JP6537760B1 - Heat exchange element and heat exchange ventilator - Google Patents

Heat exchange element and heat exchange ventilator Download PDF

Info

Publication number
JP6537760B1
JP6537760B1 JP2019514052A JP2019514052A JP6537760B1 JP 6537760 B1 JP6537760 B1 JP 6537760B1 JP 2019514052 A JP2019514052 A JP 2019514052A JP 2019514052 A JP2019514052 A JP 2019514052A JP 6537760 B1 JP6537760 B1 JP 6537760B1
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
exchange element
flow passage
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514052A
Other languages
Japanese (ja)
Other versions
JPWO2020129130A1 (en
Inventor
彰則 清水
彰則 清水
慎也 守川
慎也 守川
隆裕 川崎
隆裕 川崎
洋航 松浦
洋航 松浦
亜加音 野村
亜加音 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6537760B1 publication Critical patent/JP6537760B1/en
Publication of JPWO2020129130A1 publication Critical patent/JPWO2020129130A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Abstract

熱交換素子は、複数の流路板が積層された中央流路部材と、中央流路部材の両側にそれぞれ接合された第1側部流路部材及び第2側部流路部材と、を備え、積層方向に隣り合う流路板同士の間を交互に第1流体と第2流体とが流通する流路に形成され、流路板を介して第1流体と第2流体とが熱交換する熱交換素子であって、流路板の平面方向における積層された流路板の縁部に、流路の一部を遮断する切り欠き部が形成され、切り欠き部の表面には、気密処理が施される。The heat exchange element includes a central flow passage member in which a plurality of flow passage plates are stacked, and a first side flow passage member and a second side flow passage member joined to both sides of the central flow passage member. And a flow path between the flow path plates adjacent in the stacking direction is alternately formed in the flow path through which the first fluid and the second fluid flow, and the first fluid and the second fluid exchange heat via the flow path plate A heat exchange element, in which a cutaway portion for blocking a part of the flow path is formed at an edge portion of the stacked flow path plate in the planar direction of the flow path plate, and an airtight process is formed on the surface of the cutaway portion Will be applied.

Description

本発明は、積層方向に隣り合う流路板同士の間を交互に第1流体と第2流体とが流通する流路に形成され、流路板を介して第1流体と第2流体とが熱交換する熱交換素子及び熱交換換気装置に関する。   According to the present invention, the first fluid and the second fluid are alternately formed between the flow channel plates adjacent to each other in the stacking direction, and the first fluid and the second fluid are formed via the flow channel plate. The present invention relates to a heat exchange element that exchanges heat and a heat exchange ventilator.

近年、省エネルギーの観点から室内を換気する熱交換換気装置が採用されている。熱交換換気装置は、室内の空気の温度及び湿度、すなわち併せて全熱と、室外の温度及び湿度、すなわち併せて全熱とを、熱交換素子を介して交換する装置である。換気に伴う熱の消失を低減するために、熱交換素子には、透湿性を有する紙部材が採用されている。また、熱交換効率を上げるために、給気と排気とが熱交換素子で向かい合わせに流れる対向流型の熱交換素子が採用されている。   In recent years, a heat exchange ventilation system for ventilating the room has been adopted from the viewpoint of energy saving. The heat exchange ventilator is an apparatus that exchanges the temperature and humidity of the room air, that is, the total heat and the temperature and humidity outside the room, that is, the total heat, through the heat exchange element. In order to reduce the loss of heat associated with ventilation, the heat exchange element employs a moisture permeable paper member. Further, in order to increase the heat exchange efficiency, a counterflow type heat exchange element is employed in which the air supply and the exhaust flow oppositely in the heat exchange element.

対向流型の熱交換素子は、たとえば、特許文献1に開示されたように、流路板と間隔板とを接合した伝熱体を用いて製造されている。流路板は、熱交換する2つの流体を仕切る紙材などから構成され、複数積層されている。間隔板は、隣り合う流路板同士の間にて複数の平行流路を構成する紙材などから構成されている。伝熱体は、この伝熱体を方形に切り出した対向流路部となった中央流路部材と、中央流路部材の一端部に接続された第1側部流路部材と、他端部に接続された第2側部流路部材とを備える。また、伝熱体は、中央流路部材と第1側部流路部材との接合箇所を表面上の1周にて密封する第1接合テープと、中央流路部材と第2側部流路部材との接合箇所を表面上の1周にて密封する第2接合テープとを備える。さらに、熱交換素子は、中央流路部材と第1側部流路部材及び第2側部流路部材それぞれとの接合箇所に気密処理が施されている。   For example, as disclosed in Patent Document 1, the counterflow-type heat exchange element is manufactured using a heat transfer body in which a flow path plate and a spacing plate are joined. The flow path plate is made of paper or the like separating two fluids to be heat-exchanged, and a plurality of the flow path plates are stacked. The spacer plate is made of, for example, a paper material forming a plurality of parallel flow paths between adjacent flow path plates. The heat transfer body is a central flow path member which is an opposing flow path portion obtained by cutting the heat transfer body into a square, a first side flow path member connected to one end of the central flow path member, and the other end And a second side channel member connected to the In addition, the heat transfer body comprises a first bonding tape for sealing the bonding portion between the central flow passage member and the first side flow passage member in one turn on the surface, the central flow passage member and the second side flow passage And a second bonding tape for sealing the bonding portion with the member in one turn on the surface. Further, in the heat exchange element, the joining portion between the central flow passage member and each of the first side flow passage member and the second side flow passage member is subjected to an airtight process.

国際公開第2016/147359号International Publication No. 2016/147359

熱交換素子を構成する流路板は、紙材などの柔軟な材料で構成される場合がある。紙材などの柔軟な流路板を積層する際には、流路板に反りが生じ易い。そのため、流路板と間隔板とが接着された後に、経年劣化によって流路板の反りの力によって熱交換素子の端部から剥がれが生じる。剥がれが生じると、熱交換素子の構造及びその内部を流通する2つの流体の流路で2つの流体の混合が生じる。   The flow path plate which comprises a heat exchange element may be comprised with flexible materials, such as paper material. When laminating a flexible flow path plate such as a paper material, the flow path plate is easily warped. Therefore, after the flow path plate and the space plate are bonded, peeling off occurs from the end of the heat exchange element due to the force of warpage of the flow path plate due to aged deterioration. When peeling occurs, mixing of the two fluids occurs in the structure of the heat exchange element and the two fluid flow paths flowing therethrough.

特許文献1の技術では、中央流路部材と第1側部流路部材及び第2側部流路部材それぞれとの接合箇所に気密処理を施している。しかし、経年使用に伴う積層間の接着力の低下などによって、中央流路部材と第1側部流路部材又は第2側部流路部材それぞれとの接合箇所の端部に剥がれが生じる。剥がれが生じた端部では、2つの流体の流路幅がずれ、2つの流体が混合する不都合が生じる。特許文献1の技術では、中央流路部材と第1側部流路部材又は第2側部流路部材それぞれとの接合箇所の端部が剥がれた場合に、2つの流体の混合の防止措置が対策されていない。   In the technique of Patent Document 1, the joining portion between the central flow passage member and the first side flow passage member and the second side flow passage member is airtightly treated. However, peeling occurs at the end of the bonding portion between the central flow passage member and the first side flow passage member or the second side flow passage member due to a decrease in the adhesion between the layers due to use over time. At the exfoliated end, the flow widths of the two fluids deviate, causing the problem of mixing of the two fluids. In the technique of Patent Document 1, when the end of the joint between the central flow passage member and the first side flow passage member or the second side flow passage member is peeled off, measures to prevent mixing of the two fluids are performed. It is not taken measures.

本発明は、上記課題を解決するためのものであり、中央流路部材と第1側部流路部材又は第2側部流路部材それぞれとの接合箇所の端部に剥がれが生じた場合に、2つの流体の混合が確実に防止できる熱交換素子及び熱交換換気装置を提供することを目的とする。   This invention is for solving the said subject, and when peeling arises in the edge part of the junction part of a center flow path member, and the 1st side flow path member or the 2nd side flow path member each. It is an object of the present invention to provide a heat exchange element and a heat exchange ventilator capable of reliably preventing the mixing of two fluids.

本発明に係る熱交換素子は、複数の流路板が積層された中央流路部材と、前記中央流路部材の両側にそれぞれ接合された第1側部流路部材及び第2側部流路部材と、を備え、積層方向に隣り合う前記流路板同士の間を交互に第1流体と第2流体とが流通する流路に形成され、前記流路板を介して前記第1流体と前記第2流体とが熱交換する熱交換素子であって、前記流路板の平面方向における積層された前記流路板の縁部に、前記流路の一部を遮断する切り欠き部が形成され、前記切り欠き部の表面には、気密処理が施されるものである。   The heat exchange element according to the present invention comprises a central flow passage member in which a plurality of flow passage plates are stacked, and a first side flow passage member and a second side flow passage joined respectively on both sides of the central flow passage member. A member, and the flow path plates adjacent to each other in the stacking direction are alternately formed in a flow path through which the first fluid and the second fluid flow, and the first fluid and the flow path plate It is a heat exchange element which exchanges heat with the second fluid, and a notch for blocking a part of the flow passage is formed at the edge of the flow passage plate stacked in the planar direction of the flow passage plate. The surface of the notched portion is subjected to an airtight process.

本発明に係る熱交換換気装置は、上記の熱交換素子を備え、室内と室外との空気を換気しつつ熱交換を行うものである。   The heat exchange ventilator according to the present invention is provided with the above-described heat exchange element, and performs heat exchange while ventilating the indoor and outdoor air.

本発明に係る熱交換素子及び熱交換換気装置によれば、流路板の平面方向における積層された流路板の縁部に、流路の一部を遮断する切り欠き部が形成され、切り欠き部の表面には、気密処理が施されている。これにより、中央流路部材と第1側部流路部材及び第2側部流路部材それぞれとの接合箇所の端部の流路は、切り欠き部及び気密処理にて2つの流体の流通が予め遮断されている。したがって、中央流路部材と第1側部流路部材又は第2側部流路部材それぞれとの接合箇所の端部に剥がれが生じた場合に、2つの流体の混合が確実に防止できる。   According to the heat exchange element and the heat exchange ventilator according to the present invention, the cutaway portion for blocking a part of the flow passage is formed at the edge of the stacked flow passage plate in the planar direction of the flow passage plate. An airtight process is applied to the surface of the notch. As a result, at the end of the joint between the central flow passage member and the first side flow passage member and the second side flow passage member, the flow passage of the two fluid flows in the notched portion and the airtight process. It is shut off beforehand. Therefore, when peeling occurs at the end of the joint between the central flow passage member and the first side flow passage member or the second side flow passage member, the mixing of the two fluids can be reliably prevented.

本発明の実施の形態1に係る熱交換素子を備える熱交換換気装置の設置例を示す説明図である。It is explanatory drawing which shows the example of installation of a heat exchange ventilator provided with the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子を備える熱交換換気装置を示す説明図である。It is explanatory drawing which shows the heat exchange ventilator provided with the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子を示す正面図である。It is a front view which shows the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子の伝熱体を示す説明図である。It is explanatory drawing which shows the heat-transfer body of the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子に形成された切り欠き部を示す拡大斜視図である。It is an enlarged perspective view which shows the notch part formed in the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子に形成された切り欠き部に気密処理を施した状態を示す拡大斜視図である。It is an enlarged perspective view which shows the state which performed the airtight process to the notch part formed in the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る伝熱体の単体における第1流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the 1st fluid in the single-piece | unit of the heat transfer body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る伝熱体の単体における第2流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the 2nd fluid in the single-piece | unit of the heat transfer body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子内での第1流体及び第2流体の流れを示す図4のA−A線での断面図である。It is sectional drawing in the AA line of FIG. 4 which shows the flow of the 1st fluid in the heat exchange element which concerns on Embodiment 1 of this invention, and a 2nd fluid. 従来例の熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element of a prior art example. 従来例の熱交換素子における流路の破綻の様子を示す説明図である。It is explanatory drawing which shows the mode of the failure | damage of the flow path in the heat exchange element of a prior art example. 本発明の実施の形態1の変形例1に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on the modification 1 of Embodiment 1 of this invention. 本発明の実施の形態1の変形例2に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on the modification 2 of Embodiment 1 of this invention. 本発明の実施の形態1の変形例3に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on the modification 3 of Embodiment 1 of this invention. 本発明の実施の形態1の変形例4に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on the modification 4 of Embodiment 1 of this invention. 本発明の実施の形態1の変形例4に係る熱交換素子を図16の矢視C方向から見て示す下面図である。FIG. 17 is a bottom view showing the heat exchange element according to the fourth modification of the first embodiment of the present invention as viewed in the direction of arrow C in FIG. 本発明の実施の形態1の変形例5に係る熱交換素子を示す斜視図である。It is a perspective view which shows the heat exchange element which concerns on the modification 5 of Embodiment 1 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。   Hereinafter, embodiments of the present invention will be described based on the drawings. In the drawings, the same reference numerals denote the same or corresponding parts, which are common to the whole text of the specification. Further, in the drawing of the cross-sectional view, hatching is appropriately omitted in view of visibility. Furthermore, the form of the component shown in the specification full text is an illustration to the last, and is not limited to these descriptions.

