JP2021142871A - Vehicle air conditioner and operation mode switching control method - Google Patents

Vehicle air conditioner and operation mode switching control method Download PDF

Info

Publication number
JP2021142871A
JP2021142871A JP2020042618A JP2020042618A JP2021142871A JP 2021142871 A JP2021142871 A JP 2021142871A JP 2020042618 A JP2020042618 A JP 2020042618A JP 2020042618 A JP2020042618 A JP 2020042618A JP 2021142871 A JP2021142871 A JP 2021142871A
Authority
JP
Japan
Prior art keywords
heat exchanger
heating operation
refrigerant
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020042618A
Other languages
Japanese (ja)
Inventor
直人 林
Naoto Hayashi
直人 林
光彦 赤星
Mitsuhiko Akaboshi
光彦 赤星
倫行 鎌田
Tomoyuki Kamata
倫行 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2020042618A priority Critical patent/JP2021142871A/en
Publication of JP2021142871A publication Critical patent/JP2021142871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

To prevent frequent switching between an operation mode in which refrigerant does not flow through an evaporator and an operation mode in which the refrigerant flows through the evaporator, and in order to reduce a switching frequency, eliminate the need for providing a regulating valve in a path between the outlet side of the evaporator and a compressor.SOLUTION: In vehicle air conditioners equipped with refrigeration cycles, a compressor 11, a first heat exchanger 2, a first inflator 12, a passenger compartment outdoor heat exchanger 4, a second inflator 14, and a second heat exchanger 3 are connected in this order in a loop. The connection is made via a first bypass flow path 16 provided with a first refrigerant control unit 15 between the first heat exchanger 2 and the first inflator 12 and between the passenger compartment outdoor heat exchanger 4 and the second inflator 14. A backflow blocking unit 13 is provided on the downstream side of the passenger compartment outdoor heat exchanger 4 and on the upstream side of the merging portion with the first bypass flow path. The connection is made via a second bypass flow path 18 provided with the second refrigerant control unit 17 between the passenger compartment outdoor heat exchanger 4 and the backflow blocking unit 13 and between the second heat exchanger 3 and the compressor 11. A heat storage material TS is provided in the second heat exchanger 3.SELECTED DRAWING: Figure 1

Description

この発明は、運転モードの頻繁の切り替えに伴う騒音の発生を低減する車両用空調装置及び運転モード切替方法に関し、特に、空調ユニット内に配置された吸熱用熱交換器に冷媒を流す運転モードと冷媒を流さない運転モードとの間で頻繁に切り替わることを抑制する技術に関する。 The present invention relates to a vehicle air conditioner and an operation mode switching method for reducing the generation of noise due to frequent switching of operation modes, and particularly to an operation mode in which a refrigerant flows through a heat absorption heat exchanger arranged in the air conditioning unit. The present invention relates to a technique for suppressing frequent switching between an operation mode in which a refrigerant does not flow.

従来、車両の室内をヒートポンプ式の冷凍サイクルで冷房又は暖房をするだけでなく、除湿運転を可能とした車両用空調装置が知られている。
例えば、特許文献1(特開2014−094671)には、圧縮機と、空調ユニット内に配置されてダンパ(エアミックスダンパ28)により通風量が調整される第1の熱交換器(放熱器4)と、第1の膨張装置(室外膨張弁6)と、外気と熱交換が可能な車室外熱交換器(室外熱交換器7)と、第2の膨張装置(室内膨張弁8)と、空調ユニット内に配置されて第1の熱交換器(放熱器4)よりも空調ユニット内の空気流れ方向上流側に配置された第2の熱交換器(吸熱器9)と、を少なくともこの順でループ状に接続した冷凍サイクルを備え、この冷凍サイクルに、第1の熱交換器(放熱器4)と第1の膨張装置(室外膨張弁6)との間の冷媒流路と、車室外熱交換器(室外熱交換器7)と第2の膨張装置(室内膨張弁8)との間の冷媒流路とを、第1の冷媒制御部(電磁弁22)を備えた第1のバイパス流路(冷媒配管13F)を介して接続し、また、車室外熱交換器(室外熱交換器7)と第2の膨張装置(室内膨張弁8)との間の冷媒流路のうち、第1のバイパス流路(冷媒配管13F)との合流部位より上流側の冷媒流路と第2の熱交換器(吸熱器9)と圧縮機との間の冷媒流路とを、第2の冷媒制御部(電磁弁21)を備えた第2のバイパス流路(冷媒配管13D)を介して接続したヒートポンプサイクルが開示されている。
Conventionally, there is known an air conditioner for a vehicle that not only cools or heats the interior of a vehicle with a heat pump type refrigeration cycle but also enables dehumidifying operation.
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2014-094671), a first heat exchanger (radiator 4), which is arranged in an air conditioning unit and whose ventilation amount is adjusted by a damper (air mix damper 28), is described in Patent Document 1 (Japanese Patent Laid-Open No. 2014-094671). ), The first expansion device (outdoor expansion valve 6), the vehicle outdoor heat exchanger (outdoor heat exchanger 7) capable of exchanging heat with the outside air, and the second expansion device (indoor expansion valve 8). At least in this order, the second heat exchanger (heat exchanger 9) arranged in the air conditioning unit and arranged upstream of the first heat exchanger (radiator 4) in the air flow direction in the air conditioning unit. A refrigeration cycle connected in a loop is provided, and the refrigeration cycle includes a refrigerant flow path between the first heat exchanger (radiator 4) and the first expansion device (outdoor expansion valve 6), and the outside of the vehicle interior. A first bypass provided with a first refrigerant control unit (electromagnetic valve 22) for the refrigerant flow path between the heat exchanger (outdoor heat exchanger 7) and the second expansion device (indoor expansion valve 8). Of the refrigerant flow paths connected via the flow path (fluident pipe 13F) and between the vehicle outdoor heat exchanger (outdoor heat exchanger 7) and the second expansion device (indoor expansion valve 8), the first The second refrigerant is formed between the refrigerant flow path on the upstream side of the confluence with the bypass flow path (fluid pipe 13F) of No. 1 and the refrigerant flow path between the second heat exchanger (heat exchanger 9) and the compressor. A heat pump cycle connected via a second bypass flow path (fluid pipe 13D) provided with a control unit (electromagnetic valve 21) is disclosed.

そして、外気温に応じて運手モードを切り替え、特に、外気温が0度付近となる環境下においては、その付近に設けられた閾値を境にして、圧縮機から吐出した冷媒を、第1の熱交換器(放熱器4)にて放熱させ、この放熱した冷媒を分岐させて、一方で減圧した後に第2の熱交換器(吸熱器9)を通して吸熱させると共に、他方で減圧した後に車室外熱交換器にて吸熱させる除湿暖房運転モードと、圧縮機から吐出した冷媒を、第1の熱交換器にて放熱させ、この放熱した冷媒を分岐させず、減圧した後に車室外熱交換器にて吸熱させる暖房運転モードと、に切り替える点が開示されている。 Then, the carrier mode is switched according to the outside temperature, and especially in an environment where the outside temperature is around 0 degrees, the refrigerant discharged from the compressor is first discharged with a threshold value provided in the vicinity as a boundary. The heat is dissipated by the heat exchanger (heat exchanger 4) of the above, and the radiated refrigerant is branched. In the dehumidifying and heating operation mode in which heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from the compressor is radiated by the first heat exchanger, and the radiated refrigerant is not branched, but after decompression, the vehicle outdoor heat exchanger The point of switching to the heating operation mode in which heat is absorbed is disclosed.

しかしながら、空調ユニット内に配置された吸熱器に冷媒を通流させない運転モードと吸熱器に冷媒を通流させる運転モードとが所定の閾値を境に頻繁に切り替わると、切り替る電磁弁の動作音のみならず、冷媒が供給されていない第2の熱(吸熱器9)に第2の膨張装置(室内膨張弁8)を介して冷媒が一気に流れ込むため、突発的な異音が頻繁に発生する不都合がある。 However, when the operation mode in which the refrigerant is not passed through the heat absorber arranged in the air conditioning unit and the operation mode in which the refrigerant is passed through the heat absorber are frequently switched at a predetermined threshold value, the operating noise of the electromagnetic valve is switched. Not only that, since the refrigerant flows into the second heat (heat absorber 9) to which the refrigerant is not supplied at once via the second expansion device (indoor expansion valve 8), sudden abnormal noise is frequently generated. There is an inconvenience.

このような不都合に対処するために、蒸発器の出口と圧縮機との間に、室内蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を予め定めた基準蒸発圧力(基準蒸発温度)以上に維持する蒸発圧力調整弁を設け、運転モードを頻繁に切り替えなくても、室内蒸発器の着霜(フロスト)を抑制することができるようにした冷凍サイクル装置が提案されている(特許文献2参照)。 In order to deal with such inconvenience, the refrigerant evaporation pressure (refrigerant evaporation temperature) in the indoor evaporator is maintained above the predetermined reference evaporation pressure (reference evaporation temperature) between the outlet of the evaporator and the compressor. A refrigeration cycle device has been proposed in which an evaporation pressure adjusting valve is provided so that frost formation (frost) of an indoor evaporator can be suppressed without frequently switching the operation mode (see Patent Document 2).

特開2014−094671号公報Japanese Unexamined Patent Publication No. 2014-094671 特開2016−11760号公報Japanese Unexamined Patent Publication No. 2016-11760

しかしながら、このような冷凍サイクルを採用する場合には、暖房運転モードを除く全ての運転モードでサイクル内の冷媒を蒸発圧力調整弁を通過させる必要があるため、この蒸発圧力調整弁によってサイクル内の通路抵抗が大きくなる不都合が生じ得る。 However, when such a refrigeration cycle is adopted, it is necessary to pass the refrigerant in the cycle through the evaporation pressure adjusting valve in all the operation modes except the heating operation mode, so that the evaporation pressure adjusting valve is used in the cycle. The inconvenience of increasing passage resistance may occur.

本発明は係る事情に鑑みてなされたものであり、空調ユニット内の蒸発器に冷媒を通流させない運転モードと通流させる運転モードとの頻繁な切り替えを防ぐと共に、運転モードの切り替え頻度を抑えるために蒸発器の出口側と圧縮機との間の経路に調整弁を配置することを不要とした車両用空調装置及び運転モード切替制御方法を提供することを主たる課題としている。 The present invention has been made in view of the above circumstances, and prevents frequent switching between an operation mode in which the refrigerant does not flow through the evaporator in the air conditioning unit and an operation mode in which the refrigerant flows, and suppresses the frequency of switching the operation mode. Therefore, the main task is to provide an air conditioner for vehicles and an operation mode switching control method that do not require the arrangement of a regulating valve in the path between the outlet side of the evaporator and the compressor.

上記課題を達成するために、本発明に係る車両用空調装置は、圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13)との間の冷媒流路と前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続した冷凍サイクル(100)を有しており、
前記第2の熱交換器(3)に、蓄熱材(TS)を設けたことを特徴としている。
In order to achieve the above object, the vehicle air conditioner according to the present invention is a first heat that is arranged in a compressor (11) and an air conditioner unit (1) and whose ventilation amount is adjusted by a damper (10). The exchanger (2) and the second exchanger (2) arranged in the air conditioning unit (1) and arranged upstream of the first heat exchanger (2) in the air conditioning unit (1). 3), the vehicle interior heat exchanger (4) capable of exchanging heat with the outside air, the first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and the refrigerant flow path. And a second inflator (14) that can be closed,
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
Between the refrigerant flow path between the first heat exchanger (2) and the first expansion device (12) and between the vehicle interior heat exchanger (4) and the second expansion device (14). Is connected to the refrigerant flow path of the above via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), on the upstream side of the merging portion (A) with the first bypass flow path (16). A backflow blocking portion (13) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the refrigerant flow between the vehicle interior heat exchanger (4) and the backflow blocking portion (13). A second bypass flow path (18) provided with a second refrigerant control unit (17) for the refrigerant flow path between the path, the second heat exchanger (3), and the compressor (11). Has a refrigeration cycle (100) connected via
The second heat exchanger (3) is characterized in that a heat storage material (TS) is provided.

