JP2021084545A - Air conditioner for vehicle and driving mode switching method - Google Patents

Air conditioner for vehicle and driving mode switching method Download PDF

Info

Publication number
JP2021084545A
JP2021084545A JP2019215456A JP2019215456A JP2021084545A JP 2021084545 A JP2021084545 A JP 2021084545A JP 2019215456 A JP2019215456 A JP 2019215456A JP 2019215456 A JP2019215456 A JP 2019215456A JP 2021084545 A JP2021084545 A JP 2021084545A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
operation mode
expansion device
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019215456A
Other languages
Japanese (ja)
Other versions
JP7321906B2 (en
Inventor
倫行 鎌田
Tomoyuki Kamata
倫行 鎌田
井田 博之
Hiroyuki Ida
博之 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2019215456A priority Critical patent/JP7321906B2/en
Publication of JP2021084545A publication Critical patent/JP2021084545A/en
Application granted granted Critical
Publication of JP7321906B2 publication Critical patent/JP7321906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

To provide an air conditioner for vehicle which shortens the switching time while preventing the generation of noise at the switching of driving modes of a refrigeration cycle.SOLUTION: In an air conditioner for vehicle, a compressor 11, a first heat exchanger 2, a first expansion device 12, a cabin-outside heat exchanger 4, a second expansion device 14 and a second heat exchanger 3 are connected in the loop shape at least in this order. The air conditioner for vehicle includes a refrigeration cycle in which the first heat exchanger 2 and the first expansion device 12 are connected and the cabin-outside heat exchanger 4 and the second expansion device 14 are connected via a first bypass flow path 16 that includes a first refrigerant control unit 15, a reverse-flow blocking part 13 is provided on the downstream side of the cabin-outside heat exchanger 4 and on the upstream side with respect to a confluent portion with the first bypass flow path 16, the cabin-outside heat exchanger 4 and the reverse-flow blocking part 13 are connected and the second heat exchanger 3 and the compressor 11 are connected via a second bypass flow path 18 that includes a second refrigerant control unit 17. The second refrigerant control unit 17 is constituted by a throttle valve that can narrow down and open/close the second bypass flow path 18.SELECTED DRAWING: Figure 1

Description

この発明は、運転モードの切り替えを速やかに、且つ、騒音を伴わずに行うことが可能な冷凍サイクルを備えた車両用空調装置及び運転モード切替方法に関する。 The present invention relates to a vehicle air conditioner provided with a refrigeration cycle capable of switching an operation mode quickly and without noise, and an operation mode switching method.

従来、ヒートポンプ式の冷凍サイクルを用いて車室内を冷房および暖房するだけでなく、除湿運転を可能とした車両用空調装置が知られており、例えば、特許文献1(特開2012−250708)には、複数の電磁弁の作動状態を変更して冷媒回路を切り替えることにより運転モードを、冷房運転モード、暖房運転モード、又は除湿運転モードに切り替える冷凍サイクルが開示されている。
また、この文献には、サイクル構成機器としての電磁弁等の耐久性の悪化を抑制するために、運転モードを切り替える場合に、圧縮機を停止させ、圧縮機の吐出側の高圧側冷媒圧力が基準値以下となった場合に、冷媒回路を切り替えることが提案されている。
Conventionally, there is known an air conditioner for vehicles that not only cools and heats the vehicle interior by using a heat pump type refrigeration cycle but also enables dehumidifying operation. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2012-250708) describes it. Discloses a refrigeration cycle that switches an operation mode to a cooling operation mode, a heating operation mode, or a dehumidifying operation mode by changing the operating state of a plurality of electromagnetic valves and switching the refrigerant circuit.
Further, in this document, in order to suppress deterioration of durability of a solenoid valve or the like as a cycle component device, when switching the operation mode, the compressor is stopped and the high pressure side refrigerant pressure on the discharge side of the compressor is described. It has been proposed to switch the refrigerant circuit when the value falls below the reference value.

特開2012−250708号公報Japanese Unexamined Patent Publication No. 2012-250708

ところで、冷凍サイクルにおいて、各種運転モードの切り替えを行う場合、冷媒流路を変更するために各種弁を開閉制御することになるが、弁の上流側と下流側とで冷媒の圧力差が大きいと、開弁時に高圧の冷媒が低圧の経路に一気に流入し、突発音が発生する不都合がある。 By the way, when switching between various operation modes in the refrigeration cycle, opening and closing of various valves is controlled in order to change the refrigerant flow path, but if the pressure difference between the refrigerants is large between the upstream side and the downstream side of the valves. When the valve is opened, the high-pressure refrigerant flows into the low-pressure path at once, causing a sudden sound.

このような不都合を回避するために、前記従来技術で示されるように、圧縮機を一旦停止させ、圧縮機の吐出側の高圧側冷媒圧力が基準値以下となった後に冷媒回路を切り替え、その後再び圧縮機を稼働させる手法を採用することも考えられる。 In order to avoid such inconvenience, as shown in the prior art, the compressor is temporarily stopped, the refrigerant circuit is switched after the high pressure side refrigerant pressure on the discharge side of the compressor becomes equal to or lower than the reference value, and then the refrigerant circuit is switched. It is also conceivable to adopt a method of operating the compressor again.

しかしながら、このような切り替え手法を採用すると、冷凍サイクルの運転モードを切り替える度に圧縮機を停止させる必要があり、また、圧縮機の吐出側の圧力が基準値以下に低下するまで切り替えることができない。また、圧縮機を停止状態から起動させるので、切り替わった運転モードで定常運転するまでに相当の時間を要する。 However, if such a switching method is adopted, it is necessary to stop the compressor every time the operation mode of the refrigeration cycle is switched, and the switching cannot be performed until the pressure on the discharge side of the compressor drops below the reference value. .. Further, since the compressor is started from the stopped state, it takes a considerable amount of time to perform steady operation in the switched operation mode.

本発明は、係る事情に鑑みてなされたものであり、冷凍サイクルの運転モードを切り替える場合に、騒音の発生を防止しつつ切り替え時間を短縮することが可能な車両用空調装置と、これを用いた運転モード切替方法を提供することを主たる課題としている。 The present invention has been made in view of the above circumstances, and uses a vehicle air conditioner capable of shortening the switching time while preventing the generation of noise when switching the operation mode of the refrigeration cycle. The main issue is to provide a method for switching the operation mode.

上記課題を達成するために、本発明に係る車両用空調装置は、圧縮機と、空調ユニット内に配置されてダンパにより通風量が調整される第1の熱交換器と、前記空調ユニット内に配置されて前記第1の熱交換器よりも前記空調ユニット内の上流側に配置された第2の交換器と、外気と熱交換が可能な車室外熱交換器と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置と、を有し、
前記圧縮機、前記第1の熱交換器、前記第1の膨張装置、前記車室外熱交換器、前記第2の膨張装置、及び前記第2の熱交換器を少なくともこの順でループ状に接続し、
前記第1の熱交換器と前記第1の膨張装置との間の冷媒流路と、前記車室外熱交換器と前記第2の膨張装置との間の冷媒流路とを、第1の冷媒制御部によって開閉可能な第1のバイパス流路を介して接続し、
前記車室外熱交換器と前記第2の膨張装置との間の冷媒流路のうち、前記第1のバイパス流路との合流部位より上流側に該合流部位ら上流側への冷媒の流れを阻止する逆流阻止部を設けると共に、前記車室外熱交換と前記逆流阻止部との間の冷媒流路と、前記第2の熱交換器と前記圧縮機との間の冷媒流路とを、第2の冷媒制御部を備えた第2のバイパス流路を介して接続した冷凍サイクルを有する車両用空調装置であって、
前記第2の冷媒制御部を、前記第2のバイパス流路を絞ること及び開閉することが可能な絞り弁によって構成したことを特徴としている。
In order to achieve the above problems, the vehicle air conditioner according to the present invention includes a compressor, a first heat exchanger arranged in the air conditioner unit and whose ventilation amount is adjusted by a damper, and the air conditioner unit. A second exchanger arranged upstream of the first heat exchanger in the air conditioning unit, a vehicle interior heat exchanger capable of exchanging heat with the outside air, and a refrigerant flow path are narrowed down. It has a first expansion device that can be opened and closed, and a second expansion device that can narrow and close the refrigerant flow path.
The compressor, the first heat exchanger, the first inflator, the passenger compartment heat exchanger, the second inflator, and the second heat exchanger are connected in a loop at least in this order. And
The refrigerant flow path between the first heat exchanger and the first expansion device and the refrigerant flow path between the passenger compartment outdoor heat exchanger and the second expansion device are the first refrigerant. Connected via a first bypass flow path that can be opened and closed by the control unit
Of the refrigerant flow paths between the vehicle interior heat exchanger and the second expansion device, the flow of the refrigerant from the merging portion to the upstream side is upstream from the merging portion with the first bypass flow path. A backflow blocking portion for blocking is provided, and a refrigerant flow path between the passenger compartment outdoor heat exchange and the backflow blocking portion and a refrigerant flow path between the second heat exchanger and the compressor are provided. A vehicle air conditioner having a refrigeration cycle connected via a second bypass flow path provided with two refrigerant control units.
The second refrigerant control unit is characterized by being configured by a throttle valve capable of throttle and open / close the second bypass flow path.

したがって、このような冷凍サイクルを用いるようにしたので、騒音の発生が確認されている運転モードの切り替え時、すなわち、車室外熱交換器を放熱器として機能させる運転モードから、車室外熱交換器を吸熱器として機能させる運転モード、又は、車室外熱交換器による熱交換機能を利用しない運転モードに切り替える場合、より具体的には、第1のバイパス流路と第2のバイパス流路に冷媒を通流させない運転モードから、第1のパイパス通路と第2のバイパス流路のいずれか一方又は両方に冷媒を通流させる運転モードに切り替える場合に、第2の冷媒制御部を閉状態から一旦絞り状態に遷移させることで、第2のバイパス流路を経由して高圧の冷媒が低圧の経路に一気に流入することが防止され、突発音の発生を回避することが可能となる。 Therefore, since such a refrigeration cycle is used, the vehicle interior heat exchanger is changed from the operation mode in which noise generation is confirmed, that is, the operation mode in which the vehicle interior heat exchanger functions as a radiator. When switching to an operation mode in which the above is functioned as a heat absorber or an operation mode in which the heat exchange function by the outside heat exchanger is not used, more specifically, the refrigerant is applied to the first bypass flow path and the second bypass flow path. When switching from the operation mode in which the refrigerant does not pass through to the operation mode in which the refrigerant flows through either or both of the first pipe pass passage and the second bypass flow path, the second refrigerant control unit is temporarily closed from the closed state. By transitioning to the throttled state, it is possible to prevent the high-pressure refrigerant from flowing into the low-pressure path at once via the second bypass flow path, and to avoid the occurrence of sudden sound.

これにより、車室外熱交換器を放熱器として機能させる運転モードから、車室外熱交換器を吸熱器として機能させる運転モード、又は、車室外熱交換器による熱交換機能を利用しない運転モードに切り替える場合に、冷媒制御部の前後の圧力差を低減させるために圧縮機をわざわざ停止させる必要がなくなる。 As a result, the operation mode in which the vehicle interior heat exchanger functions as a radiator is switched to the operation mode in which the vehicle interior heat exchanger functions as a heat absorber or the operation mode in which the heat exchange function by the vehicle interior heat exchanger is not used. In this case, it is not necessary to bother to stop the compressor in order to reduce the pressure difference between the front and rear of the refrigerant control unit.

