JP2021084045A - Ultrapure water production system and water quality management method thereof - Google Patents

Ultrapure water production system and water quality management method thereof Download PDF

Info

Publication number
JP2021084045A
JP2021084045A JP2019212250A JP2019212250A JP2021084045A JP 2021084045 A JP2021084045 A JP 2021084045A JP 2019212250 A JP2019212250 A JP 2019212250A JP 2019212250 A JP2019212250 A JP 2019212250A JP 2021084045 A JP2021084045 A JP 2021084045A
Authority
JP
Japan
Prior art keywords
water
filtration membrane
ultrapure water
concentration
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019212250A
Other languages
Japanese (ja)
Inventor
晃彦 津田
Akihiko Tsuda
晃彦 津田
菅原 広
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019212250A priority Critical patent/JP2021084045A/en
Publication of JP2021084045A publication Critical patent/JP2021084045A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

To provide an ultrapure water production system and a water quality management method thereof allowing for easy confirmation of degradation in cleanliness of a filtration membrane of an ultrapure water production system.SOLUTION: A water quality management method of an ultrapure water production system equipped with a filtration membrane is provided, the method includes an analysis step of analyzing a metal concentration of filtration membrane inlet water to be supplied to the filtration membrane and a metal concentration of filtration membrane outlet water having passed through the filtration membrane, each of the analysis being performed by a concentration method. The ultrapure water production system equipped with the filtration membrane includes analysis means analyzing the metal concentration of filtration membrane inlet water to be supplied to the filtration membrane and the metal concentration of filtration membrane outlet water having passed through the filtration membrane, each of the analysis being performed by a concentration method.SELECTED DRAWING: Figure 1

Description

本発明は、超純水製造装置とその水質管理方法に関する。 The present invention relates to an ultrapure water production apparatus and a water quality control method thereof.

半導体製造産業においては、不純物を高度に除去した超純水を用いてシリコンウエハの洗浄等が行われている。超純水は、一般に、原水(河川水、地下水、工業用水)中に含まれる懸濁物質や有機物等の一部を前処理工程で除去した後、その処理水を一次純水システム及び二次純水システム(サブシステム)で順次処理することによって製造され、その後ウエハ洗浄を行うユースポイントに供給される。超純水製造装置のサブシステム末端には、一般的に、超純水から微粒子、菌、コロイド、高分子化合物等を除去するためのろ過膜装置が設置されている。 In the semiconductor manufacturing industry, silicon wafers are washed using ultrapure water from which impurities are highly removed. Ultrapure water generally removes some of the suspended substances and organic substances contained in raw water (river water, groundwater, industrial water) in the pretreatment process, and then removes the treated water in the primary pure water system and secondary water. It is manufactured by sequential processing in a pure water system (subsystem) and then supplied to use points for wafer cleaning. Generally, a filtration membrane device for removing fine particles, bacteria, colloids, polymer compounds, etc. from ultrapure water is installed at the end of the subsystem of the ultrapure water production device.

なお、超純水は、上記のように、一般的には一次純水システムに続いて二次純水システムを設けた純水製造装置により製造される高度な水(二次純水)を言うが、必ずしも処理手順により定義されるものではなく、半導体基板のような極めて清浄な表面を得ることが求められる電子部品等の洗浄用水として適当な用水(高純度な水)を指す。 As described above, ultrapure water generally refers to advanced water (secondary pure water) produced by a pure water production apparatus provided with a secondary pure water system following a primary pure water system. However, it is not necessarily defined by the treatment procedure, and refers to water (high-purity water) suitable for cleaning electronic parts and the like that are required to obtain an extremely clean surface such as a semiconductor substrate.

近年、超純水中の微粒子数への要求は年々厳しくなっている。例えば、従来は50nm以上の微粒子に基づいて超純水の管理をしていたが、10nmレベルの小さな微粒子に基づく管理が求められている(IRDS:International Technology Roadmap for Semiconductors)。そのため、微粒子を除去するろ過膜装置の運転管理も難しくなっている。一方、微粒子以外の金属に関しても極めて低い濃度が要求される。金属類は微量濃度であっても電子部品の特性に影響を及ぼすことがわかっているため、厳しい監視が必要である。現状の超純水中の金属濃度はng/L〜pg/Lと極めて低濃度である。 In recent years, the demand for the number of fine particles in ultrapure water has become stricter year by year. For example, in the past, ultrapure water was controlled based on fine particles of 50 nm or more, but management based on small particles of 10 nm level is required (IRDS: International Technology Roadmap for Semiconductors). Therefore, it is difficult to manage the operation of the filtration membrane device that removes fine particles. On the other hand, extremely low concentrations are required for metals other than fine particles. Strict monitoring is required because metals are known to affect the characteristics of electronic components even at trace concentrations. The current metal concentration in ultrapure water is extremely low, ng / L to pg / L.

特許文献1に、ろ過膜の除粒子性能を評価する方法が開示される。この方法では、意図的に金属粒子を添加した試料液を調製し、その試料液をろ過膜に流通させ、ろ過膜の入口水と出口水の金属濃度の差から、ろ過膜の微粒子の捕捉性を確認する。 Patent Document 1 discloses a method for evaluating the particle removal performance of a filtration membrane. In this method, a sample solution to which metal particles are intentionally added is prepared, the sample solution is circulated through the filtration membrane, and the difference in metal concentration between the inlet water and the outlet water of the filtration membrane is used to capture fine particles of the filtration membrane. To confirm.

特許文献2には、超純水中の微粒子の計測、分析方法として、直検法(SEM法)が開示される。この方法では、超純水をろ過膜でろ過し、ろ過膜面上に微粒子を捕捉し、SEM(走査型電子顕微鏡)で微粒子の数や粒径を観察する。 Patent Document 2 discloses a direct examination method (SEM method) as a method for measuring and analyzing fine particles in ultrapure water. In this method, ultrapure water is filtered through a filtration membrane, fine particles are captured on the filtration membrane surface, and the number and particle size of the fine particles are observed with an SEM (scanning electron microscope).

特許文献3には、使用前の限外ろ過膜を超純水で洗浄した後、その限外ろ過膜の透過水を分析することによって、限外ろ過膜装置の清浄度を確認することが開示される。 Patent Document 3 discloses that the cleanliness of the ultrafiltration membrane device is confirmed by washing the ultrafiltration membrane before use with ultrapure water and then analyzing the permeated water of the ultrafiltration membrane. Will be done.

特許文献4には、微量金属分析の手法として、イオン吸着膜法が開示されている。 Patent Document 4 discloses an ion adsorption membrane method as a method for analyzing trace metals.

特開2015−226906号公報JP-A-2015-226906 特開2016−55240号公報Japanese Unexamined Patent Publication No. 2016-55240 特開2018−144013号公報Japanese Unexamined Patent Publication No. 2018-144013 特開2001−153854号公報Japanese Unexamined Patent Publication No. 2001-153854

超純水製造装置の運転管理にあたっては、従来、限外ろ過膜の透過水すなわち超純水中の金属濃度を分析するのみであり、限外ろ過膜への供給水の金属濃度は考慮していなかった。したがって、超純水に金属濃度異常(水質低下)があった際に、限外ろ過膜の清浄度低下が原因なのか、他の原因(例えば、限外ろ過膜の前段にあるイオン交換装置からの金属イオンの溶出)によるのか、判断が容易ではなかった。 Conventionally, in the operation management of the ultrapure water production equipment, only the metal concentration in the permeated water of the ultrafiltration membrane, that is, the ultrapure water is analyzed, and the metal concentration of the water supplied to the ultrapure membrane is taken into consideration. There wasn't. Therefore, when the ultrapure water has an abnormal metal concentration (deterioration of water quality), it may be due to a decrease in the cleanliness of the ultrafiltration membrane, or from another cause (for example, from the ion exchange device in front of the ultrafiltration membrane). It was not easy to judge whether it was due to the elution of metal ions.

なお特許文献1に開示される方法では、ろ過膜の入口水の金属濃度も利用しているが、この方法は、意図的に金属粒子を添加した試料液を用いて、ろ過膜の微粒子捕捉性を確認しているにすぎない。 The method disclosed in Patent Document 1 also utilizes the metal concentration of the inlet water of the filtration membrane, but this method uses a sample solution to which metal particles are intentionally added and has a fine particle trapping property of the filtration membrane. I'm just checking.