したがって、上述のヒートポンプサイクルを備えた車両用空調装置において、第2の熱交換器に蓄熱材を設けたので、第2の熱交換器に冷媒を通流させる運転モードと第2の熱交換器に冷媒を通流させない運転モードとの切り替えが頻繁に行われる不都合を避けることが可能となり、運転モードが頻繁に切り替わることに伴う騒音の発生をできるだけ抑えることが可能となる。 Therefore, in the vehicle air conditioner provided with the above-mentioned heat pump cycle, since the heat storage material is provided in the second heat exchanger, the operation mode in which the refrigerant is passed through the second heat exchanger and the second heat exchanger It is possible to avoid the inconvenience of frequently switching to the operation mode in which the refrigerant does not flow through the air, and it is possible to suppress the generation of noise due to the frequent switching of the operation mode as much as possible.

特に、このような車両用空調装置は、前記冷凍サイクル(100)と、前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)と、を備え、前記制御手段(50)によって、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を、前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2の熱交換器(3)を通流させることなく前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す暖房運転と、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を分岐させて、一方で前記第1のバイパス流路(16)を通過させて前記第2の膨張装置(14)で減圧した後に前記第2の熱交換器(3)を通して吸熱させると共に、他方で前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す除湿暖房運転と、
を切り替え可能としている場合において、暖房運転と除湿暖房運転との間の切り替えが頻繁に行われる不都合を回避するために有効である。
In particular, such a vehicle air conditioner includes a refrigeration cycle (100) and a control means (50) for switching and controlling an operation mode of the refrigeration cycle (100), and the control means (50)
The refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and the dissipated refrigerant is depressurized by the first expansion device (12), and then the outside heat of the passenger compartment is generated. Heating that absorbs heat in the exchanger (4) and then returns it to the compressor (11) via the second bypass flow path (18) without allowing the second heat exchanger (3) to flow through. Driving and
The refrigerant discharged from the compressor (11) is radiated by the first heat exchanger (2), and the radiated refrigerant is branched, while passing through the first bypass flow path (16). The heat is absorbed through the second heat exchanger (3) after being depressurized by the second inflator (14), and on the other hand, the heat is exchanged outside the passenger compartment after being decompressed by the first inflator (12). A dehumidifying and heating operation in which heat is absorbed by the vessel (4) and returned to the compressor (11) via the second bypass flow path (18).
It is effective to avoid the inconvenience that the switching between the heating operation and the dehumidifying heating operation is frequently performed when the switching is possible.

すなわち、暖房運転と除湿暖房運転とが頻繁に切り替わる状態を避けることが可能となり、第2の熱交換器に冷媒を流通させない運転モードから第2の熱交換器に冷媒を流通させる運転モードへの切り替え時に発生する騒音(冷媒が突発的に流れることによる異音)の発生回数を抑えることが可能となる。 That is, it is possible to avoid a state in which the heating operation and the dehumidifying heating operation are frequently switched, and the operation mode in which the refrigerant is not circulated in the second heat exchanger is changed to the operation mode in which the refrigerant is circulated in the second heat exchanger. It is possible to suppress the number of times of noise (abnormal noise caused by the sudden flow of the refrigerant) generated at the time of switching.

なお、暖房運転と除湿暖房運転との頻繁な切り替えを抑えつつ、第2の熱交換器の凍結を回避し、且つ、冷却能力を確保するためには、運転モードを切り替える必要がある。
そこで、例えば、前記第2の熱交換器(3)の温度の状態を検出する状態検知センサ(54)を設け、前記制御手段(50)は、前記状態検知センサ(54)によって、前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)下回ったことが推定され又は検知された場合に、若しくは前記第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、運転モードを前記除湿暖房運転から前記暖房運転に切り替えるようにするとよい。
It is necessary to switch the operation mode in order to avoid freezing of the second heat exchanger and secure the cooling capacity while suppressing frequent switching between the heating operation and the dehumidifying heating operation.
Therefore, for example, a state detection sensor (54) for detecting the temperature state of the second heat exchanger (3) is provided, and the control means (50) uses the state detection sensor (54) to detect the second. When it is estimated or detected that the temperature of the heat exchanger (3) of the above heat exchanger (3) has fallen below the phase change temperature (T0) of the heat storage material (TS), or when the wetness of the refrigerant flowing out from the second heat exchanger When it is detected that the degree exceeds a predetermined value (S1) larger than zero, the operation mode may be switched from the dehumidifying / heating operation to the heating operation.

このような構成によれば、蓄熱材が相変化温度よりも低温になったこと、あるいは第2の熱交換器から流出する冷媒の湿り度が所定値(S1)よりも上昇したことを通じて、第2の熱交換器の凍結の虞を検知し、蓄熱材を設けて運転モードの頻繁な切り替えを回避する場合でも第2の熱交換器の凍結を回避するために運転モードの切り替えが不可欠となる場合には、運転モードを切り替えて快適な空調状態を維持することが可能となる。 According to such a configuration, the heat storage material becomes lower than the phase change temperature, or the wetness of the refrigerant flowing out from the second heat exchanger rises above the predetermined value (S1). Even when the risk of freezing of the second heat exchanger is detected and a heat storage material is provided to avoid frequent switching of the operation mode, switching of the operation mode is indispensable to avoid freezing of the second heat exchanger. In that case, it is possible to switch the operation mode to maintain a comfortable air-conditioned state.

また、制御手段(50)は、前記状態検知センサ(54)によって、前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)またはそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、運転モードを前記暖房運転から前記除湿暖房運転に切り替えるようにしてもよい。 Further, in the control means (50), the temperature of the second heat exchanger (3) is a predetermined value higher than the phase change temperature (T0) of the heat storage material (TS) by the state detection sensor (54). When it is estimated or detected that the temperature exceeds (T2), the operation mode may be switched from the heating operation to the dehumidifying heating operation.

このような構成によれば、蓄熱材が相変化温度よりも高温になったことを通じて、第2の熱交換器の冷却能力の回復の必要性を検知し、蓄熱材を設けて運転モードの頻繁な切り替えを回避する場合でも第2の熱交換器の冷却能力を確保するために運転モードの切り替えが不可欠となる場合には、運転モードを切り替えて快適な空調状態を維持することが可能となる。 According to such a configuration, the necessity of recovering the cooling capacity of the second heat exchanger is detected by the heat storage material becoming higher than the phase change temperature, and the heat storage material is provided to frequently operate the operation mode. If it is essential to switch the operation mode in order to secure the cooling capacity of the second heat exchanger even when avoiding such switching, it is possible to switch the operation mode and maintain a comfortable air-conditioned state. ..

なお、前記状態検知センサ(54)は、前記第2の熱交換器(3)の下流側空気の温度を検知する空気温度センサ(54a)としてもよい。
また、状態検知センサ(54)は、前記第2の熱交換器または前記蓄熱材の温度を直接的に検知する接触式温度センサ(54b.54c)としてもよい。
さらに、状態検知センサ(54)は、前記第2の熱交換器(3)から流出する冷媒の湿り度を検知する温度圧力センサ(54d)としてもよい。
The state detection sensor (54) may be an air temperature sensor (54a) that detects the temperature of the air on the downstream side of the second heat exchanger (3).
Further, the state detection sensor (54) may be a contact type temperature sensor (54b.54c) that directly detects the temperature of the second heat exchanger or the heat storage material.
Further, the state detection sensor (54) may be a temperature / pressure sensor (54d) that detects the wetness of the refrigerant flowing out from the second heat exchanger (3).

運転モードの切り替え回数を減らすことで騒音を低減させることに加え、運転モードの切り替え時に生じる騒音自体をも低減することが望ましい。
そこで、前記制御手段(50)は、前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、
前記第2の冷媒制御部(17)を開状態に維持した状態で、
前記第2の膨張装置(14)を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替え、また、前記第2の膨張装置(14)を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替えるようにするとよい。
In addition to reducing the noise by reducing the number of times the operation mode is switched, it is desirable to reduce the noise itself generated when the operation mode is switched.
Therefore, the control means (50) switches between the heating operation and the dehumidifying heating operation.
With the second refrigerant control unit (17) maintained in the open state,
Switching from the dehumidifying heating operation to the heating operation by switching the second expansion device (14) from the throttle state to the closed state, and switching the second expansion device (14) from the closed state to the throttle state. It is preferable to switch from the heating operation to the dehumidifying heating operation.

このような構成によれば、第2の冷媒制御部(17)が開状態に維持された状態で、第2の膨張装置を閉状態と絞り状態とに切り替えることで、運転モードが暖房運転モードと除湿暖房運転とに切り替えられるので、第2の膨張装置に一気に高圧冷媒が流れ込むことによる騒音の発生を抑えることが可能となる。これにより、運転モードの頻繁な切り替えに伴う騒音の低減に加え、運転モードの切り替え自体による騒音をも低減することが可能となる。 According to such a configuration, the operation mode is changed to the heating operation mode by switching the second expansion device between the closed state and the throttle state while the second refrigerant control unit (17) is maintained in the open state. Since the operation can be switched between the dehumidifying and heating operation, it is possible to suppress the generation of noise due to the high-pressure refrigerant flowing into the second expansion device at once. As a result, in addition to reducing the noise caused by frequent switching of the operation mode, it is possible to reduce the noise caused by the switching of the operation mode itself.

また、上記課題を達成するために、本発明に係る運転モード切替制御方法は、前記暖房運転と前記除湿暖房運転とを切り替える運転モード切替制御方法であって、
前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)またはそれより低い所定値(T1)を下回ったことが推定され又は検知された場合に、若しくは前記第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、前記除湿暖房運転から前記暖房運転に切り替え、
前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)又はそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、前記暖房運転から前記除湿暖房運転に切り替えることを特徴としている。
Further, in order to achieve the above object, the operation mode switching control method according to the present invention is an operation mode switching control method for switching between the heating operation and the dehumidifying heating operation.
When it is estimated or detected that the temperature of the second heat exchanger (3) is lower than the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T1) lower than that, or When it is detected that the wetness of the refrigerant flowing out of the second heat exchanger exceeds a predetermined value (S1) larger than zero, the dehumidifying and heating operation is switched to the heating operation.
When it is estimated or detected that the temperature of the second heat exchanger (3) exceeds the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T2) higher than that. It is characterized by switching from the heating operation to the dehumidifying heating operation.

このような制御方法を採用すれば、蓄熱材を設けて暖房運転と除湿暖房運転との頻繁な切り替えを抑える場合でも、第2の熱交換器の凍結を回避するために、また、第2の熱交換器の冷却能力を確保するために、運転モードの切り替えが必要となる場合には、運転モードが切り替えられる。 If such a control method is adopted, even when a heat storage material is provided to suppress frequent switching between the heating operation and the dehumidifying heating operation, in order to avoid freezing of the second heat exchanger, and in order to prevent the second heat exchanger from freezing. When it is necessary to switch the operation mode in order to secure the cooling capacity of the heat exchanger, the operation mode is switched.

また、暖房運転と除湿暖房運転とを切り替える運転モード切替制御方法において、前記第2の冷媒制御部(17)を開状態に維持し、前記第2の膨張装置を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替え、また、前記第2の膨張装置を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替えるようにするとよい。
このような構成によれば、運転モードの頻繁な切り替えに伴う騒音の低減に加え、運転モードの切り替え自体による騒音をも低減することが可能となる。
Further, in the operation mode switching control method for switching between the heating operation and the dehumidifying heating operation, the second refrigerant control unit (17) is maintained in the open state, and the second expansion device is switched from the throttled state to the closed state. It is preferable to switch from the dehumidifying and heating operation to the heating operation, and to switch from the heating operation to the dehumidifying and heating operation by switching the second expansion device from the closed state to the throttle state.
According to such a configuration, it is possible to reduce the noise caused by the switching of the operation mode itself in addition to the noise caused by the frequent switching of the operation mode.

