JP2021084044A - Ultrapure water production system and water quality management method thereof - Google Patents

Ultrapure water production system and water quality management method thereof Download PDF

Info

Publication number
JP2021084044A
JP2021084044A JP2019212249A JP2019212249A JP2021084044A JP 2021084044 A JP2021084044 A JP 2021084044A JP 2019212249 A JP2019212249 A JP 2019212249A JP 2019212249 A JP2019212249 A JP 2019212249A JP 2021084044 A JP2021084044 A JP 2021084044A
Authority
JP
Japan
Prior art keywords
water
ultrapure water
metal
ultrapure
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019212249A
Other languages
Japanese (ja)
Inventor
晃彦 津田
Akihiko Tsuda
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019212249A priority Critical patent/JP2021084044A/en
Publication of JP2021084044A publication Critical patent/JP2021084044A/en
Priority to JP2023162449A priority patent/JP2024014871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a water quality management method of an ultrapure water production system which when there occurs the problem that metal concentration of ultrapure water does not meet required specifications at a use point, enables the location of the occurrence of the abnormality causing the problem to be easily identified.SOLUTION: There is provided a water quality management method of an ultrapure water production system which includes: a preliminary pure water tank; ion exchange equipment; ultrafiltration membrane equipment; an ultrapure water transfer line connected to the ultrafiltration membrane equipment and transferring ultrapure water toward a use point; and a return line branching from the ultrapure water transfer line and returning a part of the ultrapure water to the preliminary pure water tank. The water quality management method of the ultrapure water production system includes an analysis step of analyzing metal concentration in water at the outlet port of the ion exchange equipment, in water flowing a position which is downstream side of the ultrafiltration membrane equipment and upstream side of the branch point of the return line of the ultrapure water transfer line, and in water flowing in the return line, each of the analysis being performed by a concentration method.SELECTED DRAWING: Figure 1

Description

本発明は、超純水製造装置とその水質管理方法に関する。 The present invention relates to an ultrapure water production apparatus and a water quality control method thereof.

半導体製造プロセスにおけるシリコンウエハの洗浄用水など、多くの用途に、不純物が高度に除去された超純水が用いられている。超純水は、一般に、原水(工業用水、市水、井水等)を、必要に応じて前処理システムで処理し、そして一次純水システムおよび二次純水システム(サブシステム)で順次処理することにより製造する。 Ultrapure water from which impurities are highly removed is used in many applications such as water for cleaning silicon wafers in a semiconductor manufacturing process. Ultrapure water generally treats raw water (industrial water, city water, well water, etc.) with a pretreatment system as needed, and sequentially with a primary pure water system and a secondary pure water system (subsystem). Manufactured by

特許文献1には、超純水製造装置において、超純水を使用点(ユースポイント)に供給するための供給ラインに、サンプリング用分岐ラインを設け、そこから超純水をサンプリングし水質を確認することが記載される。この分岐ラインには、接液部がフッ素樹脂で構成されたバルブが設けられる。特許文献2には、ユースポイントに供給される超純水の分析のための試料を、バルブに起因する汚染を生じさせずに採取するために、金属製のバルブの接液部に金属溶出を低減する表面処理を施すことが開示される。特許文献3には、超純水中の不純物の濃度の分析を連続的に行って、流体中の濃度変化等を精度良く監視できるようにした不純物濃度分析方法が開示される。 In Patent Document 1, in an ultrapure water production apparatus, a branch line for sampling is provided in a supply line for supplying ultrapure water to a point of use (use point), and ultrapure water is sampled from the branch line for sampling to check the water quality. It is stated that it should be done. This branch line is provided with a valve whose wetted part is made of fluororesin. In Patent Document 2, in order to collect a sample for analysis of ultrapure water supplied to a use point without causing contamination caused by the valve, metal elution is provided in the wetted portion of the metal valve. It is disclosed that a reduced surface treatment is applied. Patent Document 3 discloses an impurity concentration analysis method capable of continuously analyzing the concentration of impurities in ultrapure water so that a change in concentration in a fluid can be accurately monitored.

特開2006−105349号公報Japanese Unexamined Patent Publication No. 2006-105349 特開2008−128375号公報Japanese Unexamined Patent Publication No. 2008-128375 特開2001−153855号公報Japanese Unexamined Patent Publication No. 2001-153855

これらの文献に開示されるように、超純水製造装置における水質管理のために、製造した超純水の不純物濃度を測定する。しかし、製造した超純水の水質を管理するだけでは、ユースポイントにおいて不純物濃度が要求仕様を満足しなくなった際に、その原因となる異常の発生箇所を特定することが容易ではない。特に、超純水中の金属濃度に関しては、要求仕様がいっそう厳しくなりつつあり、金属濃度が要求仕様を満足しなくなった場合に異常の発生箇所を容易に特定する技術に対するニーズが高まっている。 As disclosed in these documents, the impurity concentration of the produced ultrapure water is measured for water quality control in the ultrapure water production apparatus. However, it is not easy to identify the location of the abnormality that causes the impurity concentration when the impurity concentration does not satisfy the required specifications at the point of use only by controlling the water quality of the produced ultrapure water. In particular, regarding the metal concentration in ultrapure water, the required specifications are becoming more stringent, and there is an increasing need for a technique for easily identifying the location where an abnormality occurs when the metal concentration does not satisfy the required specifications.

本発明の目的は、ユースポイントにおいて超純水の金属濃度が要求仕様を満足しなくなった際に、その原因となる異常の発生箇所を特定することが容易な超純水製造装置およびその水質管理方法を提供することである。 An object of the present invention is an ultrapure water production apparatus and its water quality control, which makes it easy to identify the location of an abnormality that causes an abnormality when the metal concentration of ultrapure water does not satisfy the required specifications at the point of use. To provide a method.