本発明の目的は、超純水製造装置のろ過膜の清浄度低下を、超純水製造装置の運転中に容易に確認することができる、超純水製造装置とその水質管理方法を提供することである。 An object of the present invention is to provide an ultrapure water production apparatus and a water quality management method thereof, which can easily confirm a decrease in cleanliness of a filtration membrane of the ultrapure water production apparatus during operation of the ultrapure water production apparatus. That is.

本発明の一態様によれば、
超純水製造装置の水質管理方法であって、
前記超純水製造装置は、ろ過膜を備え、
前記ろ過膜に供給されるろ過膜入口水の金属濃度と、前記ろ過膜を透過したろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析工程を含むこと、を特徴とする超純水製造装置の水質管理方法が提供される。
According to one aspect of the invention
It is a water quality control method for ultrapure water production equipment.
The ultrapure water production apparatus includes a filtration membrane and has a filtration membrane.
Ultrapure water characterized by including an analysis step of analyzing the metal concentration of the filtration membrane inlet water supplied to the filtration membrane and the metal concentration of the filtration membrane outlet water that has permeated the filtration membrane by using a concentration method, respectively. A water quality control method for a pure water production apparatus is provided.

本発明の別の態様によれば、
ろ過膜を備える超純水製造装置であって、
前記ろ過膜に供給されるろ過膜入口水の金属濃度と、前記ろ過膜を透過したろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析手段を含むこと、を特徴とする超純水製造装置が提供される。
According to another aspect of the invention
An ultrapure water production device equipped with a filtration membrane.
Ultrapure water characterized by including an analysis means for analyzing the metal concentration of the filtration membrane inlet water supplied to the filtration membrane and the metal concentration of the filtration membrane outlet water that has permeated the filtration membrane by using a concentration method, respectively. Pure water production equipment is provided.

本発明によれば、超純水製造装置のろ過膜の清浄度低下を、超純水製造装置の運転中に容易に確認することができる、超純水製造装置とその水質管理方法が提供される。 According to the present invention, there is provided an ultrapure water production apparatus and a water quality management method thereof, which can easily confirm a decrease in cleanliness of a filtration membrane of the ultrapure water production apparatus during operation of the ultrapure water production apparatus. To.

超純水製造装置の概略構成例を示すプロセスフローダイアグラムである。It is a process flow diagram which shows the schematic configuration example of the ultrapure water production apparatus. 実施例1の金属分析結果を示すグラフである。It is a graph which shows the metal analysis result of Example 1. FIG. 実施例2の金属分析結果を示すグラフである。It is a graph which shows the metal analysis result of Example 2.

本発明は、ろ過膜を備える超純水製造装置とその水質管理方法に関する。超純水製造装置は、例えばろ過膜を備えるサブシステム、特には末端に限外ろ過膜を備えるサブシステムを含む。この方法は、ろ過膜に供給されるろ過膜入口水(当該ろ過膜で処理する被処理水)の金属濃度と、ろ過膜を透過したろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析工程を含む。このために、ろ過膜入口水の金属濃度と、ろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析手段を用いることができる。分析手段は、サンプル水(ろ過膜入口水、ろ過膜出口水)中の金属を濃縮して濃縮液を得る濃縮手段と、濃縮液の金属濃度を測定する測定装置とを含むことができる。ろ過膜入口水の金属濃度と、ろ過膜出口水の金属濃度との大小関係に基づいて、限外ろ過膜の清浄度を評価することができ、具体的には次のケースを判別することができる。なお、本明細書において、特に断りの無い限り、用語「上流」「下流」はそれぞれ、被処理水の流れ方向についての上流および下流を意味する。 The present invention relates to an ultrapure water production apparatus provided with a filtration membrane and a water quality control method thereof. Ultrapure water production equipment includes, for example, a subsystem having a filtration membrane, particularly a subsystem having an ultrafiltration membrane at the end. In this method, the metal concentration of the filtration membrane inlet water (water to be treated by the filtration membrane) supplied to the filtration membrane and the metal concentration of the filtration membrane outlet water that has permeated the filtration membrane are concentrated by using a concentration method. Includes analysis steps to analyze. For this purpose, it is possible to use analytical means for analyzing the metal concentration of the filtration membrane inlet water and the metal concentration of the filtration membrane outlet water by using the concentration method. The analytical means can include a concentrating means for concentrating the metal in the sample water (filtration membrane inlet water, filtration membrane outlet water) to obtain a concentrated solution, and a measuring device for measuring the metal concentration of the concentrated solution. The cleanliness of the ultrafiltration membrane can be evaluated based on the magnitude relationship between the metal concentration of the filtration membrane inlet water and the metal concentration of the filtration membrane outlet water. Specifically, the following cases can be discriminated. it can. In the present specification, unless otherwise specified, the terms "upstream" and "downstream" mean upstream and downstream in the flow direction of the water to be treated, respectively.

・ケース1
ろ過膜出口水の金属濃度が、ろ過膜入口水の金属濃度よりも高い場合
この場合は、金属微粒子(ろ過膜を通過できない金属コロイドも含む)によってろ過膜が既にかなり汚染されており、ろ過膜から水中に金属が溶出している状況であると考えられる。したがって、ろ過膜の清浄度が既に低下していると判定する。サブシステム末端の水の金属濃度をより低濃度に改善するためには、ろ過膜の交換を検討すべきである。
・ Case 1
When the metal concentration of the filtration membrane outlet water is higher than the metal concentration of the filtration membrane inlet water In this case, the filtration membrane is already considerably contaminated with metal fine particles (including metal colloids that cannot pass through the filtration membrane), and the filtration membrane It is considered that the metal is eluted from the water. Therefore, it is determined that the cleanliness of the filtration membrane has already decreased. Replacement of filtration membranes should be considered to improve the metal concentration of water at the end of the subsystem to a lower concentration.

・ケース2
ろ過膜入口水の金属濃度が、ろ過膜出口水の金属濃度よりも高い場合
この場合は、金属微粒子がろ過膜入口水に含まれ、その金属微粒子がろ過膜に付着しつつあると考えられる。付着した金属が再溶出すると、サブシステム末端の水質の低下を引き起こす一因となることが考えられ、良好な水質管理のために、ろ過膜出口水の金属濃度分析を定期的に実施し、ろ過膜の交換時期を決定するべきである。
・ Case 2
When the metal concentration of the filtration membrane inlet water is higher than the metal concentration of the filtration membrane outlet water In this case, it is considered that the metal fine particles are contained in the filtration membrane inlet water and the metal fine particles are adhering to the filtration membrane. The re-eluting of the attached metal may contribute to the deterioration of the water quality at the end of the subsystem. For good water quality control, the metal concentration of the filtration membrane outlet water should be analyzed regularly and filtered. The timing of membrane replacement should be determined.

・ケース3
ろ過膜入口水の金属濃度が、ろ過膜出口水の金属濃度と同程度である場合
この場合は、金属によるろ過膜汚染は進行していないと考えられる。ろ過膜入口水に含まれる金属が、実質的に全てイオンである場合、このような状況になり得る。ただし、入口水の金属濃度と出口水の金属濃度が同程度であっても、正常値を超えている場合は、典型的にはろ過膜の前段にあるイオン交換装置からの金属イオンの漏出もしくは溶出が疑われる。
・ Case 3
When the metal concentration of the filtration membrane inlet water is about the same as the metal concentration of the filtration membrane outlet water In this case, it is considered that the filtration membrane contamination by the metal has not progressed. This situation can occur when the metals contained in the water at the inlet of the filtration membrane are substantially all ions. However, even if the metal concentration of the inlet water and the metal concentration of the outlet water are about the same, if they exceed the normal value, typically, metal ions leak from the ion exchange device in front of the filtration membrane or Elution is suspected.

例えば、分析する金属の少なくとも1種について、典型的には分析する全ての金属について、超純水すなわちろ過膜出口水の金属濃度(正常値)は1ng/L以下である。濃縮法を用いた金属分析は、このような微量分析に適している。 For example, for at least one of the metals to be analyzed, typically for all the metals to be analyzed, the metal concentration (normal value) of ultrapure water, that is, the outlet water of the filtration membrane, is 1 ng / L or less. Metal analysis using the concentration method is suitable for such microanalysis.

