JP2021082940A - Imaging device and imaging apparatus - Google Patents

Imaging device and imaging apparatus Download PDF

Info

Publication number
JP2021082940A
JP2021082940A JP2019208799A JP2019208799A JP2021082940A JP 2021082940 A JP2021082940 A JP 2021082940A JP 2019208799 A JP2019208799 A JP 2019208799A JP 2019208799 A JP2019208799 A JP 2019208799A JP 2021082940 A JP2021082940 A JP 2021082940A
Authority
JP
Japan
Prior art keywords
layers
light receiving
light
image
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019208799A
Other languages
Japanese (ja)
Other versions
JP7402021B2 (en
Inventor
悠葵 本田
Yuki Honda
悠葵 本田
難波 正和
Masakazu Nanba
正和 難波
佐藤 弘人
Hiroto Sato
弘人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2019208799A priority Critical patent/JP7402021B2/en
Publication of JP2021082940A publication Critical patent/JP2021082940A/en
Application granted granted Critical
Publication of JP7402021B2 publication Critical patent/JP7402021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

To provide an imaging device and an imaging apparatus that can reduce work and cost of manufacturing in performing pixel shifting processing among imaging bodies, and that can reduce size of the imaging apparatus.SOLUTION: An imaging apparatus comprises: a light receiving section (photoelectric conversion section) 12 that generates and stores charges according to incident light; and a signal processing section 13 that reads the stored charges obtained by the light receiving section 12 to output. The light receiving section 12 has two light receiving layers 12a, b laminated in a light incident direction, each of the light receiving layers 12a, b has pixels arranged in a two-dimensional array in the same pitch, and these two layers light receiving layers 12a, b are laminated in each of a longitudinal direction and a lateral direction of a pixel array by shifting 1/2 pixel pitch to each other. Predetermined signal processing is performed in each of signal processing sections 13a, b for an image signal that is received and photoelectric-converted in each of light receiving layers 12a, b, pixel interpolation operation is performed to each other in an image signal interpolation operation section 50 to be synthesized, and a high resolution image signal is generated.SELECTED DRAWING: Figure 1

Description

本発明は、種々の被撮像物の撮像に用いられる撮像素子および撮像装置に関し、例えば、スーパーハイビジョンやインテグラルフォトグラフィー(IP)に適応させ得る多数の画素を有する撮像素子および撮像装置に関するものである。 The present invention relates to an image pickup device and an image pickup device used for imaging various objects to be imaged, for example, an image pickup device and an image pickup device having a large number of pixels that can be adapted to super high-definition and integral photography (IP). is there.

近年、撮像素子の高解像度化に対する要求が著しく、これまでに、例えばスーパーハイビジョンに対応した3,300万画素(7,680×4,320画素)を有する撮像素子が実現されている。しかし、今後、さらなる高解像度化が望まれており、その飛躍的なレベル向上が強く望まれている。 In recent years, there has been a remarkable demand for higher resolution of the image sensor, and so far, an image sensor having 33 million pixels (7,680 × 4,320 pixels) corresponding to, for example, Super Hi-Vision has been realized. However, in the future, further higher resolution is desired, and a dramatic improvement in the level is strongly desired.

上述したように、多数の画素による撮像素子を用いて、さらに多くの画素を有する撮像素子による画像と同等の解像度の画像を得るための技術として、例えば4板撮像方式(デュアルグリーン方式)と称される技術が知られている。
この技術は、例えば4分割式のフィリップス型プリズムを用い、4つの光出射端のうち2つの出射端面の各々に緑色信号(Gチャンネル)受光用の撮像素子を、他の2つの光出射端のうち、一方の出射端面に赤色信号(Rチャンネル)受光用の撮像素子を、他方の出射端面に青色信号(Bチャンネル)受光用の撮像素子を、それぞれ貼着するように構成する(後述する非特許文献1を参照)。
As described above, as a technique for obtaining an image having the same resolution as an image obtained by an image sensor having more pixels by using an image sensor having a large number of pixels, for example, a four-plate image pickup method (dual green method) is called. The technology to be used is known.
This technology uses, for example, a 4-split Phillips-type prism, and uses an image sensor for receiving a green signal (G channel) on each of the two emission end faces of the four light emission ends, and uses the other two light emission ends. Of these, an image sensor for receiving a red signal (R channel) is attached to one of the emission end faces, and an image sensor for receiving a blue signal (B channel) is attached to the other emission end face (non-described later). See Patent Document 1).

この場合において、上記2つのGチャンネル用の撮像素子を光学像に対して空間的に斜め方向に半画素ずらすように位置調整をして、上記プリズムの光出射端面に貼着し、各撮像素子で得られた画像を相互に補間することにより、解像度を、各撮像素子による解像度の2倍とすることが可能となる。
このようにして、少ない画素数のイメージセンサで効果的にシステムの解像度を改善することができる。
In this case, the image sensors for the two G channels are adjusted in position so as to be spatially shifted by half a pixel in an oblique direction with respect to the optical image, and attached to the light emitting end face of the prism, and each image sensor is attached. By mutually interpolating the images obtained in the above, the resolution can be doubled the resolution of each image sensor.
In this way, the resolution of the system can be effectively improved with an image sensor having a small number of pixels.

