを堆積してもよい。 First, an n-type SiC substrate (substrate) 2 to which an n-type impurity such as nitrogen (N) is added is prepared. The substrate 2 is a 4H-SiC substrate, and the plane orientation is (0001) plane (Si plane). First, the substrate 2 is RCA-cleaned by adding an alkali or acid to hydrogen peroxide and heating to clean it, and is treated with hydrogen fluoride (HF) and dried. As shown in FIG. 2, an oxide film 5a made of SiO 2 having a diameter of about 50 nm is formed on the upper surface of the washed substrate 2 by heating at a temperature of about 1200 ° C. for about 160 minutes in a 100% O 2 gas atmosphere. As the oxide film 5a, a dry oxide film is exemplified, but a wet oxide film may be used, or a deposited oxide film by thermal CVD, plasma CVD, or the like may be used. For example, the oxide film 5a may be deposited at a pressure of about 0.2 Pa and a temperature of about 600 ° C. using silane (SiH 4 ) gas and oxygen (O 2 ) gas in reduced pressure thermal CVD.

次に、窒素(N2)ガスに一酸化窒素(NO)ガスを10%添加したガス雰囲気中、1250℃程度の温度で60分間程度過熱して窒化処理を行う。この窒化処理により、図3に示すように、酸化膜5aと基板2との界面に中間窒化層6aが形成される。なお、窒化処理には、NOに代えて亜酸化窒素(N2O)ガスを用いてもよい。 Next, in a gas atmosphere in which 10% of nitric oxide (NO) gas is added to nitrogen (N 2 ) gas, the nitriding treatment is performed by heating at a temperature of about 1250 ° C. for about 60 minutes. By this nitriding treatment, as shown in FIG. 3, an intermediate nitriding layer 6a is formed at the interface between the oxide film 5a and the substrate 2. Nitrous oxide (N 2 O) gas may be used instead of NO for the nitriding treatment.

次に、CO2ガス雰囲気中、3通りの温度でそれぞれ30分間程度の加熱処理を行う。3通りの温度は、実施例1として1400℃、実施例2として1300℃、実施例3として1200℃の温度である。この3通りの加熱処理により、図4に示すように、酸化膜5aと基板2の界面近傍の酸化膜5aの中のN原子濃度が低減すると共に、中間窒化層6aから一部のN原子が除去された窒化終端層6が、3種類の態様で生成される。CO2加熱処理では、100%のCO2ガスを用いたが、CO2ガスとN2やアルゴン(Ar)等の不活性ガスとの混合ガスを用いてもよい。 Next, in a CO 2 gas atmosphere, heat treatment is performed at three different temperatures for about 30 minutes each. The three temperatures are 1400 ° C. for Example 1, 1300 ° C. for Example 2, and 1200 ° C. for Example 3. By these three types of heat treatment, as shown in FIG. 4, the concentration of N atoms in the oxide film 5a near the interface between the oxide film 5a and the substrate 2 is reduced, and some N atoms are removed from the intermediate nitride layer 6a. The removed nitriding termination layer 6 is produced in three different modes. In the CO 2 heat treatment, 100% CO 2 gas is used, but a mixed gas of CO 2 gas and an inert gas such as N 2 or argon (Ar) may be used.

図5に示すように、リフトオフ又は通常のフォトリソグラフィの手法を用いて、酸化膜5aの上面に直径が200μm程度の金属膜の円形パターンを形成する。円形パターンの前提となる金属膜は、スパッタリング法、真空蒸着法等により、酸化膜5aの上面に、厚さが100μm程度のAl等の金属膜を堆積すれば良い。引き続き、スパッタリング法、真空蒸着法等により、基板2の裏面全面に厚さが100μm程度のAl等の金属膜を堆積する。このようにして、表面電極10及び裏面電極11が形成される。 As shown in FIG. 5, a circular pattern of a metal film having a diameter of about 200 μm is formed on the upper surface of the oxide film 5a by using a lift-off or a usual photolithography method. As the metal film that is the premise of the circular pattern, a metal film such as Al having a thickness of about 100 μm may be deposited on the upper surface of the oxide film 5a by a sputtering method, a vacuum vapor deposition method, or the like. Subsequently, a metal film such as Al having a thickness of about 100 μm is deposited on the entire back surface of the substrate 2 by a sputtering method, a vacuum vapor deposition method, or the like. In this way, the front electrode 10 and the back electrode 11 are formed.

作製した3種類の実施例1〜3について、XPS測定及びCV測定を行い、MOS界面特性を評価している。また、実施例1〜3と比較するため、図6に示すように、図3の中間窒化層6a形成後にCO2熱処理を行わずに、表面電極10及び裏面電極11を形成した比較例1も作成し、評価している。 XPS measurement and CV measurement are performed on the three types of Examples 1 to 3 produced to evaluate the MOS interface characteristics. Further, in order to compare with Examples 1 to 3, as shown in FIG. 6, Comparative Example 1 in which the front surface electrode 10 and the back surface electrode 11 are formed without performing the CO2 heat treatment after the intermediate nitride layer 6a of FIG. 3 is formed is also prepared. And evaluate.