分析する金属は特に限定されないが、例えばNa、Ca、Al、Fe、Cr、PbおよびZnからなる群から選ばれる少なくとも1種である。金属種は、超純水の管理項目などに基づいて選ぶことができる。また各現場で経験上、検出される可能性が高い元素を測定対象とすることが好ましい。 The metal to be analyzed is not particularly limited, but is at least one selected from the group consisting of, for example, Na, Ca, Al, Fe, Cr, Pb and Zn. The metal type can be selected based on the control items of ultrapure water. In addition, it is preferable to measure elements that are likely to be detected in each field based on experience.

ろ過膜入口水及びろ過膜出口水のサンプリングを同時に行うことが好ましい。サンプリングを同時に行うことで、金属濃度の揺らぎ(経時的な変動)の影響を排除することができる。 It is preferable to sample the filtration membrane inlet water and the filtration membrane outlet water at the same time. By performing sampling at the same time, it is possible to eliminate the influence of fluctuations in metal concentration (fluctuations over time).

分析する金属の少なくとも1種について、分析工程の金属濃度の定量下限値は、好ましくは0.1ng/L以下、より好ましくは0.01ng/L以下である。超純水の金属濃度(正常値)のレベルと比べて、更なる微量レベルの金属分析を行なうことで、より正確な判定を行うことができる。また、定量下限値は1pg/L以上であってよい。定量下限値が1pg/L程度であれば、1ng/Lの1/1000という低いレベルまで金属濃度を定量分析できるためである。なお、ただ1種の金属を分析する場合、ここでいう定量下限値は、その金属の定量下限値を意味する。複数種の金属を分析する場合、分析する複数種の金属のうちの少なくとも1種について定量下限値が上記範囲にあることが好ましいが、全ての金属についての定量下限値が上記の範囲にあることがより好ましい。 For at least one of the metals to be analyzed, the lower limit of quantification of the metal concentration in the analysis step is preferably 0.1 ng / L or less, more preferably 0.01 ng / L or less. A more accurate judgment can be made by performing a metal analysis at a trace level compared to the level of the metal concentration (normal value) of ultrapure water. The lower limit of quantification may be 1 pg / L or more. This is because if the lower limit of quantification is about 1 pg / L, the metal concentration can be quantitatively analyzed to a level as low as 1/1000 of 1 ng / L. When analyzing only one kind of metal, the lower limit of quantification referred to here means the lower limit of quantification of the metal. When analyzing a plurality of kinds of metals, it is preferable that the lower limit of quantification is in the above range for at least one of the plurality of kinds of metals to be analyzed, but the lower limit of quantification for all the metals is in the above range. Is more preferable.

評価するろ過膜は、例えば超純水製造装置のサブシステムに備わるろ過膜、特にはサブシステムの末端に備わる限外ろ過膜(サブシステムの最も下流側に位置する限外ろ過膜)である。ろ過膜は、モジュール化されていてもよいし、膜ろ過装置のエレメントの形態であってもよい。サブシステムの末端に設置される限外ろ過膜装置は、超純水中の微粒子除去を目的に設置されている。通常、限外ろ過膜の前段において、非再生型イオン交換樹脂によって金属イオンが除去される。 The filtration membrane to be evaluated is, for example, a filtration membrane provided in a subsystem of an ultrapure water production apparatus, particularly an ultrafiltration membrane provided at the end of the subsystem (an ultrafiltration membrane located on the most downstream side of the subsystem). The filtration membrane may be modular or may be in the form of an element of a membrane filtration apparatus. The ultrafiltration membrane device installed at the end of the subsystem is installed for the purpose of removing fine particles in ultrapure water. Usually, metal ions are removed by a non-renewable ion exchange resin in the pre-stage of the ultrafiltration membrane.

濃縮法としては、分析対象水中の不純物を多孔質イオン交換体で捕捉した後、捕捉した不純物を溶離液を用いて溶離し、得られた溶離液中の不純物濃度を測定する、イオン交換体濃縮法が好ましい。多孔質イオン交換体としては、後述するイオン吸着膜またはモノリス状イオン交換体を用いることができる。 As a concentration method, impurities in the water to be analyzed are captured by a porous ion exchanger, the captured impurities are eluted using an eluent, and the concentration of impurities in the obtained eluent is measured. Ion exchanger concentration. The method is preferred. As the porous ion exchanger, an ion adsorption membrane or a monolithic ion exchanger described later can be used.

イオン交換体濃縮法で用いる多孔質イオン交換体として、モノリス状イオン交換体を用いることが好ましい。モノリス状イオン交換体は高流速での通水ができるため、サンプリング時間を短くすることができる。 It is preferable to use a monolithic ion exchanger as the porous ion exchanger used in the ion exchanger enrichment method. Since the monolithic ion exchanger can pass water at a high flow velocity, the sampling time can be shortened.

〔超純水製造装置〕
以下、図面を参照して本発明の実施形態を説明するが、本発明はこれによって限定されるものではない。
[Ultrapure water production equipment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1に、超純水製造装置1の概略構成例を示す。超純水製造装置1は、一次純水タンク2と、紫外線酸化装置3と、イオン交換装置4と、限外ろ過膜装置5と、を有している。これらは、超純水製造装置の二次純水システム(サブシステム)を構成し、一次純水システム(図示せず)で製造された一次純水をこの順に処理して超純水を製造し、超純水をユースポイントに供給する。サブシステムを構成する装置は、紫外線酸化装置3、イオン交換装置4及び限外ろ過膜装置5に限定されず、要求水質などに応じて適宜変更可能である。例えば、イオン交換装置4と限外ろ過膜装置5との間に他の装置(例えば、脱気膜装置)を配置してもよい。また本発明は、限外ろ過膜に限らず、精密ろ過膜にも適用できる。 FIG. 1 shows a schematic configuration example of the ultrapure water production apparatus 1. The ultrapure water production apparatus 1 includes a primary pure water tank 2, an ultraviolet oxidizing apparatus 3, an ion exchange apparatus 4, and an ultrafiltration membrane apparatus 5. These constitute the secondary pure water system (subsystem) of the ultrapure water production equipment, and the primary pure water produced by the primary pure water system (not shown) is processed in this order to produce ultrapure water. , Supply ultrapure water to youth points. The apparatus constituting the subsystem is not limited to the ultraviolet oxidizing apparatus 3, the ion exchange apparatus 4, and the ultrafiltration membrane apparatus 5, and can be appropriately changed according to the required water quality and the like. For example, another device (for example, a degassing membrane device) may be arranged between the ion exchange device 4 and the ultrafiltration membrane device 5. Further, the present invention can be applied not only to ultrafiltration membranes but also to microfiltration membranes.

一次純水タンク2には、ラインL1を経て一次純水システムから一次純水が適宜供給され、一次純水が被処理水として貯留される。一次純水タンク2と紫外線酸化装置3とを接続するラインL2を経て、一次純水タンク2に貯留された被処理水が紫外線酸化装置3に供給される。ここで被処理水に紫外線が照射され、被処理水中の有機物が分解される。紫外線酸化装置3とイオン交換装置4とを接続するラインL3を経て、紫外線酸化装置3から抜き出された被処理水がイオン交換装置4に供給される。ここで被処理水中の金属イオンなどがイオン交換処理により除去される。イオン交換装置4と限外ろ過膜装置5とを接続するラインL4を経て、イオン交換装置4から抜き出された被処理水(イオン交換装置4の出口の水)が限外ろ過膜装置5に供給される。ここで被処理水中の微粒子が除去される。限外ろ過膜装置5から、限外ろ過膜を透過した被処理水(限外ろ過膜装置出口水)が、超純水としてラインL5に抜き出される。ラインL5は、ユースポイントに向けて超純水を送液する超純水送液ラインであり、限外ろ過膜装置5の透過水出口とユースポイントとを接続する。図示しないが、限外ろ過膜装置5から、濃縮水(限外ろ過膜を透過しなかった被処理水)を排出することができる。 Primary pure water is appropriately supplied from the primary pure water system to the primary pure water tank 2 via the line L1, and the primary pure water is stored as water to be treated. The water to be treated stored in the primary pure water tank 2 is supplied to the ultraviolet oxidizing device 3 via the line L2 connecting the primary pure water tank 2 and the ultraviolet oxidizing device 3. Here, the water to be treated is irradiated with ultraviolet rays, and organic substances in the water to be treated are decomposed. The water to be treated extracted from the ultraviolet oxidizing device 3 is supplied to the ion exchange device 4 via the line L3 connecting the ultraviolet oxidizing device 3 and the ion exchange device 4. Here, metal ions and the like in the water to be treated are removed by the ion exchange treatment. The water to be treated (water at the outlet of the ion exchange device 4) extracted from the ion exchange device 4 via the line L4 connecting the ion exchange device 4 and the ultrafiltration membrane device 5 becomes the ultrafiltration membrane device 5. Be supplied. Here, the fine particles in the water to be treated are removed. From the ultrafiltration membrane device 5, the water to be treated (water at the outlet of the ultrafiltration membrane device) that has passed through the ultrafiltration membrane is extracted to the line L5 as ultrapure water. The line L5 is an ultrapure water feeding line that feeds ultrapure water toward the use point, and connects the permeated water outlet of the ultrafiltration membrane device 5 to the use point. Although not shown, concentrated water (water to be treated that has not permeated the ultrafiltration membrane) can be discharged from the ultrafiltration membrane device 5.