すなわち、上記4板撮像方式の従来技術においては、プリズム端面に貼着されるGチャンネル用の2つの撮像素子を、光学像に対して空間的に斜め方向に1/2画素ずらすように、互いに異なるプリズム端面に貼着して、画素ずらし処理を施すことにより、水平方向および垂直方向のナイキスト周波数を撮像素子のもつ解像度の2倍にすることが可能となる(非特許文献1を参照)。 That is, in the conventional technique of the four-plate image pickup method, the two image pickup elements for the G channel attached to the end face of the prism are spatially shifted by 1/2 pixel in the oblique direction with respect to the optical image. By attaching to different prism end faces and performing pixel shifting processing, it is possible to double the resolution of the image sensor in the horizontal and vertical directions (see Non-Patent Document 1).

M. Sugawara et al.: “Four-chip CCD Camera for HDTV,” SPE Proc., 2137, pp.122-129 (1994)M. Sugawara et al .: “Four-chip CCD Camera for HDTV,” SPE Proc., 2137, pp.122-129 (1994)

しかしながら、上述した従来技術によっては、画素ずらし位置の精度が悪いと、合成画像の空間解像度も劣化するため、高精度で撮像素子とプリズムを貼着する必要があり、製造に労力とコストを要するという問題があった。また、ガラス製のプリズムを用いることや、このプリズムの各光出射端に各々撮像素子を配する必要があるため、撮像装置が大型化するという問題もあった。 However, according to the above-mentioned conventional technique, if the accuracy of the pixel shift position is poor, the spatial resolution of the composite image also deteriorates. Therefore, it is necessary to attach the image sensor and the prism with high accuracy, which requires labor and cost for manufacturing. There was a problem. Further, since it is necessary to use a prism made of glass and to arrange an image pickup element at each light emitting end of the prism, there is also a problem that the image pickup device becomes large.

本発明は、このような事情に鑑みなされたものであり、所定画素数の撮像素子を用いて、これよりも多くの画素を有する撮像素子と同等の解像度の画像を得ようとする場合に、撮像素子間での画素ずらし処理を行う際の製造の労力およびコストの軽減を図り、撮像装置のコンパクト化を図り得る撮像素子および撮像装置を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and when an image sensor having a predetermined number of pixels is used to obtain an image having a resolution equivalent to that of an image sensor having more pixels than this, the present invention is made. It is an object of the present invention to provide an image pickup device and an image pickup device capable of reducing the manufacturing labor and cost when performing pixel shift processing between image pickup elements and making the image pickup device compact.

以上の目的を達成するため、本発明の撮像素子は、
入射光に応じた電荷を生成し、蓄積する光電変換部および該光電変換部により得られた蓄積電荷を読み出して出力する信号処理部を備え、
前記光電変換部は、光入射方向に、所定のn層(nは2以上の自然数)からなる光電変換層を積層してなるとともに、これら所定のn層の各々が、同一画素ピッチで2次元アレイ状に画素を配列されてなり、かつ前記所定のn層のうち、少なくとも、入射光が最後に入射する層以外の層が、光の一部を透過し得るように形成されてなり、
前記所定のn層は、画素配列の縦横各々の方向を互いに揃えられるとともに、縦方向および横方向に、h/n画素ピッチずつおよびk/n画素ピッチずつ、互いにずらされて配列されていることを特徴とするものである。
ただし、前記hおよび前記kは、1以上の整数である。
In order to achieve the above object, the image pickup device of the present invention is used.
It is provided with a photoelectric conversion unit that generates and stores electric charges according to incident light and a signal processing unit that reads out and outputs the accumulated charges obtained by the photoelectric conversion unit.
The photoelectric conversion unit is formed by stacking photoelectric conversion layers composed of predetermined n layers (n is a natural number of 2 or more) in the light incident direction, and each of these predetermined n layers is two-dimensional at the same pixel pitch. The pixels are arranged in an array, and at least a layer other than the layer in which the incident light is last incident is formed so as to be able to transmit a part of the light among the predetermined n layers.
The predetermined n layers are arranged so that the vertical and horizontal directions of the pixel arrangement are aligned with each other, and the h / n pixel pitch and the k / n pixel pitch are staggered from each other in the vertical and horizontal directions. It is characterized by.
However, the h and the k are integers of 1 or more.

また、前記光電変換層が2層であり、これら2層が、縦横各々に、互いに1/2画素ピッチずつずらされて配列されるように構成することが可能である。
また、前記光電変換部および前記信号処理部が、光入射方向に対して垂直方向に、横並びに配されたものとすることができる。
また、前記所定のn層の各々が、互いに同等の光量を吸収するように構成されていることが好ましい。
Further, the photoelectric conversion layer is two layers, and these two layers can be arranged so as to be arranged so as to be shifted by 1/2 pixel pitch from each other in each of the vertical and horizontal directions.
Further, the photoelectric conversion unit and the signal processing unit may be arranged side by side in the direction perpendicular to the light incident direction.
Further, it is preferable that each of the predetermined n layers is configured to absorb the same amount of light as each other.

