JP2021081540A - ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法 - Google Patents

ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法 Download PDF

Info

Publication number
JP2021081540A
JP2021081540A JP2019207792A JP2019207792A JP2021081540A JP 2021081540 A JP2021081540 A JP 2021081540A JP 2019207792 A JP2019207792 A JP 2019207792A JP 2019207792 A JP2019207792 A JP 2019207792A JP 2021081540 A JP2021081540 A JP 2021081540A
Authority
JP
Japan
Prior art keywords
mirror
pulsed laser
laser light
curvature
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019207792A
Other languages
English (en)
Other versions
JP7329422B2 (ja
Inventor
崇 菅沼
Takashi Suganuma
崇 菅沼
貴浩 巽
Takahiro Tatsumi
貴浩 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2019207792A priority Critical patent/JP7329422B2/ja
Priority to US17/036,412 priority patent/US11500194B2/en
Priority to NL2026637A priority patent/NL2026637B1/en
Publication of JP2021081540A publication Critical patent/JP2021081540A/ja
Application granted granted Critical
Publication of JP7329422B2 publication Critical patent/JP7329422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lasers (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)

Abstract

【課題】パルスレーザ光のビーム広がり角を一定化する方法を提供する。【解決手段】ビームデリバリシステムは、極端紫外光生成装置に用いられるものであり、レーザ装置と集光光学系との間の光路上に配置され、パルスレーザ光の伝搬方向を変える伝搬ミラーと、伝搬ミラーと集光光学系との間の光路上に配置され、集光光学系に入射させるパルスレーザ光を収束ビームにする凹面の反射面を持つ曲率ミラーと、を備え、曲率ミラーから出射されるパルスレーザ光のビーム広がり角が、伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、曲率ミラーの焦点距離を選定したビームデリバリシステムである。【選択図】図12