超純水送液ラインL5から、分岐点8において、超純水の一部を一次純水タンクに戻す返送ラインL6が分岐する。ラインL6は一次純水タンク2に接続される。超純水送液ラインL5の分岐点8より上流側を流れる水のうちの一部がユースポイントに供給され、残余の部分が返送ラインL6を経て一次純水タンク2に還流する。 At the branch point 8, the return line L6 for returning a part of the ultrapure water to the primary pure water tank branches from the ultrapure water supply line L5. The line L6 is connected to the primary pure water tank 2. A part of the water flowing upstream from the branch point 8 of the ultrapure water supply line L5 is supplied to the use point, and the remaining part is returned to the primary pure water tank 2 via the return line L6.

前処理システム、一次純水システムおよび二次純水システムを含めて超純水製造装置を構成する各機器には、超純水製造の分野で公知の機器を適宜利用することができる。例えばイオン交換装置4として、非再生型混床式イオン交換樹脂塔(カートリッジポリッシャー)を用いることができる。限外ろ過膜装置5は、例えば、ハウジング中に適宜の中空糸膜モジュールを備える。なお、例えばラインL4、L5、L6には、金属の溶出を防止するために、ポリ塩化ビニル(PVC)やポリフッ化ビニリデン(PVDF)などの非金属材料(樹脂)を使用することができる。 Equipment known in the field of ultrapure water production can be appropriately used for each apparatus constituting the ultrapure water production apparatus including the pretreatment system, the primary pure water system and the secondary pure water system. For example, as the ion exchange device 4, a non-regenerative mixed bed type ion exchange resin tower (cartridge polisher) can be used. The ultrafiltration membrane device 5 includes, for example, an appropriate hollow fiber membrane module in the housing. For example, non-metal materials (resins) such as polyvinyl chloride (PVC) and polyvinylidene fluoride (PVDF) can be used for lines L4, L5, and L6 in order to prevent metal elution.

〔超純水〕
超純水の抵抗率(25℃)は例えば15MΩ・cm超であり、場合によっては18MΩ・cm超である。一次純水の抵抗率は、超純水の抵抗率よりも低く、例えば0.1〜15MΩ・cmである。
[Ultrapure water]
The resistivity of ultrapure water (25 ° C.) is, for example, more than 15 MΩ · cm, and in some cases more than 18 MΩ · cm. The resistivity of the primary pure water is lower than that of ultrapure water, for example, 0.1 to 15 MΩ · cm.

〔サンプリングライン〕
分岐点6において、ラインL4からサンプリングラインL11が分岐する。分岐点7において、ラインL5からサンプリングラインL12が分岐する。分岐点7は、分岐点8よりも上流側に位置する。サンプリングラインL11およびL12に、それぞれ限外ろ過膜装置5の入口水と出口水の金属分析用試料がサンプリングされる。サンプリングラインL11およびL12(適宜開閉弁が設けられる)にはそれぞれ、金属分析を行う分析手段14および15が接続される。なお、図1では分析手段14、15がサンプリングラインL11、L12ごとに別個に設けられているが、必ずしもその限りではない。例えば、濃縮手段はサンプリングラインごとに別個に設けて各サンプル水を濃縮し、それぞれの濃縮液を共用の測定装置で分析することができる。
[Sampling line]
At the branch point 6, the sampling line L11 branches from the line L4. At the branch point 7, the sampling line L12 branches from the line L5. The branch point 7 is located on the upstream side of the branch point 8. Samples for metal analysis of the inlet water and outlet water of the ultrafiltration membrane device 5 are sampled on the sampling lines L11 and L12, respectively. Analytical means 14 and 15 for performing metal analysis are connected to sampling lines L11 and L12 (provided with on-off valves as appropriate), respectively. In FIG. 1, analysis means 14 and 15 are provided separately for each sampling line L11 and L12, but this is not necessarily the case. For example, the concentrating means can be provided separately for each sampling line to concentrate each sample water, and each concentrating solution can be analyzed by a common measuring device.

〔濃縮法を用いた分析〕
分析工程では、サンプル水(分析対象水)中の金属を濃縮して濃縮液を得、金属濃度の測定装置、例えば誘導結合プラズマ質量分析計(ICP−MS)を用いて濃縮液中の金属濃度を測定することができる。このとき、被処理水をろ過膜に連続的に通水し、ろ過膜に供給されるろ過膜入口水(ラインL11)と、ろ過膜を透過したろ過膜出口水(ラインL12)とを連続的にサンプリングすることができる。濃縮操作の濃縮倍率は、適宜決めることができる。
[Analysis using the concentration method]
In the analysis step, the metal in the sample water (water to be analyzed) is concentrated to obtain a concentrated solution, and the metal concentration in the concentrated solution is obtained using a metal concentration measuring device, for example, an inductively coupled plasma mass spectrometer (ICP-MS). Can be measured. At this time, the water to be treated is continuously passed through the filtration membrane, and the filtration membrane inlet water (line L11) supplied to the filtration membrane and the filtration membrane outlet water (line L12) that has passed through the filtration membrane are continuously passed. Can be sampled. The concentration ratio of the concentration operation can be appropriately determined.

超純水製造装置のサブシステムにおいて、極微量の金属微粒子(コロイドを含む)の濃度については、定常的に一定ではなく経時的な揺らぎ斑が存在することがある。例えば、金属微粒子が、ある瞬間に装置の接液部から剥がれ落ち、その金属の濃度が微量レベルで上昇(スパイク)することがある。このような場合でも、濃縮法を用いて金属濃度を分析すれば、サンプリング時間が比較的長いため、水質の揺らぎを平均化して、平均値による判定ができる。 In the subsystem of the ultrapure water production apparatus, the concentration of extremely small amounts of metal fine particles (including colloids) may not be constantly constant and may have fluctuation spots over time. For example, metal fine particles may peel off from the wetted portion of the device at a certain moment, and the concentration of the metal may increase (spike) at a trace level. Even in such a case, if the metal concentration is analyzed by using the concentration method, the sampling time is relatively long, so that the fluctuation of water quality can be averaged and the judgment can be made based on the average value.

濃縮法としては、前述のように、サンプル水中の不純物(金属)を多孔質イオン交換体で捕捉した後、捕捉した不純物を溶離液を用いて溶離し、得られた溶離液中の不純物濃度を測定する、イオン交換体濃縮法が好ましい。その他の濃縮法として、加熱濃縮法(サンプル水を加熱して濃縮する)があるが、高倍率でクリーンに濃縮するにはイオン交換体濃縮法が好ましい。 As a concentration method, as described above, after capturing impurities (metals) in the sample water with a porous ion exchanger, the captured impurities are eluted with an eluent, and the impurity concentration in the obtained eluent is determined. The ion exchanger concentration method for measurement is preferable. As another concentration method, there is a heat concentration method (concentration by heating sample water), but the ion exchanger concentration method is preferable for clean concentration at a high magnification.

