JP2021085551A - Air-to-air heat exchanger - Google Patents

Air-to-air heat exchanger Download PDF

Info

Publication number
JP2021085551A
JP2021085551A JP2019212558A JP2019212558A JP2021085551A JP 2021085551 A JP2021085551 A JP 2021085551A JP 2019212558 A JP2019212558 A JP 2019212558A JP 2019212558 A JP2019212558 A JP 2019212558A JP 2021085551 A JP2021085551 A JP 2021085551A
Authority
JP
Japan
Prior art keywords
air
heat transfer
heat exchanger
hemming
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019212558A
Other languages
Japanese (ja)
Inventor
健児 梅津
Kenji Umetsu
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019212558A priority Critical patent/JP2021085551A/en
Publication of JP2021085551A publication Critical patent/JP2021085551A/en
Pending legal-status Critical Current

Links

Images

Abstract

To solve the problem of delaying commercialization in comparison with a cooling device using a refrigerant because a cooling system for directly cooling air with air by using evaporative latent heat of water, that is, indirect water evaporation type cooling has problems in cost, manufacturability and reliability of an air-to-air heat exchanger to be used for the same, in a technology for cooling air.SOLUTION: A technology of a rational new material design, structural design and manufacturing for achieving an air-to-air heat exchanger with a high performance, high quality and inexpensiveness to be usable to an indirect water evaporation type cooler or an air cooling machine is concretely proposed.SELECTED DRAWING: Figure 1

Description

室外空気で室内空気を冷房冷却する装置はエアコンと呼ばれ、冷媒を圧縮機で圧縮し、高温度になった冷媒を室外空気で冷却し、その冷媒で室内空気を冷却する方式が実現され世界的に普及している。しかしながらこの方式は圧縮機の消費電力が大きく、また冷媒の利用と合わせて地球温暖化という視点で大きな問題がある。 A device that cools and cools indoor air with outdoor air is called an air conditioner, and a method is realized in which the refrigerant is compressed by a compressor, the high temperature refrigerant is cooled by the outdoor air, and the indoor air is cooled by the refrigerant. Is popular. However, this method consumes a large amount of power from the compressor, and has a big problem from the viewpoint of global warming together with the use of the refrigerant.

一方、室外空気で直接室内空気を冷却、冷房する直接冷却方式の場合、少しでも冷却効果を得るには、冷却空気(室外空気)の乾球温度による冷却ではなくてそれより低温度の湿球温度を利用することが有効であることは広く知られている。このために冷却空気に継続的に散水して湿球温度まで下げて、それを冷却源として利用することが有効であり、水蒸発利用間接冷却方式(IDEC、 Indirect Evaporative Cooling)として知られている。この方式は近年多くの性能改善策、改善技術の検討が進められている。 On the other hand, in the case of the direct cooling method in which the indoor air is directly cooled and cooled by the outdoor air, in order to obtain the cooling effect even a little, the cooling air (outdoor air) is not cooled by the dry bulb temperature but a wet bulb having a lower temperature. It is widely known that the use of temperature is effective. For this reason, it is effective to continuously sprinkle water on the cooling air to lower it to the wet-bulb temperature and use it as a cooling source, which is known as an indirect cooling method using water evaporation (IDEC, Indirect Evaporative Cooling). .. In recent years, many performance improvement measures and improvement technologies have been studied for this method.

前述したエアコン装置に使われる冷媒対空気熱交換器である所謂フィンチューブ熱交換器は極めて高い性能、信頼性、コンパクト性を実現する設計、大量生産可能な製造方式が
すでに確立されている。
The so-called fin tube heat exchanger, which is a refrigerant-to-air heat exchanger used in the above-mentioned air conditioner, has already been designed to achieve extremely high performance, reliability, and compactness, and a manufacturing method capable of mass production has already been established.

しかしながら水蒸発利用間接冷却方式による冷却や冷房に使われる空気対空気熱交換器
については冷媒対空気熱交換器に匹敵するような設計、製造方式が実現されておらず、そのため最終商品である空気冷却装置、冷房装置は小型化、低廉なコスト、十分な信頼性が確保されておらず、大量生産が行われていない。
However, the air-to-air heat exchanger used for cooling and cooling by the indirect cooling method using water evaporation has not been designed and manufactured in a manner comparable to the refrigerant-to-air heat exchanger, and therefore the final product, air. Cooling devices and cooling devices are not miniaturized, inexpensive, sufficiently reliable, and mass-produced.

ここでは、実際の冷房装置などを商品化する上で不可欠な優れた空気対空気熱交換器を提供する設計技術、製造技術を提案するものである。 Here, we propose design technology and manufacturing technology that provide excellent air-to-air heat exchangers that are indispensable for commercializing actual air conditioners and the like.

特許文献1は水の蒸発潜熱を利用する熱交換器を実現する技術を提示している。
即ち次の3つのポイントについて明確に新技術を提示している。
1,ウエットチャネルに冷却空気を流してその湿球温度を利用するために伝熱面に保水剤を貼り付けて湿潤膜を形成し、伝熱面を通してドライチャネルを通過する被冷却空気(処理空気)を冷却している。
2,その冷却効果を高めるため、冷却空気と非冷却空気を対向流に流している。
3,ドライチャネルを流れる被冷却空気の出口でその一部の空気を取り出してこれをドライチャネルと対向流方向に向けてウェットチャンネルに流すことによりこの一部の空気により、ドライチャネルの処理空気をより効率的に冷却する。
以上の3つの技術は処理空気を冷却する上で極めて有効な技術である。
しかしながら、その方式、構造、材料は大量生産による商品の実現という視点では、前述したフィンチューブ熱交換器のそれら基本技術には遠く及ばないレベルであると云わざるを得ない。
Patent Document 1 presents a technique for realizing a heat exchanger that utilizes the latent heat of vaporization of water.
That is, new technologies are clearly presented for the following three points.
1. Cooling air is passed through the wet channel to form a wet film by attaching a water retention agent to the heat transfer surface in order to utilize the wet-bulb temperature, and the cooled air (treated air) that passes through the dry channel through the heat transfer surface. ) Is cooling.
2. In order to enhance the cooling effect, cooling air and uncooled air are flowed in a countercurrent flow.
3. By taking out a part of the air at the outlet of the cooled air flowing through the dry channel and flowing it to the wet channel in the direction opposite to the dry channel, the treated air of the dry channel is separated by this part of the air. Cool more efficiently.
The above three techniques are extremely effective techniques for cooling the treated air.
However, it must be said that the method, structure, and material are far below those basic technologies of the fin tube heat exchanger described above from the viewpoint of realizing a product by mass production.