実施の形態1.
<熱交換換気装置の設置例>
図1は、本発明の実施の形態1に係る熱交換素子14を備える熱交換換気装置20の設置例を示す説明図である。図1に示すように、熱交換換気装置20は、熱交換素子14を備え、室内Iと室外Oとの空気を換気しつつ熱交換を行う。
Embodiment 1
<Installation Example of Heat Exchange Ventilation System>
FIG. 1: is explanatory drawing which shows the example of installation of the heat exchange ventilator 20 provided with the heat exchange element 14 which concerns on Embodiment 1 of this invention. As shown in FIG. 1, the heat exchange ventilator 20 includes a heat exchange element 14 and performs heat exchange while ventilating air between the indoor I and the outdoor O.

熱交換換気装置20は、空気調和装置の一種である。熱交換換気装置20は、室外Oの空気を室内Iへ給気し、室内Iの空気を室外Oに排気する換気機能を有する。また、熱交換換気装置20は、換気機能に加え、排気する空気から熱を回収して吸気する空気へ熱を与えることにより、エアコンディショナなどといった室内温度を調整する装置のエネルギー負担を軽減する熱交換機能も有する。   The heat exchange ventilator 20 is a type of air conditioner. The heat exchange ventilator 20 has a ventilation function of supplying air from outside O to room I and exhausting air from inside I to outside O. In addition to the ventilation function, the heat exchange ventilator 20 reduces the energy burden of the device for adjusting the room temperature such as an air conditioner by recovering the heat from the exhaust air and giving the heat to the intake air. It also has a heat exchange function.

熱交換換気装置20は、室内Iの天井内に収納されている。室内美観の点から、天井内に熱交換換気装置20を含む空調機器をまとめて収納する住宅が多い。天井内に空調機器を設置する場合には、一般に室内Iに設置する場合と比較し、空調機器のための広い設置スペースが確保できる。   The heat exchange ventilator 20 is housed in the ceiling of the room I. From the point of view of the indoor beauty, there are many houses that collectively store the air conditioner including the heat exchange ventilator 20 in the ceiling. When installing the air conditioner in the ceiling, a wider installation space for the air conditioner can be secured as compared with the case where the air conditioner is generally installed in the room I.

室外壁面には、室外Oの空気を取り入れる室外吸気口29が形成されている。室外壁面には、室外Oへと空気を排出する室外排気口30が形成されている。一方、室内Iの天井には、室内Iへと空気を流入させる室内給気口31が形成されている。室内Iの天井には、室内Iの空気を排出する室内排気口32が形成されている。   An outdoor intake port 29 for taking in air from the outdoor O is formed on the outdoor wall surface. An outdoor exhaust port 30 for discharging air to the outdoor O is formed on the outdoor wall surface. On the other hand, on the ceiling of the room I, an indoor air supply port 31 for allowing air to flow into the room I is formed. In the ceiling of the room I, an indoor exhaust port 32 for discharging the air of the room I is formed.

後述する図2に示すように、室外吸気口29は、外気ダクト25と連結されている。室内給気口31は、給気ダクト26と連結されている。室内排気口32は、還気ダクト27と連結されている。室外排気口30は、排気ダクト28と連結されている。   As shown in FIG. 2 described later, the outdoor air inlet 29 is connected to the outdoor air duct 25. The indoor air supply port 31 is connected to the air supply duct 26. The indoor exhaust port 32 is connected to the return air duct 27. The outdoor exhaust port 30 is connected to the exhaust duct 28.

<熱交換換気装置20の動作>
図2は、本発明の実施の形態1に係る熱交換素子14を備える熱交換換気装置20を示す説明図である。図2に示すように、熱交換換気装置20内には、熱交換素子14が搭載されている。熱交換換気装置20では、室内外の空気が熱交換素子14を通過することにより、熱交換が行われる。
<Operation of Heat Exchange Ventilation System 20>
FIG. 2: is explanatory drawing which shows the heat exchange ventilator 20 provided with the heat exchange element 14 which concerns on Embodiment 1 of this invention. As shown in FIG. 2, the heat exchange element 14 is mounted in the heat exchange ventilator 20. In the heat exchange ventilator 20, heat exchange is carried out by the air inside and outside the room passing through the heat exchange element.

熱交換換気装置20内部には、室外Oから室内Iに向けて空気を送風する給気ファン22が設けられている。熱交換換気装置20内部には、室内Iから室外Oに向けて空気を送風する排気ファン21が設けられている。給気ファン22及び排気ファン21が運転されることによって、室内Iへの給気と排気が行われる。   Inside the heat exchange ventilator 20, an air supply fan 22 for blowing air from the outside O to the inside I is provided. Inside the heat exchange ventilator 20, an exhaust fan 21 for blowing air from the room I to the outside O is provided. By operating the air supply fan 22 and the exhaust fan 21, air supply and discharge to the room I are performed.

後述するように、熱交換素子14には、第1流体10の流入口15及び流出口16が形成されている。熱交換素子14には、第2流体11の流入口17及び流出口18が形成されている。そして、熱交換素子14が熱交換換気装置20に搭載される場合には、第1流体10の流入口15が外気を取り入れる外気ダクト25と連結されている。第1流体10の流出口16が室内Iへの給気を行う給気ダクト26と連結されている。第2流体11の流入口17が室内排気を通す還気ダクト27と連結されている。第2流体11の流出口18が室外Oへ排気を行う排気ダクト28と連結されている。   As described later, the heat exchange element 14 is formed with an inlet 15 and an outlet 16 for the first fluid 10. The heat exchange element 14 is formed with an inlet 17 and an outlet 18 for the second fluid 11. And when the heat exchange element 14 is mounted in the heat exchange ventilator 20, the inflow port 15 of the 1st fluid 10 is connected with the external air duct 25 which takes in external air. An outlet 16 of the first fluid 10 is connected to an air supply duct 26 for supplying air to the room I. An inlet 17 of the second fluid 11 is connected to a return air duct 27 for passing the indoor exhaust. The outlet 18 of the second fluid 11 is connected to an exhaust duct 28 for exhausting air to the outside O.

室外Oの空気は、給気ファン22が稼働されることにより、外気ダクト25から取り入れられ、熱交換素子14を介して給気ファン22に給気され、給気ダクト26から給気として室内Iに導入される。一方、室内Iの空気は、排気ファン21が稼働されることにより、還気ダクト27から取り入れられ、熱交換素子14を介して排気ファン21によって排気され、排気ダクト28から排気として室外Oに排気される。給気流と排気流とが熱交換素子14の中央流路部材5の部分で対向する気流となり、給気流と排気流とが全熱交換され、効率的に熱交換が実施される。   The air outside O is taken in from the outside air duct 25 by the operation of the air supply fan 22, is supplied to the air supply fan 22 via the heat exchange element 14, and is supplied to the room I as air supply from the air supply duct 26. Introduced to On the other hand, air in the room I is taken in from the return air duct 27 by the operation of the exhaust fan 21, exhausted by the exhaust fan 21 through the heat exchange element 14, and exhausted to the outside O as exhaust air from the exhaust duct 28. Be done. The charge air flow and the exhaust gas flow are opposed to each other at the portion of the central flow path member 5 of the heat exchange element 14, so that the heat exchange between the charge air flow and the exhaust gas is totally carried out, and heat exchange is efficiently performed.

<熱交換素子14の構成>
図3は、本発明の実施の形態1に係る熱交換素子14を示す斜視図である。図4は、本発明の実施の形態1に係る熱交換素子14を示す正面図である。図3では、正面方向Fが紙面上方を向いている。後述の図面では、正面方向F、背面方向B、左方L、右方R、上方U、下方Dが示されている。
<Configuration of Heat Exchanger Element 14>
FIG. 3 is a perspective view showing the heat exchange element 14 according to the first embodiment of the present invention. FIG. 4 is a front view showing the heat exchange element 14 according to Embodiment 1 of the present invention. In FIG. 3, the front direction F is directed upward in the drawing. In the following drawings, a front direction F, a back direction B, a left direction L, a right direction R, an upper direction U, and a lower direction D are shown.

図3及び図4に示すように、熱交換素子14は、複数の流路板1が積層された中央流路部材5と、中央流路部材5の両側にそれぞれ接合された第1側部流路部材6及び第2側部流路部材7と、を備える。第1側部流路部材6及び第2側部流路部材7では、複数の流路板1が積層されている。中央流路部材5、第1側部流路部材6及び第2側部流路部材7のそれぞれは、伝熱体3に構成されている。   As shown in FIGS. 3 and 4, the heat exchange element 14 includes the central flow passage member 5 in which the plurality of flow passage plates 1 are stacked, and a first side flow joined to both sides of the central flow passage member 5. A channel member 6 and a second side channel member 7; In the first side flow passage member 6 and the second side flow passage member 7, a plurality of flow passage plates 1 are stacked. Each of the central flow passage member 5, the first side flow passage member 6, and the second side flow passage member 7 is configured as the heat transfer body 3.

伝熱体3は、後述する図5に示すように、流路板1と間隔板2とを接合して製造されている。流路板1は、熱交換する第1流体10及び第2流体11を仕切り、複数積層されている。間隔板2は、隣り合う流路板1同士の間にて複数の平行流路を構成している。間隔板2は、隣り合う流路板1同士の間隔幅を維持する役割を果たす。熱交換素子14は、積層方向に隣り合う流路板1同士の間を交互に第1流体10と第2流体11とが流通する流路に形成され、流路板1を介して第1流体10と第2流体11とが熱交換する。   The heat transfer body 3 is manufactured by joining the flow path plate 1 and the spacing plate 2 as shown in FIG. 5 described later. The flow path plate 1 divides the heat exchange between the first fluid 10 and the second fluid 11, and a plurality of the flow plates 1 are stacked. The spacing plate 2 constitutes a plurality of parallel flow paths between the flow path plates 1 adjacent to each other. The spacer plate 2 plays the role of maintaining the gap width between the adjacent flow channel plates 1. The heat exchange element 14 is formed in a flow path through which the first fluid 10 and the second fluid 11 flow alternately between the flow path plates 1 adjacent in the stacking direction, and the first fluid via the flow path plate 1 10 and the second fluid 11 exchange heat.

中央流路部材5は、伝熱体3を四角形に切断して成形されている。第1側部流路部材6及び第2側部流路部材7のそれぞれは、伝熱体3を三角形に切断して成形されている。中央流路部材5の左方Lの端部に接合されたものが第1側部流路部材6である。中央流路部材5の右方Rの端部に接合されたものが第2側部流路部材7である。中央流路部材5の流路板1は、第1側部流路部材6及び第2側部流路部材7のそれぞれの流路板1と一平面になるように接合されている。   The central flow passage member 5 is formed by cutting the heat transfer body 3 into a square. Each of the first side flow passage member 6 and the second side flow passage member 7 is formed by cutting the heat transfer body 3 into a triangle. The first side flow path member 6 is joined to the left end portion of the central flow path member 5. The second side flow path member 7 is joined to the end of the central flow path member 5 in the right direction R. The flow passage plate 1 of the central flow passage member 5 is joined to the flow passage plate 1 of each of the first side flow passage member 6 and the second side flow passage member 7 in one plane.