以上述べたように、本発明によれば、圧縮機、空調ユニット内の第1の熱交換器、第1の膨張装置、外気と熱交換が可能な車室外熱交換器、第2の膨張装置、及び空調ユニット内に配置されて第1の熱交換器よりも上流側に配置された第2の熱交換器を少なくともこの順でループ状に接続し、第1の熱交換器と第1の膨張装置との間の冷媒流路と車室外熱交換器と第2の膨張装置との間の冷媒流路とを、第1の冷媒制御部によって開閉可能な第1のバイパス流路を介して接続し、車室外熱交換器の下流側であって第1のバイパス流路との合流部位より上流側に逆流阻止部を設け、車室外熱交換器と逆流阻止部との間の冷媒流路と第2の熱交換器と圧縮機との間の冷媒流路とを、第2の冷媒制御部を備えた第2のバイパス流路を介して接続した冷凍サイクルを有する車両用空調装置において、第2の熱交換器に、蓄熱材を設けたので、第2の熱交換器に冷媒を通流させる運転モードと第2の熱交換器に冷媒を通流させない運転モードとの切り替えが頻繁に行われる不都合を避けることが可能となり、運転モードが頻繁に切り替わることに伴う騒音の発生をできるだけ抑えることが可能となる。
また、運転モードの切り替え頻度を抑えるために蒸発器の出口側と圧縮機との間の経路に調整弁を配置する必要がないので、サイクル内の通路抵抗が大きくなる不都合もなくなり、サイクル構成の複雑化を避けることも可能となる。
As described above, according to the present invention, the compressor, the first heat exchanger in the air conditioning unit, the first inflator, the vehicle interior heat exchanger capable of exchanging heat with the outside air, and the second inflator. , And the second heat exchanger arranged in the air conditioning unit and located upstream of the first heat exchanger are connected in a loop at least in this order, and the first heat exchanger and the first heat exchanger are connected. The refrigerant flow path between the expansion device and the refrigerant flow path between the vehicle interior heat exchanger and the second expansion device are opened and closed by the first refrigerant control unit via the first bypass flow path. A backflow blocking section is provided on the downstream side of the vehicle interior heat exchanger and upstream of the confluence with the first bypass flow path, and the refrigerant flow path between the vehicle interior heat exchanger and the backflow blocking section is provided. In a vehicle air conditioner having a refrigeration cycle in which the refrigerant flow path between the second heat exchanger and the compressor is connected via a second bypass flow path provided with a second refrigerant control unit. Since the heat storage material is provided in the second heat exchanger, it is frequently switched between the operation mode in which the refrigerant flows through the second heat exchanger and the operation mode in which the refrigerant does not flow through the second heat exchanger. It is possible to avoid the inconvenience that occurs, and it is possible to suppress the generation of noise associated with frequent switching of the operation mode as much as possible.
In addition, since it is not necessary to arrange a regulating valve in the path between the outlet side of the evaporator and the compressor in order to reduce the frequency of switching the operation mode, the inconvenience of increasing the passage resistance in the cycle is eliminated, and the cycle configuration is configured. It is also possible to avoid complications.

図1は、本発明に係る車両用空調装置の構成例を示し、図1(a)はその全体構成図であり、図1(b)は、膨張装置、冷媒制御部、開閉弁及びダンパの状態を運転モード毎に示した表である。FIG. 1 shows a configuration example of a vehicle air conditioner according to the present invention, FIG. 1 (a) is an overall configuration diagram thereof, and FIG. 1 (b) shows an expansion device, a refrigerant control unit, an on-off valve, and a damper. It is a table which showed the state for each operation mode. 図2は、熱負荷と目標吹出温度との差に応じて切り替えられる冷凍サイクルの各運転モードを示す図であり、冷媒が流れている流路を太線で示し、高圧流路を太い実線で、低圧流路を太い破線で示す。FIG. 2 is a diagram showing each operation mode of the refrigeration cycle that can be switched according to the difference between the heat load and the target blowing temperature. The flow path through which the refrigerant is flowing is shown by a thick line, and the high-pressure flow path is shown by a thick solid line. The low pressure flow path is indicated by a thick dashed line. 図3は、除湿暖房(Parallel)運転と暖房運転との相互間を切り替える状態を示す図である。FIG. 3 is a diagram showing a state in which the dehumidifying / heating (Parallel) operation and the heating operation are switched between each other. 図4は、除湿暖房(Parallel)運転と暖房運転との切り替えタイミングを示す線図であり、上段は、車室外の温度変化に対する従来の運転モードの切り替え状態を示す図、下段は、車室外の温度変化に対する本発明の運転モードの切り替え状態を示す図である。FIG. 4 is a diagram showing the switching timing between the dehumidifying / heating (Parallel) operation and the heating operation. It is a figure which shows the switching state of the operation mode of this invention with respect to a temperature change. 図5は、本発明に係る車両用空調装置の除湿暖房運転から暖房運転に切り替えるタイミングを説明する図であり、(a)は、第2の熱交換器の温度が蓄熱材の相変化温度(To)またはそれより低い所定値(T1)を下回ったことが推定され又は検知された場合に、除湿暖房運転から暖房運転に切り替える場合を説明する特性線図であり、(b)は、第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、除湿暖房運転から暖房運転に切り替える場合を説明する特性線図である。FIG. 5 is a diagram for explaining the timing of switching from the dehumidifying / heating operation of the vehicle air conditioner according to the present invention to the heating operation, and FIG. 5A is a diagram in which the temperature of the second heat exchanger is the phase change temperature of the heat storage material (a). It is a characteristic diagram explaining the case of switching from the dehumidifying heating operation to the heating operation when it is estimated or detected that the value is lower than the predetermined value (T1) which is To) or lower, and FIG. It is a characteristic diagram explaining the case of switching from the dehumidifying heating operation to the heating operation when it is detected that the wetness of the refrigerant flowing out from the heat exchanger exceeds a predetermined value (S1) larger than zero. 図6は、本発明に係る車両用空調装置の暖房運転から除湿暖房運転に切り替えるタイミングを説明する図であり、第2の熱交換器の温度が蓄熱材の相変化温度(To)またはそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、暖房運転から除湿暖房運転に切り替える場合を説明する特性線図である。FIG. 6 is a diagram for explaining the timing of switching from the heating operation of the vehicle air conditioner according to the present invention to the dehumidifying heating operation, and the temperature of the second heat exchanger is the phase change temperature (To) of the heat storage material or higher. It is a characteristic diagram explaining the case of switching from a heating operation to a dehumidifying heating operation when it is estimated or detected that the value exceeds a high predetermined value (T2). 図7は、第2の冷媒制御部を開状態に維持した状態で、第2の膨張装置を絞り状態から閉状態に切り替えることによって除湿暖房運転から暖房運転に切り替え、また、第2の膨張装置を閉状態から絞り状態に切り替えることによって暖房運転から除湿暖房運転に切り替える制御を説明する図である。FIG. 7 shows that the dehumidifying heating operation is switched to the heating operation by switching the second expansion device from the throttle state to the closed state while the second refrigerant control unit is maintained in the open state, and the second expansion device is also displayed. It is a figure explaining the control which switches from a heating operation to a dehumidifying heating operation by switching from a closed state to a throttle state.

以下、本発明に係る車両用空調装置の実施形態を図面により説明する。
図1において、この発明に係る車両用空調装置が示され、車両用空調装置は、例えば自動車に搭載されるもので、空調ユニット1内に配置された第1及び第2の熱交換器2,3と、空調ユニット1外に配置され、外気と熱交換可能な車室外熱交換器4とを備えている。
Hereinafter, embodiments of the vehicle air conditioner according to the present invention will be described with reference to the drawings.
FIG. 1 shows a vehicle air conditioner according to the present invention, wherein the vehicle air conditioner is mounted on, for example, an automobile, and the first and second heat exchangers 2 and 2 are arranged in the air conditioner unit 1. 3 and an vehicle interior heat exchanger 4 which is arranged outside the air conditioning unit 1 and can exchange heat with the outside air.

空調ユニット1の最上流側には内外気切換装置6が設けられ、内気入口6aと外気入口6bとがインテークドア7によって選択的に開口されるようになっている。この空調ユニット1に選択的に導入される内気または外気は、送風機8の回転により吸引され、第1及び第2の熱交換器2,3に送られ、ここで熱交換されて所望の吹き出し口9a〜9cから車室内に供給されるようになっている。 An inside / outside air switching device 6 is provided on the most upstream side of the air conditioning unit 1, and the inside air inlet 6a and the outside air inlet 6b are selectively opened by the intake door 7. The inside air or outside air selectively introduced into the air conditioning unit 1 is sucked by the rotation of the blower 8 and sent to the first and second heat exchangers 2 and 3, where the heat is exchanged to obtain a desired outlet. It is supplied to the passenger compartment from 9a to 9c.

第1の熱交換器2は、第2の熱交換器3よりも空調ユニット1内の空気流れ方向下流側に配置されており、この第1の熱交換器2の空気流れ方向上流側には、ダンパ10が設けられている。ダンパ10は、第1の熱交換器2の通過風量が最大となる位置(暖房位置:開度100%)から最小となる位置(冷房位置:開度0%)まで可変できるようになっており、開度を調整することにより、第1の熱交換器2を通過する空気とバイパスする空気との割合を調整できるようになっている。
なお、ダンパ10は、エアミックスドアとも呼ばれる。また、この例では、空調ユニット1内の第1の熱交換器2の下流側に電気発熱式の加熱装置(PTC)5が配置されている。
The first heat exchanger 2 is arranged on the downstream side in the air flow direction in the air conditioning unit 1 with respect to the second heat exchanger 3, and is located on the upstream side in the air flow direction of the first heat exchanger 2. , The damper 10 is provided. The damper 10 can be changed from the position where the air volume passing through the first heat exchanger 2 is maximum (heating position: opening 100%) to the position where it is minimum (cooling position: opening 0%). By adjusting the opening degree, the ratio of the air passing through the first heat exchanger 2 and the air bypassing the first heat exchanger 2 can be adjusted.
The damper 10 is also called an air mix door. Further, in this example, the electric heat generating type heating device (PTC) 5 is arranged on the downstream side of the first heat exchanger 2 in the air conditioning unit 1.

第1の熱交換器2の冷媒流入側2aは、圧縮機11の吐出側αに接続され、第1の熱交換器2の冷媒流出側2bは、第1の膨張装置(E−1)12の流入側12aに接続されている。また、第2の熱交換器3の冷媒流出側3bは、アキュムレータ23を介して圧縮機11の吸入側βに接続されている。なお、第1の熱交換器2は、室内放熱器とか、インナーコンデンサとも呼ばれる。 The refrigerant inflow side 2a of the first heat exchanger 2 is connected to the discharge side α of the compressor 11, and the refrigerant outflow side 2b of the first heat exchanger 2 is the first expansion device (E-1) 12 It is connected to the inflow side 12a of. Further, the refrigerant outflow side 3b of the second heat exchanger 3 is connected to the suction side β of the compressor 11 via the accumulator 23. The first heat exchanger 2 is also called an indoor radiator or an inner capacitor.

前記第1の膨張装置12の流出側12bは、車室外熱交換器4の冷媒流入側4aに接続され、この車室外熱交換器4の冷媒流出側4bは、逆止弁13及び第2の膨張装置(E−2)14を介して第2の熱交換器3の冷媒流入側3aに接続されている。したがって、圧縮機11、第1の熱交換器2、第1の膨張装置12、車室外熱交換器4、逆止弁13、第2の膨張装置14、第2の熱交換器3、アキュムレータ23、圧縮機11の順でループ状に接続された冷凍サイクルが形成されている。 The outflow side 12b of the first expansion device 12 is connected to the refrigerant inflow side 4a of the vehicle interior heat exchanger 4, and the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 is the check valve 13 and the second check valve 13. It is connected to the refrigerant inflow side 3a of the second heat exchanger 3 via the expansion device (E-2) 14. Therefore, the compressor 11, the first heat exchanger 2, the first inflator 12, the passenger compartment outdoor heat exchanger 4, the check valve 13, the second inflator 14, the second heat exchanger 3, and the accumulator 23. , The refrigeration cycle connected in a loop in the order of the compressor 11 is formed.