本発明の一態様によれば、
一次純水タンクと、イオン交換装置と、限外ろ過膜装置と、前記限外ろ過膜装置に接続され、ユースポイントに向けて超純水を送液する超純水送液ラインと、超純水送液ラインから分岐して超純水の一部を一次純水タンクに戻す返送ラインとを含む超純水製造装置の水質管理方法であって、
前記イオン交換装置の出口の水、前記限外ろ過膜装置の下流側であって前記超純水送液ラインの返送ラインの分岐点より上流側を流れる水、および前記返送ラインを流れる水の金属濃度をそれぞれ濃縮法を用いて分析する分析工程を含むことを特徴とする、水質管理方法が提供される。
According to one aspect of the invention
An ultrapure water supply line connected to a primary pure water tank, an ion exchange device, an ultrafiltration membrane device, and the ultrafiltration membrane device to send ultrapure water toward a point of use, and ultrapure water. It is a water quality control method for ultrapure water production equipment that includes a return line that branches off from the water supply line and returns part of the ultrapure water to the primary pure water tank.
The water at the outlet of the ion exchange device, the water flowing downstream of the ultrafiltration membrane device and upstream from the branch point of the return line of the ultrapure water feed line, and the metal of the water flowing through the return line. A water quality control method is provided, which comprises an analysis step of analyzing each concentration using a concentration method.

本発明の別の態様によれば、
一次純水タンクと、イオン交換装置と、限外ろ過膜装置と、前記限外ろ過膜装置に接続され、ユースポイントに向けて超純水を送液する超純水送液ラインと、超純水送液ラインから分岐して超純水の一部を一次純水タンクに戻す返送ラインとを含む超純水製造装置であって、
さらに、前記イオン交換装置の出口の水、前記限外ろ過膜装置の下流側であって前記超純水送液ラインの返送ラインの分岐点より上流側を流れる水、および前記返送ラインを流れる水の金属濃度をそれぞれ濃縮法を用いて分析する分析手段を含むことを特徴とする、超純水製造装置が提供される。
According to another aspect of the invention
An ultrapure water supply line connected to a primary pure water tank, an ion exchange device, an ultrafiltration membrane device, and the ultrafiltration membrane device to send ultrapure water toward a point of use, and ultrapure water. An ultrapure water production device that includes a return line that branches off from the water supply line and returns part of the ultrapure water to the primary pure water tank.
Further, water at the outlet of the ion exchange device, water flowing downstream of the ultrafiltration membrane device and upstream from the branch point of the return line of the ultrapure water liquid supply line, and water flowing through the return line. An ultrapure water production apparatus is provided, which comprises an analytical means for analyzing each of the metal concentrations of the above using a concentration method.

本発明によれば、ユースポイントにおいて超純水の金属濃度が要求仕様を満足しなくなった際に、その原因となる異常の発生箇所を特定することが容易な超純水製造装置およびその水質管理方法を提供することができる。 According to the present invention, when the metal concentration of ultrapure water does not satisfy the required specifications at the point of use, it is easy to identify the location of the abnormality that causes the ultrapure water production apparatus and its water quality control. A method can be provided.

超純水製造装置の概略構成例を示すプロセスフローダイアグラムである。It is a process flow diagram which shows the schematic configuration example of the ultrapure water production apparatus. 参考例で用いた試験装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the test apparatus used in the reference example.

以下、図面を参照して本発明の実施形態を説明するが、本発明はこれによって限定されるものではない。なお、本明細書において、特に断りの無い限り、用語「上流」「下流」はそれぞれ、被処理水の流れ方向についての上流および下流を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the present specification, unless otherwise specified, the terms "upstream" and "downstream" mean upstream and downstream in the flow direction of the water to be treated, respectively.

図1に、本発明の一態様に係る超純水製造装置1の概略構成例を示す。超純水製造装置1は、一次純水タンク2と、紫外線酸化装置3と、イオン交換装置4と、限外ろ過膜装置5と、を有している。これらは、超純水製造装置の二次純水システム(サブシステム)を構成し、一次純水システム(図示せず)で製造された一次純水をこの順に処理して超純水を製造し、超純水をユースポイントに供給する。超純水の抵抗率(25℃)は例えば15MΩ・cm超であり、場合によっては18MΩ・cm超である。一次純水の抵抗率は、超純水の抵抗率よりも低く、例えば0.1〜15MΩ・cmである。 FIG. 1 shows a schematic configuration example of the ultrapure water production apparatus 1 according to one aspect of the present invention. The ultrapure water production apparatus 1 includes a primary pure water tank 2, an ultraviolet oxidizing apparatus 3, an ion exchange apparatus 4, and an ultrafiltration membrane apparatus 5. These constitute the secondary pure water system (subsystem) of the ultrapure water production equipment, and the primary pure water produced by the primary pure water system (not shown) is processed in this order to produce ultrapure water. , Supply ultrapure water to youth points. The resistivity of ultrapure water (25 ° C.) is, for example, more than 15 MΩ · cm, and in some cases more than 18 MΩ · cm. The resistivity of the primary pure water is lower than that of ultrapure water, for example, 0.1 to 15 MΩ · cm.