XPS測定は、X線源としてアルミニウム(Al)Kα線を用い、検出角90度で表面分析を行う。酸化膜5aを希弗酸、例えば弗酸濃度が1%の水溶液で表面から徐々にステップエッチングしながらステップエッチング毎に繰り返し測定を行う。98eV〜108eVの結合エネルギの範囲のナロースキャンでSi2p軌道に起因するスペクトル信号(Si2p信号)の検出を行う。同時に、394eV〜402eVの結合エネルギの範囲のナロースキャンでN1s軌道に起因するスペクトル信号(N1s信号)の検出を行う。図7に示すように、Si2p信号について、基板2由来のSiC成分の信号と、酸化膜5a由来のSiO2成分の信号とをピーク分離する。SiC成分の信号のピーク位置は101eV〜102eVで、SiO2成分の信号のピーク位置は103eV〜104eVである。ピーク分離したSi2p信号から、SiC成分のスペクトル信号のエネルギ積分値S(SiC)と、SiO2成分のスペクトル信号のエネルギ積分値S(SiO2)とを算出する。図8に示すように、N1s信号のエネルギ積分値S(N)を算出する。 For XPS measurement, aluminum (Al) Kα rays are used as an X-ray source, and surface analysis is performed at a detection angle of 90 degrees. The oxide film 5a is gradually step-etched from the surface with dilute phosphoric acid, for example, an aqueous solution having a fluoroacid concentration of 1%, and the measurement is repeated for each step etching. The spectral signal (Si2p signal) caused by the Si2p orbit is detected by a narrow scan in the binding energy range of 98 eV to 108 eV. At the same time, the spectral signal (N1s signal) caused by the N1s orbit is detected by a narrow scan in the binding energy range of 394eV to 402eV. As shown in FIG. 7, regarding the Si2p signal, the signal of the SiC component derived from the substrate 2 and the signal of the SiO 2 component derived from the oxide film 5a are peak-separated. The peak position of the signal of the SiC component is 101 eV to 102 eV, and the peak position of the signal of the SiO 2 component is 103 eV to 104 eV. From the peak-separated Si2p signal, the energy integral value S (SiC) of the spectral signal of the SiC component and the energy integral value S (SiO 2 ) of the spectral signal of the SiO 2 component are calculated. As shown in FIG. 8, the energy integral value S (N) of the N1s signal is calculated.

SiC成分のエネルギ積分値S(SiC)及びSiO2成分のエネルギ積分値S(SiO2)と、SiO2の理論密度から、ステップエッチング毎の酸化膜5aの残膜厚を算出する。界面近傍のNとSiの強度比IN/ISiは、N1s信号のエネルギ積分値S(N)とSiC成分のエネルギ積分値S(SiC)との比S(N)/S(SiC)から算出する。図9に実施例2及び比較例1について、それぞれ酸化膜5aの界面近傍における窒化終端層6及び中間窒化層6aのXPS測定結果を示す。図9に示すように、実施例2及び比較例1において酸化膜5aの膜厚が界面から2.5nmのとき強度比IN/ISiは、それぞれ0.026程度及び0.040程度で飽和する傾向にある。実施例2では、強度比IN/ISiは、酸化膜厚が0.2nm程度より薄くなると急激に減少し、基板2のSiC表面となる界面で0.017程度となる。一方、比較例1では、強度比IN/ISiは、酸化膜の厚さが0.4nm程度の位置から急激に減少し、基板2のSiC表面となる界面で0.025程度となる。 An energy integration value S of the SiC component (SiC) and SiO 2 component of the energy integration value S (SiO 2), from the theoretical density of SiO 2, to calculate the residual film thickness of the oxide film 5a for each step etching. Intensity ratio I N / I Si in the vicinity of the interface between the N and Si, the ratio S between the energy integration value S of the N1s signal (N) and the SiC component energy integration value S (SiC) (N) / S (SiC) calculate. FIG. 9 shows the XPS measurement results of the nitriding terminal layer 6 and the intermediate nitriding layer 6a in the vicinity of the interface of the oxide film 5a for Example 2 and Comparative Example 1, respectively. As shown in FIG. 9, the intensity ratio I N / I Si when 2.5nm from thickness interfacial oxide film 5a in Example 2 and Comparative Example 1, saturated with respectively about 0.026 and about 0.040 Tend to do. In Example 2, the intensity ratio IN / I Si sharply decreases when the oxide film thickness becomes thinner than about 0.2 nm, and becomes about 0.017 at the interface of the substrate 2 which is the SiC surface. On the other hand, in Comparative Example 1, the intensity ratio IN / I Si sharply decreases from the position where the thickness of the oxide film is about 0.4 nm, and becomes about 0.025 at the interface which becomes the SiC surface of the substrate 2.