また、第1の熱交換器2の冷媒流出側2bと第1の膨張装置12の流入側12aとの間の冷媒流路と、逆止弁13の流出側13bと第2の膨張装置14の流入側14aとの間の冷媒流路とは、第1の冷媒制御部(V−1)15を有する第1のバイパス流路16によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 2b of the first heat exchanger 2 and the inflow side 12a of the first expansion device 12, and the outflow side 13b of the check valve 13 and the second expansion device 14 The refrigerant flow path to the inflow side 14a is connected by a first bypass flow path 16 having a first refrigerant control unit (V-1) 15.

さらに、車室外熱交換器4の冷媒流出側4bと逆止弁13の流入側13aとの間の冷媒流路と、第2の熱交換器3の冷媒流出側3bとアキュムレータ23の流入側23aとの間の冷媒流路とは、第2の冷媒制御部(V−2)17を有する第2のバイパス流路18によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 and the inflow side 13a of the check valve 13, the refrigerant outflow side 3b of the second heat exchanger 3 and the inflow side 23a of the accumulator 23 The refrigerant flow path between the two is connected by a second bypass flow path 18 having a second refrigerant control unit (V-2) 17.

ここで、上述の構成例において、第1の膨張装置12は、外部からの制御信号によって冷媒流路を絞ること、閉じること及び全開にすることが可能な電磁膨張弁が用いられている。また、第2の膨張装置14は、外部からの制御信号によって冷媒流路を絞ること及び閉じることが可能な電磁制御弁が用いられている。
前記逆止弁13は、流路を開閉する開閉弁(V−3)19に置き換えてもよい。この逆止弁13又は開閉弁(V−3)19によって、逆流阻止部が構成されている。
Here, in the above-described configuration example, the first expansion device 12 uses an electromagnetic expansion valve capable of narrowing, closing, and fully opening the refrigerant flow path by a control signal from the outside. Further, the second expansion device 14 uses an electromagnetic control valve capable of narrowing and closing the refrigerant flow path by a control signal from the outside.
The check valve 13 may be replaced with an on-off valve (V-3) 19 that opens and closes the flow path. The check valve 13 or the on-off valve (V-3) 19 constitutes a check valve.

また、第1の冷媒制御部(V−1)15は、第1のバイパス流路16を開閉させる開閉弁によって構成され、また、第2の冷媒制御部(V−2)17は、第2のバイパス流路18を開閉させる開閉弁によって構成されている。 Further, the first refrigerant control unit (V-1) 15 is composed of an on-off valve that opens and closes the first bypass flow path 16, and the second refrigerant control unit (V-2) 17 is a second. It is composed of an on-off valve that opens and closes the bypass flow path 18 of the above.

さらに、第2の熱交換器3は、蓄熱機能を備えたものが用いられている。すなわち、第2の熱交換器3は、内部に蓄熱材(蓄冷材)TSを収容し、この蓄熱材TSによって第2の熱交換器3の熱容量を大きくし、この第2の熱交換器3を通過させる空気温度が変動しても、第2の熱交換器3の温度がこれに素早く追従せず、緩慢に追従するようになっている。
このような蓄熱材TSを備えた熱交換器としては、各種態様が考えられるが、例えば、特開2013−237387号公報に示されるように、チューブとコルゲートフィンとを交互に積層した積層型熱交換器であって、各チューブに冷媒通路とは別に蓄熱材保持部を設け、この蓄熱材保持部に蓄熱材を保持させたものを用いてもよい。
Further, as the second heat exchanger 3, one having a heat storage function is used. That is, the second heat exchanger 3 houses the heat storage material (cold storage material) TS inside, and the heat storage material TS increases the heat capacity of the second heat exchanger 3, and the second heat exchanger 3 Even if the temperature of the air passing through the heat exchanger fluctuates, the temperature of the second heat exchanger 3 does not quickly follow this, but slowly follows it.
Various modes can be considered as the heat exchanger provided with such a heat storage material TS. For example, as shown in Japanese Patent Application Laid-Open No. 2013-237387, laminated heat in which tubes and corrugated fins are alternately laminated. A exchanger may be used in which each tube is provided with a heat storage material holding portion separately from the refrigerant passage, and the heat storage material holding portion holds the heat storage material.

上記第1及び第2の膨張装置12,14の動作、第1及び第2の冷媒制御部15,17や開閉弁19の開閉、ダンパ10の開度、圧縮機11の吐出量は、制御手段50(制御部50)からの制御信号で制御されるようになっている。なお、圧縮機11は、例えば電動式圧縮機が用いられる。 The operation of the first and second expansion devices 12 and 14, the opening and closing of the first and second refrigerant control units 15 and 17 and the on-off valve 19, the opening of the damper 10, and the discharge amount of the compressor 11 are controlled by means for controlling. It is controlled by a control signal from 50 (control unit 50). As the compressor 11, for example, an electric compressor is used.

制御部50は、A/D変換器やマルチプレクサ等を含む入力回路、ROM、RAM、CPU等を含む演算処理回路、駆動回路等を含む出力回路を備えたそれ自体公知のもので、車室外空気の温度(外気温)を検出する外気温度センサ51からの外気温信号や車室内温度を検出する内気温度センサ52からの内気温信号、日射量を検出する日射センサ53からの日射量信号、運転モード等を設定する操作部からの各種信号が入力される。また、制御部50には、第2の熱交換器3の温度状態を検出する状態検知センサ54(54a,54b,54c)らの信号も入力され、これらの各種信号を予め定められた所定のプログラムに沿って処理するようになっている。 The control unit 50 is known in itself and includes an input circuit including an A / D converter, a multiplexer, etc., an arithmetic processing circuit including a ROM, RAM, a CPU, etc., an output circuit including a drive circuit, etc. The outside air temperature signal from the outside air temperature sensor 51 that detects the temperature (outside air temperature), the inside air temperature signal from the inside air temperature sensor 52 that detects the vehicle interior temperature, the solar radiation amount signal from the solar radiation sensor 53 that detects the amount of solar radiation, and operation. Various signals from the operation unit that sets the mode etc. are input. Further, signals of the state detection sensors 54 (54a, 54b, 54c) for detecting the temperature state of the second heat exchanger 3 are also input to the control unit 50, and these various signals are predetermined to be predetermined. It is designed to be processed according to the program.

ここで、状態検知センサとしては、第2の熱交換器3の通風部の下流側に取り付けられてこの第2の熱交換器3の下流側空気の温度を検知する空気温度センサ54aであっても、第2の熱交換器3の熱交換部表面等に当接されてこの第2の熱交換器3の温度を直接的に検知する接触式温度センサ54bであっても、蓄熱材TSの表面等に設置されてこの蓄熱材TSの温度を直接的に検知する接触式温度センサ54cであっても、第2の熱交換器3から流出する冷媒の湿り度を検知する温度圧力センサ54dであってもよい。 Here, the state detection sensor is an air temperature sensor 54a that is attached to the downstream side of the ventilation portion of the second heat exchanger 3 and detects the temperature of the air on the downstream side of the second heat exchanger 3. Even if the contact type temperature sensor 54b is in contact with the surface of the heat exchange portion of the second heat exchanger 3 and directly detects the temperature of the second heat exchanger 3, the heat storage material TS Even if the contact type temperature sensor 54c is installed on the surface or the like and directly detects the temperature of the heat storage material TS, the temperature and pressure sensor 54d that detects the wetness of the refrigerant flowing out from the second heat exchanger 3 can be used. There may be.

この例において、冷凍サイクル100の運転モードの切り替え(膨張装置12,14、開閉弁19、冷媒制御部15、17、ダンパの作動状態の変更)は、暖房運転と除湿暖房運転(Parallel)との相互間の切り替えを除いて、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度が加味された目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて、図2に示されるように、切り替えられる。 In this example, the switching of the operation mode of the refrigeration cycle 100 (expansion devices 12, 14, on-off valve 19, refrigerant control units 15, 17, and change of the operating state of the damper) is between heating operation and dehumidifying heating operation (Parallel). Except for switching between each other, it was set by the occupants and the status of the heat load received by the refrigeration cycle (total signal (Tm) that takes into account the temperature of the outside air, the temperature of the inside air, the amount of solar radiation, etc.). As shown in FIG. 2, the temperature is switched according to the magnitude of the difference (Tm-Tset) from the target blowing temperature (Tset) in which the desired room temperature is added.

また、この例において、除湿運転モードは、冷房運転モードと暖房運転モードとの間を大きく3つに分けている(図2参照)。
・ 冷凍サイクルが受けている熱負荷が比較的高い中高熱負荷時であれば、室外熱交器4を冷房運転モードと同様に放熱器として用いて冷房運転モードと同様に冷媒を流し(第1の熱交換器2と車室外熱交換器4とを放熱器として用いて2段階に熱を放熱させるために第1の熱交換器2と車室外熱交換器4とに直列的に冷媒を流し)、エアミックスドアの開度調節により除湿空気を温度調節する除湿冷房運転モード(Series)に設定する。
・ 冷凍サイクルが受けている熱負荷が比較的低い中熱負荷時であれば、室外熱交器4を利用せずに、第1の熱交換器2のみを放熱器として用い、また、第2の熱交換器3のみを吸熱器として用いる(第1の熱交換器2からの冷媒を車室外熱交換器4を迂回させて流す迂回運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(By-Pass)という)に設定する。
・ 冷凍サイクルが受けている熱負荷がさらに低い中低熱負荷時であれば、吸熱能力を高めるために、車室外熱交換器4と第2の熱交換器3とをそれぞれ吸熱器として用いる2系統の流れを形成する(第1の熱交換器2からの冷媒を車室外熱交換器4と第2の熱交換器3に並列的に流す平行運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(Parallel)という)に設定する。
Further, in this example, the dehumidifying operation mode is roughly divided into three modes between the cooling operation mode and the heating operation mode (see FIG. 2).
-If the heat load received by the refrigeration cycle is relatively high, the outdoor heat exchanger 4 is used as a radiator as in the cooling operation mode, and the refrigerant flows in the same manner as in the cooling operation mode (first). In order to dissipate heat in two stages using the heat exchanger 2 and the passenger compartment outdoor heat exchanger 4 as radiators, a refrigerant is flowed in series with the first heat exchanger 2 and the passenger compartment outdoor heat exchanger 4. ), Set to the dehumidifying / cooling operation mode (Series) that adjusts the temperature of the dehumidified air by adjusting the opening of the air mix door.
-If the heat load received by the refrigeration cycle is a medium heat load, only the first heat exchanger 2 is used as a radiator without using the outdoor heat exchanger 4, and the second Dehumidifying / heating operation mode (hereinafter, dehumidifying / heating operation mode) uses only the heat exchanger 3 of (Called By-Pass)).
-If the heat load received by the refrigeration cycle is even lower at medium and low heat loads, two systems that use the passenger compartment outdoor heat exchanger 4 and the second heat exchanger 3 as heat exchangers in order to increase the heat absorption capacity. Dehumidifying and heating operation mode (hereinafter, dehumidifying and heating) that forms the flow of Set to the operation mode (called Parallel).

(各運転モードについて)
以上の各運転モードを得るために、膨張装置(第1の膨張装置(E−1)12,第2の膨張装置(E−2)14)、開閉弁(第1の冷媒制御部15,第3の開閉弁19)、第2の冷媒制御部17、及びダンパ10は、制御部50によって以下のように設定される。
なお、各運転モードでは、制御部50からの指示により送風機8が回転し、内外気切換装置6を通過した空気が第2の熱交換器3に送られ、続いて第1の熱交換器2に向けて流れる。
(About each operation mode)
In order to obtain each of the above operation modes, an expansion device (first expansion device (E-1) 12, second expansion device (E-2) 14), on-off valve (first refrigerant control unit 15, first The on-off valve 19) of No. 3, the second refrigerant control unit 17, and the damper 10 are set by the control unit 50 as follows.
In each operation mode, the blower 8 rotates according to the instruction from the control unit 50, the air that has passed through the inside / outside air switching device 6 is sent to the second heat exchanger 3, and then the first heat exchanger 2 Flow towards.