一次純水タンク2には、ラインL1を経て一次純水システムから一次純水が適宜供給され、一次純水が被処理水として貯留される。一次純水タンク2と紫外線酸化装置3とを接続するラインL2を経て、一次純水タンク2に貯留された被処理水が紫外線酸化装置3に供給される。ここで被処理水に紫外線が照射され、被処理水中の有機物が分解される。紫外線酸化装置3とイオン交換装置4とを接続するラインL3を経て、紫外線酸化装置3から抜き出された被処理水がイオン交換装置4に供給される。ここで被処理水中の金属イオンなどがイオン交換処理により除去される。イオン交換装置4と限外ろ過膜装置5とを接続するラインL4を経て、イオン交換装置4から抜き出された被処理水(イオン交換装置4の出口の水)が限外ろ過膜装置5に供給される。ここで被処理水中の微粒子が除去される。限外ろ過膜装置5から、限外ろ過膜を透過した被処理水(限外ろ過膜装置出口水)が、超純水としてラインL5に抜き出される。ラインL5は、ユースポイントに向けて超純水を送液する超純水送液ラインであり、限外ろ過膜装置5の透過水出口とユースポイントとを接続する。図示しないが、限外ろ過膜装置5から、濃縮水(限外ろ過膜を透過しなかった被処理水)を排出することができる。 Primary pure water is appropriately supplied from the primary pure water system to the primary pure water tank 2 via the line L1, and the primary pure water is stored as water to be treated. The water to be treated stored in the primary pure water tank 2 is supplied to the ultraviolet oxidizing device 3 via the line L2 connecting the primary pure water tank 2 and the ultraviolet oxidizing device 3. Here, the water to be treated is irradiated with ultraviolet rays, and organic substances in the water to be treated are decomposed. The water to be treated extracted from the ultraviolet oxidizing device 3 is supplied to the ion exchange device 4 via the line L3 connecting the ultraviolet oxidizing device 3 and the ion exchange device 4. Here, metal ions and the like in the water to be treated are removed by the ion exchange treatment. The water to be treated (water at the outlet of the ion exchange device 4) extracted from the ion exchange device 4 via the line L4 connecting the ion exchange device 4 and the ultrafiltration membrane device 5 becomes the ultrafiltration membrane device 5. Be supplied. Here, the fine particles in the water to be treated are removed. From the ultrafiltration membrane device 5, the water to be treated (water at the outlet of the ultrafiltration membrane device) that has passed through the ultrafiltration membrane is extracted to the line L5 as ultrapure water. The line L5 is an ultrapure water feeding line that feeds ultrapure water toward the use point, and connects the permeated water outlet of the ultrafiltration membrane device 5 to the use point. Although not shown, concentrated water (water to be treated that has not permeated the ultrafiltration membrane) can be discharged from the ultrafiltration membrane device 5.

超純水送液ラインL5から、分岐点9において、超純水の一部を一次純水タンクに戻す返送ラインL6が分岐する。ラインL6は一次純水タンク2に接続される。超純水送液ラインL5の分岐点9より上流側を流れる水のうちの一部がユースポイントに供給され、残余の部分が返送ラインL6を経て一次純水タンク2に還流する。 At the branch point 9, the return line L6 for returning a part of the ultrapure water to the primary pure water tank branches from the ultrapure water supply line L5. The line L6 is connected to the primary pure water tank 2. A part of the water flowing upstream from the branch point 9 of the ultrapure water supply line L5 is supplied to the use point, and the remaining part is returned to the primary pure water tank 2 via the return line L6.

必要に応じて、図1に示す機器以外の機器を用いることもできる。例えば、被処理水を送液するためのポンプ、および被処理水の温度調節のための熱交換器を、一次純水タンク2と紫外線酸化装置3との間(ラインL2)に設けることができる。さらに、イオン交換装置4と限外ろ過膜装置5との間(ラインL4)に、酸素を除去する膜脱気装置を設けることもできる。 If necessary, a device other than the device shown in FIG. 1 can be used. For example, a pump for sending the water to be treated and a heat exchanger for controlling the temperature of the water to be treated can be provided between the primary pure water tank 2 and the ultraviolet oxidizing device 3 (line L2). .. Further, a membrane degassing device for removing oxygen can be provided between the ion exchange device 4 and the ultrafiltration membrane device 5 (line L4).

前処理システム、一次純水システムおよび二次純水システムを含めて超純水製造装置を構成する各機器には、超純水製造の分野で公知の機器を適宜利用することができる。例えばイオン交換装置4として、非再生型混床式イオン交換樹脂塔(カートリッジポリッシャー)を用いることができる。限外ろ過膜装置5は、例えば、ハウジング中に適宜の中空糸膜モジュールを備える。なお、例えばラインL4、L5、L6には、金属の溶出を防止するために、ポリ塩化ビニル(PVC)やポリフッ化ビニリデン(PVDF)などの非金属材料(樹脂)を使用することができる。 Equipment known in the field of ultrapure water production can be appropriately used for each apparatus constituting the ultrapure water production apparatus including the pretreatment system, the primary pure water system and the secondary pure water system. For example, as the ion exchange device 4, a non-regenerative mixed bed type ion exchange resin tower (cartridge polisher) can be used. The ultrafiltration membrane device 5 includes, for example, an appropriate hollow fiber membrane module in the housing. For example, non-metal materials (resins) such as polyvinyl chloride (PVC) and polyvinylidene fluoride (PVDF) can be used for lines L4, L5, and L6 in order to prevent metal elution.