上述した冷凍サイクルを用い、運転モードを切り替え制御する制御手段により運転モードを切り替える具体的な制御動作例を見ると、例えば、制御手段によって、冷房運転モード又は除湿冷房運転モードから除湿暖房(parallel)運転モードに切り替える場合、すなわち、制御手段によって、圧縮機から吐出した冷媒を、第1の熱交換にて放熱させ又は熱交換させることなく通過させた後に、第1の膨張装置で必要に応じて減圧させると共に車室外熱交換器にて放熱させ、この放熱させた冷媒を、第2の膨張装置で更に減圧させた後に第2の熱交換器にて吸熱させる第1運転モード(冷房運転モード又は除湿冷房運転モード)から、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させた後に、第1のバイパス流路を通流させて第2の膨張装置で減圧させた後に第2の熱交換器にて吸熱させると共に、第1の膨張装置で減圧させた後に車室外熱交換器にて吸熱させ、しかる後に第2のバイパス流路を通流させて圧縮機に戻す第2運転モード(除湿暖房(parallel)運転モード)に切り替える場合には、
前記第1運転モードの状態から、前記第2の冷媒制御部を絞り状態として、前記車室外熱交換器を通過した冷媒の一部を前記第2のバイパス流路を介して圧縮機に導く第1ステージと、
前記第1の膨張装置を全開とする第2ステージと、
前記第1の冷媒制御部を開として前記第1の熱交換器を通過した冷媒を前記第1のバイパス流路にも通流させる第3ステージと、
前記第1の膨張装置を絞って前記車室外熱交換器を吸熱器として機能させる第4ステージと、
前記第2の冷媒制御部を全開とする第5ステージと、
を順次経て切り換えるようにするとよい。
Looking at a specific control operation example in which the operation mode is switched by the control means for switching and controlling the operation mode using the refrigeration cycle described above, for example, the dehumidifying heating (parallel) is performed from the cooling operation mode or the dehumidifying cooling operation mode depending on the control means. When switching to the operation mode, that is, after passing the refrigerant discharged from the compressor by the control means through the first heat exchange without dissipating heat or heat exchange, the first expansion device requires it. A first operation mode (cooling operation mode or) in which the pressure is reduced and the heat is dissipated by the heat exchanger outside the passenger compartment, and the dissipated refrigerant is further depressurized by the second expansion device and then absorbed by the second heat exchanger. From the dehumidifying / cooling operation mode), the refrigerant discharged from the compressor is radiated by the first heat exchanger, then passed through the first bypass flow path, depressurized by the second expansion device, and then the second. The heat is absorbed by the second heat exchanger, the pressure is reduced by the first expansion device, and then the heat is absorbed by the vehicle interior heat exchanger, and then the second bypass flow path is passed through and returned to the compressor. When switching to the operation mode (dehumidification / heating (parallel) operation mode),
From the state of the first operation mode, the second refrigerant control unit is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger is guided to the compressor via the second bypass flow path. 1 stage and
A second stage in which the first expansion device is fully opened, and
A third stage in which the first refrigerant control unit is opened and the refrigerant that has passed through the first heat exchanger is also passed through the first bypass flow path.
A fourth stage in which the first expansion device is squeezed to cause the outdoor heat exchanger to function as an endothermic device.
A fifth stage in which the second refrigerant control unit is fully opened, and
It is advisable to switch through sequentially.

上述した順序で第1運転モードから第2運転モードに切り替えるようにすれば、第2ステージにより第1の冷媒制御部の上流側と下流側との圧力差が徐々に縮小するので、第1の冷媒制御部を操作して第1のバイパス流路を開(第3ステージ)としても、高圧の冷媒が急激に低圧側へ流入する不都合を回避することが可能となる。
また、第1〜第3ステージに続く第4ステージにより第2の冷媒制御部の上流側と下流側との圧力差が縮小するので、第2のバイパス流路を開(第5ステージ)としても、高圧の冷媒が急激に低圧側へ流入する不都合を回避することが可能となる。
このため、第1運転モードから第2運転モードへの切り替時に、騒音の発生を抑えることが可能となり、また圧縮機を停止させることなく切り換えることが可能となる。
If the first operation mode is switched to the second operation mode in the order described above, the pressure difference between the upstream side and the downstream side of the first refrigerant control unit is gradually reduced by the second stage. Even if the first bypass flow path is opened (third stage) by operating the refrigerant control unit, it is possible to avoid the inconvenience that the high-pressure refrigerant suddenly flows into the low-pressure side.
Further, since the pressure difference between the upstream side and the downstream side of the second refrigerant control unit is reduced by the fourth stage following the first to third stages, the second bypass flow path may be opened (fifth stage). , It is possible to avoid the inconvenience that the high-pressure refrigerant suddenly flows into the low-pressure side.
Therefore, when switching from the first operation mode to the second operation mode, it is possible to suppress the generation of noise, and it is possible to switch without stopping the compressor.

また、他の制御動作例としては、例えば、制御手段によって、冷房運転モード又は除湿冷房運転モードから除湿暖房(bypass)運転モードに切り替える場合、すなわち、制御手段によって、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させ又は熱交換させることなく通過させた後に、第1の膨張装置で必要に応じて減圧させると共に車室外熱交換器にて放熱させ、この放熱させた冷媒を、第2の膨張装置で更に減圧させた後に第2の熱交換器にて吸熱させる第1運転モード(冷房運転モード又は除湿冷房運転モード)から、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させた後に、第1のバイパス流路のみを通流させて第2の膨張装置で減圧させた後に第2の熱交換器にて吸熱させる第3運転モード(除湿暖房(bypass)運転モード)に切り替えるに場合に、
前記第1運転モードの状態から、前記第2の冷媒制御部を絞り状態として、前記車室外熱交換器を通過した冷媒の一部を前記第2のバイパス流路を介して圧縮機に導く第1ステージと、
前記第1の膨張装置を全開とする第2ステージと、
前記第1の冷媒制御部を開として前記第1の熱交換器を通過した冷媒を前記第1のバイパス流路にも通流させる第3ステージと、
前記第1の膨張装置を閉として前記車室外熱交換器への通流を遮断する第6ステージと、
を順次経て切り換えるようにするとよい。
Further, as another control operation example, for example, when switching from the cooling operation mode or the dehumidifying / cooling operation mode to the dehumidifying / heating (bypass) operation mode by the control means, that is, the refrigerant discharged from the compressor by the control means is used. After the first heat exchanger dissipates heat or allows the refrigerant to pass through without heat exchange, the first expansion device decompresses the pressure as necessary and the external heat exchanger dissipates heat, and the radiated refrigerant is dissipated. From the first operation mode (cooling operation mode or dehumidifying cooling operation mode) in which the heat is absorbed by the second heat exchanger after being further depressurized by the second expansion device, the refrigerant discharged from the compressor is subjected to the first heat. A third operation mode (dehumidifying and heating (bypass)) in which heat is dissipated by the exchanger, only the first bypass flow path is passed, the pressure is reduced by the second expansion device, and then the heat is absorbed by the second heat exchanger. ) When switching to operation mode)
From the state of the first operation mode, the second refrigerant control unit is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger is guided to the compressor via the second bypass flow path. 1 stage and
A second stage in which the first expansion device is fully opened, and
A third stage in which the first refrigerant control unit is opened and the refrigerant that has passed through the first heat exchanger is also passed through the first bypass flow path.
A sixth stage in which the first expansion device is closed to block the flow to the passenger compartment heat exchanger, and the sixth stage.
It is advisable to switch through sequentially.

上述した順序で第1運転モードから第3運転モードに切り替えるようにすれば、第2ステージにより第1の冷媒制御部の上流側と下流側との圧力差が徐々に縮小するので、第1の冷媒制御部を操作して第1のバイパス流路を開(第3ステージ)としても、高圧の冷媒が急激に低圧側へ流入する不都合を回避することが可能となる。
また、第1〜第3ステージに続く第6ステージにより第2のバイパス流路に冷媒が通流しない(第1のバイパス流路だけに冷媒を通流させる)第3運転モードを実現可能となる。
このため、第1運転モードから第3運転モードへの切り替時に、騒音の発生を抑えることが可能となり、また圧縮機を停止させることなく切り換えることが可能となる。
If the first operation mode is switched to the third operation mode in the order described above, the pressure difference between the upstream side and the downstream side of the first refrigerant control unit is gradually reduced by the second stage. Even if the first bypass flow path is opened (third stage) by operating the refrigerant control unit, it is possible to avoid the inconvenience that the high-pressure refrigerant suddenly flows into the low-pressure side.
Further, the sixth stage following the first to third stages makes it possible to realize a third operation mode in which the refrigerant does not flow through the second bypass flow path (the refrigerant flows only through the first bypass flow path). ..
Therefore, when switching from the first operation mode to the third operation mode, it is possible to suppress the generation of noise, and it is possible to switch without stopping the compressor.

さらに他の制御動作例としては、例えば、制御手段によって、冷房運転モード又は除湿冷房運転モードから暖房運転モードに切り替える場合、すなわち、制御手段によって、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させ又は熱交換させることなく通過させた後に、第1の膨張装置で必要に応じて減圧させると共に車室外熱交換器にて放熱させ、この放熱させた冷媒を、第2の膨張装置で更に減圧させた後に第2の熱交換器にて吸熱させる第1運転モード(冷房運転モード又は除湿冷房運転モード)から、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させた後に、第1の膨張装置で減圧して車室外熱交換器にて吸熱させ、この車室外熱交換器を通過した冷媒を第2のバイパス流路を介して圧縮機に戻す第4の運転モード(暖房運転モード)に切り替える場合には、
前記第1運転モードの状態から、前記第1の膨張装置を絞って前記車室外熱効果器を吸熱器として機能させる第7ステージと、
前記第2の冷媒制御部を絞り状態として、前記車室外熱交換器を通過した冷媒の一部を前記第2のバイパス流路を介して圧縮機に導く第8ステージと、
記第2の膨張装置を閉として前記第2の熱交換器への通流を遮断すると共に前記第2の冷媒制御部を全開とする第9ステージと、
を順次経て切り換えるようにするとよい。
As yet another control operation example, for example, when switching from the cooling operation mode or the dehumidifying / cooling operation mode to the heating operation mode by the control means, that is, the refrigerant discharged from the compressor by the control means is exchanged with the first heat. After passing through without radiating heat or exchanging heat with the device, the pressure is reduced as needed by the first expansion device and heat is dissipated by the heat exchanger outside the passenger compartment, and the radiated refrigerant is expanded by the second expansion. The refrigerant discharged from the compressor is dissipated by the first heat exchanger from the first operation mode (cooling operation mode or dehumidifying cooling operation mode) in which the heat is absorbed by the second heat exchanger after the pressure is further reduced by the apparatus. After that, the pressure is reduced by the first expansion device, heat is absorbed by the vehicle interior heat exchanger, and the refrigerant that has passed through the vehicle interior heat exchanger is returned to the compressor via the second bypass flow path. When switching to the operation mode (heating operation mode),
From the state of the first operation mode, the seventh stage in which the first expansion device is squeezed to make the vehicle interior heat effector function as a heat absorber, and
An eighth stage in which the second refrigerant control unit is in a throttled state and a part of the refrigerant that has passed through the vehicle interior heat exchanger is guided to the compressor via the second bypass flow path.
A ninth stage in which the second expansion device is closed to block the flow to the second heat exchanger and the second refrigerant control unit is fully opened.
It is advisable to switch through sequentially.

上述した順序で第1運転モードから第4運転モードに切り替えるようにすれば、まず、第7ステージにおいて、第1の膨張装置が絞られると、車室外熱交換器が吸熱器として機能すると共に第1の膨張装置の下流側の圧力が徐々に低下する。しかし、この第7ステージで車室外熱交換器を吸熱器として機能させた直後は、必ずしも車室外熱交換の下流側の圧力が十分に低下しているわけではないので、第8ステージで第2の冷媒制御部を絞り状態とすることで第2のバイパス流路18を介して圧縮機へ導かれる冷媒の圧力を低下させる。これにより、圧縮機の吸入側(アキュムレータ)へ中高圧の冷媒が急激に流入する不都合を回避でき、騒音の発生を防ぐことが可能となる。
その後、第9ステージにおいて、第2の膨張装置を閉として第2の熱交換器への通流を遮断すると共に前記第2の冷媒制御部を全開とすれば、騒音を発生させずに、また、圧縮機を停止させることなく、第4運転モードへ切り替えることが可能となる。
By switching from the first operation mode to the fourth operation mode in the order described above, first, in the seventh stage, when the first expansion device is throttled, the vehicle interior heat exchanger functions as a heat absorber and the first The pressure on the downstream side of the expansion device of 1 gradually decreases. However, immediately after the outside heat exchanger is made to function as an endothermic in the 7th stage, the pressure on the downstream side of the outside heat exchange is not necessarily sufficiently reduced, so that the 2nd stage is the 8th stage. By setting the refrigerant control unit of No. 1 in the throttled state, the pressure of the refrigerant guided to the compressor via the second bypass flow path 18 is reduced. As a result, it is possible to avoid the inconvenience that the medium- and high-pressure refrigerant suddenly flows into the suction side (accumulator) of the compressor, and it is possible to prevent the generation of noise.
After that, in the ninth stage, if the second expansion device is closed to block the flow to the second heat exchanger and the second refrigerant control unit is fully opened, no noise is generated and the second expansion device is fully opened. , It is possible to switch to the fourth operation mode without stopping the compressor.