先ず、運転モードが冷房運転モードに設定される場合には、制御部50は、図1(b)に示されるように、第1の膨張装置(E−1)12を全開とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開き、またダンパ10を冷房位置(開度0%の位置、フルクールの位置)に設定する。 First, when the operation mode is set to the cooling operation mode, the control unit 50 fully opens the first expansion device (E-1) 12 and the second expansion device (E-1) 12 as shown in FIG. 1 (b). Squeeze the inflator (E-2) 14. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened and the damper 10 is placed in the cooling position (opening 0%). (Position of, full cool position).

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する空気が無いことからここで放熱することなく通過し、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は全開の状態であるため、圧縮機11から吐出された高温高圧の状態の冷媒が車室外熱交換器4に流入し、この車室外熱交換器で放熱(凝縮液化)される。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3で冷却され、第1の熱交換器2をバイパスしてそのまま冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 passes through the first heat exchanger 2 without radiating heat because there is no air passing through the first heat exchanger 2, and further expands to the first. Enter the vehicle interior heat exchanger 4 via the device 12. At this time, since the first expansion device 12 is in the fully open state, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the vehicle interior heat exchanger 4 and dissipates heat in the vehicle interior heat exchanger (). Condensed liquefaction). After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is cooled by the second heat exchanger 3, bypasses the first heat exchanger 2, and is supplied to the vehicle interior as it is as cold air.

運転モードが除湿冷房運転モード(Series)に設定される場合には、制御部50は、図1(b)にも示されるように、ダンパ10の位置と第1の膨張装置(E−1)12を除いて、第2の膨張装置(E−2)、冷媒制御部、開閉弁を冷房運転モードと同様に設定する。すなわち、第1の膨張装置(E−1)12を少し絞った状態とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開く。そして、ダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidifying / cooling operation mode (Series), the control unit 50 sets the position of the damper 10 and the first expansion device (E-1) as shown in FIG. 1 (b). Except for 12, the second expansion device (E-2), the refrigerant control unit, and the on-off valve are set in the same manner as in the cooling operation mode. That is, the first inflator (E-1) 12 is slightly squeezed, and the second inflator (E-2) 14 is squeezed. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened. Then, the opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する際に放熱され、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は少し絞った状態であるため、ここで僅かに減圧膨張されて車室外熱交換器4に入るものの、この車室外熱交換器で放熱(凝縮液化)される。また、第1の膨張装置12は少し絞った状態であるため、全開の状態よりも第1の熱交換器2における冷媒の圧力が上昇し、第1の熱交換器2での放熱力を増大することができる。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 is dissipated when passing through the first heat exchanger 2, and further, heat exchange outside the vehicle interior via the first expansion device 12. Enter vessel 4. At this time, since the first expansion device 12 is in a slightly squeezed state, it is slightly decompressed and expanded here to enter the vehicle interior heat exchanger 4, but heat is dissipated (condensed) by this vehicle interior heat exchanger. .. Further, since the first expansion device 12 is in a slightly throttled state, the pressure of the refrigerant in the first heat exchanger 2 is higher than in the fully opened state, and the heat dissipation force in the first heat exchanger 2 is increased. can do. After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the dry cold air is dried. It is supplied to the passenger compartment as.

次に、運転モードが除湿暖房運転モード(By‐Pass)に設定される場合には、図1(b)にも示されるように、制御部50は、第1の膨張装置12を閉とし、第2の膨張装置14を絞り、第1の冷媒制御部15を開き、第2の冷媒制御部17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、ダンパ10の開度を任意の中間位置に設定する。 Next, when the operation mode is set to the dehumidification / heating operation mode (By-Pass), the control unit 50 closes the first expansion device 12 and closes the first expansion device 12, as shown in FIG. 1 (b). When the second expansion device 14 is throttled, the first refrigerant control unit 15 is opened, the second refrigerant control unit 17 is closed, and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed. , The opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、車室外熱交換器4を迂回して第1のバイパス流路16を流れた後に、第2の膨張装置14に至り、この第2の膨張装置14で減圧されて、第2の熱交換器3に供給される。そして、この第2の熱交換器3で吸熱された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した温風として車室内に供給される。
この除湿暖房運転モード(By‐Pass)での暖房能力は、後述する除湿暖房運転モード(parallel)よりも小さい。
Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, bypasses the vehicle interior heat exchanger 4, and flows through the first bypass flow path 16. It reaches the second expansion device 14, is decompressed by the second expansion device 14, and is supplied to the second heat exchanger 3. Then, after the heat is absorbed by the second heat exchanger 3, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the temperature becomes dry. It is supplied to the passenger compartment as wind.
The heating capacity in this dehumidifying / heating operation mode (By-Pass) is smaller than that in the dehumidifying / heating operation mode (parallel) described later.

運転モードが除湿暖房運転モード(parallel)に設定される場合には、図1(b)にも示されるように、制御部50は、第1及び第2の膨張装置12,14を絞り、第1及び第2の冷媒制御部15,17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidification / heating operation mode (parallel), the control unit 50 throttles the first and second expansion devices 12 and 14 as shown in FIG. 1 (b). When the first and second refrigerant control units 15 and 17 are opened and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed and the opening degree of the damper 10 is set to an arbitrary intermediate position. ..

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、その後分岐されて、一方は、第1のバイパス流路16を通って第2の膨張装置14へ至り、ここで減圧されて第2の熱交換器3で吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。また、それと同時に、他方は、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の開閉弁17を通って、アキュムレータ23を介して圧縮機11に戻される。このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した温風として車室内に供給される。 Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, and then branched, and one of them passes through the first bypass flow path 16 and expands to the second. It reaches the device 14, where it is depressurized, absorbed (evaporated and vaporized) by the second heat exchanger 3, and then returned to the compressor 11 via the accumulator 23. At the same time, the other is decompressed by the first expansion device 12 to reach the vehicle interior heat exchanger 4, where heat is absorbed (evaporated and vaporized) and then passed through the second on-off valve 17 to pass the accumulator 23. It is returned to the compressor 11 via. Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the temperature becomes dry. It is supplied to the passenger compartment as wind.

運転モードが暖房運転モードに設定される場合には、図1(b)にも示されるように、制御部50は、第1の膨張装置12を絞り、第2の膨張装置14を閉じる。また、第1の冷媒制御部15を閉じ、第2の冷媒制御部17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10を暖房位置(開度100%の位置、フルホットの位置)に設定する。 When the operation mode is set to the heating operation mode, the control unit 50 throttles the first expansion device 12 and closes the second expansion device 14, as shown in FIG. 1 (b). Further, when the first refrigerant control unit 15 is closed, the second refrigerant control unit 17 is opened, and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed and the damper 10 is placed in the heating position. Set to (100% opening position, full hot position).

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の冷媒制御部17を通って、アキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3を通過するものの熱交換されず、第1の熱交換器2に全て導かれて加熱され、温風として車室内に供給される。
Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, decompressed by the first expansion device 12, and reaches the vehicle interior heat exchanger 4, where heat is absorbed. After being (evaporated and vaporized), it is returned to the compressor 11 via the accumulator 23 through the second refrigerant control unit 17.
Therefore, the air sent from the upstream side of the air conditioning unit 1 passes through the second heat exchanger 3, but is not heat exchanged, and is all guided to the first heat exchanger 2 to be heated and warm air. It is supplied to the passenger compartment as.

なお、上述の例では、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)と除湿暖房運転モード(By-Pass)とを、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度(Tset)が加味される目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて切り替えるようにしたが、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)のみを用いるようにしてもよい。 In the above example, the dehumidifying / heating operation mode (Parallel) and the dehumidifying / heating operation mode (By-Pass) are set as the dehumidifying / heating operation mode. The difference (Tm-Tset) between the total signal (Tm) that takes into account the temperature of the air inside the vehicle, the amount of solar radiation, etc., and the target blowout temperature (Tset) that takes into account the desired room temperature (Tset) set by the occupants. Although it is switched according to the size, only the dehumidifying / heating operation mode (Parallel) may be used as the dehumidifying / heating operation mode.

ところで、以上の構成において、暖房運転を除く全ての運転モードでは、第2の熱交換器3へ冷媒を供給し、この第2の熱交換器3を通過する空気を除湿又は冷却するようにしている。これに対して、暖房運転においては、第2の熱交換器3への冷媒の供給を止め、空気ユニット内に吸引される空気を最大限に加熱するようにしている。 By the way, in the above configuration, in all the operation modes except the heating operation, the refrigerant is supplied to the second heat exchanger 3 to dehumidify or cool the air passing through the second heat exchanger 3. There is. On the other hand, in the heating operation, the supply of the refrigerant to the second heat exchanger 3 is stopped so that the air sucked into the air unit is heated to the maximum.

したがって、熱負荷が小さい環境下においては、図3に示されるように、暖房運転と除湿暖房(Parallel)との間で運転モードが切り替わる場合があるが、熱負荷(Tm−Tset)の所定の閾値を境として運転モードを切り替える従来の手法を採用すると、暖房運転と除湿暖房(Parallel)とを切り替える際に所定の閾値を挟んで熱負荷が頻繁に変動する場合(例えば、車両が日向と日蔭を交互に走行するような場合)には(図4の上段参照)、第2の熱交換器3に冷媒を流す運転モードと流さない運転モードとが頻繁に切り替わることになる。特に、運転モードが暖房運転から除湿暖房運転に切り替わる場合には、高圧冷媒が第1のバイパス流路16を介して第2の膨張装置14へ一気に流れ込むために突発的な異音が発生しやすく、熱負荷の頻繁な変動によって運転モードが頻繁に切り替わると、そのような異音も頻繁に発生することになる Therefore, in an environment where the heat load is small, as shown in FIG. 3, the operation mode may be switched between the heating operation and the dehumidifying heating (Parallel), but the heat load (Tm-Tset) is predetermined. When the conventional method of switching the operation mode with a threshold as a boundary is adopted, when the heat load frequently fluctuates across a predetermined threshold when switching between heating operation and dehumidifying heating (Parallel) (for example, the vehicle is in the sun and the sun). In the case of traveling alternately (see the upper part of FIG. 4), the operation mode in which the refrigerant flows through the second heat exchanger 3 and the operation mode in which the refrigerant does not flow are frequently switched. In particular, when the operation mode is switched from the heating operation to the dehumidifying heating operation, the high-pressure refrigerant flows into the second expansion device 14 at once through the first bypass flow path 16, so that sudden abnormal noise is likely to occur. If the operation mode is frequently switched due to frequent fluctuations in the heat load, such abnormal noise will also occur frequently.

このような頻繁に発生する騒音を低減するためには熱負荷の変動に合わせて運転モードを頻繁に変更させないようにすればよいが、そのような場合には、第2の熱交換器3が凍結する不都合や、第2の熱交換器3の冷却能力が十分に確保できなくなる不都合が生じる。 In order to reduce such frequently generated noise, it is sufficient not to change the operation mode frequently according to the fluctuation of the heat load, but in such a case, the second heat exchanger 3 is used. There is a problem of freezing and a problem that the cooling capacity of the second heat exchanger 3 cannot be sufficiently secured.