さらに、本発明の撮像装置は、
上述したいずれかの撮像素子を備え、
前記入射光が担持した被撮像体画像情報を該撮像素子上に結像させる撮像レンズと、
前記光電変換部の前記所定のn層各々に対応する、前記信号処理部からの画像信号が互いに補間されるように演算を施す画像信号補間演算部を備えたことを特徴とするものである。
Further, the imaging device of the present invention
Equipped with any of the above-mentioned image sensors
An image pickup lens that forms an image of an imaged object image information carried by the incident light on the image pickup element, and
It is characterized by including an image signal interpolation calculation unit that performs an operation so that image signals from the signal processing unit are interpolated with each other, corresponding to each of the predetermined n layers of the photoelectric conversion unit.

本発明の撮像素子および撮像装置においては、光電変換部は、光入射方向に、所定の複数層からなる光電変換層を積層してなるとともに、これら所定の複数層の各々が、同一画素ピッチで2次元アレイ状に画素を配列されてなり、かつ該所定の複数層のうち、光入射側の層は入射光の一部を光電変換するとともに、その余の光を下層に透過するように構成されていることから、この撮像素子に到達した光の一部は光電変換層の所定の複数層のうち上層(光入射側の層)にて光電変換され、その余は下層(光入射側とは反対側の層)にて光電変換される、というようにして各光電変換層にて吸収された光の光電変換がなされる。 In the image pickup device and the image pickup apparatus of the present invention, the photoelectric conversion unit is formed by stacking photoelectric conversion layers composed of a plurality of predetermined layers in the light incident direction, and each of the predetermined plurality of layers has the same pixel pitch. Pixels are arranged in a two-dimensional array, and among the predetermined plurality of layers, the layer on the light incident side is configured to photoelectrically convert a part of the incident light and transmit the remaining light to the lower layer. Therefore, a part of the light that reaches the image pickup element is photoelectrically converted in the upper layer (the layer on the light incident side) of the predetermined plurality of layers of the photoelectric conversion layer, and the rest is photoelectrically converted in the lower layer (the light incident side). Is photoelectrically converted in the opposite layer), and so on, the light absorbed in each photoelectric conversion layer is photoelectrically converted.

そして、これら所定の複数層は、画素配列の縦横方向が揃えられているとともに、縦横方向の各々に、互いにh/n画素ピッチずつおよびk/n画素ピッチずつ(nは光電変換層の数、h,kは1以上の整数)ずらして配列されていることから、所定の複数層の各層間で光電変換されて得られた画像信号同士は、画素の間を互いに補間する関係となるため、この後、これらの画像信号に対して画素の補間処理を行うことにより、高解像度な映像を得ることができる。 Then, in these predetermined plurality of layers, the vertical and horizontal directions of the pixel arrangement are aligned, and in each of the vertical and horizontal directions, h / n pixel pitch and k / n pixel pitch are provided (n is the number of photoelectric conversion layers, respectively. Since h and k are arranged in a staggered manner (an integer of 1 or more), the image signals obtained by photoelectric conversion between the layers of the predetermined plurality of layers are interpolated between the pixels. After that, by performing pixel interpolation processing on these image signals, a high-resolution image can be obtained.

したがって、本発明の撮像素子および撮像装置によれば、互いに積層された所定の複数層(n層)の光電変換層を、縦横方向の各々に、互いにh/n画素ピッチずつおよびk/n画素ピッチずつずらして補間させることで、従来技術のような、大型のプリズムを用い、かつ撮像素子をプリズム光出射端面の各々に配置することなく、取得画像の高解像度化を図ることができる。これにより、撮像素子間で画素ずらし処理を行う際の、製造に要する労力およびコストの軽減を図り、撮像装置のコンパクト化を図ることができる。 Therefore, according to the image pickup device and the image pickup apparatus of the present invention, predetermined plurality of layers (n layers) of photoelectric conversion layers stacked on each other are arranged in each of the vertical and horizontal directions by h / n pixel pitch and k / n pixels. By interpolating by shifting the pitch by pitch, it is possible to improve the resolution of the acquired image without using a large prism as in the prior art and arranging the image sensor on each of the prism light emitting end faces. As a result, it is possible to reduce the labor and cost required for manufacturing when performing the pixel shift processing between the image pickup devices, and to make the image pickup device compact.

本発明の実施形態に係る撮像素子および撮像装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the image pickup device and the image pickup apparatus which concerns on embodiment of this invention. 図1に示す実施形態に係る撮像素子の光電変換部における2層の受光層の画素ずらしの状態を示す概念図である。It is a conceptual diagram which shows the state of the pixel shift of the light-receiving layer of two layers in the photoelectric conversion part of the image pickup device which concerns on the embodiment shown in FIG. 図1に示す実施形態に係る撮像装置における撮像素子と撮像レンズとの位置関係を示す概略図である。It is the schematic which shows the positional relationship between the image pickup element and the image pickup lens in the image pickup apparatus which concerns on embodiment shown in FIG.