イオン交換体濃縮法の例として、濃縮に用いるイオン交換体としてイオン吸着膜を用いるイオン吸着膜法(特許文献4参照)がある。あるいは、イオン吸着膜に替えて、モノリス状有機多孔質イオン交換体を用いる方法「以下、「モノリス交換体法」と呼ぶことがある)を採用してもよい。モノリス交換体法では、イオン交換体にかかる差圧がイオン吸着膜法と比較して小さいため、高SV(空間速度)でイオン交換体に通水でき、所要時間の短縮が可能である。 As an example of the ion exchanger enrichment method, there is an ion adsorption membrane method (see Patent Document 4) in which an ion adsorbent membrane is used as the ion exchanger used for concentration. Alternatively, a method of using a monolithic organic porous ion exchanger instead of the ion adsorption membrane "hereinafter, may be referred to as a" monolith exchanger method ") may be adopted. In the monolith exchange method, since the differential pressure applied to the ion exchanger is smaller than that in the ion adsorption membrane method, water can be passed through the ion exchanger at a high SV (space velocity), and the required time can be shortened.

〔イオン吸着膜法〕
イオン吸着膜(特にはカチオン交換能を有する多孔性膜)は例えばT.Hori et al., J.Membr.Sci., 132(1997)203-211 に記載の方法によって作製することができる。イオン吸着膜に導入する官能基は、膜1g当たり0.1ミリ当量〜5ミリ当量含有されていることが好ましい。多孔性膜の平均孔径は0.01μm〜5μmの範囲が好ましい。多孔性膜の空孔率は20%〜80%の範囲にあるものが好ましい。多孔性膜の膜厚は、10μm〜5mmの範囲が好ましい。
[Ion adsorption membrane method]
Ion adsorption membranes (particularly porous membranes capable of exchanging cations) can be prepared, for example, by the method described in T. Hori et al., J. Membr. Sci., 132 (1997) 203-211. The functional group to be introduced into the ion adsorption membrane is preferably contained in an amount of 0.1 mm to 5 mm equivalent per 1 g of the membrane. The average pore size of the porous membrane is preferably in the range of 0.01 μm to 5 μm. The porosity of the porous membrane is preferably in the range of 20% to 80%. The film thickness of the porous membrane is preferably in the range of 10 μm to 5 mm.

〔モノリス交換体法〕
モノリス交換体法では、モノリス状有機多孔質カチオン交換体(以下、「モノリスカチオン交換体」ともいう)を用いる。例えば、モノリスカチオン交換体としては、全構成単位中、架橋構造単位を0.1〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μmの三次元的に連続した空孔とからなる共連続構造体が好ましい。モノリスカチオン交換体は、乾燥状態での全細孔容積が0.5〜10mL/gであること、カチオン交換基を有していること、水湿潤状態での体積当りのカチオン交換容量が、0.3〜5.0mg当量/mL(水湿潤状態)であること、カチオン交換基が有機多孔質カチオン交換体中に均一に分布していること、およびH形であることが、通液速度を高くすることができ、金属捕捉及び溶離にかかる時間を短くすることができる点で好ましい。
[Monolith exchange method]
In the monolith exchanger method, a monolith-like organic porous cation exchanger (hereinafter, also referred to as “monolith cation exchanger”) is used. For example, the monolith cation exchanger is three-dimensionally having an average thickness of 1 to 60 μm in a dry state, which is composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units among all the structural units. A co-continuous structure consisting of a continuous skeleton and three-dimensionally continuous pores having an average diameter of 10 to 200 μm between the skeletons is preferable. The monolith cation exchanger has a total pore volume of 0.5 to 10 mL / g in a dry state, has a cation exchange group, and has a cation exchange capacity of 0 per volume in a water-wet state. .3 to 5.0 mg equivalent / mL (water-wet state), uniform distribution of cation exchange groups in the organic porous cation exchanger, and H-form make it possible to control the liquid flow rate. It is preferable in that it can be increased and the time required for metal capture and elution can be shortened.

モノリス交換体法によれば、捕捉した不純物が溶離液により溶離され易い。したがって、溶離液の酸濃度を低くすることができ、そのため、定量下限値が低くなる。また、溶離にかかる時間が短くなるため、分析時間を短くすることができる。また、モノリス交換体法によれば、分析対象水の通液速度を高くすることができるので、不純物の捕捉にかかる時間が短くなるため、分析時間を短くすることができる。 According to the monolith exchanger method, the trapped impurities are easily eluted by the eluent. Therefore, the acid concentration of the eluent can be lowered, and thus the lower limit of quantification is lowered. Moreover, since the elution time is shortened, the analysis time can be shortened. Further, according to the monolith exchange method, since the liquid passing speed of the water to be analyzed can be increased, the time required for capturing impurities is shortened, so that the analysis time can be shortened.

乾燥状態のモノリスカチオン交換体の開口の平均直径及び以下に述べるモノリス中間体の開口の平均直径は、水銀圧入法により求められ、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、モノリスカチオン交換体の骨格の乾燥状態での平均太さは、乾燥状態のモノリスカチオン交換体のSEM(走査型電子顕微鏡)観察により求められる(SEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする)。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。 The average diameter of the openings of the monolith cation exchanger in the dry state and the average diameter of the openings of the monolith intermediate described below refer to the maximum value of the pore distribution curve obtained by the mercury intrusion method. The average thickness of the skeleton of the monolith cation exchanger in the dry state is determined by SEM (scanning electron microscope) observation of the dry monolith cation exchanger (the image obtained by performing SEM observation at least 3 times). Measure the thickness of the skeleton inside and use the average value as the average thickness). The skeleton is rod-shaped and has a circular cross-section, but may include a skeleton having a different diameter such as an elliptical cross-section. The thickness in this case is the average of the minor axis and the major axis.

モノリスカチオン交換体において、導入されたカチオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布していることが好ましい。 In the monolith cation exchanger, the introduced cation exchange groups are preferably uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body.

<モノリスカチオン交換体の製造方法>
モノリス(モノリスカチオン交換体の、イオン交換基導入前のモノリス状物)は、例えば、次の工程を行うことにより得られる。
第I工程:イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16mL/gを超え、30mL/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、「モノリス中間体」とも記載する。)を得る工程。
第II工程:芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程。
第III工程:第II工程で得られた混合物を静置下、且つ第I工程で得られたモノリス中間体の存在下に重合を行い、共連続構造体である有機多孔質体であるモノリスを得る工程。
なお、第I工程と第II工程の順序はなく、第I工程後に第II工程を行ってもよく、第II工程後に第I工程を行ってもよい。
<Manufacturing method of monolith cation exchanger>
A monolith (a monolith-like substance of a monolith cation exchanger before the introduction of an ion exchange group) can be obtained, for example, by performing the following steps.
Step I: A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then the water-in-oil emulsion is polymerized to obtain a total pore volume. A step of obtaining a monolithic organic porous intermediate having a continuous macropore structure of more than 16 mL / g and 30 mL / g or less (hereinafter, also referred to as “monolith intermediate”).
Step II: In the aromatic vinyl monomer, a total oil-soluble monomer having at least two or more vinyl groups in one molecule, 0.3 to 5 mol% of the cross-linking agent, the aromatic vinyl monomer and the cross-linking agent are dissolved. A step of preparing a mixture consisting of an organic solvent in which the polymer produced by polymerizing an aromatic vinyl monomer is insoluble and a polymerization initiator.
Step III: The mixture obtained in Step II is polymerized in the presence of the monolith intermediate obtained in Step I to obtain a monolith which is an organic porous body which is a co-continuous structure. The process of obtaining.
In addition, there is no order of the first step and the second step, and the second step may be performed after the first step, or the first step may be performed after the second step.

第I工程は、特開2002−306976号公報記載の方法に準拠して行えばよい。 The first step may be performed in accordance with the method described in JP-A-2002-306976.

第I工程で用いる油溶性モノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、共連続構造の形成に有利となるため好ましい。 Among the oil-soluble monomers used in the step I, suitable are aromatic vinyl monomers, and examples thereof include styrene, α-methylstyrene, vinyltoluene, vinylbenzyl chloride, and divinylbenzene. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 5 mol%, preferably 0.3 to 0.3 to the total oil-soluble monomer. 3 mol% is preferable because it is advantageous for forming a co-continuous structure.