このように、運転モードを暖房運転と除湿暖房運転(Parallel)との間で切り替える場合においては、熱負荷の変動に合わせて敏感に切り替わらないようにすることで頻繁な騒音の発生を抑える要請と、第2の熱交換器3が凍結する虞や第2の熱交換器3の冷却能力が確保できなくなる(不足する)虞を回避する要請とを両立させる必要がある。すなわち、熱負荷の変動に対して第2の熱交換器3の温度変化を緩慢にして熱負荷の頻繁な変動を吸収できるようにした上で、運転モードの切り替えが真に必要となると判定された場合(第2の熱交換器の凍結を防止する必要がある場合や第2の熱交換器の冷却能力を確保する必要があると判定された場合)にのみ切り替えるようにすることが好ましい。 In this way, when switching the operation mode between heating operation and dehumidifying heating operation (Parallel), there is a request to suppress frequent noise generation by not switching sensitively according to fluctuations in heat load. It is necessary to balance the request for avoiding the risk that the second heat exchanger 3 freezes and the risk that the cooling capacity of the second heat exchanger 3 cannot be secured (insufficient). That is, it is determined that it is really necessary to switch the operation mode after slowing down the temperature change of the second heat exchanger 3 in response to the fluctuation of the heat load so that the frequent fluctuation of the heat load can be absorbed. It is preferable to switch only when it is necessary to prevent the second heat exchanger from freezing or when it is determined that it is necessary to secure the cooling capacity of the second heat exchanger.

そこで、本実施例においては、前述した如く、第2の熱交換器3に蓄熱材TSを設け、第2の熱交換器自体の熱容量を大きくし、熱負荷の頻繁な変動に対して即座に追従させないようにしている(第2の熱交換器3を冷えにくく、且つ、温まりにくくしている)。蓄熱材TSとしては、液相と固相との相変化をするものが用いられる。相変化温度は、摂氏0℃よりも若干高い(例えば3℃)。相変化することで、多くの潜熱を蓄積または開放することができる。このため、第2の熱交換器3の熱容量を、より大きくすることができる。そして、その上で、暖房運転と除湿暖房運転(Parallel)との切り替えは、前記熱負荷(Tm−Tset)の所定の閾値によっては行わないようにし、第2の熱交換器(3)の温度状態を検出する状態検知センサ(54)による検知結果に基づき、第2の熱交換器3の凍結を回避する必要があると判定され、また、第2の熱交換器3の冷却能力を確保する必要があると判定された場合にのみ運転モードを切り替えるようにしている(図4の下段参照)。 Therefore, in this embodiment, as described above, the heat storage material TS is provided in the second heat exchanger 3, the heat capacity of the second heat exchanger itself is increased, and the heat load is immediately changed in response to frequent fluctuations. It is prevented from following (the second heat exchanger 3 is hard to cool and hard to warm). As the heat storage material TS, a material that undergoes a phase change between the liquid phase and the solid phase is used. The phase change temperature is slightly higher than 0 ° C. (eg 3 ° C.). By changing the phase, a lot of latent heat can be accumulated or released. Therefore, the heat capacity of the second heat exchanger 3 can be further increased. Then, switching between the heating operation and the dehumidifying / heating operation (Parallel) is not performed according to a predetermined threshold value of the heat load (Tm-Tset), and the temperature of the second heat exchanger (3) is changed. Based on the detection result by the state detection sensor (54) that detects the state, it is determined that it is necessary to avoid freezing of the second heat exchanger 3, and the cooling capacity of the second heat exchanger 3 is secured. The operation mode is switched only when it is determined that it is necessary (see the lower part of FIG. 4).

すなわち、暖房運転と除湿暖房運転との間の運転モードの切り替えにおいては、熱負荷の変動に即座に追従させて運転モードを切り替えるのではなく、第2の熱交換器3が凍結する虞がない限り、又は、第2の熱交換器3による吸熱能力が確保できている限り、熱負荷が頻繁に変動しても運転モードを切り替えないようにしている。 That is, in switching the operation mode between the heating operation and the dehumidifying heating operation, there is no possibility that the second heat exchanger 3 freezes instead of switching the operation mode by immediately following the fluctuation of the heat load. As long as the heat absorption capacity of the second heat exchanger 3 can be secured, the operation mode is not switched even if the heat load fluctuates frequently.

そして、運転モードを除湿暖房運転と暖房運転との間で切り替える具体的な手法は次のように行う。すなわち、制御部50は、第2の熱交換器(3)の温度状態を検出する状態検知センサ(54)の検出信号に基づき、第2の熱交換器(3)の温度が蓄熱材(TS)の相変化温度(To)を下回ったことが推定され又は検知された場合に、若しくは、第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、運転モードを除湿暖房運転から暖房運転に切り替えるようにしている。 Then, a specific method for switching the operation mode between the dehumidifying heating operation and the heating operation is performed as follows. That is, the control unit 50 sets the temperature of the second heat exchanger (3) to the heat storage material (TS) based on the detection signal of the state detection sensor (54) that detects the temperature state of the second heat exchanger (3). ) Was estimated or detected below the phase change temperature (To), or the wetness of the refrigerant flowing out of the second heat exchanger exceeded a predetermined value (S1) greater than zero. When is detected, the operation mode is switched from the dehumidifying heating operation to the heating operation.

第2の熱交換器3に蓄熱材TSを設けた本構成においては、蓄熱材TSが液相から固相へ移行する過程で、図5(a)に示すように、蓄熱材の温度、引いては第2の熱交換器の温度や第2の熱交換器を通過した下流側空気の温度が一定となる(この相変化時に一定となる温度を相変化温度Toとする)。 In this configuration in which the heat storage material TS is provided in the second heat exchanger 3, the temperature of the heat storage material is subtracted as shown in FIG. 5A in the process of the heat storage material TS shifting from the liquid phase to the solid phase. Therefore, the temperature of the second heat exchanger and the temperature of the downstream air that has passed through the second heat exchanger become constant (the temperature that becomes constant at the time of this phase change is defined as the phase change temperature To).

このため、状態検知センサ54として、第2の熱交換器3の下流側空気の温度を検知する空気温度センサ54aを用いる場合には、蓄熱材TSが液相から固相へ移行する過程で第2の熱交換器3を通過する空気の温度は一定となるので、この状態から空気温度センサ54aによって検知された温度が下がり始め、この空気温度センサ54aによって検知された空気温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(T)又はそれより低い所定値(T1:蓄熱材TSの凍結温度に対応する空気温度)を下回ったことが推定されると、第2の熱交換器3が凍結する虞がある。 Therefore, when the air temperature sensor 54a for detecting the temperature of the air on the downstream side of the second heat exchanger 3 is used as the state detection sensor 54, the heat storage material TS is transferred from the liquid phase to the solid phase. Since the temperature of the air passing through the heat exchanger 3 of 2 becomes constant, the temperature detected by the air temperature sensor 54a starts to decrease from this state, and the second air temperature detected by the air temperature sensor 54a is used. It is presumed that the temperature of the heat exchanger 3 is lower than the phase change temperature (T 0 ) of the heat storage material TS or a predetermined value lower than that (T1: air temperature corresponding to the freezing temperature of the heat storage material TS). There is a risk that the heat exchanger 3 of 2 will freeze.

そこで、状態検知センサ54として、空気温度センサ54aを用いる場合には、この空気温度センサ54aによって検出された温度から、第2の熱交換器の温度が蓄熱材TSの相変化温度To、又はそれより低い所定値(T1)を下回ったことが推定された場合に、運転モードを除湿暖房運転から暖房運転に切り替え、第2の熱交換器3の凍結を回避する。 Therefore, when the air temperature sensor 54a is used as the state detection sensor 54, the temperature of the second heat exchanger is the phase change temperature To of the heat storage material TS, or the temperature detected by the air temperature sensor 54a. When it is estimated that the temperature falls below the lower predetermined value (T1), the operation mode is switched from the dehumidifying heating operation to the heating operation to avoid freezing of the second heat exchanger 3.

また、状態検知センサ54として、第2の熱交換器3の温度を直接的に検知する接触式温度センサ54bを用いる場合には、蓄熱材TSが液相から固相へ移行する過程で第2の熱交換器3の温度は一定となるので、この状態から接触式温度センサ54bによって検知された温度が下がり始め、この接触式温度センサ54bによって検知された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(T)又はそれより低い所定値(T1:蓄熱材TSの凍結温度に対応する温度)を下回ったことが検出されると、第2の熱交換器3が凍結する虞がある。 Further, when the contact type temperature sensor 54b that directly detects the temperature of the second heat exchanger 3 is used as the state detection sensor 54, the heat storage material TS is second in the process of shifting from the liquid phase to the solid phase. Since the temperature of the heat exchanger 3 of the above becomes constant, the temperature detected by the contact type temperature sensor 54b begins to decrease from this state, and the temperature detected by the contact type temperature sensor 54b is used to obtain the second heat exchanger 3 from the temperature detected by the contact type temperature sensor 54b. When it is detected that the temperature of the heat storage material TS falls below the phase change temperature (T 0 ) of the heat storage material TS or a predetermined value lower than that (T1: the temperature corresponding to the freezing temperature of the heat storage material TS), the second heat exchanger 3 may freeze.

そこで、状態検知センサ54として、第2の熱交換器3の温度を直接的に検知する接触式温度センサ54bを用いる場合には、この接触式温度センサ54bによって検出された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより低い所定値(T1)を下回ったことが検出された場合に、運転モードを除湿暖房運転から暖房運転に切り替え、第2の熱交換器3の凍結を回避する。 Therefore, when a contact-type temperature sensor 54b that directly detects the temperature of the second heat exchanger 3 is used as the state detection sensor 54, the second is based on the temperature detected by the contact-type temperature sensor 54b. When it is detected that the temperature of the heat exchanger 3 falls below the phase change temperature (To) of the heat storage material TS or a predetermined value (T1) lower than that, the operation mode is switched from the dehumidifying heating operation to the heating operation. Avoid freezing of the heat exchanger 3 of 2.

さらに、状態検知センサ54として、蓄熱材TSの温度を直接的に検知する接触式温度センサ54cを用いる場合には、蓄熱材TSが液相から固相へ移行する過程で蓄熱材TSの温度は一定となるので、この状態から接触式温度センサ54cによって検知された温度が下がり始め、この接触式温度センサ54cによって検知された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(T)又はそれより低い所定値(T1:蓄熱材TSの凍結温度)を下回ったことが検出されると、第2の熱交換器3が凍結する虞がある。 Further, when the contact type temperature sensor 54c that directly detects the temperature of the heat storage material TS is used as the state detection sensor 54, the temperature of the heat storage material TS changes in the process of transition from the liquid phase to the solid phase. Since it becomes constant, the temperature detected by the contact type temperature sensor 54c begins to decrease from this state, and the temperature of the second heat exchanger 3 is the phase of the heat storage material TS from the temperature detected by the contact type temperature sensor 54c. If it is detected that the temperature falls below the change temperature (T 0 ) or a predetermined value lower than that (T1: freezing temperature of the heat storage material TS), the second heat exchanger 3 may freeze.

そこで、状態検知センサ54として、蓄熱材TSの温度を直接的に検知する接触式温度センサ54cを用いる場合には、この接触式温度センサ54cによって検出された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより低い所定値(T1)を下回ったことが検出された場合に、運転モードを除湿暖房運転から暖房運転に切り替え、第2の熱交換器3の凍結を回避する。 Therefore, when a contact-type temperature sensor 54c that directly detects the temperature of the heat storage material TS is used as the state detection sensor 54, the second heat exchanger 3 is based on the temperature detected by the contact-type temperature sensor 54c. When it is detected that the temperature of the heat storage material TS falls below the phase change temperature (To) of the heat storage material TS or a predetermined value (T1) lower than that, the operation mode is switched from the dehumidifying heating operation to the heating operation, and the second heat exchange occurs. Avoid freezing of vessel 3.