図10には、実施例1〜3及び比較例1についてのXPS測定結果及びCV測定による界面準位密度Ditとフラットバンド電圧(Vfb)シフトを示す。XPS測定結果のSiC表面I/ISiとは、図9における酸化膜厚さ0nmの時の強度比を、飽和I/ISiとは、図9における酸化膜厚さ2nm以上3nm以下の時の強度比を記している。界面準位密度Ditは伝導帯端Ecから0.2eVのエネルギ位置での準位密度である。Vfbシフトは、それぞれ正バイアスでは+6MV/cm、及び負バイアスでは−6MV/cmの条件でバイアスストレス後に測定している。特に、負バイアス条件は、ゲートリーク電流が生じ始める厳しい条件であり、酸化膜5a中の正孔トラップ量の目安となる。Vfbシフト量が小さいほど正孔トラップが少ないことを示す。 FIG. 10 shows the XPS measurement results for Examples 1 to 3 and Comparative Example 1, the interface state density D it and the flat band voltage (Vfb) shift by CV measurement. The SiC surface I N / I Si of XPS measurement results, the intensity ratio when the oxide thickness 0nm in FIG. 9, the saturation I The N / I Si, oxide thickness 2nm or more 3nm following in FIG The intensity ratio of time is described. The interface state density D it is the level density at the energy position of 0.2 eV from the conduction band edge Ec. The Vfb shift is measured after bias stress under the conditions of + 6 MV / cm for positive bias and -6 MV / cm for negative bias, respectively. In particular, the negative bias condition is a severe condition in which a gate leak current starts to occur, and serves as a guideline for the amount of hole traps in the oxide film 5a. The smaller the Vfb shift amount, the smaller the hole trap.

図10の表に示すように、酸化膜5aを完全に除去した基板2のSiC表面の強度比IN/ISiは、CO2加熱処理を行わない比較例1で高く、CO2加熱温度の増加とともに減少する。また、酸化膜5a中の飽和強度比IN/ISiも、CO2加熱処理を行わない比較例1で高く、CO2加熱温度の増加とともに減少する。このように、CO2加熱処理により界面の基板2のSiC表面及び酸化膜5a中のSi−N結合が切断され、Nが脱離することが判る。 As shown in the table of FIG. 10, the intensity ratio IN / I Si of the SiC surface of the substrate 2 from which the oxide film 5a was completely removed was high in Comparative Example 1 in which the CO 2 heat treatment was not performed, and the CO 2 heating temperature was high. It decreases as it increases. Further, the saturation intensity ratio IN / I Si in the oxide film 5a is also high in Comparative Example 1 in which the CO 2 heat treatment is not performed, and decreases as the CO 2 heating temperature increases. As described above, it can be seen that the CO 2 heat treatment breaks the Si—N bond in the SiC surface of the substrate 2 at the interface and in the oxide film 5a, and N is eliminated.

また、図10の表に示すように、CO2加熱温度が1400℃の実施例1では、SiC表面のN減少が顕著で界面準位密度Ditが3×1012cm-2/eVに上昇している。CO2加熱温度が1300℃及び1200℃の実施例2及び実施例3では、界面準位密度Ditが、それぞれ9×1011cm-2/eV及び8×1011cm-2/eVと低い。Vfbシフト量は、実施例1〜3では、正バイアス条件で0.1V程度であり、負バイアス条件で−2V〜−2.6V程度といずれも小さい。一方、従来のNOガスによる窒化処理だけでCO2加熱を行わない比較例1では、Nパッシベーションの効果により界面準位密度Ditが7×1011cm-2/eVと低い。しかし、比較例1はバイアスストレス後のVfbシフトが顕著で、正バイアス条件で1.0V程度、負バイアス条件で−4.9V程度と大きい。このように、実施例2及び実施例3では、界面準位密度Ditが1×1012cm-2/eV未満を維持しつつ、負バイアス条件でのVfbシフトが改善されている。 Further, as shown in the table of FIG. 10, in Example 1 in which the CO 2 heating temperature was 1400 ° C., the N decrease on the SiC surface was remarkable, and the interface state density D it increased to 3 × 10 12 cm −2 / eV. doing. In Examples 2 and 3 where the CO 2 heating temperatures are 1300 ° C and 1200 ° C, the interface state density D it is as low as 9 × 10 11 cm -2 / eV and 8 × 10 11 cm -2 / eV, respectively. .. In Examples 1 to 3, the Vfb shift amount is about 0.1 V under the positive bias condition and about -2 V to -2.6 V under the negative bias condition, both of which are small. On the other hand, in Comparative Example 1 in which CO 2 heating is not performed only by the conventional nitriding treatment with NO gas , the interface state density D it is as low as 7 × 10 11 cm −2 / eV due to the effect of N passivation. However, in Comparative Example 1, the Vfb shift after the bias stress is remarkable, and is as large as about 1.0 V under the positive bias condition and about -4.9 V under the negative bias condition. As described above, in Examples 2 and 3, the Vfb shift under the negative bias condition is improved while maintaining the interface state density D it less than 1 × 10 12 cm −2 / eV.