特許文献2、3には何れも換気の排熱の空気の保持熱量(温湿度)即ちエンタルピーを高めてその結果室内空間を冷房する方式であるが、何れも冷却空気は乾球温度を用いており、それより低温度が得られる湿球温度を利用していない。即ち乾球温度を利用して換気冷房乃至は換気除湿を行っている事例であり、そのエネルギー効率は優れているとは云えない。
確かに、これらの技術は建物の内部空間から単純に室内空気を排気する方式に比べて換気空気のエンタルピーを高めて廃棄し、それによる空調エネルギーの損失が減少する効果を生じている。しかも何れも換気エレメント乃至は全熱交換器と呼ばれる室内外空気間の温度と湿度即ち全熱交換器を設置して換気によるエネルギー損失を低減させている効果も有しているし、デシカント除湿機能や除湿運転機能を備えている点では湿度制御による空調の快適性確保という点でも優れたシステムである。しかしながら、特許文献2,3では冷却器と再熱器の実現に多大なエネルギーを消費しており、冷却器と加熱手段にやはり多大なエネルギーを消費している。
Patent Documents 2 and 3 all use a method of increasing the amount of heat retained (temperature / humidity), that is, enthalpy, of the exhaust heat of ventilation to cool the indoor space as a result, but in each case, the cooling air uses the dry-bulb temperature. Wet-bulb temperature, which gives a lower temperature than that, is not used. That is, it is an example of performing ventilation cooling or ventilation dehumidification using the dry-bulb temperature, and its energy efficiency cannot be said to be excellent.
Certainly, these technologies have the effect of increasing the enthalpy of the ventilated air and disposing of it as compared with the method of simply exhausting the indoor air from the interior space of the building, thereby reducing the loss of air conditioning energy. Moreover, both have the effect of reducing the energy loss due to ventilation by installing a ventilation element or the temperature and humidity between indoor and outdoor air called a total heat exchanger, that is, a total heat exchanger, and a desiccant dehumidification function. It is also an excellent system in terms of ensuring the comfort of air conditioning by controlling humidity in that it has a dehumidifying operation function. However, in Patent Documents 2 and 3, a large amount of energy is consumed to realize the cooler and the reheater, and a large amount of energy is also consumed in the cooler and the heating means.

電力を利用し冷媒を用いた冷凍サイクルを用いない冷房機を商品化する上で、水蒸発利用間接冷却方式:IDECと呼ばれる空気対空気熱交換器を実用性のあるものにすることが先ず重要であり、そのために解決しなければならない幾つかテーマがあり、以下、その概要を述べていきたい。 In order to commercialize an air conditioner that uses electric power and does not use a refrigeration cycle that uses a refrigerant, it is first important to make an air-to-air heat exchanger called IDEC practical. Therefore, there are some themes that need to be resolved, and I would like to outline them below.

特開2009−150632号広報Japanese Patent Application Laid-Open No. 2009-150632 Public Relations 特開2000−111096号広報Japanese Patent Application Laid-Open No. 2000-11106 特開平06−123444号広報Japanese Patent Application Laid-Open No. 06-123444 Public Relations

本発明が解決しようとしている課題は、動力源乃至は熱源をほとんど消費することなく 室内空間を室外空気で直接冷却できる空気対空気熱交換器の具体化と実現であり、其れを大量生産できる製造技術であり、本特許で提案するものである。 The problem to be solved by the present invention is the realization and realization of an air-to-air heat exchanger that can directly cool an indoor space with outdoor air without consuming a power source or a heat source, and mass-produces the air-to-air heat exchanger. It is a manufacturing technology and is proposed in this patent.

其れを実現するための構造設計と大量生産に適した製造には次の具体的な技術の実現が課題となる。
1、冷却する空気と冷却される空気の二つの通風路をコンパクトに実現する熱交換器
2、その二つの風路間の機密性の確保とその為の生産性の高い策の実現
3、その二つの空気間の伝熱特性を高度に確保するための具体策の実現
4、その二つの空気を高度に利用する方式
などの構造設計案と製造技術である。
The realization of the following specific technologies is an issue for structural design to realize this and manufacturing suitable for mass production.
1. A heat exchanger that compactly realizes two air passages for cooling air and cooled air 2. Ensuring airtightness between the two air passages and realizing highly productive measures for that purpose 3. Realization of concrete measures for ensuring a high degree of heat transfer characteristics between the two airs 4. Structural design proposals and manufacturing technologies such as a method for highly utilizing the two airs.

二つの空気を内部に流す通風路を確保するために大量の枚数の薄板のアルミ伝熱板を隙間ピッチを開けて積み重ね、必要な個所を適宜接合して、一体の熱交換器体を組み立てることが必要である。その方法は100枚を超える隣接する伝熱板同志を一つ一つ接合する途方もない数の積み重ね作業を如何に生産性の高いやり方で完遂させる技術の実現にかかっている。
その為に多数の伝熱板同志の接合の為に必要な数百もの回数を行うヘミングプレス加工接合を一回のプレス加工で行う方法を請求項1に示した。
In order to secure a ventilation path for two air to flow inside, a large number of thin aluminum heat transfer plates are stacked with a gap pitch, and the necessary parts are joined appropriately to assemble an integrated heat exchanger body. is required. The method depends on the realization of a technique for completing a tremendous number of stacking operations of joining more than 100 adjacent heat transfer plates one by one in a highly productive manner.
For this reason, claim 1 shows a method of performing hemming press working, which is performed hundreds of times necessary for joining a large number of heat transfer plates, in one press working.

全ての伝熱板同志のヘミング接合を一回のプレス加工で実現するために図5に示した様に多くのヘミング接合部分の間にプレス圧伝達冶具を隙間の無い様に挟み込んで、全てのヘミング接合を一回のプレス加工で同時に完成させるものであり、詳細の技術は図5,6,7によって詳細が示されている。この方法により組立てた空気対空気熱交換器を請求項1に示した。 In order to realize the hemming joint of all heat transfer plates by one press working, as shown in Fig. 5, the press pressure transmission jig is sandwiched between many hemming joint parts so that there is no gap, and all the heat transfer plates are joined. The hemming joint is completed at the same time by one press working, and the detailed technique is shown in details in FIGS. 5, 6 and 7. The air-to-air heat exchanger assembled by this method is shown in claim 1.

さらに伝熱板の外周4辺のヘミング圧接部を同時に一回のプレス加工で完成させる技術を請求項2に示した。4辺を全て同時に圧接させる方式は図5、6で明確に示されている。 Further, claim 2 shows a technique for completing the hemming pressure-welded portions on the four outer peripheral sides of the heat transfer plate by one press working at the same time. The method of pressing all four sides at the same time is clearly shown in FIGS. 5 and 6.

この工程を確実に実行し、全てのヘミング部の圧接を高信頼度で完遂させるための重要な技術を請求項3に示している。プレス圧伝達冶具は設備に固定されていないから、垂直にプレス圧を受けた時に水平方向に移動するとヘミング部のプレスが正常に行われないばかりか、伝熱板を変形させてしまう恐れもあり、これを防ぐため図7に示す方法により水平移動を防いでいる。 Claim 3 shows an important technique for reliably executing this step and completing the pressure welding of all the hemming portions with high reliability. Since the press pressure transmission jig is not fixed to the equipment, if it moves horizontally when the press pressure is applied vertically, not only the hemming part will not be pressed normally, but also the heat transfer plate may be deformed. In order to prevent this, horizontal movement is prevented by the method shown in FIG.

冷媒対空気熱交換器であるフィンチューブでは、世界中でアルミフィンは0.1mm近辺の厚さのアルミ板を用いている。それは、材料コスト、伝熱性能、耐久信頼性、大量生産性、等 商品化するうえで最も適したものとして選定され、世界中のデファクトスタンダードになっている。従って、空気対空気熱交換器に置いても、主なる仕様として厚さ0.1mm前後、即ち0.12mm以下の厚さのアルミ板を用いることがコスト主体の商品性を高める上で重要なわけである。これを実現する上でその薄さがアルミ板の強度の不足により変形し伝熱板間の隙間ピッチをと持つことが難しいことがわかっている。伝熱板の中央部分は隙間にピッチスペーサーを張り付けることによりピッチ寸法と風圧に対する強度を保つことが可能であるが、伝熱板の外周部分のピッチ精度を保つには辺近傍のヘミング辺端部にはヘミング加工以前にスペーサーを貼ることができないため加工後に外部から挿入させてスペーサー機能を保たせる方法が有効である。この技術を請求項4に示している。 In fin tubes, which are refrigerant-to-air heat exchangers, aluminum fins use aluminum plates with a thickness of around 0.1 mm all over the world. It has been selected as the most suitable material cost, heat transfer performance, durability reliability, mass productivity, etc. for commercialization, and has become the de facto standard all over the world. Therefore, even if it is placed in an air-to-air heat exchanger, it is important to use an aluminum plate with a thickness of about 0.1 mm, that is, a thickness of 0.12 mm or less as the main specification in order to enhance the cost-based commercial value. That's why. In order to realize this, it is known that its thinness is deformed due to insufficient strength of the aluminum plate and it is difficult to have a gap pitch between the heat transfer plates. It is possible to maintain the pitch dimension and strength against wind pressure by attaching a pitch spacer to the gap in the central part of the heat transfer plate, but to maintain the pitch accuracy of the outer peripheral part of the heat transfer plate, the hemming side edge near the side Since it is not possible to attach a spacer to the part before the hemming process, it is effective to insert it from the outside after the process to maintain the spacer function. This technique is shown in claim 4.