第I工程で用いられる界面活性剤は、カチオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、例えば両性界面活性剤を用いることができる。界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70質量%の範囲で選択することができる。 The surfactant used in the step I is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no cation exchange group and water are mixed. For example, an amphoteric surfactant can be used. The surfactant may be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which the oil phase is a continuous phase and water droplets are dispersed therein. The amount of the above-mentioned surfactant added varies greatly depending on the type of the oil-soluble monomer and the size of the target emulsion particles (macropores), and therefore cannot be unequivocally determined, but the total amount of the oil-soluble monomer and the surfactant. It can be selected in the range of about 2 to 70% by mass.

また、第I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよい。 Further, in the first step, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat or light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble.

第I工程において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤を混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。 In the first step, the mixing method for mixing an oil-soluble monomer containing no ion-exchange group, a surfactant, water and a polymerization initiator to form a water-in-oil emulsion is not particularly limited, and each component is not particularly limited. The oil-soluble monomer, surfactant, and oil-soluble polymerization initiator, which are oil-soluble components, and the water-soluble component, which is water or a water-soluble polymerization initiator, are uniformly and uniformly dissolved separately. Later, a method of mixing each component can be used. The mixing device for forming the emulsion is also not particularly limited, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate device may be selected to obtain the desired emulsion particle size. Further, the mixing conditions are not particularly limited, and the stirring rotation speed and the stirring time capable of obtaining the desired emulsion particle size can be arbitrarily set.

第I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.1〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。特に、全細孔容積が16〜20mL/gの場合には、共連続構造を形成させるため、架橋構造単位は3モル%未満とすることが好ましい。 The monolith intermediate obtained in the first step is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. The cross-linking density of the polymer material is not particularly limited, but contains 0.1 to 5 mol%, preferably 0.3 to 3 mol% of cross-linked structural units with respect to all the structural units constituting the polymer material. Is preferable. In particular, when the total pore volume is 16 to 20 mL / g, the crosslinked structural unit is preferably less than 3 mol% in order to form a co-continuous structure.

第I工程で得られるモノリス中間体の乾燥状態での質量当りの全細孔容積は、16mL/gを超え、30mL/g以下、好適には16mL/gを超え、25mL/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。モノリス中間体の全細孔容積を上記範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。 The total pore volume per mass of the monolith intermediate obtained in the step I in a dry state is more than 16 mL / g and less than 30 mL / g, preferably more than 16 mL / g and less than 25 mL / g. That is, although this monolith intermediate basically has a continuous macropore structure, the skeleton constituting the monolith structure is primary from the two-dimensional wall surface because the opening (mesopore), which is the overlapping part of the macropore and the macropore, is remarkably large. It has a structure that is as close as possible to the original rod-shaped skeleton. When this is allowed to coexist in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a mold. In order to make the total pore volume of the monolith intermediate within the above range, the ratio of the monomer to water may be approximately 1:20 to 1:40.

また、第I工程で得られるモノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。 Further, in the monolith intermediate obtained in the first step, the average diameter of the openings (mesopores) which are the overlapping portions of the macropores and the macropores is 5 to 100 μm in a dry state. The monolith intermediate preferably has a uniform structure having the same macropore size and opening diameter, but is not limited to this, and non-uniform macropores larger than the uniform macropore size are scattered in the uniform structure. It may be something to do.

第II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。 The aromatic vinyl monomer used in the second step is not particularly limited as long as it is an oil-based aromatic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent. It is preferable to select a vinyl monomer that produces a polymer material of the same type or similar to the monolith intermediate coexisting in the polymerization system.

第II工程で用いられる芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、質量で5〜50倍、好ましくは5〜40倍である。 The amount of the aromatic vinyl monomer added in the second step is 5 to 50 times, preferably 5 to 40 times, the mass of the monolith intermediate coexisting at the time of polymerization.

第II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。 As the cross-linking agent used in the second step, one containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability against hydrolysis. The amount of the cross-linking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the cross-linking agent (total oil-soluble monomer). The amount of the cross-linking agent used is preferably substantially equal to the cross-linking density of the monolith intermediate coexisting during the polymerization of the vinyl monomer / cross-linking agent.

第II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒であり、有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80質量%となるように用いることが好ましい。 The organic solvent used in the second step is an organic solvent that dissolves the aromatic vinyl monomer and the cross-linking agent but does not dissolve the polymer produced by polymerizing the aromatic vinyl monomer, and the amount of the organic solvent used is the above-mentioned aromatic. It is preferable to use it so that the concentration of the vinyl monomer is 30 to 80% by mass.

第II工程で用いられる重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5質量%の範囲で使用することができる。 As the polymerization initiator used in the second step, a compound that generates radicals by heat or light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. The amount of the polymerization initiator used varies greatly depending on the type of monomer, the polymerization temperature, etc., but can be used in the range of about 0.01 to 5% by mass with respect to the total amount of the vinyl monomer and the cross-linking agent.

第III工程の重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、粒子凝集構造は消失し、上述の共連続構造を持つモノリスが得られる。 When a monolith intermediate having a specific continuous macropore structure is present in the polymerization system of the third step, the particle agglomeration structure disappears and the monolith having the above-mentioned co-continuous structure is obtained.

前記モノリスの製造方法において、反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。 In the method for producing a monolith, the internal volume of the reaction vessel is not particularly limited as long as it has a size that allows the monolith intermediate to exist in the reaction vessel, and when the monolith intermediate is placed in the reaction vessel, it is flat. It may be either one in which a gap is visually formed around the monolith, or one in which the monolith intermediate enters the reaction vessel without a gap. Of these, the monolith with a thick bone after polymerization does not receive pressure from the inner wall of the container and enters the reaction vessel without a gap, but the monolith is not distorted and the reaction raw material is not wasted and is efficient. Even when the internal volume of the reaction vessel is large and there is a gap around the monolith after polymerization, the vinyl monomer and the cross-linking agent are adsorbed and distributed to the monolith intermediate, so that the gap in the reaction vessel No particle agglomerate structure is formed in the portion.

第III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。第II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が質量で3〜50倍、好ましくは4〜40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有する前記モノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。 In step III, the monolith intermediate is placed in the reaction vessel in a state of being impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in the second step and the monolith intermediate is such that the amount of the vinyl monomer added is 3 to 50 times, preferably 4 to 40 times, the mass of the monolith intermediate. It is preferable to blend in. This makes it possible to obtain the monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed to the skeleton of the stationary monolith intermediate, and the polymerization proceeds in the skeleton of the monolith intermediate.

第III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。第II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が質量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。 In step III, the monolith intermediate is placed in the reaction vessel in a state of being impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in the second step and the monolith intermediate is such that the amount of the aromatic vinyl monomer added is 5 to 50 times, preferably 5 to 40 times by mass, with respect to the monolith intermediate. It is preferable to mix them in such a manner. As a result, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and the skeleton of the bone is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed to the skeleton of the stationary monolith intermediate, and the polymerization proceeds in the skeleton of the monolith intermediate.

第III工程の重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択される。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が骨格内で重合し、骨格を太らせることができる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して前記モノリスを得る。 Various conditions are selected for the polymerization conditions in the third step depending on the type of monomer and the type of initiator. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton, and the skeleton can be thickened. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing the unreacted vinyl monomer and the organic solvent to obtain the monolith.

モノリスカチオン交換体は、第III工程で得られたモノリスにカチオン交換基を導入する第IV工程を行うことにより得られる。 The monolith cation exchanger is obtained by performing the IV step of introducing a cation exchange group into the monolith obtained in the III step.

モノリスカチオン交換体に導入されるカチオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。 Examples of the cation exchange group introduced into the monolith cation exchanger include a carboxylic acid group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphoric acid ester group.