ここで、第9ステージにおいて、「第2の膨張装置を閉として第2の熱交換器への通流を遮断すると共に第2の冷媒制御部を全開とする」とは、第2の膨張装置の閉操作と第2の冷媒制御部の全開操作を同時に行う場合だけでなく、第2の膨張装置の閉操作と第2の冷媒制御部の全開操作を若干の時間差を設けて行う場合も含む。
時間差を設ける場合には、冷媒圧力の上昇を防止しながら運転モードを第4の運転モードに切替えるために、第2の冷媒制御部の全開操作を、第2の膨張装置の閉操作よりも先に行うことが好ましい。
Here, in the ninth stage, "the second expansion device is closed to block the flow to the second heat exchanger and the second refrigerant control unit is fully opened" means the second expansion device. This includes not only the case where the closing operation and the fully opening operation of the second refrigerant control unit are performed at the same time, but also the case where the closing operation of the second expansion device and the fully opening operation of the second refrigerant control unit are performed with a slight time difference. ..
When a time difference is provided, in order to switch the operation mode to the fourth operation mode while preventing the increase in the refrigerant pressure, the operation of fully opening the second refrigerant control unit is preceded by the operation of closing the second expansion device. It is preferable to carry out.

以上述べたように、本発明によれば、圧縮機、空調ユニット内の第1の熱交換器、第1の膨張装置、外気と熱交換が可能な車室外熱交換器、第2の膨張装置、及び空調ユニット内に配置されて第1の熱交換器よりも上流側に配置された第2の熱交換器を少なくともこの順でループ状に接続し、第1の熱交換器と第1の膨張装置との間の冷媒流路と車室外熱交換器と第2の膨張装置との間の冷媒流路とを、第1の冷媒制御部によって開閉可能な第1のバイパス流路を介して接続し、車室外熱交換器の下流側であって第1のバイパス流路との合流部位より上流側に逆流阻止部を設け、車室外熱交換器と逆流阻止部との間の冷媒流路と第2の熱交換器と圧縮機との間の冷媒流路とを、第2の冷媒制御部を備えた第2のバイパス流路を介して接続した冷凍サイクルを有する車両用空調装置において、第2の冷媒制御部を、第2のバイパス流路を絞ること及び開閉することが可能な絞り弁によって構成したので、第1冷媒制御部の前後の圧力差や第2冷媒制御部の前後の圧力差を小さくすることが可能となり、第1のバイパス流路及び第2のバイパス流路に冷媒を通流させない運転モードからこれらバイパス流路の少なくとも一方に冷媒を通流させる運転モードへ切り替える場合に、冷媒制御部を介して高圧側の冷媒が一気に流れ込む不都合を回避することが可能となる。
したがって、冷凍サイクルの運転モードを切り替える場合に、騒音の発生を防止することが可能となり、また、圧縮機を停止させることなく切り替えることができるので、切り替え時間を短縮することが可能となる。
As described above, according to the present invention, the compressor, the first heat exchanger in the air conditioning unit, the first inflator, the vehicle interior heat exchanger capable of exchanging heat with the outside air, and the second inflator. , And the second heat exchanger arranged in the air conditioning unit and located upstream of the first heat exchanger are connected in a loop at least in this order, and the first heat exchanger and the first heat exchanger are connected. The refrigerant flow path between the expansion device and the refrigerant flow path between the vehicle interior heat exchanger and the second expansion device are opened and closed by the first refrigerant control unit via the first bypass flow path. A backflow blocking section is provided on the downstream side of the vehicle interior heat exchanger and upstream of the confluence with the first bypass flow path, and the refrigerant flow path between the vehicle interior heat exchanger and the backflow blocking section is provided. In a vehicle air conditioner having a refrigeration cycle in which the refrigerant flow path between the second heat exchanger and the compressor is connected via a second bypass flow path provided with a second refrigerant control unit. Since the second refrigerant control unit is composed of a throttle valve that can throttle and open / close the second bypass flow path, the pressure difference between the front and rear of the first refrigerant control unit and the front and rear of the second refrigerant control unit. When switching from an operation mode in which the refrigerant does not flow through the first bypass flow path and the second bypass flow path to an operation mode in which the refrigerant flows through at least one of these bypass flow paths, because the pressure difference can be reduced. In addition, it is possible to avoid the inconvenience that the high-pressure side refrigerant flows at once through the refrigerant control unit.
Therefore, when the operation mode of the refrigeration cycle is switched, it is possible to prevent the generation of noise, and the switching can be performed without stopping the compressor, so that the switching time can be shortened.

図1は、本発明に係る車両用空調装置の例を表し、図1(a)はその全体構成図であり、図1(b)は、膨張装置、冷媒制御部、開閉弁及びダンパの状態を運転モード毎に示した表である。FIG. 1 shows an example of a vehicle air conditioner according to the present invention, FIG. 1 (a) is an overall configuration diagram thereof, and FIG. 1 (b) shows a state of an expansion device, a refrigerant control unit, an on-off valve, and a damper. Is a table showing each operation mode. 図2は、熱負荷と目標吹出温度との差に応じて切り替えられる冷凍サイクルの各運転モードを示す図であり、冷媒が流れている流路を太線で示し、高圧流路を太い実線で、低圧流路を太い破線で示す。FIG. 2 is a diagram showing each operation mode of the refrigeration cycle that can be switched according to the difference between the heat load and the target blowing temperature. The flow path through which the refrigerant is flowing is shown by a thick line, and the high-pressure flow path is shown by a thick solid line. The low pressure flow path is indicated by a thick dashed line. 図3は、除湿冷房(Series)運転モードと、この運転モードから切り替えられた除湿暖房(Parallel)運転モードとを示す図である。FIG. 3 is a diagram showing a dehumidifying / cooling (Series) operation mode and a dehumidifying / heating (Parallel) operation mode switched from this operation mode. 図4は、除湿冷房(Series)運転モードから除湿暖房(Parallel)運転モードに切り替える場合の各ステージを説明する図である。FIG. 4 is a diagram illustrating each stage when switching from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (Parallel) operation mode. 図5は、除湿冷房(Series)運転モードと、この運転モードから切り替えられた除湿暖房(By-Pass)運転モードとを示す図である。FIG. 5 is a diagram showing a dehumidifying / cooling (Series) operation mode and a dehumidifying / heating (By-Pass) operation mode switched from this operation mode. 図6は、除湿冷房(Series)運転モードから除湿暖房(By-Pass)運転モードに切り替える場合の各ステージを説明する図である。FIG. 6 is a diagram illustrating each stage when switching from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (By-Pass) operation mode. 図7は、除湿冷房(Series)運転モードと、この運転モードから切り替えられた暖房運転モードとを示す図である。FIG. 7 is a diagram showing a dehumidifying / cooling (Series) operation mode and a heating operation mode switched from this operation mode. 図8は、除湿冷房(Series)運転モードから暖房運転モードに切り替える場合の各ステージを説明する図である。FIG. 8 is a diagram illustrating each stage when switching from the dehumidifying / cooling (Series) operation mode to the heating operation mode.

以下、本発明に係る車両用空調装置の実施形態を図面により説明する。
図1において、この発明に係る車両用空調装置が示され、車両用空調装置は、例えば自動車に搭載されるもので、空調ユニット1内に配置された第1及び第2の熱交換器2,3と、空調ユニット1外に配置され、外気と熱交換可能な車室外熱交換器4とを備えている。
Hereinafter, embodiments of the vehicle air conditioner according to the present invention will be described with reference to the drawings.
FIG. 1 shows a vehicle air conditioner according to the present invention. The vehicle air conditioner is mounted on, for example, an automobile, and the first and second heat exchangers 2 and 2 are arranged in the air conditioner unit 1. 3 and an outdoor heat exchanger 4 arranged outside the air conditioning unit 1 and capable of exchanging heat with the outside air.

空調ユニット1の最上流側には内外気切換装置6が設けられ、内気入口6aと外気入口6bとがインテークドア7によって選択的に開口されるようになっている。この空調ユニット1に選択的に導入される内気または外気は、送風機8の回転により吸引され、第1及び第2の熱交換器2,3に送られ、ここで熱交換されて所望の吹き出し口9a〜9cから車室内に供給されるようになっている。 An inside / outside air switching device 6 is provided on the most upstream side of the air conditioning unit 1, and the inside air inlet 6a and the outside air inlet 6b are selectively opened by the intake door 7. The inside air or outside air selectively introduced into the air conditioning unit 1 is sucked by the rotation of the blower 8 and sent to the first and second heat exchangers 2 and 3, where the heat is exchanged to obtain a desired outlet. It is supplied to the passenger compartment from 9a to 9c.

第1の熱交換器2は、第2の熱交換器3よりも空調ユニット1内の空気流れ方向下流側に配置されており、この第1の熱交換器2の空気流れ方向上流側には、ダンパ10が設けられている。ダンパ10は、第1の熱交換器2の通過風量が最大となる位置(暖房位置:開度100%)から最小となる位置(冷房位置:開度0%)まで可変できるようになっており、開度を調整することにより、第1の熱交換器2を通過する空気とバイパスする空気との割合を調整できるようになっている。
なお、ダンパ10は、エアミックスドアとも呼ばれる。また、この例では、空調ユニット1内の第1の熱交換器2の下流側に電気発熱式の加熱装置(PTC)5が配置されている。
The first heat exchanger 2 is arranged on the downstream side in the air flow direction in the air conditioning unit 1 with respect to the second heat exchanger 3, and is located on the upstream side in the air flow direction of the first heat exchanger 2. , The damper 10 is provided. The damper 10 can be changed from the position where the air volume passing through the first heat exchanger 2 is maximum (heating position: opening 100%) to the position where it is minimum (cooling position: opening 0%). By adjusting the opening degree, the ratio of the air passing through the first heat exchanger 2 and the air bypassing the first heat exchanger 2 can be adjusted.
The damper 10 is also called an air mix door. Further, in this example, the electric heat generating type heating device (PTC) 5 is arranged on the downstream side of the first heat exchanger 2 in the air conditioning unit 1.

第1の熱交換器2の冷媒流入側2aは、圧縮機11の吐出側αに接続され、第1の熱交換器2の冷媒流出側2bは、第1の膨張装置(E−1)12の流入側12aに接続されている。また、第2の熱交換器3の冷媒流出側3bは、アキュムレータ23を介して圧縮機11の吸入側βに接続されている。なお、第1の熱交換器2は、室内放熱器とか、インナーコンデンサとも呼ばれる。 The refrigerant inflow side 2a of the first heat exchanger 2 is connected to the discharge side α of the compressor 11, and the refrigerant outflow side 2b of the first heat exchanger 2 is the first expansion device (E-1) 12 It is connected to the inflow side 12a of. Further, the refrigerant outflow side 3b of the second heat exchanger 3 is connected to the suction side β of the compressor 11 via the accumulator 23. The first heat exchanger 2 is also called an indoor radiator or an inner capacitor.

前記第1の膨張装置12の流出側12bは、車室外熱交換器4の冷媒流入側4aに接続され、この車室外熱交換器4の冷媒流出側4bは、逆止弁13及び第2の膨張装置(E−2)14を介して第2の熱交換器3の冷媒流入側3aに接続されている。したがって、圧縮機11、第1の熱交換器2、第1の膨張装置12、車室外熱交換器4、逆止弁13、第2の膨張装置14、第2の熱交換器3、アキュムレータ23、圧縮機11の順でループ状に接続された冷凍サイクルが形成されている。 The outflow side 12b of the first expansion device 12 is connected to the refrigerant inflow side 4a of the vehicle interior heat exchanger 4, and the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 is the check valve 13 and the second check valve 13. It is connected to the refrigerant inflow side 3a of the second heat exchanger 3 via the expansion device (E-2) 14. Therefore, the compressor 11, the first heat exchanger 2, the first inflator 12, the passenger compartment outdoor heat exchanger 4, the check valve 13, the second inflator 14, the second heat exchanger 3, and the accumulator 23. , The refrigeration cycle connected in a loop in the order of the compressor 11 is formed.

また、第1の熱交換器2の冷媒流出側2bと第1の膨張装置12の流入側12aとの間の冷媒流路と、逆止弁13の流出側13bと第2の膨張装置14の流入側14aとの間の冷媒流路とは、第1の冷媒制御部(V−1)15を有する第1のバイパス流路16によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 2b of the first heat exchanger 2 and the inflow side 12a of the first expansion device 12, and the outflow side 13b of the check valve 13 and the second expansion device 14 The refrigerant flow path to and from the inflow side 14a is connected by a first bypass flow path 16 having a first refrigerant control unit (V-1) 15.