Description

本開示は、ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法に関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、10nm以下の微細加工が要求されるようになる。このため、波長約13nmの極端紫外(EUV:Extreme Ultra Violet)光を生成するための装置と縮小投影反射光学系とを組み合わせた半導体露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置の開発が進んでいる。
特開2012−178534号公報 米国特許出願公開第2013/0320244号 国際公開第2014/097811号 国際公開第2016/125295号
概要
本開示の1つの観点に係るビームデリバリシステムは、レーザ装置から出射されるパルスレーザ光を集光光学系に導き、集光光学系を介してターゲット物質にパルスレーザ光を照射することにより極端紫外光を生成する極端紫外光生成装置に用いられるビームデリバリシステムであって、レーザ装置と集光光学系との間の光路上に配置され、パルスレーザ光の伝搬方向を変える伝搬ミラーと、伝搬ミラーと集光光学系との間の光路上に配置され、集光光学系に入射させるパルスレーザ光を収束ビームにする凹面の反射面を持つ曲率ミラーと、を備え、曲率ミラーから出射される収束ビームであるパルスレーザ光のビーム広がり角が、伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、曲率ミラーの焦点距離を選定したビームデリバリシステムである。
本開示の他の1つの観点に係る焦点距離選定方法は、レーザ装置から出射されるパルスレーザ光を集光光学系に導き、集光光学系を介してターゲット物質にパルスレーザ光を照射することにより極端紫外光を生成する極端紫外光生成装置に用いられるビームデリバリシステムに含まれる曲率ミラーの焦点距離を選定する方法であって、ビームデリバリシステムは、レーザ装置と集光光学系との間の光路上に、パルスレーザ光の伝搬方向を変える伝搬ミラーが配置され、伝搬ミラーと集光光学系との間の光路上に、凹面の反射面を持つ曲率ミラーが配置され、集光光学系に曲率ミラーから収束ビームを入射させる構成であり、曲率ミラーから出射される収束ビームであるパルスレーザ光のビーム広がり角が、伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、曲率ミラーの焦点距離を選定する、焦点距離選定方法である。
本開示の他の1つの観点に係る電子デバイスの製造方法は、レーザ装置から出射されるパルスレーザ光を集光する集光光学系と、レーザ装置と集光光学系との間の光路上に配置され、パルスレーザ光の伝搬方向を変える伝搬ミラーと、伝搬ミラーと集光光学系との間の光路上に配置され、集光光学系に入射させるパルスレーザ光を収束ビームにする凹面の反射面を持つ曲率ミラーと、を備え、曲率ミラーから出射される収束ビームであるパルスレーザ光のビーム広がり角が、伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、曲率ミラーの焦点距離を選定した極端紫外光生成装置を用いて、レーザ装置から出射されるパルスレーザ光を集光光学系に導き、集光光学系を介してターゲット物質にパルスレーザ光を照射することにより極端紫外光を生成し、極端紫外光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上に極端紫外光を露光することを含む電子デバイスの製造方法である。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。 図2は、比較例に係るEUV光生成装置の構成例の詳細を示す。 図3は、レーザ光集光光学系によるパルスレーザ光の集光作用の例を示す。 図4は、実施形態1に係るEUV光生成装置の構成を概略的に示す。 図5は、曲率ミラーの構成例1を示す。 図6は、曲率ミラーの構成例2を示す。 図7は、曲率ミラーの構成例3を示す。 図8は、曲率ミラーの構成例4を示す。 図9は、実施形態1に係るEUV光生成装置におけるレーザ光集光光学系の集光作用の例を示す。 図10は、収束ビームと発散ビームのそれぞれが集光光学系に入射する場合のビーム経路の例を示す説明図である。 図11は、曲率ミラーの光学的作用を凸レンズの記載に置き換えて示す説明図である。 図12は、Cold時とHot時のそれぞれのビーム経路を概略的に示す。 図13は、ビーム伝搬光路の途中に配置される曲率ミラーの焦点距離を選定する際の具体例を示すグラフである。 図14は、実施形態2に係るEUV光生成装置の構成を概略的に示す。 図15は、焦点距離可変機構付きのミラーユニットの具体例1に係る構成を概略的に示す。 図16は、図15のミラーユニットを矢印E方向から見たE矢視図である。 図17は、焦点距離可変機構付きのミラーユニットの具体例2に係る構成を概略的に示す。 図18は、焦点距離可変機構付きのミラーユニットの具体例3に係る構成の要部を概略的に示す。 図19は、EUV光生成装置と接続された露光装置の構成を概略的に示す。
実施形態
−目次−
1.用語の説明
2.EUV光生成システムの全体説明
2.1 構成
2.2 動作
3.比較例に係るEUV光生成装置の説明
3.1 構成
3.2 動作
4.課題
5.実施形態1
5.1 構成
5.2 曲率ミラーの構成例
5.3 動作
5.4 収束ビームと発散ビームの説明
5.5 曲率ミラーの焦点距離の選定方法
5.5.1 条件式の導出
5.5.2 具体例
5.6 作用・効果
6.実施形態2
6.1 構成
6.2 焦点距離可変機構付きのミラーユニットの例
6.2.1 具体例1
6.2.2 具体例2
6.2.3 具体例3
6.3 動作
6.4 作用・効果
6.5 変形例
7.レーザ装置の構成例
8.設計支援システムとしての応用例
9.EUV光生成装置を用いた電子デバイスの製造方法の例
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.用語の説明
「ターゲット」は、チャンバに導入されたレーザ光の被照射物である。レーザ光が照射されたターゲットは、プラズマ化してEUV光を放射する。ターゲットは、プラズマの発生源となる。
「ドロップレット」は、チャンバ内に供給されたターゲットの一形態である。ドロップレットは、溶融したターゲット物質の表面張力によってほぼ球状となった滴状のターゲットを意味し得る。
「プラズマ生成領域」は、チャンバ内におけるプラズマの生成領域である。プラズマ生成領域は、チャンバ内に供給されたターゲットに対してレーザ光が照射され、ターゲットがプラズマ化される領域である。ターゲットに対するレーザ光の照射位置を「ターゲット照射位置」という。
「パルスレーザ光」は、複数のパルスを含むレーザ光を意味し得る。
「レーザ光」は、パルスレーザ光に限らずレーザ光一般を意味し得る。レーザ光の光路を「レーザ光路」という。レーザ光路について「上流側」とは、レーザ光路においてレーザ光の光源に近い側をいう。また、「下流側」とは、レーザ光路においてレーザ光の光源から遠い側をいう。
「プラズマ光」は、プラズマ化したターゲットから放射された放射光である。当該放射光にはEUV光が含まれる。
「EUV光」という表記は、「極端紫外光」の略語表記である。「極端紫外光生成装置」は「EUV光生成装置」と表記される。
2.EUV光生成システムの全体説明
2.1 構成
図1は、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる。EUV光生成装置1及びレーザ装置3を含むシステムを、以下、EUV光生成システム11と称する。
EUV光生成装置1は、チャンバ2及びターゲット供給部26を含む。チャンバ2は、密閉可能な容器である。ターゲット供給部26は、ターゲット物質をチャンバ2内部に供給するように構成され、例えばチャンバ2の壁を貫通するように取り付けられる。ターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又はそれらのうちのいずれか2つ以上の組み合わせを含んでもよいが、これらに限定されない。
チャンバ2の壁には、少なくとも1つの貫通孔が備えられている。その貫通孔は、ウインドウ21によって塞がれ、ウインドウ21をレーザ装置3から出力されるパルスレーザ光PL2が透過する。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置される。EUV集光ミラー23は、第1の焦点及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成される。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF:Intermediate Focusing point)292に位置するように配置される。EUV集光ミラー23の中央部には貫通孔24が設けられ、貫通孔24をパルスレーザ光PL3が通過する。
EUV光生成装置1は、ターゲットセンサ4及びEUV光生成制御部5等を含む。ターゲットセンサ4は、ターゲット27の存在、軌道、位置、及び速度のうちいずれか、又は複数を検出するように構成される。ターゲットセンサ4は、撮像機能を備えてもよい。
また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29内部には、アパーチャ293が形成された壁291が備えられる。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置される。
さらに、EUV光生成装置1は、ビーム伝送装置34、レーザ光集光ミラー22、及びターゲット27を回収するターゲット回収部28等を含む。ビーム伝送装置34は、レーザ光の伝送状態を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備える。ターゲット回収部28は、チャンバ2内に出力されたターゲット27が進行する方向の延長線上に配置される。
2.2 動作
