JP2021081202A - Zero-adjustment correction method and impedance measurement method - Google Patents

Zero-adjustment correction method and impedance measurement method Download PDF

Info

Publication number
JP2021081202A
JP2021081202A JP2019206275A JP2019206275A JP2021081202A JP 2021081202 A JP2021081202 A JP 2021081202A JP 2019206275 A JP2019206275 A JP 2019206275A JP 2019206275 A JP2019206275 A JP 2019206275A JP 2021081202 A JP2021081202 A JP 2021081202A
Authority
JP
Japan
Prior art keywords
terminal
electronic component
measurement target
measurement
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019206275A
Other languages
Japanese (ja)
Other versions
JP7364434B2 (en
Inventor
淳司 飯島
Junji Iijima
淳司 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2019206275A priority Critical patent/JP7364434B2/en
Publication of JP2021081202A publication Critical patent/JP2021081202A/en
Application granted granted Critical
Publication of JP7364434B2 publication Critical patent/JP7364434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

To provide a zero-adjustment correction method for enabling highly accurate zero-adjustment correction in an impedance measurement method by a four-terminal measurement method.SOLUTION: One and the other one of a pair of output terminals of a measurement signal source 10 are respectively connected to a terminal 31 of a battery cell 30 and the other terminal 35, so as to form a current route. One terminal of the voltmeter 20 is connected to the other terminal of the battery cell 30 via a connection loop 29 extending along an outer surface of the battery cell 30 while being insulated in terms of DC with respect to the one terminal of the battery cell 30. Then, the other terminal of the voltmeter 20 is connected to the other terminal of the battery cell 30 so as to perform zero-adjustment.SELECTED DRAWING: Figure 1

Description

本発明は、ゼロアジャスト補正方法及びインピーダンス測定方法に関するものである。 The present invention relates to a zero adjustment correction method and an impedance measurement method.

図5に示すように、四端子測定法によるインピーダンス測定装置は、基本的な構成として、被測定抵抗体(図示せず)に測定電流を供給する測定信号源(定電流電源)100と、その測定電流により被測定抵抗体に生ずる電圧降下分を測定する電圧計200と、演算部(図示せず)を備える。このインピーダンス測定には、測定信号源100の正極(Hi)に接続されるHi側の電流供給側端子(SOURCE Hi)101と、負極(Lo)に接続されるLo側の電流供給側端子(SOURCE Lo)102と、電圧計200の正極(Hi)に接続されるHi側の電圧検出端子(SENSE Hi)201と負極(Lo)に接続されるLo側の電圧検出端子(SENCE Lo)202の合計4本の端子が用いられる。 As shown in FIG. 5, the impedance measuring device by the four-terminal measuring method has, as a basic configuration, a measuring signal source (constant current power supply) 100 that supplies a measuring current to a resistor to be measured (not shown), and a measuring signal source (constant current power supply) 100 thereof. It includes a voltmeter 200 for measuring the voltage drop generated in the resistor to be measured due to the measured current, and a calculation unit (not shown). For this impedance measurement, the current supply side terminal (SOURCE Hi) 101 on the Hi side connected to the positive electrode (Hi) of the measurement signal source 100 and the current supply side terminal (SOURCE) on the Lo side connected to the negative electrode (Lo) are used. Lo) 102, the total of the voltage detection terminal (SENSE Hi) 201 on the Hi side connected to the positive electrode (Hi) of the voltmeter 200 and the voltage detection terminal (SENCE Lo) 202 on the Lo side connected to the negative electrode (Lo). Four terminals are used.