中央流路部材5と第1側部流路部材6とが接合された接合箇所には、第1接合テープ8が設けられている。中央流路部材5と第2側部流路部材7とが接合された接合箇所には、第2接合テープ9が設けられている。第1接合テープ8及び第2接合テープ9は、一方の片面に接着面を有するとともに、他方の片面に外表面を有するテープ材である。第1接合テープ8及び第2接合テープ9は、接着面を接合箇所に貼り付けている。   A first bonding tape 8 is provided at a junction where the central flow passage member 5 and the first side flow passage member 6 are joined. A second bonding tape 9 is provided at a junction where the central flow passage member 5 and the second side flow passage member 7 are joined. The first bonding tape 8 and the second bonding tape 9 are tape materials having an adhesive surface on one side and an outer surface on the other side. The bonding surface of the first bonding tape 8 and the second bonding tape 9 is attached to the bonding portion.

第1接合テープ8は、中央流路部材5の端部と第1側部流路部材6の端部とが当接し、当接した双方の端面の周りを一周して接合している。中央流路部材5と第1側部流路部材6とは、同じ数で流路板1が積層されて同様な端面を有することから、第1接合テープ8によって双方の当接した端面の周りを一周して貼り付けることによって接合されている。これにより、中央流路部材5と第1側部流路部材6とは、等しい間隔で積層された流路板1同士が合わさった状態になっている。   The first bonding tape 8 is in contact with the end of the central flow path member 5 and the end of the first side flow path member 6 and is joined in a circle around both of the abutting end faces. Since the central flow path member 5 and the first side flow path member 6 have the same number of flow path plates 1 stacked and have the same end face, the circumference of the end faces which both contact with each other by the first bonding tape 8 It is joined by pasting around. Thus, the central flow path member 5 and the first side flow path member 6 are in a state where the flow path plates 1 stacked at equal intervals are combined.

第2接合テープ9は、中央流路部材5の端部と第2側部流路部材7の端部とが当接し、当接した双方の端面の周りを一周して接合している。中央流路部材5と第2側部流路部材7とは、同じ数で流路板1が積層されて同様な端面を有することから、第2接合テープ9によって双方の当接した端面の周りを一周して貼り付けることによって接合されている。これにより、中央流路部材5と第2側部流路部材7とは、等しい間隔で積層された流路板1同士が合わさった状態になっている。   In the second bonding tape 9, the end of the central flow path member 5 and the end of the second side flow path member 7 are in contact with each other, and are joined around the two end faces in contact. Since the central flow path member 5 and the second side flow path member 7 have the same number of flow path plates 1 stacked and have the same end face, the second bonding tape 9 wraps around the end faces that are in contact with each other. It is joined by pasting around. Thus, the central flow path member 5 and the second side flow path member 7 are in a state where the flow path plates 1 stacked at equal intervals are combined.

中央流路部材5では、内部の間隔板2の貼り付け角度が第1側部流路部材6と第2側部流路部材7とに対して平行な間隔板2の貼り付け角度を有する。第1側部流路部材6と第2側部流路部材7とでは、内部の間隔板2の貼り付け角度が平行に傾斜した角度を有する。また、第1流体10が流通する流路と第2流体11が流通する流路とでは、第1側部流路部材6と第2側部流路部材7との内部の間隔板2の貼り付け角度が第1側部流路部材6と第2側部流路部材7とにわたる直線に対して線対称な角度を有する。   In the central flow channel member 5, the bonding angle of the inner spacer plate 2 has the bonding angle of the spacer plate 2 parallel to the first side channel member 6 and the second side channel member 7. In the first side flow passage member 6 and the second side flow passage member 7, the pasting angle of the spacer plate 2 inside is inclined in parallel. Further, in the flow passage through which the first fluid 10 flows and the flow passage through which the second fluid 11 flows, the attachment of the spacer plate 2 inside the first side passage member 6 and the second side passage member 7 The mounting angle is axisymmetrical to the straight line between the first side flow passage member 6 and the second side flow passage member 7.

隣り合う流路板1同士の間が間隔板2に支持されて空間が形成されている。そして、間隔板2を介して流路板1が積層されて第1流体10と第2流体11とが交互に流通する空間が積層して形成されている。このような交互に第1流体10と第2流体11とが流通する空間が流路板1を挟んで積層して存在し、第1流体10と第2流体11とが挟まれた流路板1によって熱交換できる。   A space is formed by supporting the space plate 2 between the adjacent flow path plates 1. And the flow path plate 1 is laminated | stacked via the spacer plate 2, and the space which 1st fluid 10 and 2nd fluid 11 distribute | circulate alternately is laminated | stacked, and is formed. A space in which the first fluid 10 and the second fluid 11 flow alternately exists in such a manner as to be stacked with the flow path plate 1 interposed therebetween, and the flow path plate in which the first fluid 10 and the second fluid 11 are sandwiched. Heat exchange is possible by 1.

第1流体10と第2流体11との出入口が第1側部流路部材6と第2側部流路部材7とで反対側に形成されている。これにより、図3に示すように、熱交換素子14には、第1流体10の流入口15と、第1流体10の流出口16と、第2流体11の流入口17と、第2流体11の流出口18とが形成されている。   An inlet / outlet for the first fluid 10 and the second fluid 11 is formed on the opposite side of the first side flow passage member 6 and the second side flow passage member 7. Thereby, as shown in FIG. 3, the heat exchange element 14 is provided with the inlet 15 for the first fluid 10, the outlet 16 for the first fluid 10, the inlet 17 for the second fluid 11, and the second fluid. 11 outlets 18 are formed.

<切り欠き部33>
熱交換素子14には、流路板1の平面方向における積層された流路板1の縁部に、流路の一部を遮断する切り欠き部33が形成されている。切り欠き部33は、中央流路部材5の縁部に形成されている。切り欠き部33は、流路板1の平面方向における積層された流路板1の対向する1対の縁部にそれぞれ1つずつ形成されている。1対の縁部にそれぞれ1つずつ形成された切り欠き部33は、同形状である。1つの切り欠き部33は、積層された流路板1の全部に貫通して形成されている。1つの切り欠き部33は、流路板1の平面方向に対して直交した流路板1の積層方向に沿って形成されている。1つの切り欠き部33における流路板1の平面方向の幅は、流路板1の中心部に向かって広くなっている。すなわち、1つの切り欠き部33は、いわゆるあり溝に形成されている。後述の図13のように、1つの切り欠き部33には、1つのレール部材34が挿通されても良い。
<Notch 33>
In the heat exchange element 14, at the edge portion of the flow path plate 1 stacked in the planar direction of the flow path plate 1, a notch portion 33 which blocks a part of the flow path is formed. The notch 33 is formed at the edge of the central flow passage member 5. The notches 33 are formed one by one at opposing edge portions of the flow path plate 1 stacked in the planar direction of the flow path plate 1. The notches 33 formed one each in the pair of edges have the same shape. One notch 33 is formed to penetrate all of the stacked flow path plates 1. One notch 33 is formed along the stacking direction of the flow path plate 1 orthogonal to the planar direction of the flow path plate 1. The width in the plane direction of the flow channel plate 1 in one notch portion 33 is wider toward the central portion of the flow channel plate 1. That is, one notch 33 is formed in a so-called dovetail groove. As shown in FIG. 13 described later, one rail member 34 may be inserted into one notch 33.

<伝熱体3>
図5は、本発明の実施の形態1に係る熱交換素子14の伝熱体3を示す説明図である。図5に示すように、伝熱体3の単体は、1つの流路板1と1つの間隔板2とから構成されている。伝熱体3は、流路板1の両面に面する第1流体10及び第2流体11を仕切りながら、第1流体10及び第2流体11の有する全熱を熱交換する。
流路板1は、薄紙などから構成されている。間隔板2は、積層された流路板1を平行に保持するために波板状の形状を有する厚紙などから構成されている。間隔板2の波形状の山部分と流路板1とが接するように接合して積層されることにより、流路板1と間隔板2とに囲まれる空間を第1流体10又は第2流体11の流路に形成した伝熱体3が構成されている。
<Heat transfer body 3>
FIG. 5 is an explanatory view showing the heat transfer body 3 of the heat exchange element 14 according to Embodiment 1 of the present invention. As shown in FIG. 5, a single body of the heat transfer body 3 is configured of one flow passage plate 1 and one spacing plate 2. The heat transfer body 3 exchanges heat between all the heats of the first fluid 10 and the second fluid 11 while separating the first fluid 10 and the second fluid 11 facing both surfaces of the flow path plate 1.
The flow path plate 1 is made of thin paper or the like. The spacer plate 2 is made of cardboard or the like having a corrugated plate shape to hold the stacked flow channel plates 1 in parallel. A space surrounded by the flow path plate 1 and the space plate 2 is made the first fluid 10 or the second fluid by being joined and stacked so that the wavelike peak portion of the space plate 2 and the flow path plate 1 are in contact with each other. The heat transfer body 3 formed in the flow path of 11 is comprised.

流路板1は、伝熱性と透湿性とを有する素材又は伝熱性のみを有する薄紙などの素材で形成されている。間隔板2は、構造保持のために、折り曲げ加工などによって変形され、間隔板2自体の形状を保持できる形状保持性能を有する素材で形成されていることが望ましい。また、間隔板2の厚みが増すと、間隔板2が流路を閉塞し、圧力損失の増大につながるため、間隔板2の膜厚が薄い方が望ましい。   The flow path plate 1 is formed of a material having heat conductivity and moisture permeability, or a material such as thin paper having only heat conductivity. The spacer plate 2 is preferably formed of a material having a shape-retaining ability that can be deformed by bending or the like to retain the structure, and can maintain the shape of the spacer plate 2 itself. Further, when the thickness of the spacer plate 2 is increased, the spacer plate 2 blocks the flow path, leading to an increase in pressure loss. Therefore, it is preferable that the film thickness of the spacer plate 2 be smaller.

流路板1と間隔板2とは、このような性状を満たす、セルロースなどからなるパルプ材といった紙材から構成されている。しかし、伝熱性のみを重視する場合には、流路板1と間隔板2とは、樹脂の薄膜又は金属の薄膜から構成されても良い。金属の具体例は、アルミニウム、鉄又はステンレスなどである。間隔板2は、積層後に複数の流路板1に挟まれつつその間に間隔を形成するため、略波形状を有する。間隔板2の略波形状は、コルゲートマシン又はラック及びピニオンなどを用いて、間隔板2の平板状の原板を挟み込むことによって略波形状に加工できる。   The flow path plate 1 and the spacing plate 2 are made of a paper material such as a pulp material made of cellulose or the like which satisfies such properties. However, when importance is placed only on heat transfer, the flow channel plate 1 and the spacer plate 2 may be made of a resin thin film or a metal thin film. Specific examples of the metal are aluminum, iron or stainless steel. The spacer plate 2 has a substantially corrugated shape so as to be sandwiched between the plurality of flow path plates 1 after lamination while forming a gap therebetween. The substantially wave shape of the space plate 2 can be processed into a substantially wave shape by sandwiching the flat plate-like original plate of the space plate 2 using a corrugated machine or a rack and a pinion or the like.