実施形態に係る絶縁ゲート構造では、酸化膜5a形成後に、NO窒化処理に引き続きCO2処理を実施する。CO2処理では、窒化処理で導入された酸化膜5aと基板2との界面近傍の窒化終端層6のSiO2膜中のSi−N結合あるいはSi−O−N結合が切断される。CO2ガスは、800℃〜1400℃程度で、還元ガスのCO及び酸化ガスのO2に分解される。O2ガスでもSi−N結合を切ってSi−O結合に変換する作用があるが、基板2のSiC表面も酸化され、窒化処理によって形成した界面のNパッシベーションを破壊してしまう。CO2ガスでは、COガスが生成されるので、O2ガスほど界面のNパッシベーションを破壊し難く、SiO2膜中のSi−N結合を切断することができる。そのため、界面準位密度Ditの上昇を抑制すると共に、酸化膜5aの界面近傍における窒化終端層6中のNを排除し、Nによる正孔トラップを低減することができる。 In the insulated gate structure according to the embodiment, after the oxide film 5a is formed, the NO nitriding treatment is followed by the CO 2 treatment. In the CO 2 treatment, the Si—N bond or the Si—ON bond in the SiO 2 film of the nitriding terminal layer 6 near the interface between the oxide film 5a introduced by the nitriding treatment and the substrate 2 is broken. The CO 2 gas is decomposed into CO as a reducing gas and O 2 as an oxidizing gas at about 800 ° C. to 1400 ° C. O 2 gas also has the effect of breaking the Si—N bond and converting it into a Si—O bond, but the SiC surface of the substrate 2 is also oxidized, destroying the N passivation of the interface formed by the nitriding treatment. Since CO gas is generated in CO 2 gas, the N passivation at the interface is less likely to be destroyed than in O 2 gas, and the Si—N bond in the SiO 2 film can be broken. Therefore, it is possible to suppress an increase in the interface state density D it, eliminate N in the nitriding terminal layer 6 in the vicinity of the interface of the oxide film 5a, and reduce hole traps due to N.

上述の説明では、基板2として、面方位が(0001)面(Si面)のSiC基板を用いている。Si面は、(11−20)面(a面)、(1−100)面(m面)、及び(000−1)面(C面)に比べて酸化速度が速い。そのため、Si面では、CO2処理温度は1000℃〜1400℃の範囲、望ましくは1100℃〜1300℃の範囲が好適である。a面、m面、及びC面では、CO2処理温度は800℃〜1200℃の範囲、望ましくは1000℃〜1200℃の範囲が好適である。 In the above description, as the substrate 2, a SiC substrate having a plane orientation of (0001) plane (Si plane) is used. The Si plane has a higher oxidation rate than the (11-20) plane (a plane), the (1-100) plane (m plane), and the (000-1) plane (C plane). Therefore, on the Si surface, the CO 2 treatment temperature is preferably in the range of 1000 ° C. to 1400 ° C., preferably in the range of 1100 ° C. to 1300 ° C. On the a-plane, m-plane, and C-plane, the CO 2 treatment temperature is preferably in the range of 800 ° C. to 1200 ° C., preferably in the range of 1000 ° C. to 1200 ° C.

(絶縁ゲート型半導体装置の製造方法)
次に、図11〜図16に示す工程図を用いて、実施形態に係る絶縁ゲート型半導体装置の製造方法を、横型MOSFETの場合を一例に説明する。なお、以下に述べるMOSFETの製造方法は一例であり、特許請求の範囲に記載した趣旨の範囲であれば、この変形例を含めて、これ以外の種々の製造方法により実現可能であることは勿論である。
(Manufacturing method of insulated gate type semiconductor device)
Next, the manufacturing method of the insulated gate type semiconductor device according to the embodiment will be described as an example in the case of a horizontal MOSFET by using the process diagrams shown in FIGS. 11 to 16. It should be noted that the MOSFET manufacturing method described below is an example, and of course, it can be realized by various other manufacturing methods including this modification as long as it is within the scope of the claims. Is.

まず、窒素(N)等のn型不純物が添加されたn型のSiC基板(基板)1を用意する。基板1は4H−SiC基板であり、面方位が(0001)面(Si面)である。基板1の上面に、p型のチャネル形成領域(ベース領域)3をエピタキシャル成長させる。チャネル形成領域3の上面側から、フォトリソグラフィ技術及びイオン注入技術などにより、N等のn型不純物を選択的に注入する。熱処理を行うことにより注入されたn型不純物イオンを活性化さる。その結果、図11に示すように、チャネル形成領域3の上部にn+型のソース領域(第1主電極領域)4a及びドレイン領域(第2主電極領域)4bが選択的に埋め込まれる。 First, an n-type SiC substrate (substrate) 1 to which an n-type impurity such as nitrogen (N) is added is prepared. The substrate 1 is a 4H-SiC substrate, and the plane orientation is (0001) plane (Si plane). A p-type channel forming region (base region) 3 is epitaxially grown on the upper surface of the substrate 1. N-type impurities such as N are selectively injected from the upper surface side of the channel formation region 3 by a photolithography technique, an ion implantation technique, or the like. The injected n-type impurity ions are activated by performing a heat treatment. As a result, as shown in FIG. 11, an n + type source region (first main electrode region) 4a and a drain region (second main electrode region) 4b are selectively embedded in the upper part of the channel formation region 3.