請求項6には、多数のスペーサーを一体に連結した形にして、スペーサーの生産性、挿入性をスペーサーを一個一個挿入する方式に比べ大幅に高めることを提示している Claim 6 proposes that a large number of spacers are integrally connected to each other, and the productivity and insertability of the spacers are significantly improved as compared with the method of inserting the spacers one by one.

ヘミング加工により隣接する二枚の伝熱板をカシメて、接合する際に、接合面は片方の伝熱面の延長上とすることが一般的である。この実施例を図4に示している。しかしながら作動する空気の空気対空気熱交換器への流入、排出時の流入抵抗、流出抵抗を考慮したとき、接合面を隣接する伝熱板の隙間の通風路の中央にすることによりその空気抵抗が減少することがわかっている。この接合部を最適にした例を図8に示している。この技術を請求項5に示した。 When two adjacent heat transfer plates are crimped by hemming and joined, the joint surface is generally an extension of one heat transfer surface. This embodiment is shown in FIG. However, when considering the inflow and outflow resistance of the operating air into the air-to-air heat exchanger and the outflow resistance, the air resistance is achieved by making the joint surface the center of the ventilation path in the gap between the adjacent heat transfer plates. Is known to decrease. An example in which this joint is optimized is shown in FIG. This technique is shown in claim 5.

以上の様に積層して組立てた熱交換器体を使用するときに重要なことは、ヘミング接合部の空気漏れ、水漏れ、風圧強度の確保が保てることである。特に0.12mm以下の肉厚のアルミ板を伝熱板として用いた場合、その重要性は高くなる。この課題を抜本的に解決する方法を請求項7、8、9、10に提示した。従来ヘミング加工による接合時に、一個一個の接合面に接着剤を塗布して接合するのが一般的な方法であるが、それでは塗り斑によるシール不足の課題が解消できないばかりか、作業工数が増大し、製造コストの増大を招いていた。 When using the heat exchanger body laminated and assembled as described above, it is important to secure air leakage, water leakage, and wind pressure strength at the hemming joint. In particular, when an aluminum plate having a wall thickness of 0.12 mm or less is used as a heat transfer plate, its importance becomes high. A method for drastically solving this problem is presented in claims 7, 8, 9, and 10. Conventionally, when joining by hemming, it is a general method to apply an adhesive to each joint surface and join, but that does not solve the problem of insufficient sealing due to coating spots, and also increases the work man-hours. , Invited an increase in manufacturing cost.

この課題を解決する方法が、ヘミング組立後に全体をシール液に浸漬して、接合部のシールの完成度を高め、作業性を高めて製造コストを低減する方法である。全体を浸漬する方法(請求項7)と熱交換器体の内面の通風路から内面にシール液を補給する請求項8の方式を提示しており、熱交換器体構造、作業環境に適した方式を選定する。 A method for solving this problem is a method in which the entire body is immersed in a sealing liquid after hemming assembly to improve the degree of perfection of the sealing at the joint, improve workability, and reduce the manufacturing cost. The method of immersing the whole body (claim 7) and the method of claim 8 in which the sealing liquid is replenished from the ventilation path on the inner surface of the heat exchanger body to the inner surface are presented, which is suitable for the heat exchanger body structure and the working environment. Select the method.

請求項11には、本発明の空気対空気熱交換器を有効利用する一つの技術について提示している。冷却する空気側に散水して、水の蒸発潜熱を利用して冷却される空気を冷却する際に、一端冷却された空気の20〜40%を冷却する空気として再利用することにより冷却される空気の温度をより低温度まで冷却する技術である。この時に、この再利用する空気を冷却する空気側に戻すときに、新たに送風機を設置せずに行うのが提案の技術である。 Claim 11 presents one technique for effectively utilizing the air-to-air heat exchanger of the present invention. When cooling the air to be cooled by sprinkling water on the cooling air side and utilizing the latent heat of evaporation of water, it is cooled by reusing 20 to 40% of the air once cooled as cooling air. It is a technology that cools the temperature of air to a lower temperature. At this time, when returning the reused air to the cooling air side, the proposed technique is performed without installing a new blower.

請求項12では、冷却する空気側に散水して、水の蒸発潜熱を利用して冷却される空気を冷却する方式の冷房機に適用される。冷却された空気を冷房用などに有効利用させると同時に冷却する空気が廃棄される空気になったときも冷却用に利用するという技術であり、その空気は湿度こそ高湿度であるが、温度は冷却された空気並みの低温度になっており、その冷却効果を利用するものである。 The twelfth aspect is applied to the air conditioner of the type which sprinkles water on the cooling air side and cools the cooled air by utilizing the latent heat of vaporization of water. It is a technology that makes effective use of cooled air for cooling, etc., and at the same time uses it for cooling when the air to be cooled becomes discarded air. The humidity of the air is high, but the temperature is high. The temperature is as low as that of cooled air, and the cooling effect is utilized.

以上の発明により以下の様な効果を期待できる。
1、低コスト、高品質、高性能、大量生産可能な空気を冷却する空気対空気熱交換器を提供することが可能になり、様々な効果のある空調商品の実用化に寄与可能となる。
2、冷却する空気に水を散水させて冷却される空気を低温度まで冷却でき、電力を消費するエアコンに代わりエネルギーと地球環境の改善に優れた涼風型冷房装置を商品化が可能にる。
3、冷媒を使わない冷房、冷却装置、冷却装置を実現でき、地球環境に貢献できる。
4、以上により、住宅用冷房装置ばかりでなく、従来のエアコンが普及しにくい市場の冷房装置の実用化、商品化、普及に貢献できる。それは、工場、体育館、牛舎、豚舎、鶏舎の、学校施設、オープンレストランの冷房装置、さらには通信基地局の冷却装置、などである。
The following effects can be expected from the above invention.
1. It becomes possible to provide an air-to-air heat exchanger that cools air that can be mass-produced with low cost, high quality, high performance, and can contribute to the practical application of air-conditioning products having various effects.
2. It is possible to commercialize a cool breeze type cooling device that can cool the cooled air to a low temperature by sprinkling water on the cooling air and is excellent in improving energy and the global environment instead of an air conditioner that consumes power.
3. It is possible to realize a cooling system, a cooling device, and a cooling device that do not use a refrigerant, which can contribute to the global environment.
4. From the above, it is possible to contribute to the practical use, commercialization, and popularization of not only residential air conditioners but also air conditioners in the market where conventional air conditioners are difficult to spread. These include factories, gymnasiums, barns, piggery, poultry houses, school facilities, open restaurant air conditioners, and even communication base station air conditioners.