分岐点6において、ラインL4からサンプリングラインL11が分岐する。分岐点7において、ラインL5からサンプリングラインL12が分岐する。分岐点7は、分岐点9よりも上流側に位置する。分岐点8において、ラインL6からサンプリングラインL13が分岐する。サンプリングラインL11、L12およびL13に、それぞれイオン交換装置出口水、限外ろ過膜装置5の下流側であって超純水送液ラインL5の分岐点9より上流側を流れる水(限外ろ過膜装置出口水)および返送ラインを流れる水の金属分析用試料がサンプリングされる。例えば、ラインL4に膜脱気装置を設ける場合、分岐点6の下流に膜脱気装置を設けることができる。この場合、膜脱気装置の下流、かつ限外ろ過膜装置5の上流に、別途サンプリングラインを設けて、金属分析を行うことができる。これによって、膜脱気装置からの汚れと限外ろ過膜からの汚れを分離して評価可能となる。 At the branch point 6, the sampling line L11 branches from the line L4. At the branch point 7, the sampling line L12 branches from the line L5. The branch point 7 is located on the upstream side of the branch point 9. At the branch point 8, the sampling line L13 branches from the line L6. Water flowing to the sampling lines L11, L12, and L13 at the outlet water of the ion exchange device and the water flowing downstream of the ultrafiltration membrane device 5 and upstream from the branch point 9 of the ultrapure water feeding line L5 (ultrafiltration membrane). A sample for metal analysis of the water flowing through the device outlet water) and the return line is sampled. For example, when the membrane degassing device is provided on the line L4, the membrane degassing device can be provided downstream of the branch point 6. In this case, a separate sampling line can be provided downstream of the membrane degassing device and upstream of the ultrafiltration membrane device 5 to perform metal analysis. This makes it possible to separate and evaluate the dirt from the membrane deaerator and the dirt from the ultrafiltration membrane.

サンプリングラインL11、L12およびL13にはそれぞれ、弁11、12および13が設けられ、また分析手段14、15および16が弁11、12および13の下流側に接続される。弁11、12および13として、開閉弁を用いることができる。これらの弁は、サンプリング時に開とし、サンプリングを行わない際には閉とすることができる。 Sampling lines L11, L12 and L13 are provided with valves 11, 12 and 13, respectively, and analytical means 14, 15 and 16 are connected downstream of the valves 11, 12 and 13. On-off valves can be used as the valves 11, 12 and 13. These valves can be open during sampling and closed when no sampling is in progress.

分析手段14、15および16は、イオン交換装置出口水、超純水送液ラインの返送ラインの分岐点より上流側を流れる水(限外ろ過膜装置出口水)および返送ラインを流れる水の金属濃度をそれぞれ分析する分析工程で使用される。分析工程で分析する金属は、特に限定しないが、例えばNa、K、Ca、Mg、Fe、Cu、Al、Zn、Ni、Cr、およびPbからなる群から選ばれる1種または2種以上である。例えば、NaおよびCaはイオン交換樹脂から、Al、Cr、Fe、NiおよびCuは金属製部材から、Znは限外ろ過膜から、溶出する可能性がある。 Analytical means 14, 15 and 16 are metal for ion exchange device outlet water, water flowing upstream from the branch point of the return line of the ultrapure water supply line (ultrafiltration membrane device outlet water), and water flowing through the return line. It is used in the analysis process to analyze each concentration. The metal to be analyzed in the analysis step is not particularly limited, but is one or more selected from the group consisting of, for example, Na, K, Ca, Mg, Fe, Cu, Al, Zn, Ni, Cr, and Pb. .. For example, Na and Ca may elute from ion exchange resins, Al, Cr, Fe, Ni and Cu from metal members, and Zn from ultrafiltration membranes.

例えば、分析工程で分析する金属の少なくとも1種について、典型的には分析工程で分析する全ての金属について、超純水の金属濃度(正常値)は1ng/L以下である。したがって、金属濃度異常の的確な検知の観点から、分析工程の金属濃度の定量下限値は、0.1ng/L以下が好ましく、0.01ng/L以下がより好ましい。また、分析工程における金属濃度の定量下限値が1pg/L程度であれば、1ng/Lの1/1000のレベルまで金属濃度を定量分析できる。したがって、分析工程の金属濃度の定量下限値は、1pg/L以上であってよい。なお、分析工程でただ1種の金属を分析する場合、ここでいう定量下限値は、その金属の定量下限値を意味する。分析工程で複数種の金属を分析する場合、分析する複数種の金属のうちの少なくとも1種について定量下限値が上記範囲にあることが好ましいが、全ての金属についての定量下限値が上記の範囲にあることがより好ましい。 For example, for at least one of the metals analyzed in the analysis step, typically for all the metals analyzed in the analysis step, the metal concentration (normal value) of ultrapure water is 1 ng / L or less. Therefore, from the viewpoint of accurate detection of metal concentration abnormality, the lower limit of quantification of the metal concentration in the analysis step is preferably 0.1 ng / L or less, more preferably 0.01 ng / L or less. Further, if the lower limit of quantification of the metal concentration in the analysis step is about 1 pg / L, the metal concentration can be quantitatively analyzed to a level of 1/1000 of 1 ng / L. Therefore, the lower limit of quantification of the metal concentration in the analysis step may be 1 pg / L or more. When analyzing only one kind of metal in the analysis step, the lower limit of quantification here means the lower limit of quantification of the metal. When analyzing a plurality of kinds of metals in the analysis step, it is preferable that the lower limit of quantification is in the above range for at least one of the plurality of kinds of metals to be analyzed, but the lower limit of quantification for all the metals is in the above range. It is more preferable to be in.