図12に示すように、チャネル形成領域3の上面に、100%O2ガス雰囲気中、1200℃程度の温度で160分間程度加熱して50nm程度のSiO2からなるシリコン酸化膜5bを形成する。シリコン酸化膜5bとして、ドライ酸化膜を例示したが、ウェット酸化膜でもよく、また、熱CVD、プラズマCVD等による堆積酸化膜でもよい。例えば、減圧熱CVDでシラン(SiH4)ガスと酸素(O2)ガスを用いて、0.2Pa程度の圧力、600℃程度の温度でシリコン酸化膜5bを堆積してもよい。 As shown in FIG. 12, a silicon oxide film 5b made of SiO 2 having a diameter of about 50 nm is formed on the upper surface of the channel forming region 3 by heating at a temperature of about 1200 ° C. for about 160 minutes in a 100% O 2 gas atmosphere. Although a dry oxide film is exemplified as the silicon oxide film 5b, a wet oxide film may be used, or a deposited oxide film by thermal CVD, plasma CVD, or the like may be used. For example, a silicon oxide film 5b may be deposited at a pressure of about 0.2 Pa and a temperature of about 600 ° C. using silane (SiH 4 ) gas and oxygen (O 2 ) gas in reduced pressure thermal CVD.

次に、N2ガスに一酸化窒素(NO)ガスを10%添加したガス雰囲気中、1250℃程度の温度で60分間程度過熱して窒化処理を行う。この窒化処理により、図13に示すように、シリコン酸化膜5bと、チャネル形成領域3、ソース領域4a及びドレイン領域4bとの界面に中間窒化層6aが形成される。なお、窒化処理には、NOに代えてN2Oガスを用いてもよい。 Next, in a gas atmosphere in which 10% of nitric oxide (NO) gas is added to N 2 gas, nitriding is performed by heating at a temperature of about 1250 ° C. for about 60 minutes. By this nitriding treatment, as shown in FIG. 13, an intermediate nitriding layer 6a is formed at the interface between the silicon oxide film 5b and the channel forming region 3, the source region 4a and the drain region 4b. In the nitriding treatment, N 2 O gas may be used instead of NO.

窒化処理後、CO2ガス雰囲気中、2通りの温度でそれぞれ30分間程度の加熱処理を行う。2通りの温度は、実施例4として1300℃、実施例5として1200℃を採用する。この2通りの温度で加熱処理により、図14に示すように、シリコン酸化膜5bと、チャネル形成領域3、ソース領域4a及びドレイン領域4bとの界面近傍のシリコン酸化膜5bの中のN原子濃度が、2通りの態様で低減する。又、2通りの態様で、中間窒化層6aから一部のN原子が除去された窒化終端層6が生成される。CO2加熱処理では、100%のCO2ガスを用いたが、CO2ガスとN2やアルゴン(Ar)等の不活性ガスとの混合ガスを用いてもよい。 After the nitriding treatment, heat treatment is performed in a CO 2 gas atmosphere at two different temperatures for about 30 minutes each. As the two temperatures, 1300 ° C. is adopted as Example 4 and 1200 ° C. is adopted as Example 5. By heat treatment at these two temperatures, as shown in FIG. 14, the concentration of N atoms in the silicon oxide film 5b near the interface between the silicon oxide film 5b and the channel forming region 3, the source region 4a and the drain region 4b. However, it is reduced in two ways. Further, in two ways, the nitriding terminal layer 6 in which some N atoms are removed from the intermediate nitriding layer 6a is generated. In the CO 2 heat treatment, 100% CO 2 gas is used, but a mixed gas of CO 2 gas and an inert gas such as N 2 or argon (Ar) may be used.

フォトリソグラフィ技術及びドライエッチング等によりシリコン酸化膜5bにソースコンタクトホール及びドレインコンタクトホールを開孔する。その結果、図15に示すように、チャネル形成領域3の上面にソース領域4a及びドレイン領域4bを跨ぐようにゲート絶縁膜5のパターンが選択的に残留する。 A source contact hole and a drain contact hole are opened in the silicon oxide film 5b by photolithography technology, dry etching or the like. As a result, as shown in FIG. 15, the pattern of the gate insulating film 5 selectively remains on the upper surface of the channel forming region 3 so as to straddle the source region 4a and the drain region 4b.

スパッタリング法、真空蒸着法等により、ゲート絶縁膜5、ソースコンタクトホール及びドレインコンタクトホールの上面に厚さが100μm程度のAl等の金属膜を堆積する。フォトリソグラフィ技術及びドライエッチング等により、金属膜を分離してゲート電極7、ソース電極8a及びドレイン電極8bのパターンを形成する。その結果、ソース領域4a及びドレイン領域4bの端部の一部を跨ぐように、チャネル形成領域3の上面に、窒化終端層6を介して絶縁ゲート型電極構造(5,7)が形成される。このようにして、図16に示した実施形態に係る絶縁ゲート型半導体装置が完成する。 A metal film such as Al having a thickness of about 100 μm is deposited on the upper surfaces of the gate insulating film 5, the source contact hole and the drain contact hole by a sputtering method, a vacuum vapor deposition method or the like. The metal film is separated by photolithography technology, dry etching, or the like to form a pattern of the gate electrode 7, the source electrode 8a, and the drain electrode 8b. As a result, the insulated gate type electrode structure (5, 7) is formed on the upper surface of the channel forming region 3 via the nitriding end layer 6 so as to straddle a part of the end portions of the source region 4a and the drain region 4b. .. In this way, the insulated gate type semiconductor device according to the embodiment shown in FIG. 16 is completed.