図1を参照して、例示的なLPP式のEUV光生成システム11の動作を説明する。チャンバ2の内部は大気圧よりも低圧に保持され、好ましくは真空であってよい。あるいは、チャンバ2の内部にはEUV光の透過率が高いガスが存在する。チャンバ2の内部に存在するガスは、例えば、水素ガスであってよい。
レーザ装置3から出力されたパルスレーザ光PL1は、ビーム伝送装置34を経てパルスレーザ光PL2としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光PL2は、少なくとも1つのレーザ光路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光PL3として少なくとも1つのターゲット27に照射される。
ターゲット供給部26は、ターゲット物質によって形成されたターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するように構成される。ターゲット供給部26は、例えば、コンティニュアスジェット方式によりドロップレットを形成する。コンティニュアスジェット方式では、ノズルを振動させて、ノズル孔からジェット状に噴出したターゲット物質の流れに周期的振動を与え、ターゲット物質を周期的に分離する。分離されたターゲット物質は、自己の表面張力によって自由界面を形成してドロップレットを形成し得る。
ターゲット27には、パルスレーザ光PL3に含まれる少なくとも1つのパルスが照射される。パルスレーザ光PL3が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が生成される。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射される。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力される。なお、1つのターゲット27に、パルスレーザ光PL3に含まれる複数のパルスが照射されてもよい。
EUV光生成制御部5は、EUV光生成システム11全体の制御を統括するように構成される。EUV光生成制御部5は、ターゲットセンサ4の検出結果を処理する。EUV光生成制御部5は、ターゲットセンサ4の検出結果に基づいて、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御する。さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光PL2の進行方向、パルスレーザ光PL3の集光位置等を制御する。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加される。
3.比較例に係るEUV光生成装置の説明
3.1 構成
図2は、比較例に係るEUV光生成装置1の構成例の詳細を示す。図2に示されるように、チャンバ2の内部には、レーザ光集光光学系220、EUV集光ミラー23、ターゲット回収部28、EUV集光ミラーホルダ81、第1プレート82、第2プレート83、レーザ光マニュピレータ84、及びダンパミラー46が設けられる。
チャンバ2には、第1プレート82が固定される。EUV集光ミラー23は、EUV集光ミラーホルダ81を介して第1プレート82に固定される。第1プレート82には、レーザ光マニュピレータ84を介して第2プレート83が固定される。
レーザ光集光光学系220は、凸面ミラー221及びレーザ光集光ミラー22を含む集光ユニットである。レーザ光集光光学系220は第2プレート83上に配置される。凸面ミラー221及びレーザ光集光ミラー22によって反射されたパルスレーザ光PL3がプラズマ生成領域25で集光されるように、凸面ミラー221及びレーザ光集光ミラー22の位置及び姿勢が保持される。
レーザ光マニュピレータ84は、第2プレート83上のレーザ光集光光学系220を第1プレート82に対して移動させるように構成される。レーザ光マニュピレータ84は、レーザ光集光光学系220を移動させることで、パルスレーザ光PL3の集光位置を、EUV光生成制御部5から指定された位置にX軸、Y軸、及びZ軸の各方向において移動できるように構成される。
図2では、プラズマ生成領域25及び中間集光点292を通る軸をZ軸とする。Z軸方向は、チャンバ2から露光装置6へEUV光252が出力される方向である。また、ターゲット供給部26のノズル孔及びプラズマ生成領域25を通る軸をY軸とする。Y軸方向は、ターゲット供給部26がプラズマ生成領域25に向けてターゲット27を出力する方向である。Y軸及びZ軸に直交する軸をX軸とする。図2において、X軸方向は紙面に垂直な方向である。
ダンパミラー46は、プラズマ生成領域25の下流におけるレーザ光路上に配置され、プラズマ生成領域25を通過したパルスレーザ光をビームダンプ装置47に向けて反射するように構成される。ダンパミラー46は、入射するパルスレーザ光を平行光化して反射してもよく、軸外放物面ミラーであってもよい。ダンパミラー46は、その反射面をターゲット物質の融点以上に加熱するヒータを備えてもよい。
ビームダンプ装置47は、ダンパミラー46で反射されたパルスレーザ光が入射する位置に配置される。ビームダンプ装置47はチャンバ2に取り付けられている。ビームダンプ装置47はダンパミラー46で反射されたパルスレーザ光が入射するダンパウインドウを含む。
ターゲット供給部26は、ターゲットの材料を溶融した状態で内部に貯蔵してもよい。ターゲット供給部26に形成されたノズル孔の位置がチャンバ2の内部に位置していてもよい。ターゲット供給部26は、ノズル孔を介して、溶融したターゲットの材料をドロップレット状のターゲット27としてチャンバ2内のプラズマ生成領域25に供給してもよい。
チャンバ2の外部には、ビーム伝送装置34と、EUV光生成制御部5と、が設けられる。ビーム伝送装置34は、レーザ装置3が出力するパルスレーザ光を、ウインドウ21を介してレーザ光集光光学系220に導く。
ビーム伝送装置34は、伝搬ミラー342、ビーム調節器343、伝搬ミラー344、ビームサンプラ346、サンプル光集光光学系347、ビームモニタ348、及びビーム伝送制御部349を備える。レーザ光路上に、伝搬ミラー342、ビーム調節器343、伝搬ミラー344、ビームサンプラ346、ウインドウ21、凸面ミラー221、及びレーザ光集光ミラー22が、この順に配置される。伝搬ミラー342、344は、パルスレーザ光の伝搬方向を変える高反射ミラーであってよい。
レーザ装置3と伝搬ミラー342との間には、図示せぬ伝搬ミラーが数十枚配置されてよい。また、伝搬ミラー344とレーザ光集光ミラー22との間には、図示せぬ伝搬ミラーが数枚配置されてもよい。
レーザ装置3は、不図示の発振器と複数の増幅器とを含んで構成されてもよい。また、発振器と増幅器との間、及び/又は、増幅器と増幅器との間に、不図示の伝搬ミラーが配置されてもよい。
ビーム調節器343は、入力されたパルスレーザ光の発散角を調整して出力するよう構成される。
伝搬ミラー344とレーザ光集光ミラー22との間に、パルスレーザ光を分岐するために、ビームサンプラ346が配置される。ビームサンプラ346は、ビームスプリッタであってよい。
ビームサンプラ346は、パルスレーザ光の一部をサンプル光としてサンプル光集光光学系347に導入するように構成される。サンプル光集光光学系347は、サンプル光を集光するように構成され、サンプル光の光路上に配置される。サンプル光集光光学系347は、レーザ光集光光学系220と実質的に等価な集光像が得られるように構成される。
ビームモニタ348は、サンプル光集光光学系347の焦点付近に受光面が位置するように配置される。ビームモニタ348は、例えば、ビームプロファイラであってもよい。
ビーム伝送制御部349は、ビーム調節器343及びビームモニタ348に接続される。また、ビーム伝送制御部349は、EUV光生成制御部5と接続される。
EUV光生成制御部5は、露光装置6の露光装置制御部62からの制御信号を受信する。EUV光生成制御部5は、露光装置6からの制御信号に従って、ターゲット供給部26、レーザ装置3、ビーム伝送制御部349、及びレーザ光マニュピレータ84を制御する。
EUV光生成制御部5、露光装置制御部62及びビーム伝送制御部349等の制御装置は、1台又は複数台のコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。プログラマブルコントローラやシーケンサはコンピュータの概念に含まれる。
コンピュータは、例えば、CPU(Central Processing Unit)及びメモリを含んで構成される。CPUはプロセッサの一例である。EUV光生成制御部5、露光装置制御部62及びビーム伝送制御部349などの各種の制御装置の処理機能の一部又は全部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
また、複数の制御装置の機能を1台の制御装置で実現することも可能である。さらに本開示において、EUV光生成制御部5、露光装置制御部62及びビーム伝送制御部349等は、ローカルエリアネットワークやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムユニットは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
3.2 動作
EUV光生成制御部5は、ターゲット供給部26にターゲット出力信号TTを送信する。ターゲット供給部26は、EUV光生成制御部5からのターゲット出力信号TTに従って、所定速度及び所定間隔で、プラズマ生成領域25にドロップレット状のターゲット27を供給してもよい。例えば、ターゲット供給部26は、数十kHz〜数百kHzにおける所定周波数でドロップレットを生成する。
ターゲットセンサ4は、所定領域を通過するドロップレットを検出する。ターゲットセンサ4は、ターゲット27の検出信号として、ドロップレットの通過タイミングを示す通過タイミング信号PTをEUV光生成制御部5に出力する。
EUV光生成制御部5は、露光装置制御部62からバースト信号BTを受信する。バースト信号BTは、所定期間においてEUV光を生成するようにEUV光生成システム11に指示する信号である。EUV光生成制御部5は、当該所定期間において、EUV光を露光装置6に出力するための制御を行う。