近年、半導体工場からはng/Lよりさらに低いレベルの水質管理が求められている。また、IRDS(International Technology Roadmap for Semiconductors)によると超純水中の金属要求水質は1ng/Lであるが、実際には、要求水質の1/1000のレベルの分析を行う必要がある場合もある。微量の金属をより正確に定量分析するためには、サンプル水中に弁から金属が溶出することを防止することが好ましい。そのため、サンプリングラインに設けられる弁11、12および13の少なくとも接液部が非金属製であることが好ましく、これらの弁の全体が非金属製であることがより好ましい。弁に用いる非金属材料は、典型的には樹脂、特にはフッ素樹脂である。フッ素樹脂としては、例えば、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(四フッ化エチレン・六フッ化プロピレン共重合樹脂)、PCTFE(三フッ化塩化エチレン)、ETFE(四フッ化エチレン・エチレン共重合樹脂)などを使用できる。 In recent years, semiconductor factories have demanded water quality management at a level lower than ng / L. According to IRDS (International Technology Roadmap for Semiconductors), the required water quality for metals in ultrapure water is 1 ng / L, but in reality, it may be necessary to analyze at a level of 1/1000 of the required water quality. .. In order to perform a more accurate quantitative analysis of a trace amount of metal, it is preferable to prevent the metal from elution from the valve into the sample water. Therefore, it is preferable that at least the wetted portions of the valves 11, 12 and 13 provided in the sampling line are made of non-metal, and it is more preferable that the entire of these valves is made of non-metal. The non-metallic material used for the valve is typically a resin, especially a fluororesin. Examples of the fluororesin include PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (ethylene tetrafluoride / propylene hexafluoride copolymer resin), and PCTFE (trifluoroethylene). Ethylene fluoride), ETFE (ethylene tetrafluoride / ethylene copolymer resin) and the like can be used.

分析工程では、サンプル水中の金属を濃縮したうえで、金属濃度の測定装置、例えば誘導結合プラズマ質量分析計(ICP−MS)を用いてサンプル水(もしくは濃縮液)中の金属濃度を測定することができる。その濃縮法としては、例えば、イオン吸着膜によってサンプル水中の金属を捕捉し、捕捉した金属を酸等の溶離液を用いて溶離する方法を採用することができる。濃縮法として、イオン吸着膜濃縮法のほかに加熱濃縮法(サンプル水を加熱して濃縮する)があるが、高倍率でクリーンに濃縮するにはイオン吸着膜濃縮法が好ましい。濃縮操作の濃縮倍率は、適宜決めることができる。イオン吸着膜に替えて、モノリス状の樹脂からなるイオン交換体を用いてもよい。モノリス状の樹脂からなるイオン交換体を用いると、イオン交換体にかかる差圧がイオン吸着膜法と比較して小さいため、高SV(空間速度)でイオン交換体に通水でき、所要時間の短縮が可能である。上記以外にも、分析工程(濃縮操作を含む)に、超純水中の金属定量分析の分野で公知の方法を適宜採用することができる。 In the analysis step, after concentrating the metal in the sample water, the metal concentration in the sample water (or concentrate) is measured using a metal concentration measuring device, for example, an inductively coupled plasma mass spectrometer (ICP-MS). Can be done. As the concentration method, for example, a method in which a metal in the sample water is captured by an ion adsorption membrane and the captured metal is eluted using an eluent such as an acid can be adopted. As a concentration method, there is a heat concentration method (concentration by heating sample water) in addition to the ion adsorption membrane concentration method, but the ion adsorption membrane concentration method is preferable for clean concentration at a high magnification. The concentration ratio of the concentration operation can be appropriately determined. Instead of the ion adsorption membrane, an ion exchanger made of a monolithic resin may be used. When an ion exchanger made of a monolithic resin is used, the differential pressure applied to the ion exchanger is smaller than that of the ion adsorption membrane method, so that water can pass through the ion exchanger at high SV (space velocity), and the required time is required. It can be shortened. In addition to the above, a method known in the field of quantitative analysis of metals in ultrapure water can be appropriately adopted for the analysis step (including the concentration operation).

分析手段は、金属濃度の測定装置を含む。濃縮操作を行う場合、分析手段は、さらに濃縮手段を含む。濃縮手段は、例えば前述のようにイオン吸着膜、あるいはモノリス状の樹脂からなるイオン交換体を含む。なお、図1では分析手段14、15、16がサンプリングラインL11、L12、L13ごとに別個に設けられているが、必ずしもその限りではない。例えば、濃縮手段はサンプリングラインごとに別個に設けて各サンプル水を濃縮し、それぞれの濃縮液を共用の測定装置で分析することができる。 Analytical means include a metal concentration measuring device. When performing a concentration operation, the analytical means further include a concentration means. The concentrating means includes, for example, an ion adsorption membrane as described above, or an ion exchanger made of a monolithic resin. In FIG. 1, analysis means 14, 15 and 16 are provided separately for each sampling line L11, L12 and L13, but this is not necessarily the case. For example, the concentrating means can be provided separately for each sampling line to concentrate each sample water, and each concentrating solution can be analyzed by a common measuring device.

なお、サンプリングラインL11、L12、L13や分析手段14、15、16において、弁11、12および13以外の部材についても、サンプル水に接する部分の材料として、適宜非金属材料(樹脂)を用いることができる。 In the sampling lines L11, L12, L13 and the analysis means 14, 15, 16, for the members other than the valves 11, 12 and 13, a non-metal material (resin) may be appropriately used as the material of the portion in contact with the sample water. Can be done.