測定に先立って、種々の補正(調整)が行われるが、その一つにゼロアジャスト補正(ショート補正とも言う)がある(以下の特許文献1参照)。従来のゼロアジャスト補正方法は、例えば、電流供給側端子101と電流供給側端子102を接続するとともに電圧検出端子201と電圧検出端子202とを接続し、接続された電流供給側端子101,102と電圧検出端子201,202を1点で接続するという接続態様をもって行われていた(図5参照)。電圧計200は入力インピーダンスが高いため、測定信号源100から供給される測定電流Isは電流供給側端子101,102を流れる。上記したように接続された電流供給側端子101,102と電圧検出端子201,202が1点で接続され、電圧計200にて測定された電圧をVとすると、測定電流Isは、定電流電源100、電流供給側端子101および電流供給側端子102を通るいわゆるソースリード線のみに流れる。そのため、電圧検出端子201と電圧検出端子202の間に発生する電圧は0ボルト(V)となり、電圧検出端子201と電圧検出端子202の間のインピーダンスZ(=V/Is)は0となる。ゼロアジャスト補正は、電圧検出端子201,202との間を0Ωとして測定を行い、そのとき電圧計200に表示される電圧Vと測定電流Isから算出されるインピーダンス値がオフセット値となり、実際の測定時においてそのオフセット値を差し引いて、引いた値をゼロアジャスト後の測定インピーダンス値とする。なお、抵抗RSOH,RSEH,RSOL,RSELは各配線抵抗および接触抵抗である。 Prior to the measurement, various corrections (adjustments) are performed, one of which is zero adjustment correction (also referred to as short correction) (see Patent Document 1 below). In the conventional zero adjustment correction method, for example, the current supply side terminal 101 and the current supply side terminal 102 are connected, the voltage detection terminal 201 and the voltage detection terminal 202 are connected, and the connected current supply side terminals 101 and 102 are connected. The connection mode was such that the voltage detection terminals 201 and 202 were connected at one point (see FIG. 5). Since the voltmeter 200 has a high input impedance, the measurement current Is supplied from the measurement signal source 100 flows through the current supply side terminals 101 and 102. Assuming that the current supply side terminals 101 and 102 and the voltage detection terminals 201 and 202 connected as described above are connected at one point and the voltage measured by the voltmeter 200 is V, the measured current Is is a constant current power supply. 100, it flows only through the so-called source lead wire passing through the current supply side terminal 101 and the current supply side terminal 102. Therefore, the voltage generated between the voltage detection terminal 201 and the voltage detection terminal 202 is 0 volt (V), and the impedance Z (= V / Is) between the voltage detection terminal 201 and the voltage detection terminal 202 is 0. In the zero adjustment correction, the measurement is performed with the voltage detection terminals 201 and 202 as 0Ω, and the impedance value calculated from the voltage V displayed on the voltmeter 200 and the measurement current Is at that time becomes an offset value, and the actual measurement is performed. At times, the offset value is subtracted, and the subtracted value is used as the measured impedance value after zero adjustment. The resistors R SOH , R SEH , R SOL , and R SEL are each wiring resistance and contact resistance.

特開2016−173274号公報Japanese Unexamined Patent Publication No. 2016-173274

しかしながら、図6に示すように、測定対象電子部品であるバッテリセル300の測定時には以下の誤差要因により測定誤差が発生する。第1の要因として、測定電流により発生する磁束(図6参照)により電圧計200に誘導電圧が発生してしまう点が挙げられ、この誘導電圧によって測定誤差が生じてしまう。第2の要因として、測定電流Isにより発生する磁束によりバッテリー外装金属内に渦電流(図6参照)が発生し、その渦電流により発生する磁束により電圧計200に誘導電圧が発生してしまう点が挙げられ、この誘導電圧によって測定誤差が生じてしまう。 However, as shown in FIG. 6, when measuring the battery cell 300, which is an electronic component to be measured, a measurement error occurs due to the following error factors. The first factor is that an induced voltage is generated in the voltmeter 200 due to the magnetic flux generated by the measured current (see FIG. 6), and this induced voltage causes a measurement error. The second factor is that the magnetic flux generated by the measured current Is causes an eddy current (see FIG. 6) in the battery exterior metal, and the magnetic flux generated by the eddy current causes an induced voltage in the voltmeter 200. However, this induced voltage causes a measurement error.

この場合、上記した方法により正しくゼロアジャストを実施しても、バッテリー測定時に新たなオフセット要因が生じてしまうことになる。ところで、ゼロアジャスト治具を、測定するバッテリーと同じ形状にしてゼロアジャストする方法が知られているが、この場合、ゼロアジャスト治具と実際のバッテリーでは測定電流が流れる経路が同じではないため発生する磁束の状態も実際のバッテリーとは異なるため電磁誘導を原因とする測定誤差に影響を与える量(影響量)も異なってくる。さらにバッテリー自体は外装が金属で覆われているため渦電流が生じる。そのため、異種金属や非磁性体でゼロアジャスト治具を構成した場合も、実際のバッテリーとは上記した測定誤差に影響を与える量が異なってくるため、実際の測定時において測定誤差をなくすことは困難である。 In this case, even if the zero adjustment is correctly performed by the above method, a new offset factor will occur at the time of battery measurement. By the way, there is known a method of making the zero adjust jig the same shape as the battery to be measured and zero adjusting, but in this case, it occurs because the path through which the measurement current flows is not the same between the zero adjust jig and the actual battery. Since the state of the magnetic flux applied is also different from that of the actual battery, the amount (effect amount) that affects the measurement error due to electromagnetic induction also differs. Furthermore, since the exterior of the battery itself is covered with metal, eddy currents are generated. Therefore, even if the zero-adjustment jig is constructed of dissimilar metals or non-magnetic materials, the amount that affects the above-mentioned measurement error will be different from that of the actual battery, so it is not possible to eliminate the measurement error during actual measurement. Have difficulty.

したがって、本発明の課題は、四端子測定法によるインピーダンス測定方法において精度の高いゼロアジャスト補正(ショート補正)が行えるようにしたゼロアジャスト補正方法を提供することにある。 Therefore, an object of the present invention is to provide a zero-adjustment correction method that enables highly accurate zero-adjustment correction (short-circuit correction) in the impedance measurement method by the four-terminal measurement method.