本発明による空気対空気熱交換器の外観図External view of the air-to-air heat exchanger according to the present invention 本発明の熱交換器に使う伝熱板同志の組み合わせを示す図The figure which shows the combination of heat transfer plates used in the heat exchanger of this invention. 本発明に用いる伝熱板Heat transfer plate used in the present invention 本発明の伝熱板同士の組み合わせを示す断面図Sectional drawing which shows combination of heat transfer plates of this invention 本発明の伝熱板を一体カシメする方式を示す断面図Cross-sectional view showing a method of integrally caulking the heat transfer plate of the present invention. 本発明の一体カシメのプレス加工する方法を示す平面図Top view showing the method of press working of the integral caulking of the present invention. 本発明のカシメ部をプレスする冶具と伝熱板を抑える方式の平面図Top view of the jig for pressing the crimped portion of the present invention and the method of suppressing the heat transfer plate. 本発明の伝熱板同士の接合面を中央部にしたことを示す断面図Cross-sectional view showing that the joint surface between the heat transfer plates of the present invention is set to the central portion.

図1は空気対空気熱交換器の外観図であり、7:冷却される空気、8:冷却されたくうき、5:冷却する空気、6冷却する空気の廃棄を示す。熱交換器は120枚の伝熱板:2が組み立てられ、側板:12、抑え枠11で一体化されている。伝熱板は表面にエポキシ系樹脂を使った耐食塗膜と水ガラスなどの親水性塗膜が予め塗装処理された厚さ0.1mmアルミ板が用いられており、図2に示すような相互の隙間ピッチが3mmを保つような形状に成型された120枚の伝熱板で構成され、従って図1に示される横幅Wはほぼ、120*3.0=360mmとなっている。 FIG. 1 is an external view of an air-to-air heat exchanger, showing 7: cooled air, 8: cooled air, 5: cooling air, and 6 cooling air disposal. In the heat exchanger, 120 heat transfer plates: 2 are assembled, and the side plates: 12 and the holding frame 11 are integrated. The heat transfer plate uses a corrosion-resistant coating film using an epoxy resin on the surface and an aluminum plate with a thickness of 0.1 mm in which a hydrophilic coating film such as water glass is pre-painted. It is composed of 120 heat transfer plates molded into a shape that maintains a gap pitch of 3 mm, and therefore the width W shown in FIG. 1 is approximately 120 * 3.0 = 360 mm.

隣接する伝熱板同志の組み合わせの関係を図2に示す。この相互関係が120枚の重なりを保つ構造となる。伝熱板の平面形状は図3に示すように中央部が伝熱特性を向上させる伝熱板凸凹形状:13が成形されており、伝熱板外周部14は平坦面になっており、図2にしめすようなヘミング辺端部:3が90度折り曲げられた形状で、段差折り曲げ部は伝熱板間隙間ピッチを実現するために二段の段差で折り曲げ部:4で折り曲げられている。ヘミング辺端部:3が段差折り曲げ部:4を挟み込むようにヘミング形状に成型された形状を図4に示す。 The relationship between the combinations of adjacent heat transfer plates is shown in FIG. This mutual relationship has a structure that keeps 120 sheets overlapping. As shown in FIG. 3, the planar shape of the heat transfer plate is such that the central portion is formed with a heat transfer plate uneven shape: 13 and the outer peripheral portion 14 of the heat transfer plate is a flat surface. The hemming side end portion: 3 is bent 90 degrees, and the step bent portion is bent at the bent portion: 4 at a two-step step in order to realize the gap pitch between the heat transfer plates. FIG. 4 shows a shape formed into a hemming shape so that the hemming side end portion: 3 sandwiches the step bent portion: 4.

図4には伝熱板間の隙間ピッチを保つためにピッチスペーサー:16が組立前に張り付けられている。これを伝熱板の端部側に寄せてヘミング折り曲げ圧接部:41の近傍に位置させることにより隙間ピッチの精度を高める方法がとられる、その場合、ピッチスペーサーは組立完了後に図4における伝熱板の外側(図では右側)から挿入する方法が有効である
請求項5に示すように、ピッチスペーサー:16を伝熱板の外側(図では右側)で一体に連結しておく連結型ピッチスペーサー(図示せず)を使うことが前述した挿入作業の作業性の向上が期待でき、この技術を請求項5に示した。
In FIG. 4, a pitch spacer: 16 is attached before assembly in order to maintain the gap pitch between the heat transfer plates. A method is taken to improve the accuracy of the gap pitch by moving this toward the end side of the heat transfer plate and locating it in the vicinity of the hemming bending pressure contact portion: 41. In that case, the pitch spacer is used for heat transfer in FIG. 4 after the assembly is completed. As shown in claim 5, where the method of inserting from the outside of the plate (right side in the figure) is effective, the pitch spacer: 16 is integrally connected on the outside of the heat transfer plate (right side in the figure). The use of (not shown) can be expected to improve the workability of the above-mentioned insertion work, and this technique is shown in claim 5.

以上の様に伝熱板を水平にして積み重ねた図が図5に示される。鎖線で書かれた伝熱板と実践で書かれた伝熱板がヘミング折り曲げ圧接部41で接合されている。しかしヘミング折り曲げ部:41にプレス圧を加えて強く接合をする必要がある。 このプレス圧接を同時に行う技術を請求項1、2に記載した。この圧接する状態を示す側面図を図5に示した。プレス圧接伝達冶具:52は断面が長方形の形で上下の二つのヘミング折り曲げ圧接部の隙間に挿入され、全体を圧接加え板:55とプレス支え台55の間に装着された状態で圧接加え板:55に上方から圧力を加え、プレス伝達冶具:52とヘミング折り曲げ圧接部41を合わせた全体に圧接力をかけて、ヘミング成形を完成させて伝熱板同志を接合させる。 FIG. 5 shows a diagram in which the heat transfer plates are stacked horizontally as described above. A heat transfer plate written with a chain wire and a heat transfer plate written in practice are joined by a hemming bending pressure contact portion 41. However, it is necessary to apply a press pressure to the hemming bent portion: 41 to make a strong bond. A technique for simultaneously performing this press pressure welding is described in claims 1 and 2. A side view showing the state of pressure contact is shown in FIG. The press pressure welding transmission jig: 52 has a rectangular cross section and is inserted into the gap between the two upper and lower hemming bending pressure welding portions. A pressure is applied to: 55 from above, and a pressure contact force is applied to the entire combination of the press transmission jig: 52 and the hemming bending pressure contact portion 41 to complete the hemming molding and join the heat transfer plates together.

この圧接作業の時に、伝熱板:2とプレス圧伝達冶具を外周から抑え込んで、水平方向へのズレを防止し、ヘミング圧接加工を適切に行うべく、プレス抑え支柱:51を図6の位置に設置させておく。このプレス抑え支柱の断面形状を図7に示す。図6に示した部材は圧接支え台:56の上に順次積み上げられるもので、先ずは伝熱板を図2に示した様に
積み上げ、その後にヘミング部を押し曲げながらプレス圧伝達冶具を側面から図5に示す位置に挿入する。挿入代は図7で示される様にプレス抑え支柱:51の断面形状でわかるとおりに定められた位置、即ち伝熱板に接する位置で停止され、その後プレス圧伝達冶具53で外側から抑えることにより水平位置が固定される。
At the time of this pressure welding work, the heat transfer plate: 2 and the press pressure transmission jig are suppressed from the outer circumference to prevent horizontal displacement, and the press holding column: 51 is positioned at the position shown in FIG. 6 in order to properly perform the hemming pressure welding process. Let it be installed in. The cross-sectional shape of the press holding column is shown in FIG. The members shown in FIG. 6 are sequentially stacked on the pressure welding support base: 56. First, the heat transfer plates are stacked as shown in FIG. 2, and then the press pressure transmission jig is placed on the side surface while pushing and bending the hemming portion. Is inserted at the position shown in FIG. As shown in FIG. 7, the insertion allowance is stopped at a position determined as can be seen from the cross-sectional shape of the press holding column: 51, that is, at a position in contact with the heat transfer plate, and then pressed from the outside by the press pressure transmission jig 53. The horizontal position is fixed.