以下、本発明の実施形態に係る撮像素子について、概念的に説明する。
すなわち、本実施形態に係る撮像素子10の構成は以下のように構成されている。
まず、図1に示すように、入射光に応じた電荷を生成し、蓄積する受光部(光電変換部)12および該受光部12により得られた蓄積電荷を読み出して出力する信号処理部13を備えた構成が前提とされる。なお、受光部12は、一般には支持基板(シリコンウェハ:図示せず)上に受光層(光電変換層)を積層することにより形成される。
Hereinafter, the image pickup device according to the embodiment of the present invention will be conceptually described.
That is, the configuration of the image pickup device 10 according to the present embodiment is as follows.
First, as shown in FIG. 1, a light receiving unit (photoelectric conversion unit) 12 that generates and stores electric charges according to incident light and a signal processing unit 13 that reads out and outputs the stored charges obtained by the light receiving unit 12 A prepared configuration is assumed. The light receiving portion 12 is generally formed by laminating a light receiving layer (photoelectric conversion layer) on a support substrate (silicon wafer: not shown).

また、受光部12は、光入射方向に複数の受光層12a、bを積層してなるとともに、いずれの受光層12a、bとも、縦横アレイ状に画素を配列された構成とされている。
また、光入射側に配された受光層(上層)12aと、光入射側とは反対側に配された受光層(下層)12bとは、画素配列が縦方向(Y軸方向)および横方向(X軸方向)のいずれについても揃えられるとともに、これら2つの方向のいずれについても1/2画素ピッチだけ、互いにずれた位置関係で上下に重なるように配されている。
Further, the light receiving unit 12 is formed by stacking a plurality of light receiving layers 12a and b in the light incident direction, and each of the light receiving layers 12a and b has a configuration in which pixels are arranged in a vertical and horizontal array.
Further, the light receiving layer (upper layer) 12a arranged on the light incident side and the light receiving layer (lower layer) 12b arranged on the side opposite to the light incident side have pixel arrangements in the vertical direction (Y-axis direction) and the horizontal direction. In addition to being aligned in all of the (X-axis directions), they are arranged so as to overlap each other in a positional relationship shifted from each other by a 1/2 pixel pitch in both of these two directions.

また、信号処理部13は、各受光層12a、bの横方向に隣接して(入射方向に対して垂直方向に、横並びに)配されている。すなわち、受光層(上層)12aに対応して上層用信号処理部13aが、また、受光層(下層)12bに対応して下層用信号処理部13bが、各々設けられており、受光層12aの各画素12a1〜a4からの画素信号が、各々信号線14を介して、上層用信号処理部13aに送出され、他方、受光層12bの各画素12b1〜b5からの画素信号が、各々信号線14を介して、下層用信号処理部13bに送出される。 Further, the signal processing unit 13 is arranged adjacent to each of the light receiving layers 12a and 12 in the lateral direction (in the direction perpendicular to the incident direction, side by side). That is, an upper layer signal processing unit 13a is provided corresponding to the light receiving layer (upper layer) 12a, and a lower layer signal processing unit 13b is provided corresponding to the light receiving layer (lower layer) 12b. The pixel signals from the pixels 12a1 to a4 are sent to the upper layer signal processing unit 13a via the signal line 14, while the pixel signals from the pixels 12b1 to b5 of the light receiving layer 12b are sent to the signal line 14 respectively. Is sent to the lower layer signal processing unit 13b via the above.

なお、このように受光層12a、12bが積層され、信号処理部との間で電気配線が接続されてなる撮像素子10は、いわゆるICパッケージに収納される。この時、撮像素子の各接続端子はワイヤボンディングによって、ICパッケージ側の端子と接続される。 The image sensor 10 in which the light receiving layers 12a and 12b are laminated and the electrical wiring is connected to the signal processing unit is housed in a so-called IC package. At this time, each connection terminal of the image sensor is connected to the terminal on the IC package side by wire bonding.

また、本発明の実施形態に係る撮像装置100は、上述した撮像素子10と、画像信号補間演算部50、さらには図3に示す撮像レンズ30を備えている。
図1に示す画像信号補間演算部50は、上層用信号処理部13aから出力された画像信号と下層用信号処理部13bから出力された画像信号を各々入力され、両画像信号について、互いに補間する演算処理を行って、高解像度の画像信号を生成し、出力する。
Further, the image pickup device 100 according to the embodiment of the present invention includes the above-mentioned image pickup element 10, the image signal interpolation calculation unit 50, and the image pickup lens 30 shown in FIG.
The image signal interpolation calculation unit 50 shown in FIG. 1 inputs an image signal output from the upper layer signal processing unit 13a and an image signal output from the lower layer signal processing unit 13b, and interpolates both image signals with each other. Performs arithmetic processing to generate and output a high-resolution image signal.

また、撮像レンズ30は、撮像装置100に入射した光束が担持した被撮像体像情報を、撮像素子10上に結像し得る凸レンズ機能を有している。この撮像レンズ30は、非球面単レンズとされていてもよいし、複数枚のレンズからなる合成レンズ系とされていてもよい。 Further, the image pickup lens 30 has a convex lens function capable of forming an image of an image to be imaged carried by a light flux incident on the image pickup apparatus 100 on the image pickup device 10. The image pickup lens 30 may be an aspherical single lens or a composite lens system including a plurality of lenses.