このようにして作製した2通りの横型MOSFETの実施例4、5について、トランジスタ特性の測定を行い、電界効果移動度、閾値電圧Vth及びバイアス印加試験による閾値電圧(Vth)シフトの評価を行う。バイアス印加試験は、200℃、100時間で、+20Vの正バイアス条件、及び200℃、100時間で、−10Vの負バイアス条件で行っている。また、図17に示すように、実施例4、5と比較するため、図13の中間窒化層6a形成後にCO2熱処理を行わずに、ゲート絶縁膜5、並びに、ゲート電極7、ソース電極8a及びドレイン電極8bを形成した比較例2も同様に評価する。 Transistor characteristics are measured for Examples 4 and 5 of the two types of horizontal MOSFETs produced in this manner, and field effect mobility, threshold voltage Vth, and threshold voltage (Vth) shift are evaluated by a bias application test. The bias application test is performed at 200 ° C. for 100 hours under a positive bias condition of + 20 V and at 200 ° C. for 100 hours under a negative bias condition of −10 V. Further, as shown in FIG. 17, for comparison with Examples 4 and 5, the gate insulating film 5, the gate electrode 7, the source electrode 8a, and the gate electrode 7 and the source electrode 8a are not subjected to CO2 heat treatment after the intermediate nitride layer 6a of FIG. 13 is formed. Comparative Example 2 in which the drain electrode 8b is formed is also evaluated in the same manner.

図18に、トランジスタの評価結果を示す。図18の表に示すように、1300℃及び1200℃でCO2加熱処理した実施例4及び実施例5の電界効果移動度は、それぞれ25cm2/Vs及び22cm2/Vsである。従来の窒化処理だけの比較例2の電界効果移動度が21cm2/Vsである。このように、実施例4、5では電界効果移動度は比較例2に対して同レベルか若干の改善が見られる。また、閾値電圧Vthも比較例2と同レベルである。正バイアス条件でのVthシフトは実施例4、5、及び比較例2との間には差はないが、負バイアス条件では比較例2が−0.15Vに対し、実施例4が−0.06V、実施例5が−0.08VとVthシフトが抑制されている。このように、実施形態に係る絶縁ゲート型半導体装置では、電界効果移動度の向上ができ、Vthシフトを抑制することができ、半導体装置の信頼性の劣化を抑制することが可能となる。 FIG. 18 shows the evaluation result of the transistor. As shown in the table of FIG. 18, the field effect mobilities of Examples 4 and 5 that were heat-treated with CO 2 at 1300 ° C. and 1200 ° C. are 25 cm 2 / Vs and 22 cm 2 / Vs, respectively. The field effect mobility of Comparative Example 2 using only the conventional nitriding treatment is 21 cm 2 / Vs. As described above, in Examples 4 and 5, the mobility of the electric field effect is at the same level as that of Comparative Example 2 or slightly improved. Further, the threshold voltage Vth is also at the same level as in Comparative Example 2. The Vth shift under the positive bias condition is not different between Examples 4, 5 and Comparative Example 2, but under the negative bias condition, Comparative Example 2 is −0.15 V and Example 4 is −0. The Vth shift is suppressed to 06V and −0.08V in Example 5. As described above, in the insulated gate type semiconductor device according to the embodiment, the electric field effect mobility can be improved, the Vth shift can be suppressed, and the deterioration of the reliability of the semiconductor device can be suppressed.

(その他の実施形態)
上記のように、本発明の実施形態に係る絶縁ゲート型半導体装置を記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the insulated gate semiconductor device according to the embodiment of the present invention has been described, but the statements and drawings that form a part of this disclosure should not be understood as limiting the present invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure.

上述のように、実施形態に係る絶縁ゲート型半導体装置に係る半導体装置においては、4H−SiCを用いた横型MOSFETを例示したが、6H−SiC、3C−SiCを用いた半導体装置に適用することも可能である。更に、プレーナゲート縦型MOSFETやトレンチゲート縦型MOSFETにも適用することも可能である。 As described above, in the semiconductor device related to the insulated gate type semiconductor device according to the embodiment, the horizontal MOSFET using 4H-SiC has been exemplified, but it is applied to the semiconductor device using 6H-SiC and 3C-SiC. Is also possible. Further, it can be applied to a planar gate vertical MOSFET and a trench gate vertical MOSFET.

このように、上記の実施形態及び各変形例において説明される各構成を任意に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here, such as a configuration in which the above-described embodiment and each configuration described in each modification are arbitrarily applied. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.