伝熱板2もプレス抑え支柱:51では(図2)伝熱板の4つのコーナー切欠き部に位置が固定されているので、全ての部品は水平位置が固定され、垂直方向にのみ移動自由に設置され、圧接加圧板:56の圧接移動によって圧接され、その結果全てのヘミング折り曲げ圧接部は圧接が完成される。 The heat transfer plate 2 is also pressed. In the support column: 51 (Fig. 2), the positions are fixed at the four corner notches of the heat transfer plate, so all the parts are fixed in the horizontal position and can move freely only in the vertical direction. The pressure welding pressure plate: 56 is pressure-welded by the pressure-welding movement, and as a result, all the hemming bending pressure-welding portions are pressure-welded.

図8は別の実施例を挙げたものである。伝熱板同志の圧接する位置を変えて、二枚の伝熱板の中央、即ち空気の通風路19及び20の中間位置に移したもので、その効果は二つの空気の流入、及び流出の際に生じる通風抵抗を少なくすることを実現するもので、二つの空気の送風動力を低減させ、送風騒音を軽減させる効果を実現させるものである。 FIG. 8 shows another embodiment. The position of pressure contact between the heat transfer plates was changed and moved to the center of the two heat transfer plates, that is, the intermediate position between the air passages 19 and 20, and the effect was that the two air inflows and outflows. It realizes the reduction of the ventilation resistance generated at the time, and realizes the effect of reducing the blowing power of the two airs and reducing the blowing noise.

図1には分離された冷却された空気:9が記載されている。冷却された空気8から20〜40%を分離された冷却された空気:9として冷却する空気:5にプラスし、冷却される空気:7の出口部分である追加冷却する部位10に流すことにより冷却された空気:8の温度が一層低温度まで冷却できる技術である。その時に分離された冷却された空気:9は冷却する空気の排気:6用のファン、乃至は冷却された空気8の駆動ファン動力を利用することにより、新たな別の送風機が不要になり消費電力の増加を防ぐ技術である。 FIG. 1 shows the separated cooled air: 9. By adding 20 to 40% of the cooled air 8 to the cooling air: 5 as the separated cooled air: 9 and flowing it to the additional cooling part 10 which is the outlet part of the cooled air: 7. Cooled air: A technology that can cool the temperature of 8 to a lower temperature. The cooled air separated at that time: 9 consumes the fan for the exhaust of the cooling air: 6 or the drive fan power of the cooled air 8 to eliminate the need for another new blower. It is a technology that prevents the increase in power consumption.

図示はしないが、冷却された空気:8と冷却する空気の排気:6はともに湿球温度近辺まで冷却されているから、両方を冷却用に使うことが可能で、8は加湿されていないので冷房用に、6は加湿されているから冷却用に使うことができる。空気対空気熱交換器に散水により水蒸発冷却を行えば、この二つの空気を活用できることになる。 Although not shown, both cooled air: 8 and cooling air exhaust: 6 are cooled to near the wet bulb temperature, so both can be used for cooling, and 8 is not humidified. For cooling, 6 can be used for cooling because it is humidified. If water evaporative cooling is performed by sprinkling water on the air-to-air heat exchanger, these two types of air can be utilized.

以上の説明でわかる通り、極めて広い市場での地球環境に優れた冷却機能を持った空調機を提供できる。従来の電動圧縮機式の空調機に比べて圧縮機や冷凍サイクルを必要とせずに室内空気の冷却ができるから電力消費量の大幅な削減ができる。
この特性を活かしてこの技術が世界約8兆円規模のエアコンの市場に浸透していくことが期待される。その結果、冷媒を主体とした空調機産業の地図を塗り替えて、新規産業につながると同時に、電力消費量の制約の観点から空調機が進出できなかった新しい広大な市場の実現に貢献し、人々の豊かで健康な生活の維持拡大につながることが期待される。
As can be seen from the above explanation, it is possible to provide an air conditioner having an excellent cooling function for the global environment in an extremely wide market. Compared to conventional electric compressor type air conditioners, indoor air can be cooled without the need for a compressor or refrigeration cycle, so power consumption can be significantly reduced.
Taking advantage of this characteristic, it is expected that this technology will penetrate the air conditioner market of about 8 trillion yen worldwide. As a result, the map of the air conditioner industry, which mainly uses refrigerants, will be repainted, leading to new industries, and at the same time, contributing to the realization of a vast new market where air conditioners could not enter due to restrictions on power consumption. It is expected to lead to the maintenance and expansion of affluent and healthy life.

1 空気対空気熱交換器
2 伝熱板
3 ヘミング辺端部
4 段差折り曲げ部
5 冷却する空気
6 冷却する空気の排気
7 冷却される空気
8 冷却された空気
9 分離された冷却された空気
10 追加冷却する部位
11 抑え枠
12 側板
13 伝熱板凸凹形状
14 伝熱板外周部
15 隙間ピッチ
16 ピッチスペーサー
19 冷却する空気の通風路
20 冷却される空気の通風路
41 ヘミング折り曲げ圧接部
51 プレス抑え支柱
52 プレス圧伝達冶具
53 プレス圧伝達冶具抑え
55 プレス支え台
56 圧接加圧板










1 Air-to-air heat exchanger 2 Heat transfer plate 3 Hemming side edge 4 Step bending part 5 Cooling air 6 Cooling air exhaust 7 Cooled air 8 Cooled air 9 Separated cooled air 10 Addition Part to be cooled 11 Retaining frame 12 Side plate 13 Heat transfer plate Concavo-convex shape 14 Heat transfer plate outer circumference 15 Gap pitch 16 Pitch spacer 19 Ventilation passage for cooling air 20 Ventilation passage for cooling air 41 Hemming bending pressure welding part 51 Press holding strut 52 Press pressure transfer jig 53 Press pressure transfer jig restraint 55 Press support 56 Pressure welding pressure plate










Claims (12)