さらに、車室外熱交換器4の冷媒流出側4bと逆止弁13の流入側13aとの間の冷媒流路と、第2の熱交換器3の冷媒流出側3bとアキュムレータ23の流入側23aとの間の冷媒流路とは、第2の冷媒制御部(V−2)17を有する第2のバイパス流路18によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 and the inflow side 13a of the check valve 13, the refrigerant outflow side 3b of the second heat exchanger 3 and the inflow side 23a of the accumulator 23 The refrigerant flow path between the two is connected by a second bypass flow path 18 having a second refrigerant control unit (V-2) 17.

ここで、上述の構成例において、第1の膨張装置12は、外部からの制御信号によって冷媒流路を絞ること、閉じること及び全開にすることが可能な電磁膨張弁が用いられている。また、第2の膨張装置14は、外部からの制御信号によって冷媒流路を絞ること及び閉じることが可能な電磁制御弁が用いられている。
前記逆止弁13は、流路を開閉する開閉弁(V−3)19に置き換えてもよい。この逆止弁13又は開閉弁(V−3)19によって、逆流阻止部が構成されている。
Here, in the above-described configuration example, the first expansion device 12 uses an electromagnetic expansion valve capable of narrowing, closing, and fully opening the refrigerant flow path by a control signal from the outside. Further, the second expansion device 14 uses an electromagnetic control valve capable of narrowing and closing the refrigerant flow path by a control signal from the outside.
The check valve 13 may be replaced with an on-off valve (V-3) 19 that opens and closes the flow path. The check valve 13 or the on-off valve (V-3) 19 constitutes a check valve.

また、第1の冷媒制御部(V−1)15は、第1のバイパス流路16を開閉させる開閉弁によって構成され、また、第2の冷媒制御部(V−2)17は、第2のバイパス流路18を絞ること及び開閉することが可能な絞り弁によって構成されている。絞り弁としては、ニードルにより開度を変えるニードル型、ノッチ付きの回転弁を回転させて開度を変えるノッチ付きロータリ型、外周面にノッチが形成されたスプールの軸方向位置を変更して開度を調節するセグメント型等が採用可能であり、その構造や種類は特に限定されない。 Further, the first refrigerant control unit (V-1) 15 is composed of an on-off valve for opening and closing the first bypass flow path 16, and the second refrigerant control unit (V-2) 17 is a second. It is composed of a throttle valve that can throttle and open / close the bypass flow path 18 of the above. As the throttle valve, a needle type that changes the opening with a needle, a rotary type with a notch that changes the opening by rotating a rotary valve with a notch, and a spool with a notch formed on the outer peripheral surface are opened by changing the axial position. A segment type or the like that adjusts the degree can be adopted, and the structure and type thereof are not particularly limited.

上記第1及び第2の膨張装置12,14の動作、開閉弁19や第1の冷媒制御部15の開閉、第2の冷媒制御部17の動作、ダンパ10の開度、圧縮機11の吐出量は、制御部50からの制御信号で制御されるようになっている。なお、圧縮機11は、例えば電動式圧縮機が用いられる。 Operation of the first and second expansion devices 12 and 14, opening and closing of the on-off valve 19 and the first refrigerant control unit 15, operation of the second refrigerant control unit 17, opening degree of the damper 10, discharge of the compressor 11 The amount is controlled by a control signal from the control unit 50. As the compressor 11, for example, an electric compressor is used.

この制御部50は、A/D変換器やマルチプレクサ等を含む入力回路、ROM、RAM、CPU等を含む演算処理回路、駆動回路等を含む出力回路を備えたそれ自体公知のもので、車室外空気の温度(外気温)を検出する外気温度センサ51からの外気温信号や車室内温度を検出する内気温度センサ52からの内気温信号、日射量を検出する日射センサ53からの日射量信号、運転モード等を設定する操作部からの各種信号が入力され、これらの信号を予め定められた所定のプログラムに沿って処理するようになっている。 The control unit 50 is known in itself and includes an input circuit including an A / D converter, a multiplexer, etc., an arithmetic processing circuit including a ROM, RAM, a CPU, etc., an output circuit including a drive circuit, etc., and is outside the vehicle interior. An outside temperature signal from the outside air temperature sensor 51 that detects the air temperature (outside temperature), an inside temperature signal from the inside air temperature sensor 52 that detects the vehicle interior temperature, and a solar radiation amount signal from the solar radiation sensor 53 that detects the amount of solar radiation. Various signals from the operation unit that sets the operation mode and the like are input, and these signals are processed according to a predetermined program.

特に、冷凍サイクル100の運転モードの切り替え(膨張装置12,14、開閉弁19、冷媒制御部15、17、ダンパの作動状態の変更)においては、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度が加味された目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて切り替えられる。
この差が第1の所定値より大きい場合には冷房運転モードに切り換えられ、
第1の所定値より小さく設定された第2の所定値より小さい場合には暖房運転モードに切り替えられ、第1の所定値と第2の所定値との間にある場合には、除湿運転モードに切り替えられるようになっている。
In particular, when switching the operation mode of the refrigeration cycle 100 (expansion devices 12, 14, on-off valves 19, refrigerant control units 15, 17, and changing the operating state of the damper), the state of the heat load received by the refrigeration cycle (vehicle). The difference (Tm-Tset) between the total signal (Tm) that takes into account the outdoor air temperature, vehicle interior air temperature, solar radiation, etc., and the target blowout temperature (Tset) that takes into account the desired indoor temperature set by the occupants. ) Can be switched according to the size.
If this difference is larger than the first predetermined value, the mode is switched to the cooling operation mode.
When it is smaller than the second predetermined value set to be smaller than the first predetermined value, it is switched to the heating operation mode, and when it is between the first predetermined value and the second predetermined value, the dehumidifying operation mode is set. It can be switched to.

この例において、除湿運転モードは、以下のように、冷房運転モードと暖房運転モードとの間を大きく3つに分けている(図2参照)。
・ 冷凍サイクルが受けている熱負荷が比較的高い中高熱負荷時であれば、室外熱交器4を冷房運転モードと同様に放熱器として用いて冷房運転モードと同様に冷媒を流し(第1の熱交換器2と車室外熱交換器4とを放熱器として用いて2段階に熱を放熱させるために第1の熱交換器2と車室外熱交換器4とに直列的に冷媒を流し)、エアミックスドアの開度調節により除湿空気を温度調節する除湿冷房運転モード(Series)に設定される。
・ 冷凍サイクルが受けている熱負荷が比較的低い中熱負荷時であれば、室外熱交器4を利用せずに、第1の熱交換器2のみを放熱器として用い、また、第2の熱交換器3のみを吸熱器として用いる(第1の熱交換器2からの冷媒を車室外熱交換器4を迂回させて流す迂回運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(By-Pass)という)に設定される。
・ 冷凍サイクルが受けている熱負荷がさらに低い中低熱負荷時であれば、吸熱能力を高めるために、車室外熱交換器4と第2の熱交換器3とをそれぞれ吸熱器として用いる2系統の流れを形成する(第1の熱交換器2からの冷媒を車室外熱交換器4と第2の熱交換器3に並列的に流す平行運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(Parallel)という)に設定される。
In this example, the dehumidifying operation mode is roughly divided into three modes between the cooling operation mode and the heating operation mode as follows (see FIG. 2).
-If the heat load received by the refrigeration cycle is relatively high, the outdoor heat exchanger 4 is used as a radiator as in the cooling operation mode, and the refrigerant flows in the same manner as in the cooling operation mode (first). In order to dissipate heat in two stages using the heat exchanger 2 and the passenger compartment outdoor heat exchanger 4 as radiators, a refrigerant is flowed in series with the first heat exchanger 2 and the passenger compartment outdoor heat exchanger 4. ), It is set to the dehumidifying / cooling operation mode (Series) in which the temperature of the dehumidified air is adjusted by adjusting the opening of the air mix door.
-If the heat load received by the refrigeration cycle is a medium heat load, only the first heat exchanger 2 is used as a radiator without using the outdoor heat exchanger 4, and the second Dehumidifying / heating operation mode (hereinafter, dehumidifying / heating operation mode) in which only the heat exchanger 3 of the above is used as a heat exchanger (a detour operation is performed in which the refrigerant from the first heat exchanger 2 is bypassed to flow through the vehicle compartment outdoor heat exchanger 4). (Called By-Pass)).
-If the heat load received by the refrigeration cycle is even lower at medium and low heat loads, two systems that use the passenger compartment outdoor heat exchanger 4 and the second heat exchanger 3 as heat exchangers in order to increase the heat absorption capacity. Dehumidifying and heating operation mode (hereinafter, dehumidifying and heating) that forms the flow of the above (performing parallel operation in which the refrigerant from the first heat exchanger 2 flows in parallel to the vehicle interior outdoor heat exchanger 4 and the second heat exchanger 3) It is set to the operation mode (called Parallel).

(各運転モードについて)
以上の各運転モードを得るために、膨張装置(第1の膨張装置(E−1)12,第2の膨張装置(E−2)14)、開閉弁(第1の冷媒制御部15,第3の開閉弁19)、第2の冷媒制御部17、及びダンパ10は、制御部50によって以下のように設定されている。
なお、各運転モードでは、制御部50からの指示により送風機8が回転し、内外気切換装置6を通過した空気が第2の熱交換器3に送られ、続いて第1の熱交換器2に向けて流れる。
(About each operation mode)
In order to obtain each of the above operation modes, an expansion device (first expansion device (E-1) 12, second expansion device (E-2) 14), on-off valve (first refrigerant control unit 15, first The on-off valve 19) of No. 3, the second refrigerant control unit 17, and the damper 10 are set by the control unit 50 as follows.
In each operation mode, the blower 8 rotates according to the instruction from the control unit 50, the air that has passed through the inside / outside air switching device 6 is sent to the second heat exchanger 3, and then the first heat exchanger 2 Flow towards.

先ず、運転モードが冷房運転モードに設定される場合には、制御部50は、図1(b)に示されるように、第1の膨張装置(E−1)12を全開とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開き、またダンパ10を冷房位置(開度0%の位置、フルクールの位置)に設定する。 First, when the operation mode is set to the cooling operation mode, the control unit 50 fully opens the first expansion device (E-1) 12 and the second expansion device (E-1) 12 as shown in FIG. 1 (b). Squeeze the inflator (E-2) 14. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened and the damper 10 is placed in the cooling position (opening 0%). (Position of, full cool position).

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する空気が無いことからここで放熱することなく通過し、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は全開の状態であるため、圧縮機11から吐出された高温高圧の状態の冷媒が車室外熱交換器4に流入し、この車室外熱交換器で放熱(凝縮液化)される。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3で冷却され、第1の熱交換器2をバイパスしてそのまま冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 passes through the first heat exchanger 2 without radiating heat because there is no air passing through the first heat exchanger 2, and further expands to the first. Enter the vehicle interior heat exchanger 4 via the device 12. At this time, since the first expansion device 12 is in the fully open state, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the vehicle interior heat exchanger 4 and dissipates heat in the vehicle interior heat exchanger (). Condensed liquid). After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is cooled by the second heat exchanger 3, bypasses the first heat exchanger 2, and is supplied to the vehicle interior as it is as cold air.

運転モードが除湿冷房運転モード(Series)に設定される場合には、制御部50は、図1(b)にも示されるように、ダンパ10の位置と第1の膨張装置(E−1)12を除いて、第2の膨張装置(E−2)、冷媒制御部、開閉弁を冷房運転モードと同様に設定する。すなわち、第1の膨張装置(E−1)12を少し絞った状態とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開く。そして、ダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidifying / cooling operation mode (Series), the control unit 50 sets the position of the damper 10 and the first expansion device (E-1) as shown in FIG. 1 (b). Except for 12, the second expansion device (E-2), the refrigerant control unit, and the on-off valve are set in the same manner as in the cooling operation mode. That is, the first inflator (E-1) 12 is slightly squeezed, and the second inflator (E-2) 14 is squeezed. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened. Then, the opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する際に放熱され、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は少し絞った状態であるため、ここで僅かに減圧膨張されて車室外熱交換器4に入るものの、この車室外熱交換器で放熱(凝縮液化)される。また、第1の膨張装置12は少し絞った状態であるため、全開の状態よりも第1の熱交換器2における冷媒の圧力が上昇し、第1の熱交換器2での放熱力を増大することができる。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に加熱されて、乾燥した冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 is dissipated when passing through the first heat exchanger 2, and further, heat exchange outside the vehicle interior via the first expansion device 12. Enter vessel 4. At this time, since the first expansion device 12 is in a slightly squeezed state, it is slightly decompressed and expanded here to enter the vehicle interior heat exchanger 4, but heat is dissipated (condensed) by this vehicle interior heat exchanger. .. Further, since the first expansion device 12 is in a slightly throttled state, the pressure of the refrigerant in the first heat exchanger 2 is higher than in the fully opened state, and the heat dissipation force in the first heat exchanger 2 is increased. can do. After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, heated when passing through the first heat exchanger 2, and used as dry cold air in the passenger compartment. Is supplied to.