平板状の流路板1は、略波形状を有する間隔板2の山部分と接着剤などで接合され、ダンボール状の伝熱体3の単体を構成する。流路板1と間隔板2との接合により、剛性の低い流路板1が平面に保たれる効果も奏する。伝熱体3の単体は、1つの流路板1と1つの略波状の間隔板2との全ての端が一致し、流路板1の全体に間隔板2が接合されている。ここでは、接合に用いる接着剤とは、流体状の粘着性のある部材又は溶着において溶加材を溶解させて接着する場合の溶加材を含む。   The flat flow path plate 1 is joined to the ridge portion of the spacer plate 2 having a substantially wave shape by an adhesive or the like, and constitutes a single piece of the corrugated heat transfer body 3. The bonding of the flow channel plate 1 and the spacer plate 2 also has an effect of maintaining the flow channel plate 1 with low rigidity on a flat surface. The single body of the heat transfer body 3 has all the ends of one flow path plate 1 and one substantially wave-like space plate 2 coincident with each other, and the space plate 2 is joined to the entire flow path plate 1. Here, the adhesive used for bonding includes a fluid-like sticky member or a filler in the case of dissolving and bonding the filler in welding.

なお、伝熱体3の構成は、流路板1と間隔板2とのそれぞれが1対応ずつで構成されなくても良い。たとえば、伝熱体3全体は、樹脂成型で製造されても良い。また、中央流路部材5と第1側部流路部材6又は第2側部流路部材7との接合は、第1接合テープ8又は第2接合テープ9によって接合されなくても良い。たとえば、中央流路部材5、第1側部流路部材6及び第2側部流路部材7は、一体成型されても良い。   In addition, the structure of the heat-transfer body 3 does not need to be comprised by each one of the flow-path plate 1 and the spacing plate 2 each. For example, the entire heat transfer body 3 may be manufactured by resin molding. Further, the bonding between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7 may not be performed by the first bonding tape 8 or the second bonding tape 9. For example, the central flow passage member 5, the first side flow passage member 6, and the second side flow passage member 7 may be integrally molded.

<切り欠き部33の詳細>
図6は、本発明の実施の形態1に係る熱交換素子14に形成された切り欠き部33を示す拡大斜視図である。図7は、本発明の実施の形態1に係る熱交換素子14に形成された切り欠き部33に気密処理13を施した状態を示す拡大斜視図である。図6及び図7に示すように、伝熱体3の完成後に切り欠き部33が形成される。そして、切り欠き部33の表面には、気密処理13が施される。気密処理13は、粘性を有する気密処理剤を用いて施されても良い。また、気密処理13は、熱発泡性気密処理剤を用いて施されても良い。
<Details of Notch 33>
FIG. 6 is an enlarged perspective view showing the notch 33 formed in the heat exchange element 14 according to the first embodiment of the present invention. FIG. 7 is an enlarged perspective view showing a state in which the airtight portion 13 is applied to the notch 33 formed in the heat exchange element 14 according to the first embodiment of the present invention. As shown in FIGS. 6 and 7, the notch 33 is formed after the heat transfer body 3 is completed. And the airtight process 13 is given to the surface of the notch 33. The airtight process 13 may be applied using an airtight process agent having viscosity. Further, the airtight process 13 may be applied using a thermally foamable airtight process agent.

図6に示すように、中央流路部材5には、第1流体10及び第2流体11が平行に流れる積層された流路を横断する方向に、正面方向Fの上層から背面方向Bの下層まで全部にわたって連続して、切り欠き部33が形成されている。切り欠き部33は、流路方向の左方Lと右方Rとの間の幅が中心に向かって広くなるあり溝形状である。   As shown in FIG. 6, in the central flow path member 5, the upper layer from the front direction F to the lower layer in the back direction B is a direction crossing the stacked flow paths in which the first fluid 10 and the second fluid 11 flow in parallel. The notch 33 is formed continuously over the entire length. The notch 33 has a dovetail shape in which the width between the left side L and the right side R in the flow direction is wider toward the center.

図7に示すように、切り欠き部33には、気密処理13が施されている。ここで、気密処理13は、気密処理剤を用いて施される。気密処理剤としては、ウレタン系、アクリル系又はシリコーン系のシーラント剤が挙げられる。シーラント剤は、切り欠き部33の表面に塗布されるだけでも良い。しかし、望ましくは、シーラント剤が粘性を有し、塗布後に押し込んで隣り合う流路板1同士の隙間を埋めるものが良い。また、気密処理剤は上記に限られない。たとえば、気密処理剤は、発泡剤を含有した塗料などを用い、塗布後に熱を付与して発泡処理を行い、隣り合う流路板1同士の隙間を埋めても良い。発泡剤としては、熱膨張性の中空弾性体微小球、無機発泡剤、ニトロソ系発泡剤、アゾ系発泡剤又はスルホニルヒドラジド系発泡剤などがある。   As shown in FIG. 7, the notch 33 is subjected to an airtight process 13. Here, the airtight process 13 is applied using an airtight process agent. The airtight processing agent may, for example, be a urethane, acrylic or silicone sealant. The sealant may be applied only to the surface of the notch 33. However, desirably, the sealant has viscosity and is pressed after application to fill the gap between adjacent flow path plates 1. In addition, the airtight processing agent is not limited to the above. For example, the airtight processing agent may apply a heat after application using a paint or the like containing a foaming agent to perform a foaming process to fill the gap between adjacent flow path plates 1. Examples of the foaming agent include thermally expandable hollow elastic microspheres, an inorganic foaming agent, a nitroso-based foaming agent, an azo-based foaming agent and a sulfonyl hydrazide-based foaming agent.

このような気密処理13とは、気密処理剤が流路断面に塗布され、隣り合う流路板1同士の間の流路を遮断する処理である。切り欠き部33に対して気密処理13が行われることにより、切り欠き部33内に含まれる流路が遮断される。中央流路部材5と第1側部流路部材6及び第2側部流路部材7それぞれとの接合箇所の端部には、予め切り欠き部33によって遮断された流路が形成されている。このため、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部が剥がれた場合でも、剥がれた端部の流路に切り欠き部33及び切り欠き部33の表面に施された気密処理13によって当該流路が遮断されているため、第1流体10及び第2流体11の混合が確実に防止できる。   The airtight process 13 is a process in which an airtight process agent is applied to the cross section of the flow path and the flow path between the adjacent flow path plates 1 is blocked. The airtight process 13 is performed on the notch 33 to shut off the flow path included in the notch 33. At the end of the joint between the central flow passage member 5 and each of the first side flow passage member 6 and the second side flow passage member 7, a flow passage blocked in advance by the notch 33 is formed. . Therefore, even when the end of the joint between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7 is peeled off, the flow passage of the peeled end is notched. Since the flow path is blocked by the airtight process 13 applied to the surface of the portion 33 and the notch 33, the mixing of the first fluid 10 and the second fluid 11 can be reliably prevented.

なお、切り欠き部33は、複数個設けられても良い。しかし、切り欠き部33は、最小でも中央流路部材5の1つの縁部に1つ設けられる。また、切り欠き部33の全てに気密処理13が施される。   A plurality of notches 33 may be provided. However, at least one notch 33 is provided at one edge of the central flow passage member 5. Further, the airtight processing 13 is applied to all the notches 33.

切り欠き部33は、複数の流路板1が積層された伝熱体3が構成された後に、ノコギリ又はウォーターカッターなどを用いた切断工程によって切除されて良い。しかし、これに限られない。たとえば、積層前の流路板1あるいは1つの流路板1と1つの間隔板2とから構成された伝熱体3の単体の各層をカッター又はトムソンによる切断工程によって切除してからこれらを積層しても良い。いずれの工程を経ても、各層の切り欠き部33の位置は、熱交換素子14の正面方向Fから見て同一の箇所に形成され、流路板1の積層方向では揃っている。   The notch part 33 may be cut off by the cutting process using a saw, a water cutter, etc., after the heat transfer body 3 by which the several flow-path plate 1 was laminated | stacked is comprised. However, it is not limited to this. For example, each layer of the single heat transfer body 3 composed of the flow path plate 1 before lamination or one flow path plate 1 and one spacing plate 2 is cut by a cutter or a cutting process by Thomson and then laminated. You may. The positions of the notches 33 of the respective layers are formed at the same position as viewed from the front direction F of the heat exchange element 14 regardless of any process, and are aligned in the stacking direction of the flow path plate 1.

<熱交換素子14の動作>
図8は、本発明の実施の形態1に係る伝熱体3の単体における第1流体10の流れを示す説明図である。図9は、本発明の実施の形態1に係る伝熱体3の単体における第2流体11の流れを示す説明図である。図10は、本発明の実施の形態1に係る熱交換素子14内での第1流体10及び第2流体11の流れを示す図4のA−A線での断面図である。
<Operation of Heat Exchanger Element 14>
FIG. 8 is an explanatory view showing the flow of the first fluid 10 in a single body of the heat transfer body 3 according to Embodiment 1 of the present invention. FIG. 9 is an explanatory view showing the flow of the second fluid 11 in a single body of the heat transfer body 3 according to Embodiment 1 of the present invention. FIG. 10 is a cross-sectional view taken along line AA of FIG. 4 showing the flow of the first fluid 10 and the second fluid 11 in the heat exchange element 14 according to the first embodiment of the present invention.

図3に示すように、複数の流路板1を積層する際に、隣り合う流路板1が間隔板2を介して交互に接着されて積層される。これにより、1つの流路板1とそれに対向して隣り合う流路板1との間に、間隔板2が挟み込まれて流路となる空間が形成されている。図8に示すように、伝熱体3の単体には、第1側部流路部材6から流入し、中央流路部材5を経由し、第2側部流路部材7へと通じる第1流体10の第1流路が形成される。一方、図9に示すように、第1流路に対して流路板1を挟んだ伝熱体3の単体には、第2側部流路部材7から流入し、中央流路部材5を経由し、第1側部流路部材6へと通じる第2流体11の第2流路が形成される。   As shown in FIG. 3, when stacking a plurality of flow channel plates 1, adjacent flow channel plates 1 are alternately bonded via the spacer plates 2 and stacked. Thus, the space plate 2 is sandwiched between one flow passage plate 1 and the adjacent flow passage plate 1 to form a space serving as a flow passage. As shown in FIG. 8, a single heat transfer body 3 flows in from the first side flow passage member 6, passes through the central flow passage member 5, and leads to the second side flow passage member 7. A first flow path of fluid 10 is formed. On the other hand, as shown in FIG. 9, the second side flow path member 7 flows into the single body of the heat transfer body 3 sandwiching the flow path plate 1 with respect to the first flow path, and the central flow path member 5 is A second flow path of the second fluid 11 leading to the first side flow path member 6 is formed.

これら第1流路及び第2流路内に熱交換する第1流体10及び第2流体11を各層にそれぞれ交互に流すことにより、流路板1を通じて隣り合う層ごとに熱交換を行う。熱交換素子14は、室外Oの空気と室内Iの空気とを内部に流通させて熱交換する。熱交換を行うに際し、熱交換素子14は、室外Oの空気を室内Iに取り込む第1流路と、室内Iの空気を室外Oに出す第2流路とが形成される。第1流路には、室外Oから流入する空気である第1流体10が流通する。第2流路には、室内Iから流出する空気である第2流体11が流通する。   By alternately flowing the first fluid 10 and the second fluid 11 which exchange heat in the first flow path and the second flow path in each layer, heat exchange is performed for each adjacent layer through the flow path plate 1. The heat exchange element 14 causes the air outside the room O and the air inside the room I to flow inside for heat exchange. When heat exchange is performed, the heat exchange element 14 is formed with a first flow path for taking the air of the outdoor O into the room I and a second flow path for drawing the air of the room I to the outdoor O. A first fluid 10, which is air flowing from the outside O, flows through the first flow passage. A second fluid 11 which is air flowing out of the room I flows through the second flow path.

第1流体10は、流入口15から第1側部流路部材6内の第1流路を通り、中央流路部材5内の第1流路へと進み、第2側部流路部材7内の第1流路を通り、流出口16から排出される。一方、第2流体11は、流入口17から第2側部流路部材7内の第2流路を通り、中央流路部材5内の第2流路へと進み、第1側部流路部材6内の第2流路を通り、流出口18から排出される。   The first fluid 10 passes from the inflow port 15 through the first flow path in the first side flow path member 6 to the first flow path in the central flow path member 5, and the second side flow path member 7 It passes through the first flow path and is discharged from the outlet 16. On the other hand, the second fluid 11 passes from the inflow port 17 through the second flow passage in the second side flow passage member 7 to the second flow passage in the central flow passage member 5, and the first side flow passage It passes through the second flow passage in the member 6 and is discharged from the outlet 18.