また、モノリスに、カチオン交換基を導入する方法としては、例えば、スルホン酸基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。これらの方法のうち、クロロ硫酸を用いてスチレン−ジビニルベンゼン共重合体にスルホン酸を導入する方法が、カチオン交換基を均一かつ定量的に導入できる点で好ましい。 Further, as a method for introducing a cation exchange group into the monolith, for example, as a method for introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer or the like, chlorosulfate, concentrated sulfuric acid, or fuming sulfuric acid is used. A method of uniformly introducing a radical initiator group or a chain transfer group into a monolith and graft-polymerizing sodium styrene sulfonate or acrylamide-2-methylpropane sulfonic acid on the surface of the skeleton and inside the skeleton; similarly, glycidyl methacrylate. A method of introducing a sulfonic acid group by functional group conversion after graft polymerization of the above can be mentioned. Of these methods, the method of introducing sulfonic acid into the styrene-divinylbenzene copolymer using chlorosulfate is preferable because the cation exchange group can be introduced uniformly and quantitatively.

前記モノリス及びモノリスカチオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、モノリスカチオン交換体は、骨格が太いため、水湿潤状態での体積当りのカチオン交換容量を大きくでき、更に、被処理液を低圧、大流量で長期間通液することが可能である。 Although the monolith and the monolith cation exchanger have a remarkably large size of three-dimensionally continuous pores, they have a skeletal skeleton and therefore have high mechanical strength. Further, since the monolith cation exchanger has a thick skeleton, the cation exchange capacity per volume in a water-wet state can be increased, and the liquid to be treated can be passed through at a low pressure and a large flow rate for a long period of time.

〔実施例1〕
分析工程において濃縮用に用いるイオン吸着膜を、T.Hori et al., J.Membr.Sci., 132(1997)203-211 に記載の方法によって作製した(膜1g当たりのイオン交換基:1.6ミリ当量、モジュールとしてのイオン交換基1.5ミリ当量、平均孔径0.1μm)。
[Example 1]
An ion adsorption membrane used for concentration in the analysis step was prepared by the method described in T.Hori et al., J.Membr.Sci., 132 (1997) 203-211 (ion exchange group per gram of membrane: 1). 6.6 mm equivalent, 1.5 mm equivalent of the ion exchange group as a module, average pore size 0.1 μm).

図1に示す構成のサブシステムを有する超純水製造装置のサンプリングラインL11およびL12にそれぞれ、上記イオン吸着膜を設置した。サブシステム末端の限外ろ過膜装置5に備わる限外ろ過膜としては、旭化成社製の商品名OLT−6036(ポリスルフォン系中空糸)を用い、その通水量は約10m/h程度とした。 The ion adsorption membranes were installed on the sampling lines L11 and L12 of the ultrapure water production apparatus having the subsystem shown in FIG. 1, respectively. As the ultrafiltration membrane provided in the ultrafiltration membrane device 5 at the end of the subsystem, the product name OLT-6036 (polysulfone hollow fiber) manufactured by Asahi Kasei Corporation was used, and the water flow rate was about 10 m 3 / h. ..

この超純水装置を運転して超純水を製造し、運転中の超純水製造装置から、サンプリングラインL11およびL12を通じて、それぞれのイオン吸着膜にサンプル水を通した。濃縮時間は約3日間とし、濃縮用イオン吸着膜へのサンプル水は、500mL/minで約2000L通水した。サンプル水中の金属をイオン吸着膜に捕捉した後、捕捉した金属イオンを多摩化学社製の高純度硝酸TAMAPURE AA−100(商品名)を希釈した1N硝酸100mLを用いて溶離し、溶離液中の金属量をICP−MSにて測定した。濃縮倍率は2000/0.1=20000倍であるから、溶離液中の金属量(ng)を濃縮倍率で除した値がサンプル水中の金属濃度となる。 This ultrapure water device was operated to produce ultrapure water, and sample water was passed through the respective ion adsorption films from the operating ultrapure water production device through sampling lines L11 and L12. The concentration time was about 3 days, and about 2000 L of sample water was passed through the ion adsorption membrane for concentration at 500 mL / min. After capturing the metal in the sample water with an ion adsorption membrane, the captured metal ions were eluted with 100 mL of 1N nitric acid diluted with high-purity nitric acid TAMAPURE AA-100 (trade name) manufactured by Tama Chemical Co., Ltd., and contained in the eluent. The amount of metal was measured by ICP-MS. Since the concentration ratio is 2000 / 0.1 = 20000 times, the value obtained by dividing the amount of metal (ng) in the eluent by the concentration ratio is the metal concentration in the sample water.

図2は、限外ろ過膜の前後の金属濃度を上記のようにイオン吸着膜法で分析した結果を示すグラフである。ろ過膜出口水の金属濃度は、入口水の金属濃度に対して高くなっており、特にカルシウムおよび亜鉛の濃度が顕著に高くなっている。このことから限外ろ過膜の清浄度が既に低下してしまったと推定できる。このように限外ろ過膜の上流と下流の水質を評価することで、ろ過膜の清浄度の評価が可能となる。 FIG. 2 is a graph showing the results of analyzing the metal concentrations before and after the ultrafiltration membrane by the ion adsorption membrane method as described above. The metal concentration of the filtration membrane outlet water is higher than the metal concentration of the inlet water, and the calcium and zinc concentrations are particularly high. From this, it can be estimated that the cleanliness of the ultrafiltration membrane has already deteriorated. By evaluating the water quality upstream and downstream of the ultrafiltration membrane in this way, it is possible to evaluate the cleanliness of the filtration membrane.

〔実施例2〕
別のサイトの超純水製造装置について、実施例1と同様の試験を行った。その結果を図3に示す。なお、LiおよびCdについては、図示できない程度に微量であったため、図3では省略した。限外ろ過膜の入口水の金属濃度に比べ、出口水の金属濃度が低くなっており、特にカルシウム、鉄の濃度が顕著に低くなっている。したがって、限外ろ過膜入口水中に、金属が微粒子の状態で存在し、限外ろ過膜の清浄度を低下させつつあることが分る。この後に、限外ろ過膜出口の金属分析を定期的に実施することで、限外ろ過膜の交換時期を決定することができ、その結果良好な水質管理を行うことが可能となる。
[Example 2]
The same test as in Example 1 was carried out for the ultrapure water production apparatus at another site. The result is shown in FIG. Since the amounts of Li and Cd were so small that they could not be shown, they were omitted in FIG. The metal concentration of the outlet water is lower than the metal concentration of the inlet water of the ultrafiltration membrane, and the concentrations of calcium and iron are particularly low. Therefore, it can be seen that the metal exists in the state of fine particles in the water at the inlet of the ultrafiltration membrane, and the cleanliness of the ultrafiltration membrane is being lowered. After that, by regularly performing metal analysis at the outlet of the ultrafiltration membrane, it is possible to determine the replacement time of the ultrafiltration membrane, and as a result, good water quality management becomes possible.

1 超純水製造装置
2 一次純水タンク
3 紫外線酸化装置
4 イオン交換装置
5 限外ろ過膜装置
6、7、8 分岐点
14、15 分析手段
1 Ultrapure water production equipment 2 Primary pure water tank 3 Ultraviolet oxidation equipment 4 Ion exchange equipment 5 Ultrafiltration membrane equipment 6, 7, 8 Branch points 14, 15 Analytical means

Claims (10)