EUV光生成制御部5は、バースト信号BTがONの期間において、レーザ装置3が通過タイミング信号PTに応じてパルスレーザ光を出力するように制御する。EUV光生成制御部5は、バースト信号BTがOFFの期間において、レーザ装置3がパルスレーザ光の出力を停止するように制御する。
例えば、EUV光生成制御部5は、露光装置制御部62から受信したバースト信号BTと、通過タイミング信号PTに対して所定の時間遅延させた発光トリガ信号ETとを、レーザ装置3に出力する。バースト信号BTがONである期間中、レーザ装置3は発光トリガ信号ETの各パルスに応答して、パルスレーザ光を出力する。
EUV光生成制御部5は、レーザ光マニュピレータ84によってパルスレーザ光の照射位置を調整してもよい。EUV光生成制御部5は、通過タイミング信号PTと発光トリガ信号ETとの間の遅延時間を変更してもよい。
レーザ光集光光学系220によって集光されたパルスレーザ光が、プラズマ生成領域25に到達したターゲット27に照射されることにより、EUV光が生成される。ターゲット27に照射されなかったパルスレーザ光は、ダンパミラー46に入射し得る。
ダンパミラー46によって反射されたパルスレーザ光は、ビームダンプ装置47で吸収され、熱に変換される。この際に発生する熱は、不図示の冷却装置によって外部に排出される。
レーザ装置3は、チャンバ2と異なるフロアに配置されてもよい。その場合、ビーム伝送装置34は、数十mに及ぶ距離の光路を形成して、レーザ光を伝送することになる。このため、ビーム伝送装置34は、ビーム調節器343によって、伝送過程のパルスレーザ光の発散角を調整しながらパルスレーザ光を伝送する。ビーム伝送装置34は、ビーム調節器343に代えて、又はこれに加えて、不図示のビーム調節器を1つ以上含んでもよい。
ビームサンプラ346は、レーザ光集光光学系220に入射するパルスレーザ光の一部をサンプル光としてサンプル光集光光学系347に導く。ビームモニタ348は、サンプル光の集光像を示す信号をビーム伝送制御部349に送信する。
ビーム伝送制御部349は、サンプル光の集光像に基づいて、レーザ光集光光学系220に入射するパルスレーザ光の発散角が適切になるよう、ビーム調節器343を制御する。すなわち、ビーム伝送制御部349は、ビームモニタ348による計測結果からビーム調節器343を制御することにより、ターゲット27に照射するパルスレーザ光のビームサイズを調節する。ターゲット27に照射するパルスレーザ光のビームサイズを維持することにより、EUV光への変換効率を維持することができる。
4.課題
図3は、レーザ光集光光学系220によるパルスレーザ光の集光作用の例を示す。パルスレーザ光は発散ビームであるため、レーザ装置3内の不図示の伝搬ミラーやレーザ装置3から出射後のパルスレーザ光の光路上に配置される伝搬ミラー342、344等が熱により凸面状に変形すると、ビーム広がり角が大きくなる。
ここで、伝搬ミラー342、344及びレーザ光集光ミラー22等の光学素子の温度が室温である時を「Cold時」という。Cold時は、ミラー等の熱変形が未発生の状態の時と理解される。ここでの「未発生」という記載は、熱変形が発生していない状態、又は熱変形が無視できる程度に十分に小さい状態を含む。パルスレーザ光の照射によって伝搬ミラー342、344及びレーザ光集光ミラー22等の温度が上昇して熱変形が定常状態である時を「Hot時」という。
図3において実線で示す光線はCold時のビーム経路を示し、点線で示す光線はHot時のビーム経路を示す。図3に示すように、Hot時はミラーの熱変形に起因してビーム広がり角が大きくなることにより、レーザ光集光ミラー22で反射されたパルスレーザ光のターゲット照射位置でのビームサイズが大きくなって、EUV光への変換効率が低下する。このため、比較例に係るEUV光生成装置1では、ビームモニタ348の計測結果を基に、ビーム伝送制御部349がビーム調節器343を制御することによってビーム広がり角を調節している。
5.実施形態1
5.1 構成
図4は、実施形態1に係るEUV光生成装置1Aの構成を概略的に示す。実施形態1に係るEUV光生成装置1Aの構成において、比較例のEUV光生成装置1と同様の構成については説明を省略し、相違点を説明する。
図4に示すように、EUV光生成装置1Aは、図2のビーム伝送装置34に代えて、ビーム伝送装置34Aを備える。ビーム伝送装置34Aは、図2のビーム伝送装置34と比較して、ビーム調節器343に代えて、凹面の反射面を有する曲率ミラー35を備えており、ビーム伝送制御部349が不要な構成となっている。曲率ミラー35は、複数のミラーを組み合わせたミラーユニットであってよい。ビーム伝送装置34Aは本開示における「ビームデリバリシステム」の一例である。
5.2 曲率ミラーの構成例
図5は、曲率ミラー35の構成例1を示す。曲率ミラー35は、例えば、図5に示すように、第1の軸外放物面凹面ミラー350と第2の軸外放物面凹面ミラー352との組み合わせによって構成される。第1の軸外放物面凹面ミラー350によって反射されたレーザ光は第2の軸外放物面凹面ミラー352に入射し、第2の軸外放物面凹面ミラー352によって反射される。第2の軸外放物面凹面ミラー352から出射されるパルスレーザ光は収束ビームとなる。
第1の軸外放物面凹面ミラー350及び第2の軸外放物面凹面ミラー352の組み合わせは本開示における「複数枚の凹面ミラーを組み合わせて構成されるミラーユニット」の一例である。
図6は、曲率ミラー35の構成例2を示す。図5で説明した第1の軸外放物面凹面ミラー350に代えて、図6に示すように、平面ミラー351が採用されてもよい。すなわち、曲率ミラー35は、平面ミラー351と第2の軸外放物面凹面ミラー352との組み合わせによって構成されてもよい。平面ミラー351及び第2の軸外放物面凹面ミラー352の組み合わせは本開示における「平面ミラーと凹面ミラーとを組み合わせて構成されるミラーユニット」の一例である。
図7は、曲率ミラー35の構成例3を示す。曲率ミラー35は、例えば、図7に示すように、第1の球面凹面ミラー353と第2の球面凹面ミラー354との組み合わせによって構成されてもよい。第1の球面凹面ミラー353によって反射されたレーザ光は第2の球面凹面ミラー354に入射し、第2の球面凹面ミラー354によって反射される。第2の球面凹面ミラー354から出射されるパルスレーザ光は収束ビームとなる。
第1の球面凹面ミラー353及び第2の球面凹面ミラー354の組み合わせは本開示における「複数枚の凹面ミラーを組み合わせて構成されるミラーユニット」の一例である。
図8は、曲率ミラー35の構成例4を示す。図7で説明した第1の球面凹面ミラー353に代えて、図8に示すように、平面ミラー351が採用されてもよい。すなわち、曲率ミラー35は、平面ミラー351と第2の球面凹面ミラー354との組み合わせによって構成されてもよい。平面ミラー351及び第2の球面凹面ミラー354の組み合わせは本開示における「平面ミラーと凹面ミラーとを組み合わせて構成されるミラーユニット」の一例である。
5.3 動作
図9は、実施形態1に係るEUV光生成装置1Aにおけるレーザ光集光光学系220の集光作用の例を示す。EUV光生成装置1Aは、曲率ミラー35によってパルスレーザ光を収束ビームにする。曲率ミラー35から出射された収束ビームであるパルスレーザ光は伝搬ミラー344によって反射され、レーザ光集光光学系220の凸面ミラー221に入射する。このように、レーザ光集光光学系220に入射するパルスレーザ光が収束ビームになるため、レーザ光集光光学系220によるパルスレーザ光の集光点は、図9に示すように、ターゲット照射位置よりも手前側になる。
図9において実線で示す光線はCold時のビーム経路を示し、点線で示す光線はHot時のビーム経路を示す。レーザ装置3から出射するパルスレーザ光が伝搬ミラー324、344等の熱変形の影響により、ビーム広がり角が大きくなったとしても、ターゲット27に照射するパルスレーザ光のビームサイズが変化しないように、曲率ミラー35の焦点距離が選定される。なお、「ビームサイズが変化しないように」という記載は、ビームサイズが不変であることに限らず、実質的にビームサイズが変化しないものとして扱うことができる程度の許容範囲内の変化を許容して概ね変化しないようにすることを含む。
5.4 収束ビームと発散ビームの説明
図10は、収束ビームと発散ビームのそれぞれが集光光学系に入射する場合のビーム経路の例を示す説明図である。ここでは図示を簡略化するために、反射型の集光光学系の説明に代えて、透過型の集光光学系である凸レンズ226を用いて説明する。図10には、凸レンズ226に対して、平行ビームPB、収束ビームCB、及び発散ビームDBのそれぞれが入射した場合の凸レンズ226の集光作用が示されている。
平行ビームPBが凸レンズ226に入射すると、凸レンズ226の位置から焦点距離fの位置に焦点を結ぶ。収束ビームCBが凸レンズ226に入射すると、凸レンズ226の位置から焦点距離fよりも手前の位置に焦点を結ぶ。発散ビームDBが凸レンズ226に入射すると、凸レンズ226の位置から焦点距離fよりもさらに遠くの位置に焦点を結ぶ。
実施形態1では、曲率ミラー35によってパルスレーザ光を収束ビームに変換して、収束ビームをレーザ光集光光学系220に入射させる。これにより、レーザ光集光光学系220から出射されるパルスレーザ光は、レーザ光集光光学系220の焦点距離の位置よりも手前側の位置に焦点を結ぶ。すなわち、スポット径が最も小さくなる最小スポット位置がターゲット27の照射位置よりも手前側となり、ターゲット照射位置においてパルスレーザ光は広がる方向に発散するデフォーカスのビームとなってターゲット27に照射される。
5.5 曲率ミラーの焦点距離の選定方法
5.5.1 条件式の導出
図11は、曲率ミラー35の光学的作用を凸レンズの記載に置き換えて示す説明図である。曲率ミラー35の焦点距離をf1とする。図11においてBPmは、レーザ装置3から出射するパルスレーザ光の曲率ミラー35の位置でのビームサイズを表す。BDmは、曲率ミラー35の位置で入射するパルスレーザ光のCold時のビーム広がり角を表す。BDccは曲率ミラー35から出射するパルスレーザ光のCold時のビーム広がり角を表す。BPccは、曲率ミラー35からf1の距離の位置でのCold時のビームサイズを表す。パルスレーザ光が発散ビームである時のビーム広がり角の符号は正とし、収束ビームである時のビーム広がり角の符号は負とする。