次に、運転モードが除湿暖房運転モード(By‐Pass)に設定される場合には、図1(b)にも示されるように、制御部50は、第1の膨張装置12を閉とし、第2の膨張装置14を絞り、第1の冷媒制御部15を開き、第2の冷媒制御部17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、ダンパ10の開度を任意の中間位置に設定する。 Next, when the operation mode is set to the dehumidification / heating operation mode (By-Pass), the control unit 50 closes the first expansion device 12 and closes the first expansion device 12, as shown in FIG. 1 (b). When the second expansion device 14 is throttled, the first refrigerant control unit 15 is opened, the second refrigerant control unit 17 is closed, and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed. , The opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、車室外熱交換器4を迂回して第1のバイパス流路16を流れた後に、第2の膨張装置14に至り、この第2の膨張装置14で減圧されて、第2の熱交換器3に供給される。そして、この第2の熱交換器3で吸熱された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に加熱されて、乾燥した温風として車室内に供給される。
この除湿暖房運転モード(By‐Pass)での暖房能力は、後述する除湿暖房運転モード(parallel)よりも小さい。
Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, bypasses the vehicle interior heat exchanger 4, and flows through the first bypass flow path 16. It reaches the second expansion device 14, is depressurized by the second expansion device 14, and is supplied to the second heat exchanger 3. Then, after the heat is absorbed by the second heat exchanger 3, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, heated when passing through the first heat exchanger 2, and used as dry warm air. It is supplied indoors.
The heating capacity in this dehumidifying / heating operation mode (By-Pass) is smaller than that in the dehumidifying / heating operation mode (parallel) described later.

運転モードが除湿暖房運転モード(parallel)に設定される場合には、図1(b)にも示されるように、制御部50は、第1及び第2の膨張装置12,14を絞り、第1及び第2の冷媒制御部15,17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidification / heating operation mode (parallel), the control unit 50 throttles the first and second expansion devices 12 and 14 as shown in FIG. 1 (b), and the first and second expansion devices 12 and 14 are narrowed down. When the first and second refrigerant control units 15 and 17 are opened and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed and the opening degree of the damper 10 is set to an arbitrary intermediate position. ..

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、その後分岐されて、一方は、第1のバイパス流路16を通って第2の膨張装置14へ至り、ここで減圧されて第2の熱交換器3で吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。また、それと同時に、他方は、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の開閉弁17を通って、アキュムレータ23を介して圧縮機11に戻される。このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に加熱されて、乾燥した温風として車室内に供給される。 Then, the compressed refrigerant discharged from the compressor 11 is radiated (condensed and liquefied) by the first heat exchanger 2, and then branched, and one of them passes through the first bypass flow path 16 and expands to the second. It reaches the device 14, where it is depressurized, absorbed (evaporated and vaporized) by the second heat exchanger 3, and then returned to the compressor 11 via the accumulator 23. At the same time, the other is decompressed by the first expansion device 12 to reach the vehicle interior heat exchanger 4, where heat is absorbed (evaporated and vaporized) and then passed through the second on-off valve 17 to pass the accumulator 23. It is returned to the compressor 11 via. Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, heated when passing through the first heat exchanger 2, and used as dry warm air. It is supplied indoors.

運転モードが暖房運転モードに設定される場合には、図1(b)にも示されるように、制御部50は、第1の膨張装置12を絞り、第2の膨張装置14を閉じる。また、第1の冷媒制御部15を閉じ、第2の冷媒制御部17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10を暖房位置(開度100%の位置、フルホットの位置)に設定する。 When the operation mode is set to the heating operation mode, the control unit 50 throttles the first expansion device 12 and closes the second expansion device 14, as shown in FIG. 1 (b). Further, when the first refrigerant control unit 15 is closed, the second refrigerant control unit 17 is opened, and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed and the damper 10 is placed in the heating position. Set to (100% opening position, full hot position).

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の冷媒制御部17を通って、アキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3を通過するものの熱交換されず、第1の熱交換器2に全て導かれて加熱され、温風として車室内に供給される。
Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, decompressed by the first expansion device 12, and reaches the vehicle interior heat exchanger 4, where heat is absorbed. After being (evaporated and vaporized), it is returned to the compressor 11 via the accumulator 23 through the second refrigerant control unit 17.
Therefore, the air sent from the upstream side of the air conditioning unit 1 passes through the second heat exchanger 3, but is not heat exchanged, and is all guided to the first heat exchanger 2 to be heated and warm air. It is supplied to the passenger compartment as.

なお、上述の例では、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)と除湿暖房運転モード(By-Pass)とを、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度(Tset)が加味される目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて切り替えるようにしたが、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)のみを用いるようにしてもよい。 In the above example, the dehumidifying / heating operation mode (Parallel) and the dehumidifying / heating operation mode (By-Pass) are set as the dehumidifying / heating operation mode. The difference (Tm-Tset) between the total signal (Tm) that takes into account the temperature of the vehicle interior air, the amount of solar radiation, etc. and the target blowout temperature (Tset) that takes into account the desired indoor temperature (Tset) set by the occupants. Although it is switched according to the size, only the dehumidifying / heating operation mode (Parallel) may be used as the dehumidifying / heating operation mode.

ところで、以上の構成において、運転モードが除湿冷房(Series)運転モードや冷房運転モードである場合には、第1バイパス流路16や第2バイパス流路18に冷媒が通流されておらず、この運転モードから第1及び第2バイパス流路16,18のいずれか一方又は両方に冷媒を通流させる運転モードへ切り替える場合には、いままで流れていなかったバイパス流路に冷媒が通流させることになるので、このバイパス流路の流入側と流出側とで圧力差が大きいと、冷媒制御部15,17を開いた場合にバイパス流路を介して高圧冷媒(又は、中間圧の冷媒)が低圧側へ一気に流入し、突発音が発生する不都合がある。
そこで、第2の冷媒制御部17を上述のように絞り弁としてその作動状態を制御することで、第1の冷媒制御部15の前後や第2の冷媒制御部17の前後での圧力差を小さくした上でそれぞれの冷媒制御部15,17を開にするようにしている。
By the way, in the above configuration, when the operation mode is the dehumidifying / cooling (Series) operation mode or the cooling operation mode, the refrigerant is not passed through the first bypass flow path 16 or the second bypass flow path 18. When switching from this operation mode to the operation mode in which the refrigerant flows through either one or both of the first and second bypass flow paths 16 and 18, the refrigerant flows through the bypass flow path that has not flowed until now. Therefore, if the pressure difference between the inflow side and the outflow side of the bypass flow path is large, a high-pressure refrigerant (or an intermediate-pressure refrigerant) will pass through the bypass flow path when the refrigerant control units 15 and 17 are opened. Inflows to the low pressure side at once, and there is an inconvenience that a sudden sound is generated.
Therefore, by controlling the operating state of the second refrigerant control unit 17 as a throttle valve as described above, the pressure difference between the front and rear of the first refrigerant control unit 15 and the pressure difference between the front and rear of the second refrigerant control unit 17 can be obtained. After making it smaller, the refrigerant control units 15 and 17 are opened.

(運転モードの切り替えについて)
以下、運転モードを切り替える制御について、切り替える態様毎に説明する。
まず、図3に示されるように、除湿冷房(Series)運転モードから除湿暖房(Parallel)運転モードに切り替える場合、すなわち、車室外熱交換器4を放熱器として用い、第1のバイパス流路と第2のバイパス流路には冷媒を通流させていない運転モードから、車室外熱交換器4を吸熱器として用い、第1のバイパス流路と第2のバイパス流路に冷媒を通流させる運転モードに切り替える場合について説明する。
(About switching the operation mode)
Hereinafter, the control for switching the operation mode will be described for each switching mode.
First, as shown in FIG. 3, when switching from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (Parallel) operation mode, that is, the vehicle interior heat exchanger 4 is used as a radiator, and the first bypass flow path is used. From the operation mode in which the refrigerant is not passed through the second bypass flow path, the vehicle interior heat exchanger 4 is used as a heat absorber to allow the refrigerant to flow through the first bypass flow path and the second bypass flow path. A case of switching to the operation mode will be described.

除湿冷房(Series)運転モードから除湿暖房(Parallel)運転モードに切り替えるのであれば、第1の冷媒制御弁15を開とし、第1の膨張装置12を絞って車室外熱交換器4を吸熱器として用いると共に第2の冷媒制御17を開とすればいいが、除湿冷房(Series)運転モードにおいては、第1の熱交換器2での冷媒圧力状態を高く保持して第1の熱交換器2の放熱能力を高くするために、第1の膨張装置12を幾分絞った状態としている。このため、第1の膨張装置12より上流側の冷媒と下流側の冷媒との間には少なからず圧力差が生じているため、この状態で第1の冷媒制御部15を開にすると高圧冷媒が第1のバイパス流路16を介して低圧側へ一気に流れ込んで第2の膨張装置14へ流入される。このため、冷媒が第2の膨張装置14へ急激に流れ込むことにより突発音が生じる不都合がある。
そこで、制御部50においては、各冷媒制御部15,17や開閉弁19、膨張装置12,15を制御して、図4に示されるような順序で除湿冷房(Series)運転モードを除湿暖房(Parallel)運転モードに切り替える。
When switching from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (Parallel) operation mode, the first refrigerant control valve 15 is opened, the first expansion device 12 is throttled, and the vehicle interior heat exchanger 4 is used as a heat exchanger. However, in the dehumidifying / cooling (Series) operation mode, the refrigerant pressure state in the first heat exchanger 2 is maintained high and the first heat exchanger is opened. In order to increase the heat dissipation capacity of 2, the first expansion device 12 is in a slightly throttled state. Therefore, a pressure difference is not a little generated between the refrigerant on the upstream side and the refrigerant on the downstream side of the first expansion device 12, so that when the first refrigerant control unit 15 is opened in this state, the high-pressure refrigerant is used. Flows into the low pressure side at once through the first bypass flow path 16 and flows into the second expansion device 14. Therefore, there is an inconvenience that a sudden sound is generated when the refrigerant suddenly flows into the second expansion device 14.
Therefore, the control unit 50 controls the refrigerant control units 15 and 17, the on-off valves 19, and the expansion devices 12 and 15 to dehumidify and heat the dehumidifying and cooling (Series) operation modes in the order shown in FIG. Parallel) Switch to operation mode.

先ず、図4(a)に示される除湿冷房(Series)運転モードの状態から、第2の冷媒制御部17を絞り状態として、車室外熱交換器4を通過した冷媒の一部を第2のバイパス流路18を介して圧縮機11に導く(第1ステージ:図4(b))。すなわち、車室外熱交換器4より下流側の中間圧の冷媒を第2の熱交換器3と圧縮機11との間に少量供給する状態とする。ここで第2の冷媒制御部17を全開にして第2のバイパス流路18に冷媒をいきなり流すと、第1の膨張装置12から第2の膨張装置14までの中間圧の冷媒が、低圧となっている第2の熱交換器3と圧縮機11との間の冷媒流路にいきなり流入するので(アキュムレータ23がある本実施例の場合には、このアキュムレータ23に中間圧の冷媒がいきなり流入するので)、異音が発生すると共に、第2の熱交換器3の内部圧力が急激に高くなるため第2の熱交換器3の吸熱能力が低下するなどの不都合が生じる。そこで、第1ステージにおいて、少量の冷媒を第2のバイパス流路18に流すことで、第2の冷媒制御部17より下流側の圧力を第2の熱交換器3の吸熱能力を損なわないように少し高める。 First, from the state of the dehumidifying / cooling (Series) operation mode shown in FIG. 4A, the second refrigerant control unit 17 is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger 4 is seconded. It is guided to the compressor 11 via the bypass flow path 18 (first stage: FIG. 4 (b)). That is, a small amount of the refrigerant having an intermediate pressure downstream of the vehicle interior heat exchanger 4 is supplied between the second heat exchanger 3 and the compressor 11. Here, when the second refrigerant control unit 17 is fully opened and the refrigerant suddenly flows into the second bypass flow path 18, the intermediate pressure refrigerant from the first expansion device 12 to the second expansion device 14 becomes low pressure. Since it suddenly flows into the refrigerant flow path between the second heat exchanger 3 and the compressor 11 (in the case of this embodiment having the accumulator 23, the intermediate pressure refrigerant suddenly flows into the accumulator 23). Therefore, an abnormal noise is generated, and the internal pressure of the second heat exchanger 3 rises sharply, resulting in inconveniences such as a decrease in the heat absorption capacity of the second heat exchanger 3. Therefore, in the first stage, by flowing a small amount of refrigerant through the second bypass flow path 18, the pressure on the downstream side of the second refrigerant control unit 17 is not impaired in the endothermic capacity of the second heat exchanger 3. A little higher.