ユースポイントにおいて超純水の金属濃度が要求仕様を満たさなかった場合、すなわち水質異常があった場合、イオン交換装置出口水、超純水送液ラインL5の分岐点9より上流側を流れる水(限外ろ過膜装置出口水)および返送ラインを流れる水の金属濃度がそれぞれ要求仕様を満たしているか否かという情報に基づいて、容易に異常発生箇所を特定することができる。図1に示される超純水製造装置について、その具体的な方法の例を以下に説明する。表1には、ラインL11、L12およびL13のサンプリング水の金属濃度が「○」(正常)と判断とされるか「×」(異常)と判断されるかによって、ケース分けした例を示す。ここで各水は正常時に0.1ng/L以下の金属濃度を有し、各水の金属濃度が0.1ng/L以下の場合に「〇」(正常)、0.1ng/L超の場合に「×」(異常)と判断するものとする。いずれのケースも、ユースポイントにおいて水の金属濃度が0.1ng/L超であったものとする。 If the metal concentration of ultrapure water does not meet the required specifications at the point of use, that is, if there is an abnormality in water quality, the water flowing upstream from the branch point 9 of the ion exchange device outlet water and the ultrapure water supply line L5 ( The location of the abnormality can be easily identified based on the information that the metal concentrations of the ultrafiltration membrane device outlet water) and the water flowing through the return line each meet the required specifications. An example of a specific method for the ultrapure water production apparatus shown in FIG. 1 will be described below. Table 1 shows an example of cases divided according to whether the metal concentration of the sampled water of the lines L11, L12 and L13 is judged to be "○" (normal) or "x" (abnormal). Here, each water has a metal concentration of 0.1 ng / L or less in a normal state, and "○" (normal) when the metal concentration of each water is 0.1 ng / L or less, and more than 0.1 ng / L. It shall be judged as "x" (abnormal). In each case, it is assumed that the metal concentration of water is more than 0.1 ng / L at the point of use.

ケース1は、ユースポイントで水質異常があるが、いずれのサンプル水にも異常が認められない場合である。この場合、水質異常の原因は、ユースポイントの内部にあると推定できる。 Case 1 is a case where there is an abnormality in water quality at the point of use, but no abnormality is observed in any of the sample waters. In this case, the cause of the water quality abnormality can be presumed to be inside the use point.

ケース2は、ラインL11およびL12のサンプル水には異常が認められないが、ラインL13のサンプル水に異常が認められた場合である。この場合、水質異常の原因は、分岐点7から分岐点9までの配管にあると推定できる。 Case 2 is a case where no abnormality is found in the sample water of the lines L11 and L12, but an abnormality is found in the sample water of the line L13. In this case, it can be estimated that the cause of the water quality abnormality is the piping from the branch point 7 to the branch point 9.

ケース3は、ラインL11のサンプル水には異常が認められないが、ラインL12およびL13のサンプル水に異常が認められた場合である。この場合、水質異常の原因は、分岐点7より上流かつ分岐点6より下流、特には限外ろ過膜装置5にあると推定できる。 Case 3 is a case where no abnormality is found in the sample water of the line L11, but an abnormality is found in the sample water of the lines L12 and L13. In this case, it can be estimated that the cause of the water quality abnormality is upstream from the branch point 7 and downstream from the branch point 6, particularly the ultrafiltration membrane device 5.

ケース4は、ラインL11、L12およびL13のサンプル水に異常が認められた場合である。この場合、水質異常の原因は、分岐点6より上流、特にはイオン交換装置4にあると推定できる。 Case 4 is a case where an abnormality is found in the sample water of the lines L11, L12 and L13. In this case, it can be estimated that the cause of the water quality abnormality is upstream from the branch point 6, particularly the ion exchange device 4.

Figure 2021084044
Figure 2021084044

〔参考例〕
以下、サンプリングラインに、金属(SUS316)製の弁を設けた場合と、流体(サンプル水)に接する部分の材質がフッ素樹脂(PFAもしくはPTFE)である非金属製の弁を設けた場合について、サンプル水を濃縮分析して、サンプル水の金属濃度(金属イオン濃度)を調べた例について説明する。図2に示すように、メイン配管20に、分岐管21を2つ設けた。一方の分岐管に、全体が金属製の開閉弁22を接続し、他方の分岐管に、全体が非金属性の開閉弁23を接続した。それぞれの弁の出口にコネクタ24をねじ込み、コネクタにチューブ25を接続した。それぞれのチューブ25に、多孔質イオン吸着膜を備える濃縮装置26を接続した。上記部材および装置(開閉弁を除く)の少なくともサンプル水に接する部分は非金属製とした。
[Reference example]
Hereinafter, the case where a metal (SUS316) valve is provided in the sampling line and the case where a non-metal valve whose part in contact with the fluid (sample water) is made of fluororesin (PFA or PTFE) is provided. An example in which the metal concentration (metal ion concentration) of the sample water is examined by concentrated analysis of the sample water will be described. As shown in FIG. 2, two branch pipes 21 are provided in the main pipe 20. An on-off valve 22 made entirely of metal was connected to one branch pipe, and an on-off valve 23 made entirely of non-metal was connected to the other branch pipe. The connector 24 was screwed into the outlet of each valve, and the tube 25 was connected to the connector. A concentrator 26 provided with a porous ion adsorption membrane was connected to each tube 25. At least the part of the above member and device (excluding the on-off valve) in contact with the sample water was made of non-metal.

開閉弁22および23を開にしてメイン配管20にサンプル水を供給し、濃縮装置26に備わるイオン吸着膜に約2000Lのサンプル水を通水し、サンプル水中の金属をイオン吸着膜に捕捉した。その後、多摩化学社製の高純度硝酸(商品名:TAMAPURE AA−100)を希釈した2N硝酸100mlを用いて、イオン吸着膜から金属を溶離した。得られた溶離液中の金属量をICP−MSで測定した。濃縮倍率は2000/0.1=20000倍であるから、溶離液中の金属量(ng)を濃縮倍率で除した値からサンプル水中の金属濃度を求めた。 The on-off valves 22 and 23 were opened to supply sample water to the main pipe 20, about 2000 L of sample water was passed through the ion adsorption membrane provided in the concentrator 26, and the metal in the sample water was captured by the ion adsorption membrane. Then, 100 ml of 2N nitric acid diluted with high-purity nitric acid (trade name: TAMAPURE AA-100) manufactured by Tama Chemical Co., Ltd. was used to elute the metal from the ion adsorption membrane. The amount of metal in the obtained eluate was measured by ICP-MS. Since the concentration ratio is 2000 / 0.1 = 20000 times, the metal concentration in the sample water was determined from the value obtained by dividing the amount of metal (ng) in the eluent by the concentration ratio.