図12は、Cold時とHot時のそれぞれのビーム経路を概略的に示す。図12の上段にCold時のビーム経路を示し、下段にHot時のビーム経路を示す。図12では、図11と同様に、曲率ミラー35及びレーザ光集光光学系220のそれぞれの光学的作用を凸レンズの記載に置き換えて表示する。
曲率ミラー35から焦点距離f1の位置でのCold時のビームサイズBPccは、以下の2つの式で表される。なお、曲率ミラー35に入射するパルスレーザ光は発散ビームのため、BDmの符号は正であり、曲率ミラー35から出射するパルスレーザ光は収束ビームのため、BDccの符号は負である。
BPcc=2・f1・BDm (1)
BPcc=BPm+2・f1・BDcc (2)
式(1)及び式(2)より、次式が得られる。
BDcc=(―BPm+2・f1・BDm)/(2・f1) (3)
レーザ光集光光学系220の焦点距離をf2とすると、ターゲット照射位置でのビームサイズは、以下の式(4)で表される。
BDcc・f2 (4)
実施形態1の場合、f2は凸面ミラー221とレーザ光集光ミラー22との組み合わせからなるミラーユニットの焦点距離である。
f2は熱影響が小さいので、BDccが変化しなければ、ターゲット照射位置のビームサイズを所望のサイズで一定に維持できる。
BPmのCold時とHot時の変化量をΔBPmと、BDmのCold時とHot時の変化量をΔBDmとすると、Hot時に曲率ミラーから出射するパルスレーザ光のビーム広がり角BDchは以下の式(5)で表される。なお、x1、f1、及びBPmはいずれも熱影響が小さいので、変化しないと仮定する。
BDch={−(BPm+ΔBPm)+2・f1・(BDm+ΔBDm)}/(2・f1) (5)
Cold時とHot時で曲率ミラー35から出射するパルスレーザ光のビーム広がり角が変化しない条件は、式(6)のようになる。
BDch=BDcc (6)
式(6)に式(3)と式(5)を代入して整理すると、次式(7)が得られる。
f1=ΔBPm/2・ΔBDm (7)
式(7)におけるΔBPm及びΔBDmは、例えばシミュレーション等による計算値や実測に基づく計測値を用いてf1を選定することができる。
式(7)の関係を満たすように曲率ミラー35の焦点距離f1を選定すれば、Cold時とHot時とで、曲率ミラー35からレーザ光集光光学系220へ出射するパルスレーザ光のビーム広がり角は一定になる。そして、ターゲット照射位置のビームサイズは、伝搬ミラー342、344等の熱変形によらず、所望のサイズで一定に維持できる。
なお、曲率ミラー35は、光の入射位置がミラーの中心から遠くなるほど、出射する光が絞られるため、Hot時にビーム広がり角、及び、ビームサイズが大きくなっても、曲率ミラー35から出射するパルスレーザ光のビーム広がり角はCold時と同じにできる。
ターゲット照射位置でのビームサイズは、レーザ装置3のレーザ出射口から曲率ミラー35までの距離を変えることにより、変えることができる。この距離を変えることにより、BPm及びΔBPmが変わり、式(7)よりf1が変わるので、式(3)よりBDccが変わる。その結果、ターゲット照射位置でのビームサイズを変えることができる。
式(6)では、Cold時とHot時とで曲率ミラー35から出射するパルスレーザ光の広がり角が等しい条件を示したが、厳密に等しい条件に限らず、BDchとBDccとが実質的に等しいと見做し得る所定の許容範囲内で両者の差異を許容してもよい。すなわち、Cold時とHot時とで曲率ミラー35から出射するパルスレーザ光の広がり角が、実質的に一定と見做すことができる程度の所定の許容範囲内の変化を許容して一定となるように、曲率ミラー35の焦点距離f1を設定してもよい。例えば、所定の許容範囲は、±10%以内の範囲であってよい。
Cold時とHot時で曲率ミラーから出射するパルスレーザ光の広がり角が実質的に変化しない条件として、式(6)の代わりに以下の式(8)を満たしてもよい。
0.9・BDcc <BDch < 1.1・BDcc (8)
式(8)を満たすように曲率ミラー35の焦点距離f1を選定すれば、Cold時とHot時とで、曲率ミラー35からレーザ光集光光学系220へ出射するパルスレーザ光のビーム広がり角は、±10%以内の許容範囲内の変化を許容して概ね一定になる。これにより、ターゲット照射位置でのビームサイズは、伝搬ミラー342、344等の熱変形によらず、概ね一定のサイズに維持される。
もちろん、所定の許容範囲は、±10%以内の範囲に限らず、±5%以内の範囲など、より狭い許容範囲であってもよい。ターゲット照射位置において要求されるビームサイズの許容変動量に応じて所望の許容範囲を設定することができる。
式(7)又は式(8)を満たすように、曲率ミラー35の焦点距離f1を選定する方法は本開示における「焦点距離選定方法」の一例である。Cold時は本開示における「第1状態時」の一例である。Hot時は本開示における「第2状態時」の一例である。レーザ光集光光学系220は本開示における「集光光学系」の一例である。
5.5.2 具体例
図13は、ビーム伝搬光路の途中に配置される曲率ミラー35の焦点距離を選定する際の具体例を示すグラフである。横軸は曲率ミラー35の焦点距離を表し、縦軸はターゲット位置(照射位置)でのビームサイズを表す。図13の実線で示すグラフはCold時のビームサイズを示し、破線で示すグラフはHot時のビームサイズを示す。図13のようなグラフを基に、例えば、ターゲット照射位置でのビームサイズがCold時及びHot時で概ね650μm(0.65mm)となるように、曲率ミラー35の焦点距離として5m(5000mm)を選択する。
5.6 作用・効果
実施形態1で説明した構成によって、曲率ミラー35の焦点距離を選定することにより、ビーム調節器343を制御することなく、伝搬ミラー342、344等の熱変形の影響によるターゲット照射位置でのビームサイズの変動を小さくできる。この結果、EUV光への変換効率が安定する。また、実施形態1によれば、ビーム調節器343、及びビーム調節器343を制御するためのビーム伝送制御部349が不要になる。
6.実施形態2
6.1 構成
図14は、実施形態2に係るEUV光生成装置1Bの構成を概略的に示す。実施形態2に係るEUV光生成装置1Bの構成において、実施形態1に係るEUV光生成装置1Aとの相違点を中心に説明する。図14に示すように、実施形態2に係るEUV光生成装置1Bは、図4のビーム伝送装置34Aに代えて、ビーム伝送装置34Bを備える。ビーム伝送装置34Bは、図4のビーム伝送装置34Aにおける曲率ミラー35の構成に代えて、焦点距離可変機構付きのミラーユニット36を備え、さらに、ミラーユニット36を光軸方向に移動する移動機構としての移動ステージ37と、ビーム伝送制御部349Bと、を備える。ミラーユニット36は本開示における「曲率ミラー」の一例である。
ミラーユニット36及び移動ステージ37はビーム伝送制御部349Bと接続される。ビーム伝送制御部349Bは、EUV光生成制御部5と接続される。
6.2 焦点距離可変機構付きのミラーユニットの例
6.2.1 具体例1
図15は、焦点距離可変機構付きのミラーユニット36の具体例1に係る構成を概略的に示す。図16は、図15の矢印E方向から見たE矢視図である。ミラーユニット36は、2つの凹面ミラー361、364と、2つの凸面ミラー362、363とを含む。パルスレーザ光PLの光路上において、凹面ミラー361、凸面ミラー362、凸面ミラー363、及び凹面ミラー364は、この順序で配置される。
凹面ミラー361及び凸面ミラー362は上流側の組を構成し、凸面ミラー363及び凹面ミラー364は下流側の組を構成する。上流側の組と下流側の組のそれぞれにおいて、凹面ミラーと凸面ミラーの配置順序が逆であってもよい。
ミラーユニット36は、図15に示す状態において、凹面ミラー361の焦点F1と凸面ミラー362の焦点F2とが一致するように構成され、凸面ミラー363の焦点F3と凹面ミラー364の焦点F4とが一致するように構成される。
凹面ミラー361と凸面ミラー362との間の光軸OA2と、凸面ミラー363と凹面ミラー364との間の光軸OA4が平行となるように、凹面ミラー361、364及び凸面ミラー362、363は配置される。
また、凹面ミラー361に入射するパルスレーザ光PLの光軸OA1、凸面ミラー362と凸面ミラー363との間の光軸OA3、及び凹面ミラー364から出射するパルスレーザ光PLの光軸OA5が平行となるように、かつ、光軸OA1と光軸OA5とが一致するように、凹面ミラー361、364及び凸面ミラー362、363は配置される。光軸OA1と光軸OA2との間の角度は直角であってよい。
凸面ミラー362と凹面ミラー361との間の距離と、凸面ミラー363と凹面ミラー364との間の距離とは同一であり、これらの距離はHで表わされる。凸面ミラー362と凹面ミラー361との間の距離Hは、凹面ミラー361の反射面が光軸OA2と交差する点と凸面ミラー362の反射面が光軸OA2と交差する点との間の距離であってもよい。 ミラーユニット36は、さらに、1軸移動ステージ365、移動プレート366及びベースプレート368を含む。1軸移動ステージ365は、不図示のアクチュエータを含む電動ステージであり、ビーム伝送制御部349B(図14参照)と接続される。移動プレート366上には凸面ミラー362、363が固定される。1軸移動ステージ365は、ベースプレート368上に配置され、ベースプレート368に対して移動プレート366を移動できるよう構成される。
移動プレート366の移動方向は、光軸OA2及び光軸OA4に対して平行である。1軸移動ステージ365は、移動プレート366上に固定されているミラー(凸面ミラー362、363)を移動する移動装置である。
凹面ミラー361、364はベースプレート368に固定される。1軸移動ステージ365は、凸面ミラー362と凹面ミラー361との間の距離H、及び、凸面ミラー363と凹面ミラー364との間の距離Hを、同時に増加又は同時に減少させることができる。
移動プレート366は、図15の状態から距離HをdLだけ増加させる方向に移動してもよいし、距離Hを減少させる方向に移動してもよい。