その後、いままで少し絞っていた第1の膨張装置12を全開とする(第2ステージ:図4(c))。これにより、第1の膨張装置12より上流側の高圧冷媒が車室外熱交換器4を介して第2の膨張装置14や第2の冷媒制御部17へ導かれるので、第1の熱交換器2と第1の膨張装置12との間の冷媒流路と、車室外熱交換器4と第2の膨張装置14との間の冷媒流路と、の間の圧力差をほぼ同じ状態とする。 After that, the first expansion device 12 which has been narrowed down a little until now is fully opened (second stage: FIG. 4C). As a result, the high-pressure refrigerant on the upstream side of the first expansion device 12 is guided to the second expansion device 14 and the second refrigerant control unit 17 via the vehicle interior heat exchanger 4, so that the first heat exchanger The pressure difference between the refrigerant flow path between the 2 and the first expansion device 12 and the refrigerant flow path between the vehicle interior heat exchanger 4 and the second expansion device 14 is set to be substantially the same. ..

その上で、第1の冷媒制御部15を開として第1のバイパス流路16に高圧冷媒を通流させる(第3ステージ:図4(d))。この時点では、第1の熱交換器2と第1の膨張装置12との間の冷媒流路と、車室外熱交換器4と第2の膨張装置14との間の冷媒流路と、の圧力差は殆ど無くなっているので、高圧の冷媒が急激に低圧側へ流入する不都合が回避される。 Then, the first refrigerant control unit 15 is opened to allow the high-pressure refrigerant to flow through the first bypass flow path 16 (third stage: FIG. 4D). At this point, the refrigerant flow path between the first heat exchanger 2 and the first expansion device 12 and the refrigerant flow path between the passenger compartment outdoor heat exchanger 4 and the second expansion device 14 Since the pressure difference is almost eliminated, the inconvenience that the high-pressure refrigerant suddenly flows into the low-pressure side is avoided.

その後、第1の膨張装置12を絞って車室外熱交換器4を吸熱器として機能させる(第4ステージ:図4(e))。これにより、第2の冷媒制御部の上流側と下流側との圧力差が縮小される。
そして、最後に第2の冷媒制御部15を全開として車室外熱交換器4を通過した低圧冷媒を第2のバイパス流路18を介して圧縮機11に戻す(第5ステージ:図4(f))。
このため、第4ステージで第2の冷媒制御部17の上流側と下流側との圧力差が縮小されるので、その後に第2のバイパス流路18を開(第5ステージ)としても、中間圧の冷媒が急激に低圧側へ流入する不都合が回避される。
After that, the first expansion device 12 is squeezed to make the vehicle interior heat exchanger 4 function as a heat absorber (fourth stage: FIG. 4 (e)). As a result, the pressure difference between the upstream side and the downstream side of the second refrigerant control unit is reduced.
Finally, the second refrigerant control unit 15 is fully opened, and the low-pressure refrigerant that has passed through the vehicle interior heat exchanger 4 is returned to the compressor 11 via the second bypass flow path 18 (fifth stage: FIG. 4 (f). )).
Therefore, since the pressure difference between the upstream side and the downstream side of the second refrigerant control unit 17 is reduced in the fourth stage, even if the second bypass flow path 18 is subsequently opened (fifth stage), it is intermediate. The inconvenience that the pressure refrigerant suddenly flows into the low pressure side is avoided.

したがって、以上のステージを経て運転モードが除湿冷房(Series)運転モードから除湿暖房(Parallel)運転モードに切り替えられるので、騒音の発生を抑えることが可能となり、また圧縮機を停止させることなく切り替えることが可能となる。 Therefore, the operation mode can be switched from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (Parallel) operation mode through the above stages, so that it is possible to suppress the generation of noise and switch without stopping the compressor. Is possible.

なお、切り替えの態様について、これとは異なる順序とすることが考えられる。すなわち、閉じられていた第2の冷媒制御部17を開いて第2のバイパス流路18に冷媒を通流させる第1ステージよりも前に、幾分絞った状態の第1の膨張装置12を全開として第1の冷媒制御部15の上流側と下流側との圧力差を縮小する第2ステージを実施するような切り替えの態様である。第1の膨張装置12を開くと第1の熱交換器2における冷媒の圧力が低下し、暖房能力が一時的に低下するため、除湿冷房(Series)運転モードから暖房能力の向上を行うために除湿暖房(Parallel)運転モードへ切り替えるにあたり、第1の膨張装置12を全開にする時間を短くすることが望まれる。このため、既に述べたように、第1ステージと第2ステージとは、順序を逆転させないことが好ましい。 It is conceivable that the order of switching may be different from this. That is, the first expansion device 12 in a slightly throttled state is placed before the first stage in which the closed second refrigerant control unit 17 is opened to allow the refrigerant to flow through the second bypass flow path 18. This is a switching mode in which the second stage of reducing the pressure difference between the upstream side and the downstream side of the first refrigerant control unit 15 is carried out as fully open. When the first expansion device 12 is opened, the pressure of the refrigerant in the first heat exchanger 2 decreases, and the heating capacity temporarily decreases. Therefore, in order to improve the heating capacity from the dehumidifying / cooling (Series) operation mode. When switching to the dehumidifying / heating (Parallel) operation mode, it is desired to shorten the time for fully opening the first expansion device 12. Therefore, as already described, it is preferable that the order of the first stage and the second stage is not reversed.

次に、図5に示されるように、除湿冷房(Series)運転モードから除湿暖房(By-Pass)運転モードに切り替える場合、すなわち、車室外熱交換器4を放熱器として用い、第1のバイパス流路と第2のバイパス流路には冷媒を通流させていない運転モードから、車室外熱交換器4による熱交換機能を利用せず、第1のバイパス流路にのみ冷媒を通流させる運転モードに切り替える場合について説明する。 Next, as shown in FIG. 5, when switching from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (By-Pass) operation mode, that is, the vehicle interior heat exchanger 4 is used as a radiator and the first bypass is used. From the operation mode in which the refrigerant is not passed through the flow path and the second bypass flow path, the refrigerant is passed only through the first bypass flow path without using the heat exchange function by the vehicle interior heat exchanger 4. A case of switching to the operation mode will be described.

除湿冷房(Series)運転モードから除湿暖房(By-Pass)運転モードに切り替えるのであれば、第1の冷媒制御弁15を開とし、第1の膨張装置12を閉とすればいいが、除湿冷房(Series)運転モードにおいては、前述した如く第1の膨張装置12を幾分絞った状態としているため、第1の膨張装置12より上流側の冷媒と下流側の冷媒との間には少なからず圧力差が生じている。このため、この状態で第1の冷媒制御部15を開にすると高圧冷媒が第1のバイパス流路16を介して低圧側へ一気に流れ込んで第2の膨張装置14へ流入され、突発音が生じる不都合がある。そこで、制御部50においては、各冷媒制御部15,17や開閉弁19、膨張装置12,14を制御して図6に示されるような順序で除湿冷房(Series)運転モードを除湿暖房(By-Pass)運転モードに切り替える。 To switch from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (By-Pass) operation mode, the first refrigerant control valve 15 may be opened and the first expansion device 12 may be closed. In the (Series) operation mode, since the first expansion device 12 is in a slightly throttled state as described above, there is not a little space between the refrigerant on the upstream side and the refrigerant on the downstream side of the first expansion device 12. There is a pressure difference. Therefore, when the first refrigerant control unit 15 is opened in this state, the high-pressure refrigerant flows at once to the low-pressure side through the first bypass flow path 16 and flows into the second expansion device 14, causing a sudden sound. There is an inconvenience. Therefore, the control unit 50 controls the refrigerant control units 15 and 17, the on-off valves 19, and the expansion devices 12 and 14 to dehumidify and heat (By) the dehumidifying and cooling (Series) operation modes in the order shown in FIG. -Pass) Switch to operation mode.

ここで、第1ステージ(図6(b))〜第3ステージ(図6(d))は、前記図4の第1ステージ(図4(b))〜第3ステージ(図4(d))と同様の操作を順次行い、その後、第1の膨張装置12を閉として車室外熱交換器4への通流を遮断する(第6ステージ:図4(e))。 Here, the first stage (FIG. 6 (b)) to the third stage (FIG. 6 (d)) are the first stage (FIG. 4 (b)) to the third stage (FIG. 4 (d)) of FIG. ) Is sequentially performed, and then the first expansion device 12 is closed to block the flow to the vehicle interior heat exchanger 4 (sixth stage: FIG. 4 (e)).

これにより、第1及び第2ステージにより、第1の冷媒制御部16の上流側と下流側との圧力差が徐々に縮小するので、第1の冷媒制御部15を開(第3ステージ)としても、高圧冷媒が急激に低圧側へ流入する不都合が回避される。また、第1〜第3ステージに続く第6ステージにより第2のバイパス流路18に冷媒が通流しない除湿暖房(By-Pass)運転モードを実現できる。
したがって、以上のステージを経て運転モードが除湿冷房(Series)運転モードから除湿暖房(By-Pass)運転モードに切り替えられるので、騒音の発生を抑えることが可能となり、また圧縮機を停止させることなく切り替えることが可能となる。なお、上述の例では、第6ステージと同時に、又は、第6ステージの後に、第2の冷媒制御部17をさらに閉として冷媒が逆流するおそれを無くしてもよい。
As a result, the pressure difference between the upstream side and the downstream side of the first refrigerant control unit 16 is gradually reduced by the first and second stages, so that the first refrigerant control unit 15 is opened (third stage). However, the inconvenience that the high-pressure refrigerant suddenly flows into the low-pressure side is avoided. Further, a dehumidifying / heating (By-Pass) operation mode in which the refrigerant does not flow through the second bypass flow path 18 can be realized by the sixth stage following the first to third stages.
Therefore, the operation mode can be switched from the dehumidifying / cooling (Series) operation mode to the dehumidifying / heating (By-Pass) operation mode through the above stages, so that it is possible to suppress the generation of noise and without stopping the compressor. It becomes possible to switch. In the above example, the second refrigerant control unit 17 may be further closed at the same time as the sixth stage or after the sixth stage to eliminate the possibility of the refrigerant flowing back.

次に、図7に示されるように、除湿冷房(Series)運転モードから暖房運転モードに切り替える場合、すなわち、車室外熱交換器4を放熱器として用い、第1のバイパス流路と第2のバイパス流路には冷媒を通流させていない運転モードから、車室外熱交換器4を吸熱器として用い、第2のバイパス流路のみに冷媒を通流させる運転モードに切り替える場合について説明する。 Next, as shown in FIG. 7, when switching from the dehumidifying / cooling (Series) operation mode to the heating operation mode, that is, using the vehicle interior heat exchanger 4 as a radiator, the first bypass flow path and the second A case of switching from an operation mode in which the refrigerant is not passed through the bypass flow path to an operation mode in which the refrigerant is passed only through the second bypass flow path by using the vehicle interior heat exchanger 4 as a heat exchanger will be described.