第1流体10の流入口15と第2流体11の流入口17とは、中央流路部材5を挟んで反対側に配置されている。一方、第1流体10の流出口16と第2流体11の流出口18とは、中央流路部材5を挟んで反対側に配置されている。第1流体10の流入口15と第2流体11の流出口18とは、第1側部流路部材6と第2側部流路部材7とにわたる直線に対して線対称に第1側部流路部材6に形成されている。第1流体10の流出口16と第2流体11の流入口17とは、第1側部流路部材6と第2側部流路部材7とにわたる直線に対して線対称に第2側部流路部材7に形成されている。   The inlet 15 of the first fluid 10 and the inlet 17 of the second fluid 11 are disposed on opposite sides of the central flow channel member 5. On the other hand, the outlet 16 of the first fluid 10 and the outlet 18 of the second fluid 11 are disposed on opposite sides of the central flow channel member 5. The inlet 15 of the first fluid 10 and the outlet 18 of the second fluid 11 have a first side symmetrical with respect to a straight line between the first side passage member 6 and the second side passage member 7. The channel member 6 is formed. The outlet 16 of the first fluid 10 and the inlet 17 of the second fluid 11 have a second side symmetrical with respect to a straight line extending between the first side passage member 6 and the second side passage member 7. The channel member 7 is formed.

このため、中央流路部材5内では、第1流体10の流れ方向と第2流体11の流れ方向とが逆方向となる。この様子を図10の断面図を用いて説明すると、1つの伝熱体3の単体は、流路板1と間隔板2とで囲まれた1層に形成された複数の第1流路を有する。これらの第1流路内を流れる第1流体10の向きは、全て同じ方向であり、図10では紙面手前から紙面奥方向へと流れる。   For this reason, in the central flow passage member 5, the flow direction of the first fluid 10 and the flow direction of the second fluid 11 are opposite to each other. This situation will be described with reference to the cross-sectional view of FIG. 10. A single heat transfer body 3 has a plurality of first flow paths formed in one layer surrounded by the flow path plate 1 and the space plate 2. Have. The directions of the first fluid 10 flowing in the first flow paths are all the same, and in FIG. 10, flow from the front side to the back side of the paper surface.

一方、上記伝熱体3の単体に連続して重なる伝熱体3の単体も、同じく流路板1と間隔板2とで囲まれた1層に形成された複数の第2流路を有する。これらの第2流路内を流れる第2流体11の向きは、全て同じ向きであり、図10では紙面奥から紙面手前方向へと流れる。   On the other hand, the single heat transfer body 3 continuously overlapping the single heat transfer body 3 also has a plurality of second flow paths formed in one layer surrounded by the flow path plate 1 and the space plate 2. . The directions of the second fluid 11 flowing in the second flow paths are all the same, and in FIG. 10, flow from the back to the front of the paper.

このように、第1流体10と第2流体11とが交互に流通する積層された各層の第1流体10又は第2流体11の流れが交互に逆方向であり、第1流体10と第2流体11とが流路板1を挟んで対面して全熱交換が行われる。これにより、熱交換素子14は、高い全熱交換効率が達成できる。   Thus, the flow of the first fluid 10 or the second fluid 11 in the stacked layers in which the first fluid 10 and the second fluid 11 flow alternately is alternately opposite to each other, and the first fluid 10 and the second fluid 11 are alternately The fluid 11 and the flow channel plate 1 are opposed to each other to perform total heat exchange. Thereby, the heat exchange element 14 can achieve high total heat exchange efficiency.

<従来例の熱交換素子14>
図11は、従来例の熱交換素子14を示す斜視図である。図11に示すように、従来例の熱交換素子14には、切り欠き部33が形成されず、気密処理13が施されていない。
<Heat exchange element 14 of the conventional example>
FIG. 11 is a perspective view showing the heat exchange element 14 of the conventional example. As shown in FIG. 11, in the heat exchange element 14 of the conventional example, the notch 33 is not formed, and the airtight process 13 is not performed.

<従来例の熱交換素子14の課題>
図12は、従来例の熱交換素子14における流路の破綻の様子を示す説明図である。図12では、第1側部流路部材6における中央流路部材5との接合箇所にて、第2流路が破綻した状態を示す。図12では、第1流路は、第1流体10が紙面手前から紙面奥方向へ流れる。一方、図12では、第2流路は、第2流体11が紙面右方から紙面左方へ流れる。つまり、第1側部流路部材6では、図8及び図9に示すように、第1流体10が流入口15から中央流路部材5に流れ、第2流体11が第1流体10と逆方向かつ交差方向である、中央流路部材5から流出口18に流れる。第1流体10と第2流体11とは、流路板1を介して分断された第1流路と第2流路とをそれぞれ流通し、本来は第1流体10と第2流体11とが混合されることはない。
<Problems of heat exchange element 14 of the conventional example>
FIG. 12 is an explanatory view showing the failure of the flow passage in the heat exchange element 14 of the conventional example. FIG. 12 shows a state in which the second flow passage is broken at the junction of the first side flow passage member 6 with the central flow passage member 5. In FIG. 12, in the first flow path, the first fluid 10 flows from the front side to the back side of the drawing sheet. On the other hand, in FIG. 12, in the second flow path, the second fluid 11 flows from the right side to the left side of the drawing. That is, in the first side channel member 6, as shown in FIGS. 8 and 9, the first fluid 10 flows from the inlet 15 to the central channel member 5, and the second fluid 11 is reverse to the first fluid 10 It flows from the central channel member 5 to the outlet 18 which is a direction and a cross direction. The first fluid 10 and the second fluid 11 respectively flow through the first and second channels divided through the channel plate 1, and the first fluid 10 and the second fluid 11 are originally It will not be mixed.

図12に示すように、経年使用に伴う伝熱体3での反りが生じた流路板1と間隔板2との密着状態の剥がれが生じると、流路板1と間隔板2との間に、反りが生じた流路板1と間隔板2とが離間した流入隙間19が発生する。ここでは、第2流路に流入隙間19が発生した場合を述べる。流入隙間19が発生すると、中央流路部材5と第1側部流路部材6との間で本来平坦に繋がって同じ幅で隣り合う流路板1同士の間の第2流路の間隔が第1側部流路部材6にて大きくなる。これにより、中央流路部材5の第1流路と流入隙間19を有する第1側部流路部材6の第2流路とが繋がる。そして、中央流路部材5の第1流体10が第1側部流路部材6の第2流路に侵入できる状態となる。あるいは、第1側部流路部材6の第2流体11が中央流路部材5の第1流路に侵入できる状態となる。このように、間隔板2による第1流路及び第2流路の相互間隔の規制が不十分となる。それゆえ、中央流路部材5と第1側部流路部材6とのそれぞれの本来平坦に繋がるべき流路板1同士の位置ずれ箇所から第1流体10と第2流体11との混合が生じる。   As shown in FIG. 12, when peeling of the adhesion state between the flow passage plate 1 and the space plate 2 in which warping occurs in the heat transfer member 3 due to use over time occurs, between the flow passage plate 1 and the space plate 2 In addition, an inflow gap 19 is generated in which the flow path plate 1 in which the warpage has occurred and the spacing plate 2 are separated. Here, the case where the inflow gap 19 is generated in the second flow path will be described. When the inflow gap 19 is generated, the distance between the second flow paths between the flow path plates 1 adjacent to each other with the same width is originally connected flatly between the central flow path member 5 and the first side flow path member 6. The first side flow path member 6 is enlarged. Thereby, the first flow passage of the central flow passage member 5 and the second flow passage of the first side flow passage member 6 having the inflow gap 19 are connected. Then, the first fluid 10 of the central flow passage member 5 can enter the second flow passage of the first side flow passage member 6. Alternatively, the second fluid 11 of the first side flow passage member 6 can enter the first flow passage of the central flow passage member 5. Thus, the restriction of the distance between the first flow path and the second flow path by the spacer plate 2 is insufficient. Therefore, the mixing of the first fluid 10 and the second fluid 11 occurs from the position shift point of the flow channel plates 1 which should be connected with each other between the central flow channel member 5 and the first side flow channel member 6 in principle. .

<実施の形態1での従来例の課題の解決方法>
実施の形態1では、熱交換素子14に切り欠き部33が形成されている。このため、中央流路部材5と第1側部流路部材6及び第2側部流路部材7それぞれとの接合箇所の端部の流路は、切り欠き部33及び気密処理13にて第1流体10及び第2流体11の流通が予め遮断されている。したがって、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部にて、反りが生じた流路板1と間隔板2とが離間した流入隙間19が発生しても、中央流路部材5と第1側部流路部材6又は第2側部流路部材7とのそれぞれの本来平坦に繋がるべき流路板1同士の位置ずれ箇所からの第1流体10及び第2流体11の混合が効果的に遮断できる。よって、実施の形態1の熱交換素子14では、経年劣化しても第1流体10及び第2流体11の換気機能と熱交換機能とが効果的に発揮できる。
<Method for Solving Problem of Conventional Example in Embodiment 1>
In the first embodiment, the notch 33 is formed in the heat exchange element 14. For this reason, the flow paths of the end portions of the joint portion between the central flow path member 5 and the first side flow path member 6 and the second side flow path member 7 are formed by the notches 33 and the airtight process 13. The flow of the first fluid 10 and the second fluid 11 is previously shut off. Therefore, at the end of the joint between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7 respectively, the flow passage plate 1 and the space plate 2 in which the warpage occurs are Even if the separated inflow gap 19 occurs, the positions of the flow path plates 1 which should be connected with each other in the respective flats of the central flow path member 5 and the first side flow path member 6 or the second side flow path member 7 The mixing of the first fluid 10 and the second fluid 11 from the displacement point can be effectively shut off. Therefore, in the heat exchange element 14 according to the first embodiment, the ventilation function and the heat exchange function of the first fluid 10 and the second fluid 11 can be effectively exhibited even when aged deterioration occurs.

<変形例1>
図13は、本発明の実施の形態1の変形例1に係る熱交換素子14を示す斜視図である。ここでは、上記実施の形態と同様な事項を省略し、その特徴部分のみ説明する。
<Modification 1>
FIG. 13 is a perspective view showing a heat exchange element 14 according to Modification 1 of Embodiment 1 of the present invention. Here, the same matters as those of the above-described embodiment are omitted, and only their characteristic portions will be described.

図13に示すように、熱交換素子14は、切り欠き部33に挿通されるレール部材34を備える。レール部材34は、あり溝状の切り欠き部33に熱交換素子14の流路板1の積層方向の全体にわたって挿通されている。切り欠き部33が1対形成されているので、レール部材34も1対設けられている。切り欠き部33の表面には、気密処理13が施されている。   As shown in FIG. 13, the heat exchange element 14 includes a rail member 34 inserted into the notch 33. The rail member 34 is inserted through the dovetail-shaped notched portion 33 over the entire stacking direction of the flow passage plate 1 of the heat exchange element 14. Since one pair of notch portions 33 is formed, one pair of rail members 34 is also provided. An airtight process 13 is applied to the surface of the notch 33.

レール部材34は、金属又は樹脂で構成されている。このため、レール部材34は、環境の温湿度などの変化による体積変化が小さい。レール部材34は、切り欠き部33のあり溝形状と同様な断面台形形状の四角柱形状である。レール部材34は、熱交換素子14の流路板1の積層方向の長さよりも長く、熱交換素子14の両端の流路板1から両端部を突出させている。つまり、レール部材34は、熱交換素子14から両端部を飛び出させている。   The rail member 34 is made of metal or resin. For this reason, the rail member 34 has a small volume change due to changes in temperature and humidity of the environment. The rail member 34 is a quadrangular prism having a trapezoidal cross section similar to the dovetail groove of the notch 33. The rail member 34 is longer than the length of the heat exchange element 14 in the stacking direction of the flow path plate 1, and both ends of the rail member 34 project from the flow path plate 1 at both ends of the heat exchange element 14. That is, the rail members 34 project both ends from the heat exchange element 14.