薄いアルミ板製の長方形又は四角形の平板を伝熱板として用い、隣接する前記伝熱板の間が一定の隙間ピッチになる様に多数枚積み重ね、前記伝熱板の端辺を前記隙間ピッチ寸法に一致する段差寸法で折り曲げ、他方、前記伝熱板に隣接する伝熱板の相対する端辺を折り返してヘミング形状とし、前記段差状に折り曲げた端辺を挟み込んだ状態で圧接して結合させて、隣接する2枚の前記伝熱板を前記隙間ピッチを保持し多状態で結合し、当該結合を全体に広げて全伝熱板を一体となし、かつ内部に二つの独立した通風路を設けた熱交換器体となし、該熱交換器体の4つの外側面から該通風路をそれぞれ流れる二つの空気を導入及び排気させるように構成させて且つ前記二つの空気の間で前記伝熱板を通して熱交換を行う方式とした前記熱交換器体において、
その製造時に、全ての前記伝熱板のヘミング圧接箇所とその隣り合う伝熱板のヘミング圧接箇所の間にプレス圧伝達冶具を挿入させて全体を積み重ね、順次積み重ねた全体を、前記伝熱板が水平になる様にプレス支え台の上に置き、当該熱交換器体の上部から前記プレス圧伝達冶具の最上部に圧接力を加え、前記ヘミング加工圧接箇所全部を同時にプレス加工して圧接させ、その後に全ての前記プレス圧伝達冶具を取り外して、前記伝熱板全体を一体に組み立てたことを特徴とした空気対空気熱交換器。
A rectangular or square flat plate made of a thin aluminum plate is used as a heat transfer plate, and a large number of sheets are stacked so that the adjacent heat transfer plates have a constant gap pitch, and the end edges of the heat transfer plates match the gap pitch dimension. On the other hand, the opposite ends of the heat transfer plates adjacent to the heat transfer plate are folded back to form a hemming shape, and the end edges bent in the step shape are pressed and joined in a state of being sandwiched. The two adjacent heat transfer plates were connected in multiple states while maintaining the gap pitch, and the connections were spread over the entire heat transfer plate to form an integral unit, and two independent ventilation passages were provided inside. A heat exchanger body, and two air flowing through the ventilation passages are introduced and exhausted from the four outer surfaces of the heat exchanger body, respectively, and the heat transfer plate is passed between the two airs. In the heat exchanger body in which heat exchange is performed,
At the time of its manufacture, a press pressure transfer jig was inserted between the hemming pressure welding points of all the heat transfer plates and the hemming pressure welding points of the adjacent heat transfer plates to stack the whole, and the whole stacked sequentially was the heat transfer plate. Place it on the press support so that it is horizontal, apply pressure contact force from the upper part of the heat exchanger body to the uppermost part of the press pressure transfer jig, and press all the hemming processing pressure contact points at the same time to press contact. An air-to-air heat exchanger characterized in that all the press pressure transfer jigs were then removed and the entire heat transfer plate was assembled integrally.
前記伝熱板全体の、前記ヘミング圧接箇所の周囲4辺の全てに同時に圧接力を加えてプレス加工させて組立を完成させたことを特徴とした請求項1に記載の空気対空気熱交換器。 The air-to-air heat exchanger according to claim 1, wherein the entire heat transfer plate is pressed by simultaneously applying pressure contact force to all four sides around the hemming pressure contact portion to complete the assembly. .. 前記伝熱板を水平状態に置いて前記熱交換器体全体を同時に前記ヘミング加工圧接箇所をプレスするために当該圧接箇所に前記プレス圧伝達冶具を置いてプレス圧を伝える構造で、且つ前記熱交換器体の水平方向の位置がずれない様に支えるために前記熱交換器体の4辺の端部と接する様に、また前記プレス圧伝達冶具の外側に接して抑える様に、垂直に立ったプレス抑え支柱を4隅に設置した状態で前記プレス加工を行って組立たことを特徴とした請求項1、2に記載の空気対空気熱交換器。 In order to place the heat transfer plate in a horizontal state and simultaneously press the entire heat exchanger body at the hemming processing pressure welding location, the press pressure transmission jig is placed at the pressure welding location to transmit the press pressure, and the heat is transmitted. Stand vertically so as to be in contact with the four side ends of the heat exchanger body and to be in contact with the outside of the press pressure transfer jig to support the exchange body so that the horizontal position does not shift. The air-to-air heat exchanger according to claim 1 or 2, wherein the press holding columns are installed at four corners and assembled by performing the press working. 肉厚が0.12mmより薄いアルミ板製の長方形又は四角形の平板を伝熱板として用い、隣接する前記伝熱板の間が一定の隙間ピッチになる様に多数枚を積み重ね、前記伝熱板の辺の端部を前記隙間ピッチ寸法に一致する段差寸法に折り曲げ、他方、前記伝熱板に隣接する伝熱板の相対する一辺の端部を折り返してヘミング形状として前記段差状に折り曲げた辺の端部を挟み込んだ状態で圧接して結合させて、隣接する2枚の伝熱板を前記隙間ピッチを保持して結合し、全体を適宜箇所を同様に結合することにより、その内部に二つの独立した通風路を設けた熱交換器体となし、前記熱交換器体の4つの外側面から該通風路を流れる二つの空気を導入及び排気させるように構成させ、且つ前記二つの空気の間で前記伝熱板を通して熱交換を行う方式とした空気対空気熱交換器において、
前記二つの空気が導入乃至は排気する前記熱交換器体の前記4つの外側面に於いて、ヘミング結合されていない隣接する伝熱板間の隙間ピッチに前記熱交換器体の外側から前記ピッチ寸法に合わせた寸法のスペーサーを挿入して固定することにより、前記伝熱板と隣接する前記伝熱板間の隙間ピッチを所定の設定値に保ったことを特徴とした空気対空気熱交換器。
A rectangular or square flat plate made of an aluminum plate with a wall thickness of less than 0.12 mm is used as a heat transfer plate, and a large number of plates are stacked so that the adjacent heat transfer plates have a constant gap pitch, and the sides of the heat transfer plate are used. The end of the heat transfer plate is bent to a step size that matches the gap pitch dimension, while the end of the opposite side of the heat transfer plate adjacent to the heat transfer plate is folded back to form a hemming shape. By pressing and joining the two adjacent heat transfer plates while holding the gap pitch, and joining the whole parts in the same way as appropriate, the two independent heat transfer plates are inside. The heat exchanger body is provided with the heat exchanger body, and the two air flowing through the heat exchanger body are introduced and exhausted from the four outer surfaces of the heat exchanger body, and between the two air passages. In an air-to-air heat exchanger in which heat is exchanged through the heat transfer plate,
On the four outer surfaces of the heat exchanger body into which the two airs are introduced or exhausted, the pitch from the outside of the heat exchanger body to the gap pitch between adjacent heat transfer plates that are not hemmed coupled. An air-to-air heat exchanger characterized in that the gap pitch between the heat transfer plate and the adjacent heat transfer plate is maintained at a predetermined set value by inserting and fixing a spacer having dimensions according to the dimensions. ..
前記伝熱板間に外側から挿入する前記スペーサーを二つ以上のスペーサーが連結された一体のスペーサー組立とし、隣接する二つ以上の前記伝熱板間のスペースに挿入させて前記伝熱板間の間隔ピッチを適正範囲に保ったことを特徴とした請求項4に記載の空気対空気熱交換器。 The spacers to be inserted from the outside between the heat transfer plates are assembled into an integral spacer in which two or more spacers are connected, and the spacers are inserted into the space between two or more adjacent heat transfer plates to be inserted between the heat transfer plates. The air-to-air heat exchanger according to claim 4, wherein the interval pitch is maintained within an appropriate range. アルミ板製の長方形の又は四角形の平板を伝熱板として用い、隣接する伝熱板の間が一定の隙間ピッチをもって多数枚積み重ね、前記伝熱板の端辺を前記隙間ピッチの1/2の寸法になる様に段差状に折り曲げ、他方前記隣接する伝熱板の相対する一辺を前記隙間ピッチの1/2の寸法になる様に逆段差状に折り曲げて、さらにその先端をヘミング形状となして相対する前記伝熱板の段差状に折り曲げた辺の端辺を挟み込んだ状態で圧接して結合させて、隣接する2枚の前記伝熱板の間を前記隙間ピッチとなる様に保持して結合し、この結合を必要な全ての辺に適宜展開させることにより全体をその内部に二つの独立した通風路を設けた熱交換器体となし、前記熱交換器体の4つの外側面から該通風路を流れる二つの空気を導入及び排気させるように構成させ、且つ前記二つの空気の間で前記伝熱板を通して熱交換を行う方式の空気対空気熱交換器において、
前記ヘミング形状で結合した面の接合位値が2枚の隣接する前記伝熱板間の隙間ピッチの中央位置又はその近傍としたことを特徴とする空気対空気熱交換器
A rectangular or square flat plate made of an aluminum plate is used as a heat transfer plate, and a large number of heat transfer plates are stacked with a constant gap pitch between adjacent heat transfer plates, and the edge of the heat transfer plate is set to 1/2 of the gap pitch. Bend in a stepped shape so that the other side is bent in a reverse stepped shape so that the opposite sides of the adjacent heat transfer plates have a dimension of 1/2 of the gap pitch, and the tip thereof is made into a hemming shape and relative to each other. The ends of the side bent in a stepped shape of the heat transfer plate are pressed and joined in a state of being sandwiched, and the two adjacent heat transfer plates are held and joined so as to have the gap pitch. By appropriately deploying this coupling on all necessary sides, the whole becomes a heat exchanger body provided with two independent ventilation passages inside the heat exchanger body, and the ventilation passages are provided from the four outer surfaces of the heat exchanger body. In an air-to-air heat exchanger of a type that is configured to introduce and exhaust two flowing air and exchange heat between the two air through the heat transfer plate.