除湿冷房(Series)運転モードから暖房運転モードに切り替えるのであれば、第2の冷媒制御弁17を開とし、第1の膨張装置12を絞ればいいが、除湿冷房(Series)運転モードにおいては、前述した如く第1の膨張装置12を幾分絞った状態としているものの、車室外熱交換器4を通過した冷媒は、比較的圧力が高い状態となっているため、第2の冷媒制御部17をいきなり開にすると、第2の膨張装置14より上流側の中間圧の冷媒が第2の熱交換器3と圧縮機11との間の冷媒流路にいきなり流入し(アキュムレータ23がある本実施形態においては、このアキュムレータ23に中間圧の冷媒がいきなり流入し)、異音が発生するおそれがある。
そこで、制御部50においては、各冷媒制御部15,17や開閉弁19、膨張装置12,14を制御して図8に示されるような順序で除湿冷房(Series)運転モードを暖房運転モードに切り替える。
To switch from the dehumidifying / cooling (Series) operation mode to the heating operation mode, the second refrigerant control valve 17 may be opened and the first expansion device 12 may be throttled. However, in the dehumidifying / cooling (Series) operation mode, Although the first expansion device 12 is in a slightly throttled state as described above, the refrigerant that has passed through the vehicle interior outdoor heat exchanger 4 is in a relatively high pressure state, so that the second refrigerant control unit 17 When is suddenly opened, the refrigerant of intermediate pressure on the upstream side of the second expansion device 14 suddenly flows into the refrigerant flow path between the second heat exchanger 3 and the compressor 11 (this implementation with the accumulator 23). In the form, an intermediate pressure refrigerant suddenly flows into the accumulator 23), which may cause abnormal noise.
Therefore, the control unit 50 controls the refrigerant control units 15 and 17, the on-off valves 19, and the expansion devices 12 and 14 to change the dehumidifying / cooling (Series) operation mode to the heating operation mode in the order shown in FIG. Switch.

先ず、図8(a)に示される除湿冷房(Series)運転モードの状態から、第1の膨張装置12を絞って、車室外熱交換器4を吸熱器として機能させると共に第1の膨張装置12の下流側の圧力を低下させる(第7ステージ:図8(b))。
しかし、この第7ステージで車室外熱交換器4を吸熱器として機能させた直後は、必ずしも車室外熱交換器4の下流側の圧力が十分に下がっているわけではないので、次に、第2の冷媒制御部17を絞り状態として、車室外熱交換器4を通過した冷媒の一部を第2のバイパス流路18を介して圧縮機11に導き(第8ステージ:図8(c))、中間圧の冷媒の圧力をさらに低下させると共に第2の冷媒制御部17の前後の圧力差を小さくし、圧縮機11の吸入側(アキュムレータ23)へ中高圧の冷媒が急激に流入する不都合を回避する。
First, from the state of the dehumidifying / cooling (Series) operation mode shown in FIG. 8A, the first expansion device 12 is squeezed to make the vehicle interior heat exchanger 4 function as a heat absorber and the first expansion device 12 The pressure on the downstream side of the is reduced (7th stage: FIG. 8 (b)).
However, immediately after the vehicle interior outdoor heat exchanger 4 is made to function as a heat absorber in this 7th stage, the pressure on the downstream side of the passenger compartment outdoor heat exchanger 4 is not necessarily sufficiently lowered. With the refrigerant control unit 17 of No. 2 in the throttled state, a part of the refrigerant that has passed through the vehicle interior heat exchanger 4 is guided to the compressor 11 via the second bypass flow path 18 (8th stage: FIG. 8C). ), The pressure difference between the front and rear of the second refrigerant control unit 17 is reduced while further reducing the pressure of the intermediate pressure refrigerant, and the inconvenience that the medium and high pressure refrigerant suddenly flows into the suction side (accumulator 23) of the compressor 11. To avoid.

その後、第2の膨張装置14を閉として第2の熱交換器3への通流を遮断すると共に第2の冷媒制御部17を全開として、第2の冷媒制御17の前後での圧力差を無くす(第9ステージ:図8(d))。
したがって、以上のステージを経て運転モードが除湿冷房(Series)運転モードから暖房運転モードに切り替えられるので、騒音を発生させずに、また、圧縮機11を停止させることなく、運転モードを切り替えることが可能となる。
After that, the second expansion device 14 is closed to block the flow to the second heat exchanger 3, and the second refrigerant control unit 17 is fully opened to reduce the pressure difference before and after the second refrigerant control 17. Eliminate (9th stage: Fig. 8 (d)).
Therefore, since the operation mode can be switched from the dehumidifying / cooling (Series) operation mode to the heating operation mode through the above stages, the operation mode can be switched without generating noise and without stopping the compressor 11. It will be possible.

なお、第2の膨張装置14を閉として第2の熱交換器3への通流を遮断すると共に第2の冷媒制御部17を全開とする操作は、同時に行うようにしても、若干の時間差を設けて行うようにしてもよい。時間差を設ける場合には、第2の冷媒制御部17での全開操作を先に行い、第2の膨張装置14の全閉操作をその後に行うことが好ましい。操作手順を逆として第2の膨張装置14の全閉操作を先に行った場合には、圧縮機11から第1の熱交換器2、第1の膨張装置12、車室外熱交換器4を順に流れてきた冷媒が全閉とされた第2の冷媒制御部17によってせき止められて第2の冷媒制御部17より上流側の中間圧が無駄に上昇し、圧縮機の駆動動力が増大して省動力の観点で好ましくない。このため、第2の冷媒制御部17を先に全開操作することで、冷媒圧力の上昇を防止しつつ、運転モードを切換えることが可能となる。 Even if the operations of closing the second expansion device 14 to block the flow to the second heat exchanger 3 and fully opening the second refrigerant control unit 17 are performed at the same time, there is a slight time lag. May be provided. When a time difference is provided, it is preferable that the second refrigerant control unit 17 performs the fully open operation first, and then the second expansion device 14 fully closes. When the operation procedure is reversed and the second expansion device 14 is fully closed first, the compressor 11 to the first heat exchanger 2, the first expansion device 12, and the passenger compartment outdoor heat exchanger 4 are moved. The refrigerant flowing in order is dammed up by the second refrigerant control unit 17 that is completely closed, the intermediate pressure on the upstream side of the second refrigerant control unit 17 rises unnecessarily, and the driving power of the compressor increases. It is not preferable from the viewpoint of power saving. Therefore, by fully opening the second refrigerant control unit 17 first, it is possible to switch the operation mode while preventing the refrigerant pressure from rising.

車室外熱交換器4を放熱器として用いる冷房運転モードから車室外熱交換器4を吸熱器として用いる運転モードに切り換える場合、以上に説明した手順で運転モードを切り替えることで、騒音の発生を抑えることが可能となり、また圧縮機を停止させることなく速やかに運転モードを切り替えることが可能となる。 When switching from the cooling operation mode in which the vehicle interior heat exchanger 4 is used as a radiator to the operation mode in which the vehicle interior heat exchanger 4 is used as a heat absorber, the operation mode is switched according to the procedure described above to suppress the generation of noise. It is also possible to quickly switch the operation mode without stopping the compressor.

なお、以上の形態において、本発明の目的を逸脱しない範囲で適宜変更してもよい。例えば、冷凍サイクルの運転モードを切り替える指標して、冷凍サイクル100が受けている熱負荷と目標吹出温度との差を用いるようにしたが、冷凍サイクル100が受けている熱負荷の代表として、外気温度を用いたり、第2の熱交換器3の冷却温度等を用いたりしてもよい。 In addition, in the above form, it may be changed as appropriate within the range which does not deviate from the object of this invention. For example, the difference between the heat load received by the refrigeration cycle 100 and the target blowing temperature is used as an index for switching the operation mode of the refrigeration cycle. However, as a representative of the heat load received by the refrigeration cycle 100, the outside air is used. The temperature may be used, or the cooling temperature of the second heat exchanger 3 or the like may be used.

1 空調ユニット
2 第1の熱交換器
3 第2の熱交換器
4 車室外熱交換器
11 圧縮機
12 第1の膨張装置
13 逆止弁
14 第2の膨張装置
15 第1の冷媒制御部
16 第1のバイパス流路
17 第2の冷媒制御部
18 第2のバイパス流路
19 開閉弁
100 冷凍サイクル
1 Air conditioning unit 2 1st heat exchanger 3 2nd heat exchanger 4 Outdoor heat exchanger 11 Compressor 12 1st expansion device 13 Check valve 14 2nd expansion device 15 1st refrigerant control unit 16 1st bypass flow path 17 2nd refrigerant control unit 18 2nd bypass flow path 19 On-off valve 100 Refrigeration cycle

Claims (7)

圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と、前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13,19)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13,19)との間の冷媒流路と、前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続した冷凍サイクルを有する車両用空調装置において、
前記第2の冷媒制御部(17)を、前記第2のバイパス流路(18)を絞ること及び開閉することが可能な絞り弁によって構成したことを特徴とする車両用空調装置。
The compressor (11), the first heat exchanger (2) arranged in the air conditioning unit (1) and the ventilation amount is adjusted by the damper (10), and the first heat exchanger (2) arranged in the air conditioning unit (1). A second exchanger (3) arranged upstream of the first heat exchanger (2) in the air conditioning unit (1) and an outdoor heat exchanger (4) capable of exchanging heat with the outside air. ), A first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and a second expansion device (14) capable of narrowing and closing the refrigerant flow path. And
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
The refrigerant flow path between the first heat exchanger (2) and the first expansion device (12), and the vehicle interior heat exchanger (4) and the second expansion device (14). The refrigerant flow path between them is connected via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), on the upstream side of the merging portion (A) with the first bypass flow path (16). A backflow blocking section (13, 19) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the vehicle interior heat exchanger (4) and the backflow blocking section (13, 19) are provided. A second bypass provided with a second refrigerant control unit (17) for the refrigerant flow path between the refrigerant flow paths and the refrigerant flow path between the second heat exchanger (3) and the compressor (11). In a vehicle air conditioner having a refrigeration cycle connected via a flow path (18),
A vehicle air conditioner comprising the second refrigerant control unit (17) with a throttle valve capable of throttle and open / close the second bypass flow path (18).
前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)を更に備え、
前記制御手段(50)は、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1のバイパス流路(16)を通流させて前記第2の膨張装置で減圧させた後に前記第2の熱交換器にて吸熱させると共に、前記第1の膨張装置(12)で減圧させた後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2のバイパス流路を通流させて前記圧縮機(11)に戻す第2運転モードに切り替えるに当たり、
前記第1運転モードの状態から、前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第1ステージと、
前記第1の膨張装置(12)を全開とする第2ステージと、
前記第1の冷媒制御部(15)を開として前記第1の熱交換器(2)を通過した冷媒を前記第1のバイパス流路(16)にも通流させる第3ステージと、
前記第1の膨張装置(12)を絞って前記車室外熱交換器(4)を吸熱器として機能させる第4ステージと、
前記第2の冷媒制御部(17)を全開とする第5ステージと、
を順次経て切り換えることを特徴とする請求項1に記載の車両用空調装置。
A control means (50) for switching and controlling the operation mode of the refrigeration cycle (100) is further provided.
The control means (50) passes the refrigerant discharged from the compressor (11) through the first heat exchanger (2) without radiating heat or exchanging heat, and then the first expansion. The device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat. The dissipated refrigerant is further depressurized by the second expansion device (14), and then the first. From the first operation mode in which heat is absorbed by the heat exchanger (3) of 2, the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and then the first After passing through the bypass flow path (16) and depressurizing with the second inflator, the heat is absorbed by the second heat exchanger and depressurized by the first inflator (12). In switching to the second operation mode in which heat is absorbed by the vehicle interior heat exchanger (4), and then the second bypass flow path is passed through and returned to the compressor (11).
From the state of the first operation mode, the second refrigerant control unit (17) is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). The first stage leading to the compressor (11) via)
A second stage in which the first expansion device (12) is fully opened, and
A third stage in which the first refrigerant control unit (15) is opened and the refrigerant that has passed through the first heat exchanger (2) is also passed through the first bypass flow path (16).
A fourth stage in which the first expansion device (12) is squeezed to make the vehicle interior heat exchanger (4) function as an endothermic device.
A fifth stage in which the second refrigerant control unit (17) is fully opened, and
The vehicle air conditioner according to claim 1, wherein the air conditioner is sequentially switched.
前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)を更に備え、
前記制御手段(50)は、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1のバイパス流路(16)のみを通流させて前記第2の膨張装置(14)で減圧させた後に前記第2の熱交換器(3)にて吸熱させる第3運転モードに切り替えるに当たり、
前記第1運転モードの状態から、前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第1ステージと、
前記第1の膨張装置(12)を全開とする第2ステージと、
前記第1の冷媒制御部(15)を開として前記第1の熱交換器(2)を通過した冷媒を前記第1のバイパス流路(16)にも通流させる第3ステージと、
前記第1の膨張装置(12)を閉として前記車室外熱交換器(4)への通流を遮断する第6ステージと、
を順次経て切り換えることを特徴とする請求項1に記載の車両用空調装置。
A control means (50) for switching and controlling the operation mode of the refrigeration cycle (100) is further provided.
The control means (50) passes the refrigerant discharged from the compressor (11) through the first heat exchanger (2) without radiating heat or exchanging heat, and then the first expansion. The device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat. The dissipated refrigerant is further decompressed by the second expansion device (14), and then the second expansion device (14) is used. From the first operation mode in which heat is absorbed by the heat exchanger (3) of 2, the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and then the first In switching to the third operation mode in which only the bypass flow path (16) of the above is passed, the pressure is reduced by the second expansion device (14), and then the heat is absorbed by the second heat exchanger (3).
From the state of the first operation mode, the second refrigerant control unit (17) is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). The first stage leading to the compressor (11) via)
A second stage in which the first expansion device (12) is fully opened, and
A third stage in which the first refrigerant control unit (15) is opened and the refrigerant that has passed through the first heat exchanger (2) is also passed through the first bypass flow path (16).
A sixth stage in which the first expansion device (12) is closed to block the flow to the vehicle interior heat exchanger (4), and
The vehicle air conditioner according to claim 1, wherein the air conditioner is sequentially switched.
前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)を更に備え、
前記制御手段(50)は、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1の膨張装置(12)で減圧して前記車室外熱交換器(4)にて吸熱させ、この車室外熱交換器(4)を通過した冷媒を前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す第4の運転モードに切り替えるに当たり、
前記第1運転モードの状態から、前記第1の膨張装置(12)を絞って前記車室外熱効果器(4)を吸熱器として機能させる第7ステージと、
前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第8ステージと、
記第2の膨張装置(14)を閉として前記第2の熱交換器(3)への通流を遮断すると共に前記第2の冷媒制御部(17)を全開とする第9ステージと、
を順次経て切り換えることを特徴とする請求項1に記載の車両用空調装置。
A control means (50) for switching and controlling the operation mode of the refrigeration cycle (100) is further provided.
The control means (50) passes the refrigerant discharged from the compressor (11) through the first heat exchanger (2) without radiating heat or exchanging heat, and then the first expansion. The device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat. The dissipated refrigerant is further depressurized by the second expansion device (14), and then the first. From the first operation mode in which heat is absorbed by the heat exchanger (3) of 2, the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and then the first The pressure is reduced by the expansion device (12) of the above, the heat is absorbed by the vehicle interior heat exchanger (4), and the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). In switching to the fourth operation mode for returning to the compressor (11).
From the state of the first operation mode, the seventh stage in which the first expansion device (12) is squeezed to make the vehicle interior heat effector (4) function as a heat absorber, and
With the second refrigerant control unit (17) in the throttled state, a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18) to the compressor (11). The 8th stage leading to
A ninth stage in which the second expansion device (14) is closed to block the flow to the second heat exchanger (3) and the second refrigerant control unit (17) is fully opened.
The vehicle air conditioner according to claim 1, wherein the air conditioner is sequentially switched.
請求項1に係る車両用空調装置を用いて、圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1のバイパス流路(16)を通流させて前記第2の膨張装置で減圧させた後に前記第2の熱交換器にて吸熱させると共に、前記第1の膨張装置(12)で減圧させた後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2のバイパス流路を通流させて前記圧縮機(11)に戻す第2運転モードに切り替える運転モード切替制御方法において、
前記第1運転モードの状態から、前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第1ステップと、
前記第1ステップの後に、前記第1の膨張装置(12)を全開とする第2ステップと、
前記第2ステップの後に、第1の冷媒制御部(15)を開として前記第1の熱効果器(2)を通過した冷媒を前記第1のバイパス流路(16)にも通流させる第3ステップと、
前記第3ステップの後に、前記第1の膨張装置(12)を絞って前記車室外熱交換器(4)を吸熱器として機能させる第4ステップと、
前記第2の冷媒制御部(17)を全開とする第5ステップと、
を備えることを特徴とする運転モード切替方法。
Using the vehicle air conditioner according to claim 1, the refrigerant discharged from the compressor (11) is passed through the first heat exchanger (2) without being dissipated or heat exchanged, and then the refrigerant is passed through. The first expansion device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat, and the dissipated refrigerant is further depressurized by the second expansion device (14). After that, from the first operation mode in which heat is absorbed by the second heat exchanger (3), the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2). , The first bypass flow path (16) is passed through, the pressure is reduced by the second expansion device, and then heat is absorbed by the second heat exchanger, and the first expansion device (12) absorbs heat. Operation mode switching control to switch to the second operation mode in which the heat is absorbed by the vehicle interior heat exchanger (4) after the pressure is reduced, and then the second bypass flow path is passed through and returned to the compressor (11). In the method
From the state of the first operation mode, the second refrigerant control unit (17) is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). The first step leading to the compressor (11) via)
After the first step, a second step of fully opening the first expansion device (12) and
After the second step, the first refrigerant control unit (15) is opened to allow the refrigerant that has passed through the first heat effector (2) to flow through the first bypass flow path (16). 3 steps and
After the third step, a fourth step of squeezing the first expansion device (12) to make the vehicle interior heat exchanger (4) function as a heat absorber,
The fifth step of fully opening the second refrigerant control unit (17) and
An operation mode switching method characterized by being provided with.
請求項1に係る車両用空調装置を用いて、圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1のバイパス流路(16)のみを通流させて前記第2の膨張装置(14)で減圧させた後に前記第2の熱交換器(3)にて吸熱させる第3運転モードに切り替える運転モード切替制御方法において、
前記第1運転モードの状態から、前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第1ステップと、
前記第1ステップの後に、前記第1の膨張装置(12)を全開とする第2ステップと、
前記第2ステップの後に、第1の冷媒制御部(15)を開として前記第1の熱効果器(2)を通過した冷媒を前記第1のバイパス流路(16)にも通流させる第3ステップと、
前記第3ステップの後に、前記第1の膨張装置(12)を閉として前記車室外熱交換器(4)への通流を遮断する第6ステップと、
を備えることを特徴とする運転モード切替方法。
Using the vehicle air conditioner according to claim 1, the refrigerant discharged from the compressor (11) is passed through the first heat exchanger (2) without being dissipated or heat exchanged, and then the refrigerant is passed through. The first expansion device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat, and the dissipated refrigerant is further depressurized by the second expansion device (14). After that, from the first operation mode in which heat is absorbed by the second heat exchanger (3), the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2). In the third operation mode, only the first bypass flow path (16) is allowed to flow, the pressure is reduced by the second expansion device (14), and then heat is absorbed by the second heat exchanger (3). In the switching operation mode switching control method,
From the state of the first operation mode, the second refrigerant control unit (17) is set to the throttled state, and a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). The first step leading to the compressor (11) via)
After the first step, a second step of fully opening the first expansion device (12) and
After the second step, the first refrigerant control unit (15) is opened to allow the refrigerant that has passed through the first heat effector (2) to flow through the first bypass flow path (16). 3 steps and
After the third step, a sixth step of closing the first expansion device (12) to block the flow to the vehicle interior heat exchanger (4), and the sixth step.
An operation mode switching method characterized by being provided with.
請求項1に係る車両用空調装置を用いて、圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ又は熱交換させることなく通過させた後に、前記第1の膨張装置(12)で必要に応じて減圧させると共に前記車室外熱交換器(4)にて放熱させ、この放熱させた冷媒を、前記第2の膨張装置(14)で更に減圧させた後に前記第2の熱交換器(3)にて吸熱させる第1運転モードから、前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させた後に、前記第1の膨張装置(12)で減圧して前記車室外熱交換器(4)にて吸熱させ、この車室外熱交換器(4)を通過した冷媒を前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す第4の運転モードに切り替える運転モード切替制御方法において、
前記第1運転モードの状態から、前記第1の膨張装置(12)を絞って前記車室外熱効果器(4)を吸熱器として機能させる第7ステップと、
前記第7ステップの後に、前記第2の冷媒制御部(17)を絞り状態として、前記車室外熱交換器(4)を通過した冷媒の一部を前記第2のバイパス流路(18)を介して圧縮機(11)に導く第8ステップと、
前記第8ステップの後に、前記第2の膨張装置(14)を閉として前記第2の熱交換器(3)への通流を遮断すると共に前記第2の冷媒制御部(17)を全開とする第9ステップと、
を備えることを特徴とする運転モード切替方法。
Using the vehicle air conditioner according to claim 1, the refrigerant discharged from the compressor (11) is passed through the first heat exchanger (2) without being dissipated or heat exchanged, and then the refrigerant is passed through. The first expansion device (12) decompresses the pressure as necessary, and the vehicle interior heat exchanger (4) dissipates heat, and the dissipated refrigerant is further depressurized by the second expansion device (14). After that, from the first operation mode in which heat is absorbed by the second heat exchanger (3), the refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2). , The pressure is reduced by the first expansion device (12), heat is absorbed by the vehicle interior heat exchanger (4), and the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (4). In the operation mode switching control method of switching to the fourth operation mode of returning to the compressor (11) via 18),
From the state of the first operation mode, the seventh step of narrowing down the first expansion device (12) to make the vehicle interior heat effector (4) function as an endothermic device.
After the seventh step, with the second refrigerant control unit (17) in the throttled state, a part of the refrigerant that has passed through the vehicle interior heat exchanger (4) is passed through the second bypass flow path (18). Eighth step leading to the compressor (11) through
After the eighth step, the second expansion device (14) is closed to block the flow to the second heat exchanger (3), and the second refrigerant control unit (17) is fully opened. 9th step to do and
An operation mode switching method characterized by being provided with.
JP2019215456A 2019-11-28 2019-11-28 Vehicle air conditioner and operation mode switching method Active JP7321906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215456A JP7321906B2 (en) 2019-11-28 2019-11-28 Vehicle air conditioner and operation mode switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215456A JP7321906B2 (en) 2019-11-28 2019-11-28 Vehicle air conditioner and operation mode switching method

Publications (2)

Publication Number Publication Date
JP2021084545A true JP2021084545A (en) 2021-06-03
JP7321906B2 JP7321906B2 (en) 2023-08-07

Family

ID=76086694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215456A Active JP7321906B2 (en) 2019-11-28 2019-11-28 Vehicle air conditioner and operation mode switching method

Country Status (1)

Country Link
JP (1) JP7321906B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061911A (en) * 2010-09-15 2012-03-29 Tgk Co Ltd Air conditioner for vehicle and control valve
JP2012162181A (en) * 2011-02-07 2012-08-30 Tgk Co Ltd Control valve
JP2017013635A (en) * 2015-07-01 2017-01-19 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
WO2019167822A1 (en) * 2018-02-27 2019-09-06 株式会社ヴァレオジャパン Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061911A (en) * 2010-09-15 2012-03-29 Tgk Co Ltd Air conditioner for vehicle and control valve
JP2012162181A (en) * 2011-02-07 2012-08-30 Tgk Co Ltd Control valve
JP2017013635A (en) * 2015-07-01 2017-01-19 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
WO2019167822A1 (en) * 2018-02-27 2019-09-06 株式会社ヴァレオジャパン Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle

Also Published As

Publication number Publication date
JP7321906B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
JP5367186B2 (en) Air conditioner for vehicles
JP6590558B2 (en) Air conditioner for vehicles
JP6992659B2 (en) Vehicle heat management device
JP7117945B2 (en) Heat pump system for vehicle air conditioner
WO2022070796A1 (en) Vehicle heat management system
WO2013145537A1 (en) Air conditioner device for vehicle
JP5796007B2 (en) Operation control method for vehicle air conditioner
CN112440665A (en) Air conditioner for vehicle
JP2020122621A (en) Refrigeration cycle device
JP3486851B2 (en) Air conditioner
JP6798441B2 (en) Refrigeration cycle equipment
JP2017013561A (en) Heat pump system for vehicle
JP6582800B2 (en) Heat exchange system
WO2019065039A1 (en) Refrigeration cycle device
WO2022163712A1 (en) Temperature control system
JP2021084545A (en) Air conditioner for vehicle and driving mode switching method
JP6822193B2 (en) Pressure drop suppression device
JP2003335129A (en) Air conditioner for vehicle
JP2021146958A (en) Vehicle air conditioner and operation mode switching control method
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle
JP7494139B2 (en) Vehicle air conditioning system
JP2001246929A (en) Air conditioner for vehicle
KR100853175B1 (en) Cooling and heating system for vehicle
JP2019093988A (en) Vehicle air-conditioner
JP2021142871A (en) Vehicle air conditioner and operation mode switching control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150