レール部材34は、熱交換素子14の流路板1の積層方向の一端から切り欠き部33に挿入される。このとき、レール部材34は、切り欠き部33のあり溝形状の断面台形の斜辺部の面によって切り欠き部33からの離脱が規制される。このため、中央流路部材5の流路板1の端の上方U又は下方Dの方向には抜けない。   The rail member 34 is inserted into the notch 33 from one end of the flow passage plate 1 of the heat exchange element 14 in the stacking direction. At this time, the rail member 34 is restricted from being separated from the notch 33 by the surface of the oblique side of the dovetail groove-shaped trapezoidal cross section of the notch 33. Therefore, it does not come off in the direction of the upper U or the lower D of the end of the flow channel plate 1 of the central flow channel member 5.

熱交換素子14は、レール部材34を支持する支持材35を備える。支持材35は、1対のレール部材34のそれぞれの両端部を熱交換素子14の流路板1の平面部を跨いで繋げている。支持材35は、金属又は樹脂から構成されている。支持材35は、環境の温湿度などの変化による体積変化が小さい。支持材35とレール部材34との接触部は、面で触れており、レール部材34に中央流路部材5の中心方向へと力がかかった際に、支持材35が触れた面で支える構造である。   The heat exchange element 14 includes a support 35 that supports the rail member 34. The support member 35 connects the both end portions of each of the pair of rail members 34 across the plane portion of the flow passage plate 1 of the heat exchange element 14. The support 35 is made of metal or resin. The support 35 has a small volume change due to changes in temperature and humidity of the environment. The contact portion between the supporting member 35 and the rail member 34 is in contact with the surface, and when the force is applied to the rail member 34 toward the center of the central flow passage member 5, the supporting member 35 is supported by the touching surface. It is.

このように、レール部材34及び支持材35を備えることにより、熱交換素子14の経年劣化により、中央流路部材5の中心方向への変形が防止でき、製品寿命が延長できる。具体的には、中央流路部材5が中心方向へ変形する際に、中央流路部材5の切り欠き部33からレール部材34に中央流路部材5の中心方向への力がかかる。その力により、レール部材34が中央流路部材5の中心方向に移動しようとするが、支持材35が支持してレール部材34の移動を規制する。これにより、レール部材34の移動が生じず、熱交換素子14の変形が生じない。   Thus, by providing the rail member 34 and the support member 35, it is possible to prevent the deformation of the central flow passage member 5 in the central direction due to the aged deterioration of the heat exchange element 14, and to extend the product life. Specifically, when the central flow passage member 5 is deformed in the central direction, a force in the central direction of the central flow passage member 5 is applied to the rail member 34 from the notches 33 of the central flow passage member 5. The force causes the rail member 34 to move in the central direction of the central flow passage member 5, but the support member 35 supports and regulates the movement of the rail member 34. Thereby, the movement of the rail member 34 does not occur, and the deformation of the heat exchange element 14 does not occur.

なお、レール部材34の形状は、中央流路部材5の端部の方向よりも中心方向に近い位置にて、中央流路部材5内を流れる流路と平行となる方向に長い形状であれば、断面台形だけでなく、断面多角形又は断面略円形などでも良い。   If the shape of the rail member 34 is a shape that is long in the direction parallel to the flow path flowing in the central flow path member 5 at a position closer to the central direction than the direction of the end of the central flow path member 5 In addition to the trapezoidal cross section, it may be a polygonal cross section or a substantially circular cross section.

<変形例2>
図14は、本発明の実施の形態1の変形例2に係る熱交換素子14を示す斜視図である。ここでは、上記実施の形態などと同様な事項を省略し、その特徴部分のみ説明する。図14に示すように、熱交換素子14は、当該熱交換素子14を嵌め込む枠体36を備える。枠体36には、レール部材34が切り欠き部33とともに挿通された凹部37が形成されている。切り欠き部33の表面には、気密処理13が施されている。
<Modification 2>
FIG. 14 is a perspective view showing a heat exchange element 14 according to the second modification of the first embodiment of the present invention. Here, the same matters as those in the above-described embodiment and the like are omitted, and only the characteristic parts will be described. As shown in FIG. 14, the heat exchange element 14 includes a frame 36 in which the heat exchange element 14 is fitted. The frame 36 is formed with a recess 37 through which the rail member 34 is inserted together with the notch 33. An airtight process 13 is applied to the surface of the notch 33.

レール部材34は、切り欠き部33に挿通される断面多角形形状に加え、別の断面多角形形状が合わされた形状を有する。レール部材34の双方の断面多角形状の間には、くびれ部が設けられている。レール部材34の一例として断面台形形状が合わされた形状の場合には、断面台形の短辺部分が合わさり、長辺部分である端部よりも短い部分が存在する。この短い部分がくびれ部になる。   The rail member 34 has a shape in which another cross-sectional polygonal shape is combined in addition to the cross-sectional polygonal shape inserted into the notch portion 33. A narrow portion is provided between the cross sectional polygonal shapes of both of the rail members 34. In the case where the cross-sectional trapezoidal shape is combined as an example of the rail member 34, the short side portion of the cross-sectional trapezoidal shape is combined, and there is a portion shorter than the end portion which is the long side portion. This short part becomes a constriction.

レール部材34のくびれ部を挟んで、熱交換素子14の切り欠き部33に挿通されている側を第1多角形部と称し、逆側に突き出た部分を第2多角形部と称する。   The side of the rail member 34, which is inserted through the notch 33 of the heat exchange element 14, is referred to as a first polygonal portion, and the portion protruding to the opposite side is referred to as a second polygonal portion.

熱交換素子14には、枠体36が設けられている。枠体36は、熱交換素子14が枠体36内に配置される際に、熱交換素子14を案内する。枠体36は、熱交換素子14が挿入される方向に沿って設けられた箱部材である。   The heat exchange element 14 is provided with a frame 36. The frame 36 guides the heat exchange element 14 when the heat exchange element 14 is disposed in the frame 36. The frame 36 is a box member provided along the direction in which the heat exchange element 14 is inserted.

枠体36には、レール部材34の第2多角形部と同形状の凹部37が形成されている。熱交換素子14が枠体36に挿入され、レール部材34が熱交換素子14の切り欠き部33及び凹部37の双方に挿通される。これにより、熱交換素子14が枠体36に固定される。このように固定された熱交換素子14では、当該熱交換素子14を変形する力が生じても、熱交換素子14が枠体36に保持される。このため、熱交換素子14の変形が抑制できる。   The frame body 36 is formed with a recess 37 having the same shape as the second polygonal portion of the rail member 34. The heat exchange element 14 is inserted into the frame 36, and the rail member 34 is inserted into both the notch 33 and the recess 37 of the heat exchange element 14. Thus, the heat exchange element 14 is fixed to the frame 36. In the heat exchange element 14 thus fixed, the heat exchange element 14 is held by the frame 36 even if a force for deforming the heat exchange element 14 is generated. Therefore, deformation of the heat exchange element 14 can be suppressed.

<変形例3>
図15は、本発明の実施の形態1の変形例3に係る熱交換素子14を示す斜視図である。ここでは、上記実施の形態などと同様な事項を省略し、その特徴部分のみ説明する。図15に示すように、熱交換素子14は、当該熱交換素子14を嵌め込む枠体36を備える。枠体36には、レール部材34が切り欠き部33とともに挿通された凹部37が形成されている。切り欠き部33の表面には、気密処理13が施されている。
<Modification 3>
FIG. 15 is a perspective view showing a heat exchange element 14 according to Modification 3 of Embodiment 1 of the present invention. Here, the same matters as those in the above-described embodiment and the like are omitted, and only the characteristic parts will be described. As shown in FIG. 15, the heat exchange element 14 includes a frame 36 in which the heat exchange element 14 is fitted. The frame 36 is formed with a recess 37 through which the rail member 34 is inserted together with the notch 33. An airtight process 13 is applied to the surface of the notch 33.

熱交換素子14は、1対の切り欠き部33の形状及び枠体36の1対の凹部37の形状が対となるもの同士でそれぞれ違う形状である。1対のレール部材34は、それぞれ対となる切り欠き部33及び凹部37の形状の組み合わせと同形状である。しかし、1対のレール部材34同士は、異なる形状である。   The heat exchange element 14 has a shape in which the shapes of the pair of notches 33 and the shape of the pair of recesses 37 of the frame 36 are different from each other. The pair of rail members 34 has the same shape as the combination of the shapes of the notches 33 and the recesses 37 respectively. However, the pair of rail members 34 have different shapes.

熱交換素子14の1対の縁部にそれぞれ形成される切り欠き部33は、それぞれの縁部にて異形状である。この異形状の切り欠き部33には、対応した形状のレール部材34が挿通される。熱交換素子14に挿通されたレール部材34は、挿通時に枠体36に形成された凹部37にも挿通される。   The notches 33 respectively formed on the pair of edges of the heat exchange element 14 have different shapes at each edge. A rail member 34 having a corresponding shape is inserted through the differently shaped notch 33. The rail member 34 inserted into the heat exchange element 14 is also inserted into the recess 37 formed in the frame 36 at the time of insertion.

このとき、熱交換素子14の枠体36への設置向きが正しくないと、熱交換素子14にレール部材34が挿通できない。これにより、熱交換素子14の枠体36への設置方向が規定され、誤った向きでの取り付けが防止できる。   At this time, if the installation direction of the heat exchange element 14 on the frame 36 is not correct, the rail member 34 can not be inserted into the heat exchange element 14. Thereby, the installation direction of the heat exchange element 14 to the frame 36 is defined, and the installation in the wrong direction can be prevented.

<変形例4>
図16は、本発明の実施の形態1の変形例4に係る熱交換素子14を示す斜視図である。図17は、本発明の実施の形態1の変形例4に係る熱交換素子14を図16の矢視C方向から見て示す下面図である。ここでは、上記実施の形態などと同様な事項を省略し、その特徴部分のみ説明する。
<Modification 4>
FIG. 16 is a perspective view showing a heat exchange element 14 according to Modification 4 of Embodiment 1 of the present invention. FIG. 17 is a bottom view of the heat exchange element 14 according to the fourth modification of the first embodiment of the present invention as viewed in the direction of arrow C in FIG. Here, the same matters as those in the above-described embodiment and the like are omitted, and only the characteristic parts will be described.

図16及び図17に示すように、切り欠き部33は、熱交換素子14の流路板1の積層方向に対して傾斜して形成されている。これにより、切り欠き部33が流路板1の積層方向に沿って形成できない場合などにでも、切り欠き部33が形成できる。切り欠き部33の表面には、気密処理13が施されている。   As shown in FIG. 16 and FIG. 17, the cutaway portion 33 is formed to be inclined with respect to the stacking direction of the flow passage plate 1 of the heat exchange element 14. Thereby, even when the notch 33 can not be formed along the stacking direction of the flow path plate 1, the notch 33 can be formed. An airtight process 13 is applied to the surface of the notch 33.

<変形例5>
図18は、本発明の実施の形態1の変形例5に係る熱交換素子14を示す斜視図である。ここでは、上記実施の形態などと同様な事項を省略し、その特徴部分のみ説明する。図18に示すように、切り欠き部33は、第1側部流路部材6及び第2側部流路部材7に設けられても良い。切り欠き部33の表面には、気密処理13が施されている。
<Modification 5>
FIG. 18 is a perspective view showing a heat exchange element 14 according to Modification 5 of Embodiment 1 of the present invention. Here, the same matters as those in the above-described embodiment and the like are omitted, and only the characteristic parts will be described. As shown in FIG. 18, the notches 33 may be provided in the first side passage member 6 and the second side passage member 7. An airtight process 13 is applied to the surface of the notch 33.