図2は、受光部12を構成する、受光層(上層)12aおよび受光層(下層)12bが、縦横画素配列方向に、互いに1/2画素ピッチずつずらされるようにして配設された状態を概略的に示すものである。すなわち両受光層12a、bの対応する画素12an、bnが縦横両方向に互いに1/2画素ピッチずらされている。
これにより、画素の隙間が互いに補間されることになるので、高解像度の画像を得ることができる。
FIG. 2 shows a state in which the light receiving layer (upper layer) 12a and the light receiving layer (lower layer) 12b constituting the light receiving unit 12 are arranged so as to be shifted by 1/2 pixel pitch from each other in the vertical and horizontal pixel arrangement directions. It is shown roughly. That is, the corresponding pixels 12an and bn of both the light receiving layers 12a and b are shifted by 1/2 pixel pitch from each other in both the vertical and horizontal directions.
As a result, the gaps between the pixels are interpolated with each other, so that a high-resolution image can be obtained.

複数の受光層12a、bの積層は、接着剤などを用いず、支持基板(図示せず)上に受光層12a、bや信号処理部13a、b(以下、受光層12a、b等と称する場合がある)を搭載してなる撮像基板部同士を直接接合する技術(いわゆる直接接合、ハイブリッド接合および常温接合を含む技術)の手法等を用いることで容易に形成可能である。 The plurality of light receiving layers 12a and b are laminated on a support substrate (not shown) without using an adhesive or the like, and are referred to as light receiving layers 12a and b and signal processing units 13a and b (hereinafter referred to as light receiving layers 12a and b). It can be easily formed by using a technique of a technique (a technique including so-called direct bonding, hybrid bonding, and room temperature bonding) in which image pickup substrate portions on which (sometimes) are mounted are directly bonded to each other.

また、撮像基板部同士を接合する際には、位置合わせマークを、受光層12a、bが搭載されてなる各撮像基板部の対応位置に形成し、位置合わせマークを互いに一致させることで撮像基板部同士を接合する際の重ね合わせの位置決めを容易に良好なものとすることができる。したがって、位置合わせマークに対して、2つの受光層の位置を縦横方向に互いに1/2画素ピッチずつずらすことで、画素ずれ量を容易に調節することができる。 Further, when joining the imaging substrate portions, an alignment mark is formed at a corresponding position of each imaging substrate portion on which the light receiving layers 12a and b are mounted, and the alignment marks are aligned with each other to match the imaging substrate portions. The positioning of the overlap when joining the portions can be easily improved. Therefore, the amount of pixel misalignment can be easily adjusted by shifting the positions of the two light receiving layers by 1/2 pixel pitch from each other in the vertical and horizontal directions with respect to the alignment mark.

位置合わせマークは、例えば、各撮像基板部の四隅のうち対応する対角隅部に各々形成し、例えば、赤外線カメラにより上方から見て、それらの位置合わせマーク同士(例えば一方が円環状のマークとされ、他方がこの円環内に遊嵌される(余裕をもって嵌め合わされる)大きさの円形状のマークとされる)が所定の状態で重なり合うことを確認しつつ位置合わせを行う。 The alignment marks are formed at the corresponding diagonal corners of the four corners of each imaging substrate, for example, and when viewed from above by an infrared camera, the alignment marks (for example, one of which is an annular mark) are formed. The other side is loosely fitted in the ring (it is a circular mark having a size to be fitted with a margin), but the alignment is performed while confirming that they overlap in a predetermined state.

なお、支持基板上に受光層12a、b等が搭載された各撮像基板部を積層する際には、位置合わせマークを形成した各撮像基板部を、各支持基板を外側にし、各受光層同士を対向させて接合する。この後、一方の支持基板は除去される。 When each image pickup board portion on which the light receiving layers 12a, b, etc. are mounted is laminated on the support substrate, each image pickup substrate portion having the alignment mark formed is placed on the outside of each support substrate, and the light receiving layers are connected to each other. Are opposed to each other and joined. After this, one support substrate is removed.

受光層12a、bに用いる材料としては、一般的に使用されているCMOSイメージセンサに用いられる材料と同様の材料であるシリコンを用いたフォトダイオードや埋め込みフォトダイオードのみならず、シリコン基板とトランジスタ層との間に埋め込み酸化膜を有するSOI基板やFDSOI基板で形成されたフォトダイオードを用いることができる。特にFDSOI基板ではトランジスタ層が約50nm程度の薄いものが知られており、これを用いることで、本実施形態の特徴である、一部の光を受光・光電変換し、その余の光は下層へ透過させるという手法を実現することができる。 The materials used for the light receiving layers 12a and 12b are not only photodiodes and embedded photodiodes using silicon, which are the same materials as those used for commonly used CMOS image sensors, but also silicon substrates and transistor layers. A photodiode formed of an SOI substrate or an FDSOI substrate having an embedded oxide film between the two can be used. In particular, it is known that the FDSOI substrate has a thin transistor layer of about 50 nm. By using this, a part of the light, which is a feature of this embodiment, is received and photoelectrically converted, and the remaining light is the lower layer. It is possible to realize a method of transmitting light to.