1軸移動ステージ365は、ビーム伝送制御部349Bからの制御により、ベースプレート368に対して移動プレート366を移動させる。ビーム伝送制御部349Bは、1軸移動ステージ365によって移動プレート366を移動させることで、凹面ミラー361と凸面ミラー362との間の距離Hを増減させる。距離Hを変化させることで、ミラーユニット36の焦点距離を変えることができる。
図15及び図16に示す構成の凹面ミラー361は本開示における「第1ミラー」の一例である。凸面ミラー362は本開示における「第2ミラー」の一例である。凸面ミラー363は本開示における「第3ミラー」の一例である。凹面ミラー364は本開示における「第4ミラー」の一例である。移動プレート366は本開示における「プレート」の一例である。1軸移動ステージ365によってミラーユニット36の焦点距離を変更できる機構は本開示における「焦点距離可変機構」の一例である。
6.2.2 具体例2
図17は、焦点距離可変機構付きのミラーユニット36の具体例2に係る構成を概略的に示す。図17に示すミラーユニット36は、凸面ミラー371、凹面ミラー372、平面ミラー373、374、ミラー固定プレート376、及び不図示の駆動機構を含む。凸面ミラー371、凹面ミラー372、平面ミラー373、及び平面ミラー374は、この順序でレーザ光路上に配置される。
凸面ミラー371は、パルスレーザ光が入射する位置に、不図示のミラーホルダによって固定されている。凸面ミラー371は、パルスレーザ光を凹面ミラー372に向けて反射する。
凸面ミラー371からの反射光は、凹面ミラー372の焦点の位置から放射した光と同等の波面を有する光と見なせる様に調整可能であってもよい。
凹面ミラー372は、凸面ミラー371によって反射されたパルスレーザ光の光路に沿って移動できるように、不図示のミラーホルダを介してミラー固定プレート376に固定されている。凹面ミラー372は、凸面ミラー371によって反射されたパルスレーザ光を平面ミラー373に向けて反射する。
平面ミラー373は、凹面ミラー372とともに移動できるように、不図示のミラーホルダを介してミラー固定プレート376に固定されている。ミラー固定プレート376は駆動機構によって図17の紙面上下方向に移動可能である。図17中に表示する双方向矢印は駆動機構によるミラー固定プレート376の移動方向を表す。ミラー固定プレート376を移動させる機構の構成は、図15に例示した移動プレート366、1軸移動ステージ365、及びベースプレート368の構成と同様であってよい。
図17に示す平面ミラー373は、凹面ミラー372によって反射されたレーザ光を、平面ミラー374に向けて反射する。平面ミラー374は、平面ミラー373によって反射されたパルスレーザ光の光路上に、不図示のミラーホルダによって固定されている。
平面ミラー374は、平面ミラー373によって反射されたレーザ光を、伝搬ミラー344に向けて反射する。平面ミラー373、374は、高反射ミラーであってよい。
凸面ミラー371と凹面ミラー372との間の距離及び平面ミラー373と平面ミラー374との間の距離を増加又は減少させるように、ミラー固定プレート376を駆動機構によって移動させることにより、ミラーユニット36の焦点距離を変えることができる。
図17に示す構成の凸面ミラー371は本開示における「第1ミラー」の一例である。凹面ミラー372は本開示における「第2ミラー」の一例である。平面ミラー373は本開示における「第3ミラー」の一例である。平面ミラー374は本開示における「第4ミラー」の一例である。ミラー固定プレート376は本開示における「プレート」の一例である。
6.2.3 具体例3
図18は、焦点距離可変機構付きのミラーユニット36の具体例3に係る構成の要部を概略的に示す。図18に示す焦点距離可変ミラー38は、高反射表面381を有する変形可能な部材382と、部材382が固定される容器384と、圧力調節器386と、を含む。高反射表面381には、パルスレーザ光が高反射する膜がコートされる。容器384は、不図示の配管を介して圧力調節器386と接続される。圧力調節器386には不図示の給水管及び排水管が接続される。圧力調節器386は、ビーム伝送制御部349Bに接続される。
圧力調節器386は、ビーム伝送制御部349Bからの指令に従い、容器384への水388の供給及び容器384からの水388の排出を制御する。容器384内の水388の圧力を圧力調節器386で制御することにより、高反射表面381を変形させ、焦点距離可変ミラー38の焦点距離を変化させる。なお、高反射表面381を変形させるために容器384に供給する流体は水388に限らず、他の液体又は気体を用いてもよい。
焦点距離可変ミラー38は、例えば、図6における第2の軸外放物面凹面ミラー352、図7における第1の球面凹面ミラー353、第2の球面凹面ミラー354、及び図8における第2の球面凹面ミラー354のうちのいずれかの凹面ミラーに代えて用いることができる。
6.3 動作
ビーム伝送制御部349Bは、ミラーユニット36の焦点距離を変更する制御を行う。また、ビーム伝送制御部349Bは、移動ステージ37を制御して、ミラーユニット36を光軸方向に移動させることができる。
焦点距離可変機構付きのミラーユニット36の焦点距離は、実施形態1で説明した曲率ミラー35の焦点距離f1に相当する。実施形態2におけるミラーユニット36は焦点距離f1を変更することが可能である。
また、移動ステージ37によってミラーユニット36を光軸方向に移動させることにより、レーザ装置3のレーザ出射口から曲率ミラー35までの距離を変更することができる。
6.4 作用・効果
実施形態2によれば、レーザ装置3の交換等によってレーザ装置3から出力されるパルスレーザ光PL1の特性が大きく変化しても、Cold時とHot時とでミラーユニット36から出射するパルスレーザ光のビーム広がり角が実質的に変化しない焦点距離を選定することができる。
実施形態2によれば、曲率ミラーの交換をすることなしに、ターゲット27に照射するパルスレーザ光のビームサイズの変動を小さくできる。
また、移動ステージ37によってレーザ装置3のレーザ出射口から曲率ミラー35までの距離を変更できるため、ターゲット照射位置でのビームサイズを変更することができる。
6.5 変形例
実施形態2では、焦点距離可変機構付きのミラーユニット36と、ミラーユニット36を光軸方向に移動させる移動機構とを組み合わせた構成を説明したが、焦点距離可変機構及び移動機構のいずれか一方を省略する構成も可能である。
7.レーザ装置の構成例
レーザ装置3は、プリパルスレーザ光を出力するよう構成されたプリパルスレーザ装置と、メインパルスレーザ光を出力するよう構成されたメインパルスレーザ装置とを含んで構成されてもよい。メインパルスレーザ装置として、例えば、COレーザ装置を用いることができる。あるいはまた、1台のレーザ装置からプリパルスレーザ光とメインパルスレーザ光を出力するように構成されてもよい。
LPP式のEUV光生成装置では、ドロップレット状のターゲットにプリパルスレーザ光を照射してターゲット27を拡散させ、拡散ターゲットを形成した後、この拡散ターゲットにメインパルスレーザ光を照射する。このように、拡散ターゲットにメインパルスレーザ光を照射すれば、ターゲット物質が効率良くプラズマ化され得る。これによれば、パルスレーザ光のエネルギからEUV光のエネルギへの変換効率(CE:Conversion Efficiency)が向上し得る。なお、メインパルスレーザ光の照射に先行して複数のプリパルスレーザ光をターゲットに照射する構成を採用することができる。
図9に示すターゲット27は、例えば、拡散ターゲットであり、上述の各実施形態において説明した式(7)及び式(8)に示す条件は、メインパルスレーザ光についての条件として適用される。
8.設計支援システムとしての応用例
実施形態1及び実施形態2において説明した曲率ミラー35又はミラーユニット36の焦点距離f1を選定する方法は、レーザ装置3から出射されるパルスレーザ光のビーム伝搬光路におけるビームの振る舞い(ビームサイズやビーム広がり角)を計測又はシミュレーションして、これらの情報を基に、EUV光生成装置の光路設計から焦点距離fを選定する処理、又は焦点距離fとレーザ装置3のレーザ出射口から曲率ミラー35までの距離とを選定する処理を行う設計支援プログラムとして構築することが可能である。この設計支援プログラムを実行する装置は設計支援システムとして利用できる。
なお、ビーム広がり角を実際に計測する方法の一例として、例えば、ガウシアンビームの近似により、最大強度の1/e幅をビームサイズとして計測し、光路上における複数の位置におけるビームサイズの計測値を結んでビーム広がり角を求めることができる。
9.EUV光生成装置を用いた電子デバイスの製造方法の例
図19は、EUV光生成装置と接続された露光装置の概略構成を示す図である。図19において、露光装置6は、マスク照射部662とワークピース照射部664とを含む。マスク照射部662は、EUV光生成装置1Aから入射したEUV光252によって、反射光学系663を介してマスクテーブルMTのマスクパターンを照明する。EUV光生成装置1Aは、実施形態2で説明したEUV光生成装置1Bであってもよい。
ワークピース照射部664は、マスクテーブルMTによって反射されたEUV光252を、反射光学系665を介してワークピーステーブルWT上に配置された不図示のワークピース上に結像させる。
ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置6は、マスクテーブルMTとワークピーステーブルWTとを同期して平行移動させることにより、マスクパターンを反映したEUV光をワークピースに露光する。
以上のような露光工程によって半導体ウエハにマスクパターンを転写後、複数の工程を経ることで半導体デバイスを製造することができる。半導体デバイスは本開示における「電子デバイス」の一例である。
上記の説明は、制限ではなく単なる例示を意図している。したがって、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態及び変形例を組み合わせて使用することも当業者には明らかである。
本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (19)