さらにまた、状態検知センサ54として、第2の熱交換器3から流出する冷媒の湿り度を検知する温度圧力センサ54dを用いる場合には、蓄熱材TSが液相から固相へ移行する相変化温度(To)を経て蓄熱材TSの温度が低下し始めると、冷媒の湿り度はゼロから徐々に大きくなるので、この第2の熱交換器3から流出する冷媒の湿り度がゼロより大きい所定値(S1:蓄熱材TSの凍結温度に対応する温度)を上回ったことが検出されると、第2の熱交換器3は凍結する虞がある。 Furthermore, when the temperature and pressure sensor 54d for detecting the wetness of the refrigerant flowing out from the second heat exchanger 3 is used as the state detection sensor 54, the phase change in which the heat storage material TS shifts from the liquid phase to the solid phase. When the temperature of the heat storage material TS begins to decrease after the temperature (To), the wetness of the refrigerant gradually increases from zero, so that the wetness of the refrigerant flowing out from the second heat exchanger 3 is predetermined to be larger than zero. If it is detected that the value (S1: the temperature corresponding to the freezing temperature of the heat storage material TS) is exceeded, the second heat exchanger 3 may freeze.

そこで、状態検知センサ54として、湿り度を検知する温度圧力センサ54dを用いる場合には、この温度圧力センサ54dによって検出された湿り度が、図5(b)に示されるように、ゼロより大きい所定値(S1:蓄熱材TSの凍結温度に対応する湿り度)を上回ったことが検出された場合に、運転モードを除湿暖房運転から暖房運転に切り替え、第2の熱交換器3の凍結を回避する。 Therefore, when the temperature / pressure sensor 54d for detecting the degree of wetness is used as the state detection sensor 54, the degree of wetness detected by the temperature / pressure sensor 54d is larger than zero as shown in FIG. 5 (b). When it is detected that the value exceeds a predetermined value (S1: wetness corresponding to the freezing temperature of the heat storage material TS), the operation mode is switched from the dehumidifying heating operation to the heating operation, and the second heat exchanger 3 is frozen. To avoid.

以上の除湿暖房運転から暖房運転への切り替えに対して、制御部50は、状態検知センサ54の検出信号に基づき、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、運転モードを暖房運転から除湿暖房運転に切り替えるようにしている。 In response to the above switching from the dehumidifying / heating operation to the heating operation, the control unit 50 determines that the temperature of the second heat exchanger 3 is the phase change temperature (To) of the heat storage material TS based on the detection signal of the state detection sensor 54. When it is estimated or detected that the temperature exceeds a predetermined value (T2) higher than that, the operation mode is switched from the heating operation to the dehumidifying heating operation.

第2の熱交換器3に蓄熱材TSを設けた本構成においては、蓄熱材TSが固相から液相へ移行する過程で、図6に示すように、蓄熱材TSの温度、引いては第2の熱交換器3の温度や第2の熱交換器3を通過する下流側空気の温度が一定となる(この相変化時に一定となる温度を相変化温度Toとする)。
このため、状態検知センサ54として、第2の熱交換器3の下流側空気の温度を検知する空気温度センサ54aを用いる場合には、蓄熱材TSが固相から液相へ移行する過程で第2の熱交換器3を通過する空気の温度は一定となるので、この状態から空気温度センサ54aによって検知された温度が上がり始め、この空気温度センサ54aによって検知された空気温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが推定されると、第2の熱交換器3の冷却能力を確保できなくなる虞がある。
In this configuration in which the heat storage material TS is provided in the second heat exchanger 3, the temperature of the heat storage material TS, as shown in FIG. 6, is subtracted in the process of the heat storage material TS shifting from the solid phase to the liquid phase. The temperature of the second heat exchanger 3 and the temperature of the downstream air passing through the second heat exchanger 3 become constant (the temperature that becomes constant at the time of this phase change is defined as the phase change temperature To).
Therefore, when the air temperature sensor 54a for detecting the temperature of the air on the downstream side of the second heat exchanger 3 is used as the state detection sensor 54, the heat storage material TS is transferred from the solid phase to the liquid phase. Since the temperature of the air passing through the heat exchanger 3 of 2 becomes constant, the temperature detected by the air temperature sensor 54a starts to rise from this state, and the second air temperature detected by the air temperature sensor 54a is used. If it is estimated that the temperature of the heat exchanger 3 exceeds the phase change temperature (To) of the heat storage material TS or a predetermined value (T2) higher than that, the cooling capacity of the second heat exchanger 3 cannot be secured. There is a risk.

そこで、状態検知センサ54として、空気温度センサ54aを用いる場合には、この空気温度センサ54aによって検出された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが検出された場合に、運転モードを暖房運転から除湿暖房運転に切り替え、第2の熱交換器3の冷却能力不足を回避する。 Therefore, when the air temperature sensor 54a is used as the state detection sensor 54, the temperature of the second heat exchanger 3 is the phase change temperature (To) of the heat storage material TS from the temperature detected by the air temperature sensor 54a. Or, when it is detected that the temperature exceeds a predetermined value (T2) higher than that, the operation mode is switched from the heating operation to the dehumidifying heating operation to avoid insufficient cooling capacity of the second heat exchanger 3.

また、状態検知センサ54として、第2の熱交換器3の温度を直接的に検知する接触式温度センサ54bを用いる場合には、蓄熱材TSが固相から液相へ移行する過程で第2の熱交換器3の温度が一定となるので、この状態から接触式温度センサ54bによって検知された温度が上がり始め、この接触式温度センサ54bによって検知された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが検出されると、第2の熱交換器3の冷却能力を確保できなくなる虞がある。 Further, when the contact type temperature sensor 54b that directly detects the temperature of the second heat exchanger 3 is used as the state detection sensor 54, the heat storage material TS is second in the process of shifting from the solid phase to the liquid phase. Since the temperature of the heat exchanger 3 of the above becomes constant, the temperature detected by the contact type temperature sensor 54b starts to rise from this state, and from the temperature detected by the contact type temperature sensor 54b, the second heat exchanger 3 If it is detected that the temperature of the heat storage material TS exceeds the phase change temperature (To) of the heat storage material TS or a predetermined value (T2) higher than that, there is a possibility that the cooling capacity of the second heat exchanger 3 cannot be secured.

そこで、状態検知センサ54として、第2の熱交換器3の温度を直接的に検知する接触式温度センサ54bを用いる場合には、この接触式温度センサ54bによって検出された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが検出された場合に、運転モードを暖房運転から除湿暖房運転に切り替え、第2の熱交換器3の冷却能力不足を回避する。 Therefore, when a contact-type temperature sensor 54b that directly detects the temperature of the second heat exchanger 3 is used as the state detection sensor 54, the second is based on the temperature detected by the contact-type temperature sensor 54b. When it is detected that the temperature of the heat exchanger 3 exceeds the phase change temperature (To) of the heat storage material TS or a predetermined value (T2) higher than that, the operation mode is switched from the heating operation to the dehumidifying heating operation. Avoid insufficient cooling capacity of the heat exchanger 3 of 2.

さらに、状態検知センサ(54)として、蓄熱材TSの温度を直接的に検知する接触式温度センサ54cを用いる場合には、蓄熱材TSが固相から液相へ移行する過程で蓄熱材TSの温度は一定となるので、この状態から接触式温度センサ54cによって検知された温度が上がり始め、この接触式温度センサ54cによって検知された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが検出されると、第2の熱交換器3の冷却能力を確保できなくなる虞がある。 Further, when the contact type temperature sensor 54c that directly detects the temperature of the heat storage material TS is used as the state detection sensor (54), the heat storage material TS is transferred from the solid phase to the liquid phase. Since the temperature becomes constant, the temperature detected by the contact-type temperature sensor 54c begins to rise from this state, and the temperature of the second heat exchanger 3 is the temperature of the heat storage material TS from the temperature detected by the contact-type temperature sensor 54c. If it is detected that the temperature exceeds the phase change temperature (To) or a predetermined value (T2) higher than that, the cooling capacity of the second heat exchanger 3 may not be secured.

そこで、状態検知センサ54として、蓄熱材TSの温度を直接的に検知する接触式温度センサ54cを用いる場合には、この接触式温度センサ54cによって検出された温度から、第2の熱交換器3の温度が蓄熱材TSの相変化温度(To)又はそれより高い所定値(T2)を上回ったことが検出された場合に、運転モードを暖房運転から除湿暖房運転に切り替え、第2の熱交換器3の冷却能力不足を回避する。 Therefore, when a contact-type temperature sensor 54c that directly detects the temperature of the heat storage material TS is used as the state detection sensor 54, the second heat exchanger 3 is based on the temperature detected by the contact-type temperature sensor 54c. When it is detected that the temperature of the heat storage material TS exceeds the phase change temperature (To) or a predetermined value (T2) higher than that, the operation mode is switched from the heating operation to the dehumidifying heating operation, and the second heat exchange is performed. Avoid insufficient cooling capacity of the vessel 3.

ところで、以上の構成においては、暖房運転と除湿暖房運転との間の切り替え頻度を抑え(特に、暖房運転から除湿暖房運転に切り替える頻度を抑え)、騒音の発生回数を抑えるものであったが、切り替え時の騒音自体をも低減させることができれば、騒音対策の観点からは一層好ましい。
そこで、以上の構成を前提としつつ、暖房運転と除湿暖房運転との間の切り替え時においては、図7に示されるように、第1のバイパス流路16を開閉させる開閉弁からなる第1の冷媒制御部(V−1)15を開状態に維持し、第2の膨張装置14を絞り状態から閉状態に切り替えることによって除湿暖房運転から暖房運転に切り替え、また、第2の膨張装置14を閉状態から絞り状態に切り替えることによって暖房運転から除湿暖房運転に切り替えるようにするとよい。なお、図7においては、説明の便宜上、高圧冷媒が満たされている管路を太い実線で示している。
By the way, in the above configuration, the frequency of switching between the heating operation and the dehumidifying heating operation is suppressed (particularly, the frequency of switching from the heating operation to the dehumidifying heating operation is suppressed), and the number of times of noise generation is suppressed. If the noise itself at the time of switching can be reduced, it is more preferable from the viewpoint of noise countermeasures.
Therefore, on the premise of the above configuration, when switching between the heating operation and the dehumidifying heating operation, as shown in FIG. 7, a first switching valve including an on-off valve for opening and closing the first bypass flow path 16. By keeping the refrigerant control unit (V-1) 15 in the open state and switching the second expansion device 14 from the throttle state to the closed state, the dehumidifying heating operation is switched to the heating operation, and the second expansion device 14 is switched. It is preferable to switch from the heating operation to the dehumidifying heating operation by switching from the closed state to the throttle state. In FIG. 7, for convenience of explanation, the pipeline filled with the high-pressure refrigerant is shown by a thick solid line.

このような構成においては、第1の冷媒制御部15を開状態に維持しているので、第1の熱交換器2と第1の膨張装置12との間の冷媒経路の高圧冷媒を第2の膨張装置14の入り口まで常時供給した状態にしておくことができ、暖房から除湿暖房に切り替える場合においても第2の膨張装置14に高圧冷媒が一気に流れ込んで異音を発生させる事態を回避することが可能となり、暖房運転から除湿暖房運転(Parallel)への切り替え時の異音の発生を無くすことが可能となる。 In such a configuration, since the first refrigerant control unit 15 is maintained in the open state, the high-pressure refrigerant in the refrigerant path between the first heat exchanger 2 and the first expansion device 12 is second. It is possible to keep the supply up to the entrance of the expansion device 14 at all times, and even when switching from heating to dehumidification heating, it is possible to avoid a situation in which the high-pressure refrigerant suddenly flows into the second expansion device 14 and generates an abnormal noise. It is possible to eliminate the generation of abnormal noise when switching from the heating operation to the dehumidifying heating operation (Parallel).

なお、以上の形態において、本発明の目的を逸脱しない範囲で適宜変更してもよい。例えば、冷凍サイクルの運転モードを切り替える指標して、冷凍サイクル100が受けている熱負荷と目標吹出温度との差を用いるようにしたが、冷凍サイクル100が受けている熱負荷の代表として、外気温度を用いたり、第2の熱交換器3の冷却温度(EVA温度)等を用いたりしてもよい。 In addition, in the above form, it may be changed as appropriate within the range which does not deviate from the object of this invention. For example, the difference between the heat load received by the refrigeration cycle 100 and the target blowing temperature is used as an index for switching the operation mode of the refrigeration cycle. However, as a representative of the heat load received by the refrigeration cycle 100, the outside air is used. The temperature may be used, or the cooling temperature (EVA temperature) of the second heat exchanger 3 or the like may be used.