また、シリコン以外の光電変換層の材料として、本願出願人が先に特許庁に開示しているセレンや有機光電変換材料も適用可能である。特に有機光電変換材料を用いた場合には、赤・青・緑の光にそれぞれ感度を有する有機光電変換層を積層し、各層において、対応する各色光を効率よく分光吸収することができる。
なお、信号処理部13a、13bの材料としては、透明な材料を用いることができる。
Further, as a material for the photoelectric conversion layer other than silicon, selenium or an organic photoelectric conversion material previously disclosed to the JPO by the applicant of the present application can also be applied. In particular, when an organic photoelectric conversion material is used, organic photoelectric conversion layers having sensitivity to red, blue, and green light can be laminated, and the corresponding color light can be efficiently spectrally absorbed in each layer.
As the material of the signal processing units 13a and 13b, a transparent material can be used.

なお、図2には、縦横方向に各々3つの画素を配列した様子が模式的に記載されているが、実際には、縦横方向に数千個の画素(スーパーハイビジョンの場合には、横7,680画素×縦4,320画素)が配列されたものとされている。 Although FIG. 2 schematically shows how three pixels are arranged in each of the vertical and horizontal directions, in reality, there are thousands of pixels in the vertical and horizontal directions (in the case of Super Hi-Vision, the width is 7). , 680 pixels x 4,320 pixels vertically) are arranged.

また、図3は、撮像装置100において、撮像レンズ30を通過した光が担持する被写体像情報が結像される状態を示すものである。撮像レンズ30を透過し、撮像素子10に入射した光の一部は受光層(上層)12aにおいて、その余の光は受光層(下層)12bにおいて受光される。 Further, FIG. 3 shows a state in which the subject image information carried by the light passing through the image pickup lens 30 is formed in the image pickup apparatus 100. A part of the light transmitted through the image pickup lens 30 and incident on the image pickup element 10 is received by the light receiving layer (upper layer) 12a, and the remaining light is received by the light receiving layer (lower layer) 12b.

これら2つの受光層12a、bの受光量は、ほぼ等しく設定されることが好ましく、例えば、受光層12aの光透過率を50%、受光層12bの光透過率を0%とすれば、同程度の光量を2つの受光層12a、bに効率よく配分することができる。このためには、受光層12aの厚みに比べて、受光層12bの厚みを、大幅に大きく設定することが肝要である。 It is preferable that the light receiving amounts of these two light receiving layers 12a and b are set to be substantially equal. For example, if the light transmittance of the light receiving layer 12a is 50% and the light transmittance of the light receiving layer 12b is 0%, they are the same. A certain amount of light can be efficiently distributed to the two light receiving layers 12a and b. For this purpose, it is important to set the thickness of the light receiving layer 12b to be significantly larger than the thickness of the light receiving layer 12a.

また、例えば、受光層12aの光透過率を2/3とし、受光層12bの光透過率を1/2とすれば、各受光層12a、bにおいて光電変換に供される光量を互いに同程度とすることができる。なお、各受光層12a、bの光透過率は、層厚に反比例すると想定して調整することができる。 Further, for example, if the light transmittance of the light receiving layer 12a is 2/3 and the light transmittance of the light receiving layer 12b is 1/2, the amount of light subjected to photoelectric conversion in each of the light receiving layers 12a and b is about the same. Can be. The light transmittance of each of the light receiving layers 12a and 12b can be adjusted on the assumption that it is inversely proportional to the layer thickness.

本発明の撮像素子および撮像装置としては、上記実施形態のものに限られるものではなく、その他の種々の態様に変更可能である。
例えば、上記実施形態においては、2つの受光層の間で画素補間を行う場合について説明しているが、3層以上の受光層を積層してもよい。
The image pickup device and the image pickup device of the present invention are not limited to those of the above-described embodiment, and can be changed to various other aspects.
For example, in the above embodiment, the case where pixel interpolation is performed between two light receiving layers is described, but three or more light receiving layers may be laminated.

一般にn層の受光層を積層して、互いに画素補間を行わせるようにした場合は、受光層を、互いに、縦方向および横方向に、h/n画素ピッチずつおよびk/n画素ピッチずつ(ただし、前記hおよび前記kは、1以上の整数である)、互いにずらして配列するように構成して画素補間することが有効である。 Generally, when n layers of light receiving layers are laminated so that pixel interpolation can be performed on each other, the light receiving layers are arranged vertically and horizontally by h / n pixel pitch and k / n pixel pitch (k / n pixel pitch). However, it is effective to perform pixel interpolation by configuring the h and the k to be arranged so as to be staggered from each other (the h and the k are integers of 1 or more).

すなわち、例えば、受光層が3層の場合には、これらの受光層の間で画素補間を行う場合には、積層した3つの受光層を、縦横両方向に、互いに1/3画素ピッチずつ、あるいは互いに2/3画素ピッチずつずらすようにする。これにより、3倍の解像度を得ることができる。 That is, for example, when there are three light receiving layers, when pixel interpolation is performed between these light receiving layers, the three laminated light receiving layers are placed in both the vertical and horizontal directions with a 1/3 pixel pitch of each other, or Try to shift each other by 2/3 pixel pitch. As a result, three times the resolution can be obtained.