  1. レーザ装置から出射されるパルスレーザ光を集光光学系に導き、前記集光光学系を介してターゲット物質に前記パルスレーザ光を照射することにより極端紫外光を生成する極端紫外光生成装置に用いられるビームデリバリシステムであって、
    前記レーザ装置と前記集光光学系との間の光路上に配置され、前記パルスレーザ光の伝搬方向を変える伝搬ミラーと、
    前記伝搬ミラーと前記集光光学系との間の光路上に配置され、前記集光光学系に入射させる前記パルスレーザ光を収束ビームにする凹面の反射面を持つ曲率ミラーと、
    を備え、
    前記曲率ミラーから出射される前記収束ビームである前記パルスレーザ光のビーム広がり角が、前記伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、前記曲率ミラーの焦点距離を選定したビームデリバリシステム。
  2. 請求項1に記載のビームデリバリシステムであって、
    前記伝搬ミラーの熱変形が未発生の状態である時を第1状態時とし、前記パルスレーザ光の照射に起因する前記伝搬ミラーの熱変形が定常状態になった状態である時を第2状態時とし、
    前記曲率ミラーの焦点距離をf1、
    前記曲率ミラーの位置での前記パルスレーザ光のビームサイズの前記第1状態時と前記第2状態時の変化量をΔBPm、
    前記曲率ミラーの位置で入射する前記パルスレーザ光のビーム広がり角の前記第1状態時と前記第2状態時の変化量をΔBDm、とする場合に、
    f1=ΔBPm/2・ΔBDmの関係を満たす、
    ビームデリバリシステム。
  3. 請求項1に記載のビームデリバリシステムであって、
    前記所定の許容範囲は、±10%以内の範囲である、ビームデリバリシステム。
  4. 請求項1に記載のビームデリバリシステムであって、
    前記伝搬ミラーの熱変形が未発生の状態である第1状態時に前記曲率ミラーから出射される前記パルスレーザ光のビーム広がり角をBDcc、
    前記パルスレーザ光の照射により前記伝搬ミラーの熱変形が定常状態になった状態である第2状態時に前記曲率ミラーから出射される前記パルスレーザ光のビーム広がり角をBDch、とする場合に、
    0.9・BDcc<BDch<1.1・BDcc
    を満たすように、前記曲率ミラーの焦点距離を選定した、
    ビームデリバリシステム。
  5. 請求項4に記載のビームデリバリシステムであって、
    前記曲率ミラーの焦点距離をf1、
    前記曲率ミラーの位置での前記パルスレーザ光の前記第1状態時のビームサイズをBPm、
    前記曲率ミラーの位置での前記パルスレーザ光のビームサイズの前記第1状態時と前記第2状態時の変化量をΔBPm、
    前記曲率ミラーの位置で入射する前記パルスレーザ光の前記第1状態時のビーム広がり角をBDm、
    前記曲率ミラーの位置で入射する前記パルスレーザ光のビーム広がり角の前記第1状態時と前記第2状態時の変化量をΔBDm、とする場合に、
    BDcc=(−BPm+2・f1・BDm)/(2・f1)
    BDch={−(BPm+ΔBPm)+2・f1・(BDm+ΔBDm)}/(2・f1)
    である、ビームデリバリシステム。
  6. 請求項4に記載のビームデリバリシステムであって、
    前記第1状態時は、前記伝搬ミラーが室温の状態の時である、ビームデリバリシステム。
  7. 請求項1に記載のビームデリバリシステムであって、
    前記集光光学系による前記パルスレーザ光の集光点は、前記ターゲット物質に対する前記パルスレーザ光の照射位置よりも手前側の位置である、ビームデリバリシステム。
  8. 請求項1に記載のビームデリバリシステムであって、
    前記曲率ミラーは、複数枚の凹面ミラーを組み合わせて構成されるミラーユニットである、ビームデリバリシステム。
  9. 請求項1に記載のビームデリバリシステムであって、
    前記曲率ミラーは、平面ミラーと凹面ミラーとを組み合わせて構成されるミラーユニットである、ビームデリバリシステム。
  10. 請求項1に記載のビームデリバリシステムであって、さらに、
    前記曲率ミラーを光軸方向に移動させる移動機構を備える、ビームデリバリシステム。
  11. 請求項1に記載のビームデリバリシステムであって、さらに、
    前記曲率ミラーの焦点距離を変化させることができる焦点距離可変機構を備える、ビームデリバリシステム。
  12. 請求項11に記載のビームデリバリシステムであって、
    前記曲率ミラーは、第1ミラー、第2ミラー、第3ミラー及び第4ミラーがこの順序で光路上に配置されるミラーユニットであり、
    前記焦点距離可変機構は、
    前記第2ミラー及び前記第3ミラーが固定されるプレートと、
    前記プレートに固定された前記第2ミラー及び前記第3ミラーを移動させる1軸移動ステージと、
    を含み、
    前記1軸移動ステージによって、前記第1ミラーと前記第2ミラーとの間の距離、及び前記第3ミラーと前記第4ミラーとの間の距離を変更することにより、前記ミラーユニットの焦点距離を変えることができる、
    ビームデリバリシステム。
  13. 請求項12に記載のビームデリバリシステムであって、
    前記第1ミラー及び前記第4ミラーのそれぞれが凹面ミラーであり、
    前記第2ミラー及び前記第3ミラーのそれぞれが凸面ミラーである、
    ビームデリバリシステム。
  14. 請求項12に記載のビームデリバリシステムであって、
    前記第1ミラーが凸面ミラーであり、
    前記第2ミラーが凹面ミラーであり、
    前記第3ミラー及び前記第4ミラーのそれぞれが平面ミラーである、
    ビームデリバリシステム。
  15. 請求項11に記載のビームデリバリシステムであって、
    前記焦点距離可変機構は、
    前記パルスレーザ光を反射する膜がコートされた反射表面を有する変形可能な部材と、
    前記変形可能な部材を保持する容器と、
    前記容器への流体の供給及び前記容器からの前記流体の排出を制御することにより、前記容器内の流体の圧力を調節する圧力調節器と、を含み、
    前記流体の圧力を調節することにより前記反射表面を変形させて、前記焦点距離を変化させる、
    ビームデリバリシステム。
  16. レーザ装置から出射されるパルスレーザ光を集光光学系に導き、前記集光光学系を介してターゲット物質に前記パルスレーザ光を照射することにより極端紫外光を生成する極端紫外光生成装置に用いられるビームデリバリシステムに含まれる曲率ミラーの焦点距離を選定する方法であって、
    前記ビームデリバリシステムは、
    前記レーザ装置と前記集光光学系との間の光路上に、前記パルスレーザ光の伝搬方向を変える伝搬ミラーが配置され、
    前記伝搬ミラーと前記集光光学系との間の光路上に、凹面の反射面を持つ前記曲率ミラーが配置され、前記集光光学系に前記曲率ミラーから収束ビームを入射させる構成であり、
    前記曲率ミラーから出射される前記収束ビームである前記パルスレーザ光のビーム広がり角が、前記伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、前記曲率ミラーの焦点距離を選定する、
    焦点距離選定方法。
  17. 請求項16に記載の焦点距離選定方法であって、
    前記伝搬ミラーの熱変形が未発生の状態である第1状態時に前記曲率ミラーから出射される前記パルスレーザ光のビーム広がり角をBDcc、
    前記パルスレーザ光の照射により前記伝搬ミラーの熱変形が定常状態になった状態である第2状態時に前記曲率ミラーから出射される前記パルスレーザ光のビーム広がり角をBDch、とする場合に、
    0.9・BDcc<BDch<1.1・BDcc
    を満たすように、前記曲率ミラーの焦点距離を選定する、
    焦点距離選定方法。
  18. 請求項17に記載の焦点距離選定方法であって、
    前記曲率ミラーの焦点距離をf1、
    前記曲率ミラーの位置での前記パルスレーザ光の前記第1状態時のビームサイズをBPm、
    前記曲率ミラーの位置での前記パルスレーザ光のビームサイズの前記第1状態時と前記第2状態時の変化量をΔBPm、
    前記曲率ミラーの位置で入射する前記パルスレーザ光の前記第1状態時のビーム広がり角をBDm、
    前記曲率ミラーの位置で入射する前記パルスレーザ光のビーム広がり角の前記第1状態時と前記第2状態時の変化量をΔBDm、とする場合に、
    BDcc=(−BPm+2・f1・BDm)/(2・f1)
    BDch={−(BPm+ΔBPm)+2・f1・(BDm+ΔBDm)}/(2・f1)
    の関係を用いて前記曲率ミラーの焦点距離f1を選定する、焦点距離選定方法。
  19. 電子デバイスの製造方法であって、
    レーザ装置から出射されるパルスレーザ光を集光する集光光学系と、
    前記レーザ装置と前記集光光学系との間の光路上に配置され、前記パルスレーザ光の伝搬方向を変える伝搬ミラーと、
    前記伝搬ミラーと前記集光光学系との間の光路上に配置され、前記集光光学系に入射させる前記パルスレーザ光を収束ビームにする凹面の反射面を持つ曲率ミラーと、を備え、
    前記曲率ミラーから出射される前記収束ビームである前記パルスレーザ光のビーム広がり角が、前記伝搬ミラーの熱変形によらず、一定になるように、又は、所定の許容範囲内の変化を許容して一定になるように、前記曲率ミラーの焦点距離を選定した極端紫外光生成装置を用いて、前記レーザ装置から出射されるパルスレーザ光を集光光学系に導き、前記集光光学系を介してターゲット物質に前記パルスレーザ光を照射することにより極端紫外光を生成し、
    前記極端紫外光を露光装置に出力し、
    電子デバイスを製造するために、前記露光装置内で感光基板上に前記極端紫外光を露光することを含む電子デバイスの製造方法。
JP2019207792A 2019-11-18 2019-11-18 ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法 Active JP7329422B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019207792A JP7329422B2 (ja) 2019-11-18 2019-11-18 ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法
US17/036,412 US11500194B2 (en) 2019-11-18 2020-09-29 Beam delivery system, focal length selecting method, and electronic device manufacturing method
NL2026637A NL2026637B1 (en) 2019-11-18 2020-10-07 Beam delivery system, focal length selecting method, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207792A JP7329422B2 (ja) 2019-11-18 2019-11-18 ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2021081540A true JP2021081540A (ja) 2021-05-27
JP7329422B2 JP7329422B2 (ja) 2023-08-18