切り欠き部33は、第1側部流路部材6及び第2側部流路部材7における中央流路部材5との接合箇所に隣接して形成されている。切り欠き部33が第1側部流路部材6及び第2側部流路部材7における中央流路部材5との接合箇所に隣接するので、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部に剥がれが生じた場合に、切り欠き部33によって剥がれる端部の流路が予め遮断され、第1流体10及び第2流体11の混合が防止される。   The cutaway portion 33 is formed adjacent to a junction of the first side flow passage member 6 and the second side flow passage member 7 with the central flow passage member 5. Since the cutaway portion 33 is adjacent to the junction of the first side flow passage member 6 and the second side flow passage member 7 with the central flow passage member 5, the central flow passage member 5 and the first side flow passage member When peeling occurs at the end of the junction with each of the 6 or the second side flow passage members 7, the flow passage of the peeling off end is cut off in advance by the notch 33, and the first fluid 10 and the second fluid 11 mixing is prevented.

<実施の形態1の効果>
実施の形態1によれば、熱交換素子14は、複数の流路板1が積層された中央流路部材5を備える。熱交換素子14は、中央流路部材5の両側にそれぞれ接合された第1側部流路部材6及び第2側部流路部材7を備える。熱交換素子14は、積層方向に隣り合う流路板1同士の間を交互に第1流体10と第2流体11とが流通する流路に形成され、流路板1を介して第1流体10と第2流体11とが熱交換する。流路板1の平面方向における積層された流路板1の縁部に、流路の一部を遮断する切り欠き部33が形成されている。切り欠き部33の表面には、気密処理13が施されている。
<Effect of Embodiment 1>
According to the first embodiment, the heat exchange element 14 includes the central flow passage member 5 in which the plurality of flow passage plates 1 are stacked. The heat exchange element 14 includes a first side flow passage member 6 and a second side flow passage member 7 respectively joined to both sides of the central flow passage member 5. The heat exchange element 14 is formed in a flow path through which the first fluid 10 and the second fluid 11 flow alternately between the flow path plates 1 adjacent in the stacking direction, and the first fluid via the flow path plate 1 10 and the second fluid 11 exchange heat. At the edge of the stacked flow channel plate 1 in the planar direction of the flow channel plate 1, a notch 33 is formed which blocks part of the flow channel. An airtight process 13 is applied to the surface of the notch 33.

この構成によれば、中央流路部材5と第1側部流路部材6及び第2側部流路部材7それぞれとの接合箇所の端部の流路は、切り欠き部33及び気密処理13にて第1流体10及び第2流体11の流通が予め遮断されている。したがって、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が確実に防止できる。よって、熱交換素子14では、経年劣化しても第1流体10及び第2流体11の換気機能と熱交換機能とが確実に発揮できる。   According to this configuration, the flow path at the end of the joining portion between the central flow path member 5 and the first side flow path member 6 and the second side flow path member 7 has the notch 33 and the airtight process 13. The flow of the first fluid 10 and the second fluid 11 is previously shut off. Therefore, when peeling occurs at the end of the joint between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7, respectively, the first fluid 10 and the second fluid 11 Mixing can be reliably prevented. Therefore, in the heat exchange element 14, the ventilation function and the heat exchange function of the first fluid 10 and the second fluid 11 can be reliably exhibited even when aged deterioration occurs.

実施の形態1によれば、気密処理13は、粘性を有する気密処理剤を用いて施されている。   According to the first embodiment, the airtight process 13 is performed using an airtight process agent having viscosity.

この構成によれば、気密処理剤が粘性を有することにより、気密処理剤の塗布後に気密処理剤が切り欠き部33の内部に押し込んで埋め込まれ、切り欠き部33の気密処理13がより確実に施せる。   According to this configuration, the airtightness processing agent has a viscosity, so that the airtightness treatment agent is pressed into the inside of the notch 33 and embedded after the application of the airtightness agent, and the airtightness treatment 13 of the notch 33 is more reliably performed. It can be applied.

実施の形態1によれば、気密処理13は、熱発泡性気密処理剤を用いて施されている。   According to the first embodiment, the sealing process 13 is performed using a thermally foamable sealing agent.

この構成によれば、気密処理剤が熱発泡性を有することにより、気密処理剤の塗布後に気密処理剤が加熱されて発泡して切り欠き部33の内部に埋め込まれ、切り欠き部33の気密処理13がより確実に施せる。   According to this configuration, the airtightness treating agent is thermally foamable, so that the airtightness treating agent is heated and foamed after application of the airtightness treating agent, and is embedded in the notch 33 and the airtightness of the notch 33 Process 13 can be applied more reliably.

実施の形態1によれば、切り欠き部33は、中央流路部材5の縁部に形成されている。   According to the first embodiment, the notches 33 are formed at the edge of the central flow passage member 5.

たとえば第1側部流路部材6に切り欠き部33が形成された場合には、中央流路部材5と第2側部流路部材7との接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が生じる。この構成によれば、切り欠き部33が中央流路部材5の縁部に形成されているので、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとのどちらの接合箇所の端部に剥がれが生じた場合でも、第1流体10及び第2流体11の混合が防止できる。このように、切り欠き部33の製造個数が削減でき、熱交換素子14の製造が容易になる。   For example, when the cutaway portion 33 is formed in the first side flow passage member 6, peeling occurs at the end of the junction between the central flow passage member 5 and the second side flow passage member 7. , Mixing of the first fluid 10 and the second fluid 11 occurs. According to this configuration, since the notch 33 is formed at the edge of the central flow passage member 5, the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7 respectively Even if peeling occurs at the end of either of the bonding points, mixing of the first fluid 10 and the second fluid 11 can be prevented. Thus, the manufacturing number of the notches 33 can be reduced, and the manufacture of the heat exchange element 14 becomes easy.

実施の形態1によれば、切り欠き部33は、第1側部流路部材6及び第2側部流路部材7における中央流路部材5との接合箇所の縁部に形成されている。   According to the first embodiment, the cutaway portion 33 is formed at the edge of the joint portion of the first side flow passage member 6 and the second side flow passage member 7 with the central flow passage member 5.

この構成によれば、第1側部流路部材6における中央流路部材5との接合箇所の縁部に形成された切り欠き部33及び気密処理13は、中央流路部材5と第1側部流路部材6との接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が防止できる。第2側部流路部材7における中央流路部材5との接合箇所の縁部に形成された切り欠き部33及び気密処理13は、中央流路部材5と第2側部流路部材7との接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が防止できる。このように、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が確実に防止できる。   According to this configuration, the notch 33 and the airtight process 13 formed at the edge of the joint portion of the first side flow passage member 6 with the central flow passage member 5 are the central flow passage member 5 and the first side. When peeling occurs at the end of the joint portion with the partial flow passage member 6, the mixing of the first fluid 10 and the second fluid 11 can be prevented. The notch 33 and the airtight process 13 formed at the edge of the joint portion of the second side flow passage member 7 with the central flow passage member 5 are the central flow passage member 5 and the second side flow passage member 7. When peeling occurs at the end of the joint portion, mixing of the first fluid 10 and the second fluid 11 can be prevented. Thus, when peeling occurs at the end of the junction between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7, respectively, the first fluid 10 and the second fluid 10 and the second The mixing of the fluid 11 can be reliably prevented.

実施の形態1によれば、切り欠き部33は、積層された流路板1の全部に貫通して形成されている。   According to the first embodiment, the cutaway portion 33 is formed to penetrate all of the stacked flow path plates 1.

この構成によれば、1つの切り欠き部33は、積層された流路板1の全部にわたって第1流体10及び第2流体11の混合が確実に防止できる。また、切り欠き部33の形状が単純化でき、熱交換素子14の製造が容易である。   According to this configuration, one notch portion 33 can reliably prevent the mixing of the first fluid 10 and the second fluid 11 over the entire stacked flow path plate 1. Moreover, the shape of the notch 33 can be simplified, and the manufacture of the heat exchange element 14 is easy.

実施の形態1によれば、切り欠き部33は、流路板1の平面方向に対して直交した流路板1の積層方向に沿って形成されている。   According to the first embodiment, the notches 33 are formed along the stacking direction of the flow path plate 1 orthogonal to the planar direction of the flow path plate 1.

この構成によれば、切り欠き部33の形状が単純化でき、熱交換素子14の製造が容易である。   According to this configuration, the shape of the notches 33 can be simplified, and the heat exchange element 14 can be easily manufactured.

実施の形態1によれば、切り欠き部33は、流路板1の積層方向に対して傾斜して形成されている。   According to the first embodiment, the notch 33 is formed to be inclined with respect to the stacking direction of the flow path plate 1.

この構成によれば、切り欠き部33が流路板1の積層方向に沿って形成できない場合などにでも、切り欠き部33が形成できる。   According to this configuration, even when the cutaway portion 33 can not be formed along the stacking direction of the flow path plate 1, the cutaway portion 33 can be formed.

実施の形態1によれば、切り欠き部33における流路板1の平面方向の幅は、流路板1の中心部に向かって広くなる。   According to the first embodiment, the width in the planar direction of the flow channel plate 1 in the notch 33 becomes wider toward the central portion of the flow channel plate 1.

この構成によれば、切り欠き部33にレール部材34を挿通した場合に、レール部材34が外側に抜け難くなる。   According to this configuration, when the rail member 34 is inserted into the notch 33, the rail member 34 is unlikely to come off the outer side.

実施の形態1によれば、熱交換素子14は、切り欠き部33に挿通されるレール部材34を備える。   According to the first embodiment, the heat exchange element 14 includes the rail member 34 which is inserted into the notch 33.

この構成によれば、熱交換素子14が切り欠き部33を有すると、熱交換素子14が変形に弱くなるが、レール部材34に支えられることにより、熱交換素子14の変形が抑制できる。   According to this configuration, when the heat exchange element 14 has the notches 33, the heat exchange element 14 becomes weak in deformation, but by being supported by the rail member 34, the deformation of the heat exchange element 14 can be suppressed.

実施の形態1によれば、熱交換素子14は、熱交換素子14を嵌め込む枠体36を備える。枠体36には、レール部材34が切り欠き部33とともに挿通された凹部37が形成されている。   According to the first embodiment, the heat exchange element 14 includes the frame 36 in which the heat exchange element 14 is fitted. The frame 36 is formed with a recess 37 through which the rail member 34 is inserted together with the notch 33.

この構成によれば、切り欠き部33とともに枠体36の凹部37にレール部材34を挿通した場合に、レール部材34によって熱交換素子14が枠体36に確実に固定できる。   According to this configuration, when the rail member 34 is inserted into the recess 33 of the frame 36 together with the notch 33, the heat exchange element 14 can be reliably fixed to the frame 36 by the rail member 34.

実施の形態1によれば、切り欠き部33は、流路板1の平面方向における積層された流路板1の対向する1対の縁部にそれぞれ形成されている。   According to the first embodiment, the notches 33 are respectively formed at a pair of opposing edge portions of the stacked flow channel plates 1 in the planar direction of the flow channel plate 1.

この構成によれば、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の1対の縁部の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が確実に防止できる。   According to this configuration, when peeling occurs at the end of the pair of edges of the joint between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7 respectively. The mixing of the first fluid 10 and the second fluid 11 can be reliably prevented.

実施の形態1によれば、1対の縁部にそれぞれ形成される切り欠き部33は、同形状である。   According to the first embodiment, the notches 33 respectively formed in the pair of edges have the same shape.

この構成によれば、切り欠き部33の形状が単純化でき、熱交換素子14の製造が容易である。また、熱交換素子14の左右上下の形状が同じにでき、熱交換換気装置20に搭載する際の方向が規定されず、搭載が容易になる。   According to this configuration, the shape of the notches 33 can be simplified, and the heat exchange element 14 can be easily manufactured. Further, the left, right, upper and lower shapes of the heat exchange element 14 can be made the same, and the direction in which the heat exchange element 14 is mounted on the heat exchange ventilator 20 is not defined, and the mounting becomes easy.

実施の形態1によれば、1対の縁部にそれぞれ形成される切り欠き部33は、それぞれの縁部にて異形状である。   According to the first embodiment, the notches 33 respectively formed in the pair of edges have different shapes at each edge.