An air-to-air heat exchanger characterized in that the joint position value of the surfaces bonded in the hemming shape is at or near the center position of the gap pitch between two adjacent heat transfer plates.
薄いアルミ板製の長方形又は四角形の平板を伝熱板として用い、隣接する前記伝熱板の間が一定の隙間ピッチをもって多数枚積み重ね、前記伝熱板の端辺を前記隙間ピッチ寸法に一致する段差寸法に折り曲げ、他方、前記伝熱板に隣接する伝熱板の相対する端辺を適宜寸法で折り返してヘミング形状として前記段差状に折り曲げた端辺を挟み込んだ状態で圧接して結合させて、隣接する2枚の前記伝熱板を前記隙間ピッチを保持して結合し、全体をその内部に二つの独立した通風路を設けた熱交換器体となし、前記熱交換器体の4つの外側面から該通風路を流れる二つの空気を導入及び排気させるように構成させて且つ前記二つの空気の間で前記伝熱板を通して熱交換を行う方式とした前記熱交換器体において、
前記ヘミング形状の結合部分の空気シール性を確実にさせるべく、前記熱交換器体の空気を導入及び排気させる前記4つの面のうち一面が外側が下向きで且つ水平になるように前記熱交換器体を保持し、当該面の全ての前記ヘミング形状の結合部分をシール液が満たすように液槽に浸漬させて、前記ヘミング加工で圧接した面同士の隙間に染み込ませた後に、前記液槽から引き上げて、余分な前記シール液を廃棄させ、その後に、該接合隙間に残ったシール液を乾燥させるなどの硬化させる処理を行って、前記4つの面に渡り同様の処理を行って、全ての前記ヘミング形状の結合部分の空気又は水のシール性を強化させて完成させたことを特徴とした空気対空気熱交換器。
A rectangular or square flat plate made of a thin aluminum plate is used as a heat transfer plate, and a large number of adjacent heat transfer plates are stacked with a constant gap pitch, and the edge of the heat transfer plate has a step size that matches the gap pitch dimension. On the other hand, the opposite ends of the heat transfer plates adjacent to the heat transfer plate are folded back to an appropriate size to form a hemming shape, and the end edges bent in a stepped shape are pressed and joined to be adjacent to each other. The two heat transfer plates are connected to each other while maintaining the gap pitch, and the whole is formed as a heat exchanger body having two independent ventilation passages inside the heat exchanger body, and the four outer surfaces of the heat exchanger body. In the heat exchanger body, which is configured to introduce and exhaust two air flowing through the ventilation passage and exchange heat between the two air through the heat transfer plate.
In order to ensure the air sealability of the hemming-shaped joint portion, the heat exchanger is provided so that one of the four surfaces for introducing and exhausting air from the heat exchanger body faces downward and is horizontal. The body is held, and all the joint portions of the hemming shape of the surface are immersed in the liquid tank so that the sealing liquid fills the joints, soaked into the gaps between the surfaces pressed by the hemming process, and then from the liquid tank. It is pulled up to discard the excess sealing liquid, and then a curing treatment such as drying the sealing liquid remaining in the joint gap is performed, and the same treatment is performed over the four surfaces to perform all the treatments. An air-to-air heat exchanger characterized in that it has been completed by strengthening the air or water sealing property of the hemming-shaped joint portion.
薄いアルミ板製の長方形又は四角形の平板を伝熱板として用い、隣接する前記伝熱板の間が一定の隙間ピッチをもって多数枚積み重ね、前記伝熱板の辺を前記隙間ピッチ寸法に一致する段差寸法に折り曲げ、他方、前記伝熱板に隣接する伝熱板の相対する一辺の端部を適宜寸法で折り返してヘミング形状として前記段差状に折り曲げた辺の端部を挟み込んだ状態で圧接して結合させて、隣接する2枚の伝熱板を前記隙間ピッチを保持して結合し、全体をその内部に二つの独立した通風路を設けた熱交換器体となし、前記熱交換器体の4つの外側面から該通風路を流れる二つの空気を導入及び排気させるように構成させて且つ前記二つの空気の間で前記伝熱板を通して熱交換を行う方式とした前記熱交換器体において、
前記ヘミング形状の結合部分の空気シール性を強化させるべく、前記熱交換器体の空気を導入及び排気させる前記4つの面のうち一面を外側が下向きで、水平になるように前記熱交換器体を保持し、当該面の全ての前記ヘミング形状の結合部分の隙間内面に行きわたる様に内面までシール液を補給して満たし、前記ヘミング加工で圧接した面同士の隙間に内側から染み込ませた後に、余分な前記シール液を排出させ、その後に、該隙間に残ったシール液を乾燥させるなどの硬化させる処理を行い、前記4つの面に渡り同様の処理を行って、全ての前記ヘミング形状の結合部分の空気又は水のシール性を強化させて完成させたことを特徴とした空気対空気熱交換器。
A rectangular or square flat plate made of a thin aluminum plate is used as a heat transfer plate, and a large number of adjacent heat transfer plates are stacked with a constant gap pitch, and the sides of the heat transfer plates have a step size that matches the gap pitch dimension. Bend, on the other hand, the ends of the opposite sides of the heat transfer plate adjacent to the heat transfer plate are folded back to an appropriate size to form a hemming shape, and the ends of the side bent in a stepped shape are pressed and joined together. Then, two adjacent heat transfer plates are connected while maintaining the gap pitch, and the whole is formed as a heat exchanger body having two independent ventilation passages inside the heat exchanger body, and the four heat exchanger bodies. In the heat exchanger body, which is configured to introduce and exhaust two air flowing through the ventilation path from the outer side surface and to exchange heat between the two air through the heat transfer plate.
In order to enhance the air sealability of the hemming-shaped joint portion, the heat exchanger body is such that one of the four surfaces for introducing and exhausting air from the heat exchanger body faces downward and is horizontal. Is replenished and filled up to the inner surface so as to spread over the inner surfaces of the gaps of all the hemming-shaped joint portions of the surface, and the gaps between the surfaces pressed by the hemming process are impregnated from the inside. , Excessive sealing liquid is discharged, and then a curing treatment such as drying the sealing liquid remaining in the gap is performed, and the same treatment is performed over the four surfaces to obtain all the hemming shapes. An air-to-air heat exchanger characterized by enhanced sealing of air or water at the joint.
水性ラッカー、硝化綿ラッカー、液状エポキシなど、液状で大気中に放置して10時間以内に固まる塗料乃至は充填液を前記シール液の材料として用いたことを特徴とした請求項7、8に記載の空気対空気熱交換器 The invention according to claims 7 and 8, wherein a paint or a filler that is liquid and hardens within 10 hours after being left in the air, such as a water-based lacquer, a nitrified cotton lacquer, or a liquid epoxy, is used as a material for the sealing liquid. Air-to-air heat exchanger 前記伝熱板として、表裏の全表面に渡り、前記ヘミング加工、シール液塗膜加工を後から追加施工可能な、剛体膜状になる親水性と耐食性塗膜を事前に表面に塗布処理をしたアルミ薄板製で、前記伝熱板の表面の中央部に水保持性と伝熱特性を高めるため又は前記伝熱板間の隙間ピッチを得るための凹凸形状をプレス加工で成形し、前記伝熱面外周部には当該凸凹の形状の成型は行わずに平坦面のままとし、多数枚数を積み重ね、前記平坦面の部分を使って前記ヘミング加工を行って、前記シール液浸漬により接合強度と空気漏れ水漏れシール性を十分に確保したことを特徴とした請求項1、2、3、4、5、6、7、8、9に記載の空気対空気熱交換器 As the heat transfer plate, a hydrophilic and corrosion-resistant coating film that becomes a rigid film-like coating treatment was applied to the surface in advance so that the hemming process and the seal liquid coating process could be additionally applied to the entire front and back surfaces. Made of a thin aluminum plate, a concave-convex shape for improving water retention and heat transfer characteristics or obtaining a gap pitch between the heat transfer plates is formed in the center of the surface of the heat transfer plate by press processing, and the heat transfer is performed. The outer peripheral portion of the surface is left as a flat surface without molding the uneven shape, a large number of sheets are stacked, the hemming process is performed using the flat surface portion, and the bonding strength and air are immersed in the sealing liquid. The air-to-air heat exchanger according to claim 1, 2, 3, 4, 5, 6, 7, 8 and 9, characterized in that the leak-sealing property is sufficiently ensured. 前記空気対空記熱交換器を用いて、作動させる2つの空気を、冷却する側の空気に散水させて水の蒸発潜熱でもう一方の冷却される側の空気を冷却させ、冷却される空気の冷却された後の空気の一部を分離して、前記空気対空気熱交換器において冷却される空気の流出する出口側部分へと、送風機を追加することなく、冷却される空気の送風圧乃至は、及び冷却される空気の誘引により、冷却する空気に追加して流しこんで、前記冷却される空気の吹き出し温度の低温化に貢献させるべく活用させたことを特徴とした請求項1、2、3、4、5、6、7、8、9、10に記載の空気対空気熱交換器。 Using the air-to-air heat exchanger, the two airs to be operated are sprinkled on the air on the cooling side to cool the air on the other cooling side with the latent heat of evaporation of water, and the cooling air A part of the cooled air is separated, and the air pressure of the cooled air is not added to the outlet side portion where the cooled air flows out in the air-to-air heat exchanger, without adding a blower. 1 and 2, characterized in that, by attracting the air to be cooled, it was additionally poured into the air to be cooled and utilized to contribute to lowering the blowing temperature of the air to be cooled. 3, 4, 5, 6, 7, 8, 9, 10 Air-to-air heat exchanger. 作動させる前記2つの空気を内部に流し、前記冷却する側の空気に散水させて水の蒸発潜熱でもう一方の前記冷却される側の空気を冷却させる交差流形式の空気対空気熱交換器を利用して、
前記2つの空気のうち、排気出力された前記冷却された空気を人間、家畜、電子機器などの冷房冷却用に用い、散水した水の蒸発潜熱を利用して前記冷却された空気を冷却した前記冷却する空気の排気空気を天井、壁面、などその他の冷却用に用い、双方の空気を対象とする全体の空間、機器の冷房冷却に利用することにより、冷却性能の有効利用に活用させたことを特徴とした請求項1、2、3、4、5、6、7、8、9、10に記載の空気対空気熱交換器。

