Family

ID=73498240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207792A Active JP7329422B2 (ja) 2019-11-18 2019-11-18 ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法

Country Status (3)

Country Link
US (1) US11500194B2 (ja)
JP (1) JP7329422B2 (ja)
NL (1) NL2026637B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508053B (zh) * 2022-09-09 2023-11-07 北京创思工贸有限公司 小f数透镜零件的检测系统、离子束修形系统和检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283107A (ja) * 2007-05-14 2008-11-20 Komatsu Ltd 極端紫外光源装置
WO2014097811A1 (ja) * 2012-12-21 2014-06-26 ギガフォトン株式会社 レーザビーム制御装置及び極端紫外光生成装置
WO2016098240A1 (ja) * 2014-12-19 2016-06-23 ギガフォトン株式会社 極端紫外光生成装置
WO2016125295A1 (ja) * 2015-02-06 2016-08-11 ギガフォトン株式会社 ビームデリバリシステム及びその制御方法
US20170325325A1 (en) * 2015-01-21 2017-11-09 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Adjusting a Beam Diameter and an Aperture Angle of a Laser Beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178534A (ja) 2011-02-02 2012-09-13 Gigaphoton Inc 光学システムおよびそれを用いた極端紫外光生成システム
US8598552B1 (en) 2012-05-31 2013-12-03 Cymer, Inc. System and method to optimize extreme ultraviolet light generation
US9380691B2 (en) 2014-02-28 2016-06-28 Asml Netherlands B.V. Adaptive laser system for an extreme ultraviolet light source
WO2016150612A2 (en) 2015-03-23 2016-09-29 Asml Netherlands B.V. Radiation beam expander

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283107A (ja) * 2007-05-14 2008-11-20 Komatsu Ltd 極端紫外光源装置
WO2014097811A1 (ja) * 2012-12-21 2014-06-26 ギガフォトン株式会社 レーザビーム制御装置及び極端紫外光生成装置
WO2016098240A1 (ja) * 2014-12-19 2016-06-23 ギガフォトン株式会社 極端紫外光生成装置
US20170325325A1 (en) * 2015-01-21 2017-11-09 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Adjusting a Beam Diameter and an Aperture Angle of a Laser Beam
WO2016125295A1 (ja) * 2015-02-06 2016-08-11 ギガフォトン株式会社 ビームデリバリシステム及びその制御方法

Also Published As

Publication number Publication date
JP7329422B2 (ja) 2023-08-18
NL2026637B1 (en) 2021-09-23
US20210149185A1 (en) 2021-05-20
NL2026637A (en) 2021-07-20
US11500194B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
CN102696283B (zh) 包括液滴加速器的euv辐射源以及光刻设备
JP5368261B2 (ja) 極端紫外光源装置、極端紫外光源装置の制御方法
US20130037693A1 (en) Optical system and extreme ultraviolet (euv) light generation system including the optical system
US8395133B2 (en) Apparatus and method of adjusting a laser light source for an EUV source device
US8525140B2 (en) Chamber apparatus, extreme ultraviolet light generation system, and method for controlling the extreme ultraviolet light generation system
US9055657B2 (en) Extreme ultraviolet light generation by polarized laser beam
US10374381B2 (en) Extreme ultraviolet light generating apparatus
JP2006032322A (ja) レーザにより誘発されるプラズマを用いたeuv放射線の時間的に安定な生成のための装置
JP5090780B2 (ja) 露光描画装置
TW202105069A (zh) 雷射聚焦模組
US20240085797A1 (en) Target control in extreme ultraviolet lithography systems using aberration of reflection image
JP5711326B2 (ja) 極端紫外光生成装置
JP6480960B2 (ja) ビームデリバリシステム及びその制御方法
JP6541785B2 (ja) 極端紫外光生成装置
US20190289707A1 (en) Extreme ultraviolet light generation system
JP7329422B2 (ja) ビームデリバリシステム、焦点距離選定方法及び電子デバイスの製造方法
JP2020201452A (ja) 極端紫外光生成システム、レーザビームサイズ制御方法及び電子デバイスの製造方法
JP2021071543A (ja) 極端紫外光集光ミラー、極端紫外光生成装置、及び電子デバイスの製造方法
CN105474101A (zh) 辐射源和光刻设备
US20220260927A1 (en) Method for controlling extreme ultraviolet light
JP7368984B2 (ja) 極端紫外光生成装置、及び電子デバイスの製造方法
KR20240141718A (ko) 방사선 소스를 위한 광학 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7329422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150