1 空調ユニット
2 第1の熱交換器
3 第2の熱交換器
4 車室外熱交換器
11 圧縮機
12 第1の膨張装置
13 逆止弁
14 第2の膨張装置
15 第1の冷媒制御部
16 第1のバイパス流路
17 第2の冷媒制御部
18 第2のバイパス流路
19 開閉弁
50 制御手段
54 状態検知センサ
54a 空気温度センサ
54b,54c 接触式温度センサ
54d 温度圧力センサ
100 冷凍サイクル
TS 蓄熱材
1 Air conditioning unit 2 1st heat exchanger 3 2nd heat exchanger 4 Outdoor heat exchanger 11 Compressor 12 1st expansion device 13 Check valve 14 2nd expansion device 15 1st refrigerant control unit 16 1st bypass flow path 17 2nd refrigerant control unit 18 2nd bypass flow path 19 On-off valve 50 Control means 54 State detection sensor 54a Air temperature sensor 54b, 54c Contact type temperature sensor 54d Temperature pressure sensor 100 Refrigeration cycle TS Heat storage Material

Claims (10)

圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13)との間の冷媒流路と前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続した冷凍サイクル(100)を有する車両用空調装置において、
前記第2の熱交換器(3)に、蓄熱材(TS)を設けたことを特徴とする車両用空調装置。
The compressor (11), the first heat exchanger (2) arranged in the air conditioning unit (1) and the ventilation amount is adjusted by the damper (10), and the first heat exchanger (2) arranged in the air conditioning unit (1). A second exchanger (3) arranged on the upstream side in the air conditioning unit (1) with respect to the first heat exchanger (2), and an outdoor heat exchanger (4) capable of exchanging heat with the outside air. ), A first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and a second expansion device (14) capable of narrowing and closing the refrigerant flow path. death,
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
Between the refrigerant flow path between the first heat exchanger (2) and the first expansion device (12) and between the vehicle interior heat exchanger (4) and the second expansion device (14). Is connected to the refrigerant flow path of the above via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), upstream of the merging portion (A) with the first bypass flow path (16). A backflow blocking portion (13) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the refrigerant flow between the vehicle interior heat exchanger (4) and the backflow blocking portion (13). A second bypass flow path (18) provided with a second refrigerant control unit (17) for the refrigerant flow path between the path, the second heat exchanger (3), and the compressor (11). In a vehicle air conditioner having a refrigeration cycle (100) connected via
A vehicle air conditioner characterized in that a heat storage material (TS) is provided in the second heat exchanger (3).
前記冷凍サイクル(100)と、前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)と、を備え、
前記制御手段(50)は、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を、前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2の熱交換器(3)を通流させることなく前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す暖房運転と、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を分岐させて、一方で前記第1のバイパス流路(16)を通過させて前記第2の膨張装置(14)で減圧した後に前記第2の熱交換器(3)を通して吸熱させると共に、他方で前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、前記第2のバイパス流路(18)を介して前記圧縮機(11)に戻す除湿暖房運転と、
を切り替え可能としている
ことを特徴とする請求項1記載の車両用空調装置。
A control means (50) for switching and controlling the refrigeration cycle (100) and the operation mode of the refrigeration cycle (100) is provided.
The control means (50) is
The refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and the dissipated refrigerant is depressurized by the first expansion device (12), and then the outside heat of the passenger compartment is generated. Heating that absorbs heat in the exchanger (4) and then returns it to the compressor (11) via the second bypass flow path (18) without allowing the second heat exchanger (3) to flow through. Driving and
The refrigerant discharged from the compressor (11) is radiated by the first heat exchanger (2), and the radiated refrigerant is branched, while passing through the first bypass flow path (16). The heat is absorbed through the second heat exchanger (3) after being depressurized by the second inflator (14), and on the other hand, the heat is exchanged outside the passenger compartment after being decompressed by the first inflator (12). A dehumidifying and heating operation in which heat is absorbed by the vessel (4) and returned to the compressor (11) via the second bypass flow path (18).
The vehicle air conditioner according to claim 1, wherein the air conditioner can be switched.
前記第2の熱交換器(3)の温度の状態を検出する状態検知センサ(54)を設け、
前記制御手段(50)は、
前記状態検知センサ(54)によって、前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)またはそれより低い所定値(T1)を下回ったことが推定され又は検知された場合に、若しくは前記第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、前記除湿暖房運転から前記暖房運転に切り替えることを特徴とする請求項2記載の車両用空調装置。
A state detection sensor (54) for detecting the temperature state of the second heat exchanger (3) is provided.
The control means (50) is
It is estimated by the state detection sensor (54) that the temperature of the second heat exchanger (3) has fallen below the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T1) lower than that. When it is detected or detected, or when it is detected that the wetness of the refrigerant flowing out from the second heat exchanger exceeds a predetermined value (S1) larger than zero, the heating from the dehumidifying and heating operation is performed. The vehicle air conditioner according to claim 2, wherein the air conditioner is switched to operation.
前記第2の熱交換器(3)の温度の状態を検出する状態検知センサ(54)を設け、
前記制御手段(50)は、
前記状態検知センサ(54)によって、前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)またはそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、前記暖房運転から前記除湿暖房運転に切り替えることを特徴とする請求項2記載の車両用空調装置。
A state detection sensor (54) for detecting the temperature state of the second heat exchanger (3) is provided.
The control means (50) is
It is estimated by the state detection sensor (54) that the temperature of the second heat exchanger (3) exceeds the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T2) higher than that. The vehicle air conditioner according to claim 2, wherein the heating operation is switched to the dehumidifying heating operation when the heating operation is performed or detected.
前記状態検知センサ(54)は、前記第2の熱交換器(3)の下流側空気の温度を検知する空気温度センサ(54a)であることを特徴とする請求項3又は4に記載の車両用空調装置。 The vehicle according to claim 3 or 4, wherein the state detection sensor (54) is an air temperature sensor (54a) that detects the temperature of the air on the downstream side of the second heat exchanger (3). Air conditioner for. 前記状態検知センサ(54)は、前記第2の熱交換器または前記蓄熱材の温度を直接的に検知する接触式温度センサ(54b、54c)であることを特徴とする請求項3又は4に記載の車両用空調装置。 According to claim 3 or 4, the state detection sensor (54) is a contact type temperature sensor (54b, 54c) that directly detects the temperature of the second heat exchanger or the heat storage material. The vehicle air conditioner described. 前記状態検知センサ(54)は、前記第2の熱交換器(3)から流出する冷媒の湿り度を検知する温度圧力センサ(54d)であることを特徴とする請求項3に記載の車両用空調装置。 The vehicle use according to claim 3, wherein the state detection sensor (54) is a temperature / pressure sensor (54d) that detects the wetness of the refrigerant flowing out from the second heat exchanger (3). Air conditioner. 前記制御手段(50)は、前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、
前記第2の冷媒制御部(17)を開状態に維持した状態で、
前記第2の膨張装置(14)を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替え、また、前記第2の膨張装置(14)を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替えることを特徴とする請求項2乃至7のいずれかに記載の車両用空調装置。
The control means (50) switches between the heating operation and the dehumidifying heating operation.
With the second refrigerant control unit (17) maintained in the open state,
Switching from the dehumidifying heating operation to the heating operation by switching the second expansion device (14) from the throttle state to the closed state, and switching the second expansion device (14) from the closed state to the throttle state. The vehicle air conditioner according to any one of claims 2 to 7, wherein the heating operation is switched to the dehumidifying heating operation.
請求項2に係る車両用空調装置を用いて、前記暖房運転と前記除湿暖房運転とを切り替える運転モード切替制御方法において、
前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)またはそれより低い所定値(T1)を下回ったことが推定され又は検知された場合に、若しくは前記第2の熱交換器から流出する冷媒の湿り度がゼロより大きい所定値(S1)を上回ったことが検知された場合に、前記除湿暖房運転から前記暖房運転に切り替え、
前記第2の熱交換器(3)の温度が前記蓄熱材(TS)の相変化温度(T0)又はそれより高い所定値(T2)を上回ったことが推定され又は検知された場合に、前記暖房運転から前記除湿暖房運転に切り替えることを特徴とする運転モード切替制御方法。
In the operation mode switching control method for switching between the heating operation and the dehumidifying heating operation by using the vehicle air conditioner according to claim 2.
When it is estimated or detected that the temperature of the second heat exchanger (3) is lower than the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T1) lower than that, or When it is detected that the wetness of the refrigerant flowing out of the second heat exchanger exceeds a predetermined value (S1) larger than zero, the dehumidifying and heating operation is switched to the heating operation.
When it is estimated or detected that the temperature of the second heat exchanger (3) exceeds the phase change temperature (T0) of the heat storage material (TS) or a predetermined value (T2) higher than that. An operation mode switching control method characterized by switching from a heating operation to the dehumidifying heating operation.
請求項2に係る車両用空調装置を用いて、前記暖房運転と前記除湿暖房運転とを切り替える運転モード切替制御方法において、
前記第2の冷媒制御部(17)を開状態に維持し、
前記第2の膨張装置を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替え、また、前記第2の膨張装置を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替えることを特徴とする運転モード切替制御方法。
In the operation mode switching control method for switching between the heating operation and the dehumidifying heating operation by using the vehicle air conditioner according to claim 2.
The second refrigerant control unit (17) is maintained in an open state, and the second refrigerant control unit (17) is maintained in an open state.
By switching the second expansion device from the throttle state to the closed state, the dehumidifying heating operation is switched to the heating operation, and by switching the second expansion device from the closed state to the throttle state, the heating operation is changed to the heating operation. An operation mode switching control method characterized by switching to dehumidifying and heating operation.
JP2020042618A 2020-03-12 2020-03-12 Vehicle air conditioner and operation mode switching control method Pending JP2021142871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042618A JP2021142871A (en) 2020-03-12 2020-03-12 Vehicle air conditioner and operation mode switching control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042618A JP2021142871A (en) 2020-03-12 2020-03-12 Vehicle air conditioner and operation mode switching control method

Publications (1)

Publication Number Publication Date
JP2021142871A true JP2021142871A (en) 2021-09-24

Family

ID=77765754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042618A Pending JP2021142871A (en) 2020-03-12 2020-03-12 Vehicle air conditioner and operation mode switching control method

Country Status (1)

Country Link
JP (1) JP2021142871A (en)

Similar Documents

Publication Publication Date Title
US11787258B2 (en) Refrigeration cycle device
JP6791052B2 (en) Air conditioner
JP5367186B2 (en) Air conditioner for vehicles
JP5396246B2 (en) Air conditioner for vehicles
JP6073651B2 (en) Air conditioner for vehicles
US20170197490A1 (en) Refrigeration cycle device
JP6607638B2 (en) Air conditioner for vehicles
US20180201098A1 (en) Refrigeration cycle device
JP5935625B2 (en) Refrigeration cycle controller
JP7117945B2 (en) Heat pump system for vehicle air conditioner
JP2011178372A (en) Air conditioner for vehicle and operation switching method thereof
WO2013145537A1 (en) Air conditioner device for vehicle
JP5796007B2 (en) Operation control method for vehicle air conditioner
CN112440665A (en) Air conditioner for vehicle
JP6582800B2 (en) Heat exchange system
WO2019065039A1 (en) Refrigeration cycle device
US20200139786A1 (en) Air-conditioning device
JP2021142871A (en) Vehicle air conditioner and operation mode switching control method
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle
JP2021146958A (en) Vehicle air conditioner and operation mode switching control method
JP2021030825A (en) Vehicle air conditioner
JP2008164256A (en) Refrigerating cycle device
JP7321906B2 (en) Vehicle air conditioner and operation mode switching method
JP7494139B2 (en) Vehicle air conditioning system
JP7491174B2 (en) Refrigeration Cycle Equipment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221227