A cross-flow type air-to-air heat exchanger in which the two airs to be operated are allowed to flow inside, and the air on the cooling side is sprinkled to cool the other air on the cooling side by the latent heat of evaporation of water. Use,
Of the two airs, the cooled air that has been exhausted is used for cooling cooling of humans, livestock, electronic devices, etc., and the cooled air is cooled by utilizing the latent heat of evaporation of sprinkled water. By using the exhaust air of the cooling air for cooling the ceiling, walls, etc., and for cooling the entire space and equipment for both air, it was utilized for effective use of cooling performance. The air-to-air heat exchanger according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

















JP2019212558A 2019-11-25 2019-11-25 Air-to-air heat exchanger Pending JP2021085551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212558A JP2021085551A (en) 2019-11-25 2019-11-25 Air-to-air heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212558A JP2021085551A (en) 2019-11-25 2019-11-25 Air-to-air heat exchanger

Publications (1)

Publication Number Publication Date
JP2021085551A true JP2021085551A (en) 2021-06-03

Family

ID=76087305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212558A Pending JP2021085551A (en) 2019-11-25 2019-11-25 Air-to-air heat exchanger

Country Status (1)

Country Link
JP (1) JP2021085551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983557A (en) * 2021-11-30 2022-01-28 海信(广东)空调有限公司 Mobile air conditioner and control method
KR102571485B1 (en) * 2022-10-20 2023-08-28 (주)신한아펙스 Plate type heat exchanger and Method for fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983557A (en) * 2021-11-30 2022-01-28 海信(广东)空调有限公司 Mobile air conditioner and control method
CN113983557B (en) * 2021-11-30 2023-01-31 海信(广东)空调有限公司 Mobile air conditioner and control method
KR102571485B1 (en) * 2022-10-20 2023-08-28 (주)신한아펙스 Plate type heat exchanger and Method for fabricating the same

Similar Documents

Publication Publication Date Title
US7510174B2 (en) Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
US20110209858A1 (en) Indirect Evaporative Cooling Apparatus
JP2021085551A (en) Air-to-air heat exchanger
JP5506773B2 (en) Dehumidifier
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
WO2017175702A1 (en) Indoor heat exchanger
CN108387122B (en) Laminated plate type heat exchanger based on stamping metal plate structure flow channel inlet and outlet structure
EP3187809A1 (en) Air guide-integrated evaporation cooler and method for manufacturing same
CN103912928A (en) Temperature control system
JP2003307397A (en) Heat exchanger
WO2019229966A1 (en) Heat exchange element and heat exchange ventilation device
KR101055668B1 (en) Core module of regenerative evaporative air conditioner and its manufacturing method
JP2014097468A (en) Dehumidifier
JP6287330B2 (en) Heat exchanger unit and heat exchanger
CN203797826U (en) Temperature control system
CN104033966A (en) Equipment cabinet air conditioner
US20070022773A1 (en) Cooling energy saving structure
JP6892977B1 (en) Plate type air heat exchanger and cooling device
US20230221076A1 (en) Method for manufacturing counter flow total heat exchanger
US20080066487A1 (en) Condenser and radiator of air conditioning refrigeration system
JP4211737B2 (en) Adsorber for adsorption type refrigerator and method of manufacturing the adsorber for adsorption type refrigerator
JP2020076552A (en) Aluminum plate air-to-air heat exchanger
JP6537760B1 (en) Heat exchange element and heat exchange ventilator
JP2017198385A (en) Heat exchanger
CN106322630A (en) Installing structure for heat exchange core and ventilation system