その結果を表2に示す。金属製の開閉弁22を用いた場合と比べて、非金属製の開閉弁23を用いた場合のほうが、いずれの金属濃度も低かったか、あるいは同等であった。 The results are shown in Table 2. Compared with the case where the metal on-off valve 22 was used, the case where the non-metal on-off valve 23 was used had a lower or equivalent metal concentration.

表2によれば、例えばNiについては、金属製の弁による汚染分が約0.03ng/Lある。したがって、サンプリングラインに金属製の弁を用いた場合、金属分析の分析値が、この程度の誤差を含む可能性がある。非金属製の弁を用いると、このような誤差を排除することが容易である。その結果、異常箇所の特定も、より容易となる。また、金属製の弁を用いると金属が溶出されて超純水の金属濃度を低濃度で評価することが困難になることがあるが、非金属性の弁を用いることで超純水中の金属濃度を低濃度で評価することが可能となる。 According to Table 2, for example, for Ni, the amount contaminated by the metal valve is about 0.03 ng / L. Therefore, when a metal valve is used for the sampling line, the analysis value of the metal analysis may include such an error. It is easy to eliminate such an error by using a non-metal valve. As a result, it becomes easier to identify the abnormal part. In addition, if a metal valve is used, the metal may be eluted, making it difficult to evaluate the metal concentration of ultrapure water at a low concentration. However, using a non-metallic valve in ultrapure water It is possible to evaluate the metal concentration at a low concentration.

Figure 2021084044
Figure 2021084044

1 超純水製造装置
2 一次純水タンク
3 紫外線酸化装置
4 イオン交換装置
5 限外ろ過膜装置
6、7、8、9 分岐点
11、12、13 弁
14、15、16 分析手段
20 メイン配管
21 分岐管
22 金属製の弁
23 非金属製の弁
24 非金属製コネクタ
25 非金属製チューブ
26 濃縮装置
1 Ultrapure water production equipment 2 Primary pure water tank 3 Ultraviolet oxidation equipment 4 Ion exchange equipment 5 Ultrafiltration membrane equipment 6, 7, 8, 9 Branch points 11, 12, 13 Valves 14, 15, 16 Analytical means 20 Main piping 21 Branch pipe 22 Metal valve 23 Non-metal valve 24 Non-metal connector 25 Non-metal tube 26 Concentrator

Claims (7)

一次純水タンクと、イオン交換装置と、限外ろ過膜装置と、前記限外ろ過膜装置に接続され、ユースポイントに向けて超純水を送液する超純水送液ラインと、超純水送液ラインから分岐して超純水の一部を一次純水タンクに戻す返送ラインとを含む超純水製造装置の水質管理方法であって、
前記イオン交換装置の出口の水、前記限外ろ過膜装置の下流側であって前記超純水送液ラインの返送ラインの分岐点より上流側を流れる水、および前記返送ラインを流れる水の金属濃度をそれぞれ濃縮法を用いて分析する分析工程を含むことを特徴とする、水質管理方法。
An ultrapure water supply line connected to a primary pure water tank, an ion exchange device, an ultrafiltration membrane device, and the ultrafiltration membrane device to send ultrapure water toward a point of use, and ultrapure water. It is a water quality control method for ultrapure water production equipment that includes a return line that branches off from the water supply line and returns part of the ultrapure water to the primary pure water tank.
The water at the outlet of the ion exchange device, the water flowing downstream of the ultrafiltration membrane device and upstream from the branch point of the return line of the ultrapure water feed line, and the metal of the water flowing through the return line. A water quality control method comprising an analysis step of analyzing each concentration using a concentration method.
前記超純水製造装置が、前記イオン交換装置の出口の水、前記限外ろ過膜装置の下流側であって前記超純水送液ラインの返送ラインの分岐点より上流側を流れる水、及び前記返送ラインを流れる水をそれぞれサンプリングするサンプリングラインを有し、
前記サンプリングラインがいずれも、少なくとも接液部が非金属製であるバルブを備える、請求項1に記載の水質管理方法。
The ultrapure water production apparatus includes water at the outlet of the ion exchange apparatus, water flowing downstream of the ultrafiltration membrane apparatus and upstream of the branch point of the return line of the ultrapure water supply line, and It has a sampling line that samples each of the water flowing through the return line.
The water quality control method according to claim 1, wherein each of the sampling lines includes a valve whose wetted part is made of non-metal at least.
前記分析工程で分析する金属が、Na、K、Ca、Mg、Fe、Cu、Al、Zn、Ni、CrおよびPbからなる群から選ばれる少なくとも1種である、請求項1または2に記載の水質管理方法。 The metal according to claim 1 or 2, wherein the metal to be analyzed in the analysis step is at least one selected from the group consisting of Na, K, Ca, Mg, Fe, Cu, Al, Zn, Ni, Cr and Pb. Water quality management method. 前記分析工程で分析する金属の少なくとも1種について、前記超純水の金属濃度が1ng/L以下である、請求項1〜3のいずれか一項に記載の水質管理方法。 The water quality control method according to any one of claims 1 to 3, wherein the metal concentration of the ultrapure water is 1 ng / L or less for at least one of the metals analyzed in the analysis step. 前記分析工程で分析する金属の少なくとも1種について、金属濃度の定量下限値が0.1ng/L以下である、請求項1〜4のいずれか一項に記載の水質管理方法。 The water quality control method according to any one of claims 1 to 4, wherein the lower limit of quantification of the metal concentration is 0.1 ng / L or less for at least one of the metals analyzed in the analysis step. 前記定量下限値が0.01ng/L以下である、請求項5に記載の水質管理方法。 The water quality management method according to claim 5, wherein the lower limit of quantification is 0.01 ng / L or less. 一次純水タンクと、イオン交換装置と、限外ろ過膜装置と、前記限外ろ過膜装置に接続され、ユースポイントに向けて超純水を送液する超純水送液ラインと、超純水送液ラインから分岐して超純水の一部を一次純水タンクに戻す返送ラインとを含む超純水製造装置であって、
さらに、前記イオン交換装置の出口の水、前記限外ろ過膜装置の下流側であって前記超純水送液ラインの返送ラインの分岐点より上流側を流れる水、および前記返送ラインを流れる水の金属濃度をそれぞれ濃縮法を用いて分析する分析手段を含むことを特徴とする、超純水製造装置。
An ultrapure water supply line connected to a primary pure water tank, an ion exchange device, an ultrafiltration membrane device, and the ultrafiltration membrane device to send ultrapure water toward a point of use, and ultrapure water. An ultrapure water production device that includes a return line that branches off from the water supply line and returns part of the ultrapure water to the primary pure water tank.
Further, water at the outlet of the ion exchange device, water flowing downstream of the ultrafiltration membrane device and upstream from the branch point of the return line of the ultrapure water liquid supply line, and water flowing through the return line. An ultrapure water production apparatus comprising an analytical means for analyzing the metal concentration of each of the above using a concentration method.
JP2019212249A 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof Pending JP2021084044A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019212249A JP2021084044A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof
JP2023162449A JP2024014871A (en) 2019-11-25 2023-09-26 Ultrapure water production system and water quality control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212249A JP2021084044A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023162449A Division JP2024014871A (en) 2019-11-25 2023-09-26 Ultrapure water production system and water quality control method therefor