また、上記実施形態においては、本発明を通常の撮像素子に用いた場合について説明しているが、例えば、本出願人が既に特許庁に開示している特願2019−40858号の明細書に記載されているような、インテグラルフォトグラフィー(IP)に適応させることも可能である。 Further, in the above embodiment, the case where the present invention is used for a normal image sensor is described. For example, in the specification of Japanese Patent Application No. 2019-40858 already disclosed by the applicant to the Japan Patent Office. It is also possible to adapt to integral photography (IP) as described.

さらに、前述した有機光電変換材料により構成される受光層を4枚積層し、そのうち2枚の受光層を緑色信号(Gチャンネル)受光用の受光層とし、他の2枚の受光層のうち、一方を赤色信号(Rチャンネル)受光用の受光層、他方を青色信号(Bチャンネル)受光用の受光層とするとともに、緑色信号(Gチャンネル)受光用の2枚の受光層に対して、上述した実施形態で説明したような、1/2画素ピッチずらしの手法を採用することにより、極めてコンパクトに、かつ製造容易に、4板撮像方式(デュアルグリーン方式)と同様の高画質の画像を取得することが可能である。 Further, four light receiving layers made of the above-mentioned organic photoelectric conversion material are laminated, and two light receiving layers thereof are used as a light receiving layer for receiving a green signal (G channel), and among the other two light receiving layers, One is a light receiving layer for receiving a red signal (R channel), the other is a light receiving layer for receiving a blue signal (B channel), and the two light receiving layers for receiving a green signal (G channel) are described above. By adopting the method of shifting the pitch by 1/2 pixel as described in the above-described embodiment, a high-quality image similar to that of the 4-panel imaging method (dual green method) can be obtained in an extremely compact and easy-to-manufacture manner. It is possible to do.

また、受光層が上記有機光電変換材料で構成された場合において、R光やB光の他の色光についてもG光と同様の上記手法を採用することが可能であって、その組合せを適宜選択することが可能であり、R、G、Bの各色光について、いずれも2倍の解像度を得ようとする際には、全体で6枚の受光層を積層することになる。
また、光電変換部と信号処理部を互いに積層するように構成すれば、素子の横方向の広がりを抑制することができるので、撮像素子のコンパクト化を一層図ることができる。
Further, when the light receiving layer is made of the organic photoelectric conversion material, the same method as that for G light can be adopted for other colored lights of R light and B light, and the combination thereof is appropriately selected. When trying to obtain twice the resolution for each of the R, G, and B colored lights, a total of six light receiving layers are laminated.
Further, if the photoelectric conversion unit and the signal processing unit are configured to be laminated on each other, the lateral spread of the element can be suppressed, so that the image pickup device can be further made compact.

10 撮像素子
12 受光部(光電変換部)
12a 受光層(上層)
12b 受光層(下層)
12a1〜a4、12an、12b1〜b5、12bn 画素
13 信号処理部
13a 上層用信号処理部
13b 下層用信号処理部
30 撮像レンズ
50 画像信号補間演算部
100 撮像装置
10 Image sensor 12 Light receiving part (photoelectric conversion part)
12a Light receiving layer (upper layer)
12b Light receiving layer (lower layer)
12a1 to a4, 12an, 12b1 to b5, 12bn pixels 13 Signal processing unit 13a Upper layer signal processing unit 13b Lower layer signal processing unit 30 Imaging lens 50 Image signal interpolation calculation unit 100 Imaging device

Claims (5)