超純水製造装置の水質管理方法であって、
前記超純水製造装置は、ろ過膜を備え、
前記ろ過膜に供給されるろ過膜入口水の金属濃度と、前記ろ過膜を透過したろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析工程を含むこと、を特徴とする超純水製造装置の水質管理方法。
It is a water quality control method for ultrapure water production equipment.
The ultrapure water production apparatus includes a filtration membrane and has a filtration membrane.
Ultrapure water characterized by including an analysis step of analyzing the metal concentration of the filtration membrane inlet water supplied to the filtration membrane and the metal concentration of the filtration membrane outlet water that has permeated the filtration membrane by using a concentration method, respectively. Water quality control method for pure water production equipment.
前記分析工程で分析する金属の少なくとも1種について、前記超純水の金属濃度が、1ng/L以下である、請求項1に記載の超純水製造装置の水質管理方法。 The water quality control method for an ultrapure water production apparatus according to claim 1, wherein the metal concentration of the ultrapure water is 1 ng / L or less for at least one of the metals analyzed in the analysis step. 前記分析工程で分析する金属が、Na、Ca、Al、Fe、Cr、PbおよびZnからなる群から選ばれる少なくとも1種である、請求項2に記載の超純水製造装置の水質管理方法。 The water quality control method for an ultrapure water production apparatus according to claim 2, wherein the metal to be analyzed in the analysis step is at least one selected from the group consisting of Na, Ca, Al, Fe, Cr, Pb and Zn. 前記分析工程において、前記ろ過膜入口水及びろ過膜出口水のサンプリングを同時に行う、請求項1〜3のいずれか一項に記載の超純水製造装置の水質管理方法。 The water quality control method for an ultrapure water production apparatus according to any one of claims 1 to 3, wherein in the analysis step, the filtration membrane inlet water and the filtration membrane outlet water are sampled at the same time. 前記分析工程で分析する金属の少なくとも1種について、金属濃度の定量下限値が0.1ng/L以下である、請求項1〜4のいずれか一項に記載の超純水製造装置の水質管理方法。 The water quality control of the ultrapure water production apparatus according to any one of claims 1 to 4, wherein the lower limit of quantification of the metal concentration is 0.1 ng / L or less for at least one of the metals analyzed in the analysis step. Method. 前記ろ過膜が前記超純水製造装置のサブシステムに設けられた限外ろ過膜である、請求項1〜5のいずれか一項に記載の超純水製造装置の水質管理方法。 The water quality control method for an ultrapure water production apparatus according to any one of claims 1 to 5, wherein the filtration membrane is an ultrafiltration membrane provided in a subsystem of the ultrapure water production apparatus. 前記濃縮法が、分析対象水中の不純物を多孔質イオン交換体で捕捉した後、捕捉した不純物を溶離液を用いて溶離し、得られた溶離液中の不純物濃度を測定する、イオン交換体濃縮法である、請求項1〜6のいずれか一項に記載の超純水製造装置の水質管理方法。 The concentration method captures impurities in the water to be analyzed with a porous ion exchanger, elutes the captured impurities with an eluent, and measures the impurity concentration in the obtained eluent. Ion exchanger enrichment. The water quality management method for an ultrapure water producing apparatus according to any one of claims 1 to 6, which is a law. 前記多孔質イオン交換体として、モノリス状イオン交換体を用いる、請求項7に記載の超純水製造装置の水質管理方法。 The water quality control method for an ultrapure water production apparatus according to claim 7, wherein a monolithic ion exchanger is used as the porous ion exchanger. 前記ろ過膜出口水の金属濃度が、前記ろ過膜入口水の金属濃度よりも高い場合、前記ろ過膜の清浄度が既に低下していると判定し、
前記ろ過膜入口水の金属濃度が、前記ろ過膜出口水の金属濃度よりも高い場合、金属微粒子が前記ろ過膜に付着しつつあると判定し、
前記ろ過膜入口水の金属濃度が、前記ろ過膜出口水の金属濃度と等しい場合、前記ろ過膜の金属による汚染は進行していないと判定する、請求項1〜8のいずれか一項に記載の超純水製造装置の水質管理方法。
When the metal concentration of the filtration membrane outlet water is higher than the metal concentration of the filtration membrane inlet water, it is determined that the cleanliness of the filtration membrane has already decreased.
When the metal concentration of the filtration membrane inlet water is higher than the metal concentration of the filtration membrane outlet water, it is determined that the metal fine particles are adhering to the filtration membrane.
The invention according to any one of claims 1 to 8, wherein when the metal concentration of the filtration membrane inlet water is equal to the metal concentration of the filtration membrane outlet water, it is determined that the metal contamination of the filtration membrane has not progressed. Water quality management method for ultrapure water production equipment.
ろ過膜を備える超純水製造装置であって、
前記ろ過膜に供給されるろ過膜入口水の金属濃度と、前記ろ過膜を透過したろ過膜出口水の金属濃度を、それぞれ濃縮法を用いて分析する分析手段を含むこと、を特徴とする超純水製造装置。
An ultrapure water production device equipped with a filtration membrane.
Ultrapure water characterized by including an analysis means for analyzing the metal concentration of the filtration membrane inlet water supplied to the filtration membrane and the metal concentration of the filtration membrane outlet water that has permeated the filtration membrane by using a concentration method, respectively. Pure water production equipment.
JP2019212250A 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof Pending JP2021084045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212250A JP2021084045A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212250A JP2021084045A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof

Publications (1)

Publication Number Publication Date
JP2021084045A true JP2021084045A (en) 2021-06-03

Family

ID=76086440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212250A Pending JP2021084045A (en) 2019-11-25 2019-11-25 Ultrapure water production system and water quality management method thereof

Country Status (1)

Country Link
JP (1) JP2021084045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053876A1 (en) * 2021-09-28 2023-04-06 栗田工業株式会社 Method and device for analyzing ionic components in ultrapure water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045856A (en) * 2009-08-28 2011-03-10 Kurita Water Ind Ltd Washing method of uf membrane module
JP2016197048A (en) * 2015-04-03 2016-11-24 オルガノ株式会社 Filter evaluating method
JP2018144014A (en) * 2017-03-09 2018-09-20 オルガノ株式会社 Method for cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device
WO2019221186A1 (en) * 2018-05-17 2019-11-21 オルガノ株式会社 Analysis method of metal impurity content, and analysis kit of metal impurity content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045856A (en) * 2009-08-28 2011-03-10 Kurita Water Ind Ltd Washing method of uf membrane module
JP2016197048A (en) * 2015-04-03 2016-11-24 オルガノ株式会社 Filter evaluating method
JP2018144014A (en) * 2017-03-09 2018-09-20 オルガノ株式会社 Method for cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device
WO2019221186A1 (en) * 2018-05-17 2019-11-21 オルガノ株式会社 Analysis method of metal impurity content, and analysis kit of metal impurity content

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053876A1 (en) * 2021-09-28 2023-04-06 栗田工業株式会社 Method and device for analyzing ionic components in ultrapure water
JP2023048642A (en) * 2021-09-28 2023-04-07 栗田工業株式会社 Method and device for analyzing ion component in ultrapure water
JP7310867B2 (en) 2021-09-28 2023-07-19 栗田工業株式会社 Method and apparatus for analyzing ion components in ultrapure water
KR20240065245A (en) 2021-09-28 2024-05-14 쿠리타 고교 가부시키가이샤 Method and device for analysis of ionic components in ultrapure water

Similar Documents

Publication Publication Date Title
Abdulkarem et al. Polyvinylidene fluoride (PVDF)-α-zirconium phosphate (α-ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions
JP7196165B2 (en) Analysis method for metal impurity content and analysis kit for metal impurity content
Caprarescu et al. San copolymer membranes with ion exchangers for Cu (II) removal from synthetic wastewater by electrodialysis
DE60310471T2 (en) Use of a device for the production of ultrapure water
KR101668132B1 (en) Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
JP2000138150A (en) Method and device for collecting and reusing developer from waste photoresist developer
WO2017164361A1 (en) Ultrapure water manufacturing system
KR102276965B1 (en) Evaluation method of cleanliness of hollow fiber membrane device, cleaning method and cleaning device of hollow fiber membrane device
JP2004264045A (en) Column and suppressor for ion chromatography unit, and ion chromatography unit
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
JP2014000548A (en) Cleaning method when uplifting ultrapure water production system
JP2021084045A (en) Ultrapure water production system and water quality management method thereof
JP2006297244A (en) Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
JP7289248B2 (en) Impurity detection device and impurity detection method
JP2010259989A (en) Platinum-group metal supported catalyst, method of producing treated water with hydrogen peroxide composed, method of producing treated with dissolved oxygen removed and method of cleaning electronic part
KR102542839B1 (en) Ultrapure water production method, ultrapure water production system, and ion exchanger charging module
JP7081974B2 (en) Liquid purification cartridge and liquid purification method
JP2004077299A (en) Device and method for concentrating test water
CN116036867A (en) Iron-based MOF material modified ultrafiltration membrane and preparation method and application thereof
Govardhan et al. An integrated approach of membrane and resin for processing highly toxic and corrosive tetramethylammonium hydroxide alkali to ultrahigh purity
WO2022102326A1 (en) Method for analyzing metal impurity content
Tapiero et al. Functional ion membranes supported inside microporous polypropylene membranes to transport chromium ions: determination of mass transport coefficient
JP2016197048A (en) Filter evaluating method
Tapiero et al. Donnan dialysis assisted by interpenetrating polymer networks for chromium ion transport in aqueous media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20231027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240112