1、2…基板(SiC基板)
3…チャネル形成領域(ベース領域)
4a…ソース領域(第1主電極領域)
4b…ドレイン領域(第2主電極領域)
5…ゲート絶縁膜
5a、5b…酸化膜
6…窒化終端層
6a…中間窒化層
7…ゲート電極(制御電極)
8a…ソース電極
8b…ドレイン電極
10…表面電極
11…裏面電極
1, 2 ... Substrate (SiC substrate)
3 ... Channel formation region (base region)
4a ... Source region (first main electrode region)
4b ... Drain region (second main electrode region)
5 ... Gate insulating film 5a, 5b ... Oxidized film 6 ... End nitriding layer 6a ... Intermediate nitriding layer 7 ... Gate electrode (control electrode)
8a ... Source electrode 8b ... Drain electrode 10 ... Front electrode 11 ... Back electrode

Claims (6)

炭化シリコンからなるチャネル形成領域の上面にシリコン酸化膜からなるゲート絶縁膜を形成する工程と、
窒素原子を含むガスで前記ゲート絶縁膜を熱処理することで、前記ゲート絶縁膜と炭化シリコンとの界面を窒化処理して、前記チャネル形成領域と前記ゲート絶縁膜との界面に中間窒化層を形成する工程と、
二酸化炭素を含むガスで前記ゲート絶縁膜を熱処理することで、前記ゲート絶縁膜中の窒素原子の一部を除去し、前記界面に窒化終端層を形成する工程と、
前記ゲート絶縁膜の上に、前記チャネル形成領域の表面ポテンシャルを制御するゲート電極を形成する工程と
を含むことを特徴とする絶縁ゲート型半導体装置の製造方法。
A process of forming a gate insulating film made of a silicon oxide film on the upper surface of a channel forming region made of silicon carbide, and
By heat-treating the gate insulating film with a gas containing a nitrogen atom, the interface between the gate insulating film and silicon carbide is nitrided to form an intermediate nitride layer at the interface between the channel forming region and the gate insulating film. And the process to do
A step of removing a part of nitrogen atoms in the gate insulating film by heat-treating the gate insulating film with a gas containing carbon dioxide to form a nitriding terminal layer at the interface.
A method for manufacturing an insulated gate type semiconductor device, which comprises a step of forming a gate electrode for controlling the surface potential of the channel forming region on the gate insulating film.
前記ゲート絶縁膜と炭化シリコンとの界面をX線光電子分光法で測定したとき、窒素の1s軌道に起因するスペクトルの強度INと前記チャネル形成領域に由来するシリコンの2p軌道に起因するスペクトルの強度ISiとの比IN/ISiが、前記界面から2nm以上3nm以下の間の前記ゲート絶縁膜を残したときは0.02以上、0.03未満であり、前記ゲート絶縁膜を除去したときの前記窒化終端層では0.01より大きく、0.02未満であることを特徴とする請求項1に記載の絶縁ゲート型半導体装置の製造方法。 When the interface between the gate insulating film and the silicon carbide was measured by X-ray photoelectron spectroscopy, the spectrum due to the 2p orbital of the silicon from the intensity I N of the spectrum due to the 1s orbital of nitrogen in said channel formation region intensity ratio I N / I Si and I Si is 0.02 or more when left the gate insulating film between 2nm or more 3nm or less from the interface is less than 0.03, removing the gate insulating film The method for manufacturing an insulated gate type semiconductor device according to claim 1, wherein the nitrided terminal layer is larger than 0.01 and less than 0.02. 前記窒化終端層は、前記二酸化炭素を含むガス中で、800℃以上、1400℃以下の範囲の熱処理温度で形成されることを特徴とする請求項1又は2に記載の絶縁ゲート型半導体装置の製造方法。 The insulated gate type semiconductor device according to claim 1 or 2, wherein the nitriding terminal layer is formed in a gas containing carbon dioxide at a heat treatment temperature in the range of 800 ° C. or higher and 1400 ° C. or lower. Production method. 前記チャネル形成領域の前記上面の面方位が(0001)面であり、前記窒化終端層が1100℃以上、1300℃以下の熱処理温度で形成されることを特徴とする請求項1〜3のいずれか1項に記載の絶縁ゲート型半導体装置の製造方法。 Any of claims 1 to 3, wherein the surface orientation of the upper surface of the channel forming region is the (0001) plane, and the nitride termination layer is formed at a heat treatment temperature of 1100 ° C. or higher and 1300 ° C. or lower. The method for manufacturing an insulated gate type semiconductor device according to item 1. 前記チャネル形成領域の前記上面の面方位が(000−1)面、(11−20)面、及び(1−100)面のいずれかであり、前記窒化終端層が1000℃以上、1200℃以下の熱処理温度で形成されることを特徴とする請求項1〜3のいずれか1項に記載の絶縁ゲート型半導体装置の製造方法。 The plane orientation of the upper surface of the channel forming region is any of the (000-1) plane, the (11-20) plane, and the (1-100) plane, and the nitride termination layer is 1000 ° C. or higher and 1200 ° C. or lower. The method for manufacturing an insulated gate type semiconductor device according to any one of claims 1 to 3, wherein the semiconductor device is formed at the heat treatment temperature of the above. 炭化シリコンからなるチャネル形成領域の上面に設けられたシリコン酸化膜からなるゲート絶縁膜と、
前記チャネル形成領域と前記ゲート絶縁膜との界面に設けられた窒化シリコンからなる窒化終端層と、
前記ゲート絶縁膜の上に設けられ、前記チャネル形成領域の表面ポテンシャルを制御するゲート電極と、
を備え、
前記ゲート絶縁膜と炭化シリコンとの界面をX線光電子分光法で測定したとき、窒素の1s軌道に起因するスペクトルの強度INと前記チャネル形成領域に由来するシリコンの2p軌道に起因するスペクトルの強度ISiとの比IN/ISiが、前記界面から2nm以上3nm以下の間の前記ゲート絶縁膜を残したときは0.02以上、0.03未満であり、前記ゲート絶縁膜を除去したときの前記窒化終端層では0.01より大きく、0.02未満であることを特徴とする絶縁ゲート型半導体装置。
A gate insulating film made of a silicon oxide film provided on the upper surface of a channel forming region made of silicon carbide, and a gate insulating film made of silicon oxide.
A nitriding termination layer made of silicon nitride provided at the interface between the channel forming region and the gate insulating film, and
A gate electrode provided on the gate insulating film and controlling the surface potential of the channel forming region,
With
When the interface between the gate insulating film and the silicon carbide was measured by X-ray photoelectron spectroscopy, the spectrum due to the 2p orbital of the silicon from the intensity I N of the spectrum due to the 1s orbital of nitrogen in said channel formation region intensity ratio I N / I Si and I Si is 0.02 or more when left the gate insulating film between 2nm or more 3nm or less from the interface is less than 0.03, removing the gate insulating film An insulated gate type semiconductor device, wherein the nitrided terminal layer is larger than 0.01 and less than 0.02.
JP2019214032A 2019-11-27 2019-11-27 Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device Active JP7304577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019214032A JP7304577B2 (en) 2019-11-27 2019-11-27 Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019214032A JP7304577B2 (en) 2019-11-27 2019-11-27 Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device