入射光に応じた電荷を生成し、蓄積する光電変換部および該光電変換部により得られた蓄積電荷を読み出して出力する信号処理部を備え、
前記光電変換部は、光入射方向に、所定のn層(nは2以上の自然数)からなる光電変換層を積層してなるとともに、これら所定のn層の各々が、同一画素ピッチで2次元アレイ状に画素を配列されてなり、かつ前記所定のn層のうち、少なくとも、入射光が最後に入射する層以外の層が、光の一部を透過し得るように形成されてなり、
前記所定のn層は、画素配列の縦横各々の方向を互いに揃えられるとともに、縦方向および横方向に、h/n画素ピッチずつおよびk/n画素ピッチずつ、互いにずらされて配列されていることを特徴とする撮像素子。
ただし、前記hおよび前記kは、1以上の整数である。
It is provided with a photoelectric conversion unit that generates and stores electric charges according to incident light and a signal processing unit that reads out and outputs the accumulated charges obtained by the photoelectric conversion unit.
The photoelectric conversion unit is formed by stacking photoelectric conversion layers composed of predetermined n layers (n is a natural number of 2 or more) in the light incident direction, and each of these predetermined n layers is two-dimensional at the same pixel pitch. The pixels are arranged in an array, and at least a layer other than the layer in which the incident light is last incident is formed so as to be able to transmit a part of the light among the predetermined n layers.
The predetermined n layers are arranged so that the vertical and horizontal directions of the pixel arrangement are aligned with each other, and the h / n pixel pitch and the k / n pixel pitch are staggered from each other in the vertical and horizontal directions. An image sensor characterized by.
However, the h and the k are integers of 1 or more.
前記光電変換層が2層であり、これら2層が、縦横各々に、互いに1/2画素ピッチずつずらされて配列されるように構成することを特徴とする請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the photoelectric conversion layer is two layers, and these two layers are arranged so as to be arranged so as to be arranged so as to be arranged so as to be shifted by 1/2 pixel pitch from each other in the vertical and horizontal directions. 前記光電変換部および前記信号処理部が、光入射方向に対して垂直方向に、横並びに配されていることを特徴とする請求項1または2に記載の撮像素子。 The image pickup device according to claim 1 or 2, wherein the photoelectric conversion unit and the signal processing unit are arranged side by side in a direction perpendicular to a light incident direction. 前記所定のn層の各々が、互いに同等の光量を吸収するように構成されていることを特徴とする請求項1から3のうちいずれか1項に記載の撮像素子。 The image pickup device according to any one of claims 1 to 3, wherein each of the predetermined n layers is configured to absorb the same amount of light as each other. 請求項1〜4のうちいずれか1項に記載の撮像素子を備え、
前記入射光が担持した被撮像体画像情報を該撮像素子上に結像させる撮像レンズと、
前記光電変換部の前記所定のn層各々に対応する、前記信号処理部からの画像信号を互いに補間するように演算を施す画像信号補間演算部を備えたことを特徴とする撮像装置。
The image sensor according to any one of claims 1 to 4 is provided.
An image pickup lens that forms an image of an imaged object image information carried by the incident light on the image pickup element, and
An image pickup apparatus including an image signal interpolation calculation unit that performs an operation so as to interpolate image signals from the signal processing unit, corresponding to each of the predetermined n layers of the photoelectric conversion unit.
JP2019208799A 2019-11-19 2019-11-19 Image sensor and imaging device Active JP7402021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208799A JP7402021B2 (en) 2019-11-19 2019-11-19 Image sensor and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208799A JP7402021B2 (en) 2019-11-19 2019-11-19 Image sensor and imaging device

Publications (2)

Publication Number Publication Date
JP2021082940A true JP2021082940A (en) 2021-05-27
JP7402021B2 JP7402021B2 (en) 2023-12-20

Family

ID=75963338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208799A Active JP7402021B2 (en) 2019-11-19 2019-11-19 Image sensor and imaging device

Country Status (1)

Country Link
JP (1) JP7402021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115005853A (en) * 2022-07-19 2022-09-06 中国科学院深圳先进技术研究院 High-spatial-temporal-resolution energy spectrum CT imaging method and device based on multilayer flat panel detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169127A1 (en) * 2011-06-07 2012-12-13 パナソニック株式会社 Solid-state image pickup apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169127A1 (en) * 2011-06-07 2012-12-13 パナソニック株式会社 Solid-state image pickup apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115005853A (en) * 2022-07-19 2022-09-06 中国科学院深圳先进技术研究院 High-spatial-temporal-resolution energy spectrum CT imaging method and device based on multilayer flat panel detector
CN115005853B (en) * 2022-07-19 2022-12-13 中国科学院深圳先进技术研究院 High-spatial-temporal-resolution energy spectrum CT imaging method and device based on multilayer flat panel detector
WO2024016421A1 (en) * 2022-07-19 2024-01-25 中国科学院深圳先进技术研究院 High temporal-spatial resolution energy spectrum ct imaging method and apparatus based on multi-layer flat panel detector

Also Published As

Publication number Publication date
JP7402021B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US9654709B2 (en) Solid-state imaging device and electronic camera
KR102653538B1 (en) Semiconductor device and electronic apparatus
US8842205B2 (en) Solid-state imaging device and camera system
WO2017009944A1 (en) Solid-state image pickup device
JP5661201B2 (en) Solid-state imaging device
JP2015230355A (en) Imaging device and image pickup element
JP2015128131A (en) Solid state image sensor and electronic apparatus
JP6724212B2 (en) Solid-state image sensor and electronic device
CN102118551A (en) Imaging device
JP2007279512A (en) Stereoscopic camera and stereoscopic imaging apparatus
JP2008011532A (en) Method and apparatus for restoring image
US20200144324A1 (en) Pixel unit, image sensor, manufacturing method thereof and imaging device
JP5331119B2 (en) Solid-state imaging device and imaging apparatus
US8860855B2 (en) Solid-state image sensor with dispersing element that disperses light according to color component, image capture device and signal processing method
US9071722B2 (en) Solid-state imaging element, imaging device, and signal processing method
WO2010100896A1 (en) Image pickup device and solid-state image pickup element of the type illuminated from both faces
JP7402021B2 (en) Image sensor and imaging device
JP4935290B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
JP7272423B2 (en) Imaging element and imaging device
JP2012151421A (en) Image sensing device
JP2016195404A (en) Solid-state image sensor and electronic camera
JP2023120293A (en) Imaging element and imaging device
JP2014022759A (en) Image sensor and image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7402021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150