この構成によれば、切り欠き部33の形状が異なることにより、熱交換素子14の左右上下の見分けがつき、熱交換換気装置20に搭載する際の方向が確実に規定できる。   According to this configuration, the left and right upper and lower parts of the heat exchange element 14 can be distinguished by the difference in the shape of the cutaway part 33, and the direction at the time of mounting on the heat exchange ventilator 20 can be specified with certainty.

実施の形態1によれば、中央流路部材5と第1側部流路部材6及び第2側部流路部材7のそれぞれとが接合された接合箇所には、密封部材としての第1接合テープ8及び第2接合テープ9が設けられている。   According to the first embodiment, the first joint as the sealing member is provided at the joint where the central flow passage member 5 is joined to each of the first side flow passage member 6 and the second side flow passage member 7. A tape 8 and a second bonding tape 9 are provided.

この構成によれば、中央流路部材5と第1側部流路部材6及び第2側部流路部材7のそれぞれとが接合された接合箇所が第1接合テープ8及び第2接合テープ9によって密封できる。   According to this configuration, the joint portion where the central flow passage member 5 is joined to each of the first side flow passage member 6 and the second side flow passage member 7 is the first bonding tape 8 and the second bonding tape 9. Can be sealed.

実施の形態1によれば、熱交換換気装置20は、上記の熱交換素子14を備え、室内Iと室外Oとの空気を換気しつつ熱交換を行う。   According to the first embodiment, the heat exchange ventilator 20 includes the heat exchange element 14 described above, and performs heat exchange while ventilating the air between the room I and the room O.

この構成によれば、熱交換素子14を備える熱交換換気装置20では、中央流路部材5と第1側部流路部材6又は第2側部流路部材7それぞれとの接合箇所の端部に剥がれが生じた場合に、第1流体10及び第2流体11の混合が確実に防止できる。   According to this configuration, in the heat exchange ventilator 20 provided with the heat exchange element 14, the end of the joint between the central flow passage member 5 and the first side flow passage member 6 or the second side flow passage member 7. In the case where peeling occurs, mixing of the first fluid 10 and the second fluid 11 can be reliably prevented.

1 流路板、2 間隔板、3 伝熱体、5 中央流路部材、6 第1側部流路部材、7 第2側部流路部材、8 第1接合テープ、9 第2接合テープ、10 第1流体、11 第2流体、13 気密処理、14 熱交換素子、15 流入口、16 流出口、17 流入口、18 流出口、19 流入隙間、20 熱交換換気装置、21 排気ファン、22 給気ファン、25 外気ダクト、26 給気ダクト、27 還気ダクト、28 排気ダクト、29 室外吸気口、30 室外排気口、31 室内給気口、32 室内排気口、33 切り欠き部、34 レール部材、35 支持材、36 枠体、37 凹部。   DESCRIPTION OF SYMBOLS 1 flow path plate, 2 space | interval plate, 3 heat-transfer body, 5 center flow path member, 6 1st side flow path member, 7 2nd side flow path member, 8 1st bonding tape, 9 2nd bonding tape, 10 1st fluid, 11 2nd fluid, 13 airtight process, 14 heat exchange element, 15 inlet, 16 outlet, 17 inlet, 18 outlet, 19 inlet gap, 20 heat exchange ventilator, 21 exhaust fan, 22 Air supply fan, 25 Outside air duct, 26 Air supply duct, 27 return air duct, 28 exhaust duct, 29 outdoor air intake, 30 outdoor air exhaust, 31 indoor air supply, 32 indoor air exhaust, 33 notches, 34 rails Members, 35 supports, 36 frames, 37 recesses.

Claims (16)

複数の流路板が積層された中央流路部材と、
前記中央流路部材の両側にそれぞれ接合された第1側部流路部材及び第2側部流路部材と、
を備え、
積層方向に隣り合う前記流路板同士の間を交互に第1流体と第2流体とが流通する流路に形成され、前記流路板を介して前記第1流体と前記第2流体とが熱交換する熱交換素子であって、
前記流路板の平面方向における積層された前記流路板の縁部に、前記流路の一部を遮断する切り欠き部が形成され、
前記切り欠き部の表面には、気密処理が施される熱交換素子。
A central flow passage member in which a plurality of flow passage plates are stacked;
A first side passage member and a second side passage member joined respectively to both sides of the central passage member;
Equipped with
The first fluid and the second fluid are alternately formed between the flow passage plates adjacent to each other in the stacking direction, and the first fluid and the second fluid are alternately formed through the flow passage plate. A heat exchange element that exchanges heat,
In the edge portion of the flow path plate stacked in the planar direction of the flow path plate, a cut-out portion for blocking a part of the flow path is formed;
The heat exchange element to which airtight processing is given to the surface of the said notch part.
前記気密処理は、粘性を有する気密処理剤を用いて施される請求項1に記載の熱交換素子。   The heat exchange element according to claim 1, wherein the sealing process is performed using a sealing process agent having viscosity. 前記気密処理は、熱発泡性気密処理剤を用いて施される請求項1に記載の熱交換素子。   The heat exchange element according to claim 1, wherein the airtight process is performed using a thermally foamable airtight process agent. 前記切り欠き部は、前記中央流路部材の縁部に形成される請求項1〜請求項3のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 3, wherein the notch portion is formed at an edge portion of the central flow passage member. 前記切り欠き部は、前記第1側部流路部材及び前記第2側部流路部材における前記中央流路部材との接合箇所の縁部に形成される請求項1〜請求項3のいずれか1項に記載の熱交換素子。   The said notch part is formed in the edge of the junctional place with the said center flow path member in the said 1st side flow path member and the said 2nd side flow path member, The any one of Claims 1-3 The heat exchange element according to item 1. 前記切り欠き部は、積層された前記流路板の全部に貫通して形成される請求項1〜請求項5のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 5, wherein the notch portion is formed to penetrate all the stacked flow path plates. 前記切り欠き部は、前記流路板の平面方向に対して直交した前記流路板の積層方向に沿って形成される請求項1〜請求項6のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 6, wherein the notch portion is formed along a stacking direction of the flow passage plate orthogonal to a plane direction of the flow passage plate. 前記切り欠き部は、前記流路板の積層方向に対して傾斜して形成される請求項1〜請求項6のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 6, wherein the notch portion is formed to be inclined with respect to the stacking direction of the flow path plate. 前記切り欠き部における前記流路板の平面方向の幅は、前記流路板の中心部に向かって広くなる請求項1〜請求項8のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 8, wherein a width in a plane direction of the flow passage plate in the notch portion becomes wider toward a central portion of the flow passage plate. 前記切り欠き部に挿通されるレール部材を備える請求項1〜請求項9のいずれか1項に記載の熱交換素子。   The heat exchange element according to any one of claims 1 to 9, further comprising: a rail member inserted into the notch. 当該熱交換素子を嵌め込む枠体を備え、
前記枠体には、前記レール部材が前記切り欠き部とともに挿通された凹部が形成される請求項10に記載の熱交換素子。
A frame into which the heat exchange element is fitted;
The heat exchange element according to claim 10, wherein the frame body is formed with a recess through which the rail member is inserted together with the notch.
前記切り欠き部は、前記流路板の平面方向における積層された前記流路板の対向する1対の縁部にそれぞれ形成される請求項1〜請求項11のいずれか1項に記載の熱交換素子。   The heat according to any one of claims 1 to 11, wherein the notches are respectively formed at opposing edge portions of the pair of flow path plates stacked in the planar direction of the flow path plate. Exchange element. 1対の縁部にそれぞれ形成される前記切り欠き部は、同形状である請求項12に記載の熱交換素子。   The heat exchange element according to claim 12, wherein the notches respectively formed in the pair of edges have the same shape. 1対の縁部にそれぞれ形成される前記切り欠き部は、それぞれの縁部にて異形状である請求項12に記載の熱交換素子。   The heat exchange element according to claim 12, wherein the notches respectively formed in the pair of edges have different shapes at each edge. 前記中央流路部材と前記第1側部流路部材及び前記第2側部流路部材のそれぞれとが接合された接合箇所には、密封部材が設けられる請求項1〜請求項14のいずれか1項に記載の熱交換素子。   The sealing member is provided in the joining location to which the said center flow path member, each of the said 1st side flow path member, and each of the said 2nd side flow path member were joined, the sealing member is provided. The heat exchange element according to item 1. 請求項1〜請求項15のいずれか1項に記載の熱交換素子を備え、室内と室外との空気を換気しつつ熱交換を行う熱交換換気装置。   A heat exchange ventilator comprising the heat exchange element according to any one of claims 1 to 15, and performing heat exchange while ventilating indoor and outdoor air.
JP2019514052A 2018-12-17 2018-12-17 Heat exchange element and heat exchange ventilator Active JP6537760B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046379 WO2020129130A1 (en) 2018-12-17 2018-12-17 Thermal exchange element and thermal exchange ventilation device

Publications (2)

Publication Number Publication Date
JP6537760B1 true JP6537760B1 (en) 2019-07-03
JPWO2020129130A1 JPWO2020129130A1 (en) 2021-02-15

Family

ID=67144696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514052A Active JP6537760B1 (en) 2018-12-17 2018-12-17 Heat exchange element and heat exchange ventilator

Country Status (2)

Country Link
JP (1) JP6537760B1 (en)
WO (1) WO2020129130A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082300B2 (en) * 2020-09-23 2022-06-08 ダイキン工業株式会社 How to manufacture heat exchangers and heat exchangers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230096A (en) * 1990-02-06 1991-10-14 Nissan Motor Co Ltd Plate fin type heat exchanger
JPH0534089A (en) * 1991-07-25 1993-02-09 Daikin Ind Ltd Heat exchanging element
JPH11211368A (en) * 1998-01-23 1999-08-06 Nippon Denshi Gijutsu Kk Heat exchanger
JP4330678B2 (en) * 1998-09-29 2009-09-16 株式会社日阪製作所 Plate heat exchanger
JP5110641B2 (en) * 2007-03-14 2012-12-26 株式会社テクノフロンティア Total heat exchanger
JP5233195B2 (en) * 2007-07-27 2013-07-10 株式会社豊田中央研究所 Plate laminate and manufacturing method thereof
EP3273196B1 (en) * 2015-03-18 2020-02-26 Mitsubishi Electric Corporation Method for manufacturing heat transfer element
WO2017159880A1 (en) * 2016-03-14 2017-09-21 株式会社ティラド Plate laminate type heat exchanger

Also Published As

Publication number Publication date
JPWO2020129130A1 (en) 2021-02-15
WO2020129130A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP4877016B2 (en) Heat exchange element
US7866379B2 (en) Heat exchanger
JP2008107071A (en) Heat exchanging element
JP2006329499A (en) Heat exchanger
EP3187809A1 (en) Air guide-integrated evaporation cooler and method for manufacturing same
JP2004003838A (en) Heat exchanger
JP6537760B1 (en) Heat exchange element and heat exchange ventilator
CN107407496B (en) Panel for an air handling unit module, air handling unit module comprising such a panel and air handling unit comprising such a module
JP6482741B1 (en) Heat exchange element and heat exchange ventilator
US9863710B2 (en) Laminated total heat exchange element
JP4466156B2 (en) Heat exchanger
JP2017062094A (en) Heat exchange element
WO2022013972A1 (en) Heat exchanger and heat-exchange-type ventilation device
JP6509337B2 (en) Heat exchange ventilation system
WO2014109184A1 (en) Total heat exchanger
JP6509338B2 (en) Heat exchange ventilation system
JP2020051704A (en) Method for manufacturing heat exchange element, and heat exchange element
JPH07234087A (en) Heat exchanging element
WO2022038762A1 (en) Heat exchange element and heat exchange ventilation device
KR101536076B1 (en) Frame of air-to-air heat exchanger comprising joint member
JP2006064342A (en) Heat exchange element
WO2017109952A1 (en) Heat-exchange ventilation device
JPH05157480A (en) Heat exchanging element
JP2000213885A (en) Heat exchange segment and gas-gas heat exchange element comprising laminated heat exchange segments
US20210063035A1 (en) Heat exchange element, heat exchange ventilator, and method for manufacturing heat exchange element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6537760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250