Publications (1)

Publication Number Publication Date
JP2021084044A true JP2021084044A (en) 2021-06-03

Family

ID=76086056

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019212249A Pending JP2021084044A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof
JP2023162449A Pending JP2024014871A (en) 2019-11-25 2023-09-26 Ultrapure water production system and water quality control method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023162449A Pending JP2024014871A (en) 2019-11-25 2023-09-26 Ultrapure water production system and water quality control method therefor

Country Status (1)

Country Link
JP (2) JP2021084044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042723A1 (en) * 2021-09-17 2023-03-23 オルガノ株式会社 Method for evaluating quality of ion exchange resin, and method for producing ultrapure water
WO2024024277A1 (en) * 2022-07-28 2024-02-01 オルガノ株式会社 Operation management method and operation management system for ultrapure water production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154713A (en) * 2002-11-07 2004-06-03 Japan Organo Co Ltd Ultrapure water manufacturing apparatus
JP2005118734A (en) * 2003-10-20 2005-05-12 Japan Organo Co Ltd Ultrapure water making apparatus
JP2005274400A (en) * 2004-03-25 2005-10-06 Kurita Water Ind Ltd Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JP2008128375A (en) * 2006-11-21 2008-06-05 Nomura Micro Sci Co Ltd Valve and joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154713A (en) * 2002-11-07 2004-06-03 Japan Organo Co Ltd Ultrapure water manufacturing apparatus
JP2005118734A (en) * 2003-10-20 2005-05-12 Japan Organo Co Ltd Ultrapure water making apparatus
JP2005274400A (en) * 2004-03-25 2005-10-06 Kurita Water Ind Ltd Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JP2008128375A (en) * 2006-11-21 2008-06-05 Nomura Micro Sci Co Ltd Valve and joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042723A1 (en) * 2021-09-17 2023-03-23 オルガノ株式会社 Method for evaluating quality of ion exchange resin, and method for producing ultrapure water
WO2024024277A1 (en) * 2022-07-28 2024-02-01 オルガノ株式会社 Operation management method and operation management system for ultrapure water production apparatus

Also Published As

Publication number Publication date
JP2024014871A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP2024014871A (en) Ultrapure water production system and water quality control method therefor
JP5287713B2 (en) Cleaning and sterilization method for ultrapure water production system
US20040050786A1 (en) Method of removing organic impurities from water
JP4033835B2 (en) Aqueous flow purifier and method of use
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
US9611160B2 (en) Wastewater treatment apparatus and method
WO2020080461A1 (en) Water quality management method, ion adsorption device, information processing device, and information processing system
US20050051485A1 (en) Electrodialysis method and apparatus for trace metal analysis
CN1316252C (en) System equipped with water purification means
WO2000017108A1 (en) High temperature ultra-pure water production apparatus and liquid medicine preparation apparatus equipped with the production apparatus
JP3835686B2 (en) Reverse osmosis membrane element performance evaluation system
JP2010044022A (en) Method and apparatus for continuously monitoring test water
US20210370235A1 (en) Method for preparing water quality profile, method for inspecting separation membrane module, and water treatment apparatus
JP3778158B2 (en) Ultrapure water production equipment
US6562205B1 (en) High-temperature ultrapure water production apparatus and liquid medicine preparation apparatus equipped with the production apparatus
JP2008128375A (en) Valve and joint
JP6205775B2 (en) Water quality measurement method
JP5092735B2 (en) Method and apparatus for continuous monitoring of sample water
KR20220155173A (en) Contaminant analysis apparatus and water quality monitoring system
JP6294644B2 (en) Water quality inspection device
JP2004154713A (en) Ultrapure water manufacturing apparatus
JP2021084045A (en) Ultrapure water production system and water quality management method thereof
JP2001083127A (en) Pure water analyzer, pure water manufacturing and managing system, and pure water analysis method
WO2023042723A1 (en) Method for evaluating quality of ion exchange resin, and method for producing ultrapure water
WO2022168570A1 (en) Ion exchange device and ultrapure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230627

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230928