Publications (2)

Publication Number Publication Date
JP2021086896A true JP2021086896A (en) 2021-06-03
JP7304577B2 JP7304577B2 (en) 2023-07-07

Family

ID=76088444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214032A Active JP7304577B2 (en) 2019-11-27 2019-11-27 Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device

Country Status (1)

Country Link
JP (1) JP7304577B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216918A (en) * 2005-02-07 2006-08-17 Kyoto Univ Manufacturing method of semiconductor device
JP2008117878A (en) * 2006-11-02 2008-05-22 Mitsubishi Electric Corp Manufacturing method for semiconductor device
JP2009500837A (en) * 2005-07-05 2009-01-08 コミッサリア タ レネルジー アトミーク Substrate coated with a stoichiometric silicon nitride thin film and used for the manufacture of electronic components, in particular a silicon carbide substrate, and a method of forming said film
US20200091297A1 (en) * 2018-09-14 2020-03-19 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
US20210083062A1 (en) * 2019-09-17 2021-03-18 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216918A (en) * 2005-02-07 2006-08-17 Kyoto Univ Manufacturing method of semiconductor device
JP2009500837A (en) * 2005-07-05 2009-01-08 コミッサリア タ レネルジー アトミーク Substrate coated with a stoichiometric silicon nitride thin film and used for the manufacture of electronic components, in particular a silicon carbide substrate, and a method of forming said film
JP2008117878A (en) * 2006-11-02 2008-05-22 Mitsubishi Electric Corp Manufacturing method for semiconductor device
US20200091297A1 (en) * 2018-09-14 2020-03-19 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2020047668A (en) * 2018-09-14 2020-03-26 株式会社東芝 Semiconductor device, manufacturing method thereof, inverter circuit, drive device, vehicle, and elevator
US20210083062A1 (en) * 2019-09-17 2021-03-18 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
JP2021048198A (en) * 2019-09-17 2021-03-25 株式会社東芝 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP7304577B2 (en) 2023-07-07

Similar Documents

Publication Publication Date Title
JP4647211B2 (en) Semiconductor device and manufacturing method thereof
KR101245899B1 (en) Method of manufacturing silicon carbide semiconductor device
JP5608840B1 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6305294B2 (en) Semiconductor device and manufacturing method thereof
JP4843854B2 (en) MOS device
US9755064B2 (en) Semiconductor device and method for manufacturing the same
JP6025007B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6432232B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2006210818A (en) Semiconductor element and its manufacturing method
JP2008117878A (en) Manufacturing method for semiconductor device
JP2005166930A (en) Sic-misfet and its manufacturing method
JP4549167B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH11297712A (en) Formation method for compound film and manufacture of semiconductor element
JP6068042B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2016201500A (en) Silicon carbide mos type semiconductor device and method of manufacturing the same
JP5072482B2 (en) Method for manufacturing silicon carbide semiconductor device
US10163637B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP5921089B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
JP7304577B2 (en) Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
JP6582537B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2013247141A (en) Method of manufacturing silicon carbide semiconductor device
JP6567601B2 (en) Semiconductor device
JP2022176673A (en) Insulated gate type semiconductor device and manufacturing method of insulated gate type semiconductor device
JP2023000604A (en) Insulating gate type semiconductor device and method for manufacturing insulating gate type semiconductor device
JP2019050294A (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7304577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150