本発明に係るゼロアジャスト補正方法の一側面は、一対の端子を有する測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、測定対象電子部品の両端子間に発生する電圧を測定する電圧検出部とを含み、測定対象電子部品のインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、測定信号発生源の一対の出力端子の一方と他方をそれぞれ測定対象電子部品の一方の端子と他方の端子に接続して電流経路を形成し、電圧検出部の一方の端子を、測定対象電子部品の一方の端子に対して直流的に絶縁した状態にして測定対象電子部品の外部表面に沿って延在する接続線を介して測定対象電子部品の他方の端子に接続し、電圧検出部の他方の端子を測定対象電子部品の他方の端子に接続してゼロアジャストを実行することを特徴とする。 One aspect of the zero-adjustment correction method according to the present invention is a voltage generated between a measurement signal source that supplies a measurement signal of a predetermined frequency to a measurement target electronic component having a pair of terminals and a voltage generated between both terminals of the measurement target electronic component. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of an electronic component to be measured, including a voltage detection unit to be measured. A current path is formed by connecting one terminal and the other terminal, and one terminal of the voltage detection unit is made to be DC-insulated from one terminal of the electronic component to be measured so that the electronic component to be measured is electrically insulated. Connect to the other terminal of the electronic component to be measured via a connecting line extending along the outer surface, and connect the other terminal of the voltage detector to the other terminal of the electronic component to be measured to perform zero adjustment. It is characterized by that.

本発明に係るゼロアジャスト補正方法の他の側面は、一対の端子を有する測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、測定対象電子部品の両端子間に発生する電圧を測定する電圧検出部とを含み、測定対象電子部品のインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、測定信号発生源の一対の出力端子の一方と他方をそれぞれ測定対象電子部品と同種の電子部品の一方の端子と他方の端子に接続して電流経路を形成し、前記電圧検出部の一方の端子を、同種の電子部品の一方の端子に対して直流的に絶縁した状態にして同種の電子部品の外部表面に沿って延在する接続線を介して同種の電子部品の他方の端子に接続し、電圧検出部の他方の端子を同種の電子部品の他方の端子に接続してゼロアジャストを実行することを特徴とする。 Another aspect of the zero-adjustment correction method according to the present invention is a voltage generated between a measurement signal source that supplies a measurement signal of a predetermined frequency to a measurement target electronic component having a pair of terminals and a voltage generated between both terminals of the measurement target electronic component. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of an electronic component to be measured, including a voltage detection unit that measures the voltage. A state in which one terminal of an electronic component of the same type as the above is connected to the other terminal to form a current path, and one terminal of the voltage detection unit is DC-insulated from one terminal of the same type of electronic component. Connect to the other terminal of the same type of electronic component via a connecting line extending along the outer surface of the same type of electronic component, and connect the other terminal of the voltage detector to the other terminal of the same type of electronic component. It is characterized by performing zero adjustment.

本発明に係るゼロアジャスト補正方法の他の側面は、それぞれ一対の端子を有する第1〜第N(Nは2以上の整数)の測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、第1〜第Nの測定対象電子部品のそれぞれの両端子間に発生する電圧を測定する電圧検出部とを含み、第1〜第Nの測定対象電子部品のそれぞれのインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、測定信号発生源の一対の出力端子の一方と他方を前記第1〜第Nの測定対象電子部品のそれぞれの一方の端子と他方の端子に個別に接続して電流経路を形成し、電圧検出部の一方の端子を、第1〜第Nの測定対象電子部品の測定ごとに、第1〜第Nの測定対象電子部品のそれぞれの一方の端子に対して直流的に絶縁した状態にして第1〜第Nの測定対象電子部品のそれぞれの外部表面に沿って延在する接続線を介して第1〜第Nの測定対象電子部品の他方の端子のそれぞれに接続し、電圧検出部の他方の端子を第1〜第Nの測定対象電子部品のそれぞれの他方の端子に接続してゼロアジャストを実行することを特徴とする。 Another aspect of the zero-adjustment correction method according to the present invention is the generation of a measurement signal that supplies a measurement signal of a predetermined frequency to the first to Nth (N is an integer of 2 or more) measurement target electronic components each having a pair of terminals. It includes a source and a voltage detector that measures the voltage generated between both terminals of the first to Nth measurement target electronic components, and measures the impedance of each of the first to Nth measurement target electronic components. This is a zero-adjustment correction method in an impedance measuring device, in which one and the other of a pair of output terminals of a measurement signal generation source are individually connected to one terminal and the other terminal of each of the first to Nth measurement target electronic components. It is connected to form a current path, and one terminal of the voltage detection unit is connected to one terminal of each of the first to Nth measurement target electronic components for each measurement of the first to Nth measurement target electronic components. The other terminal of the first to Nth measurement target electronic components via a connection line extending along the outer surface of each of the first to Nth measurement target electronic components in a DC-insulated state. It is characterized in that the other terminal of the voltage detection unit is connected to each of the other terminals of the first to Nth measurement target electronic components to execute zero adjustment.

本発明に係るゼロアジャスト補正方法の他の側面は、それぞれ一対の端子を有する第1〜第N(Nは2以上の整数)の測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、第1〜第Nの測定対象電子部品のそれぞれの両端子間に発生する電圧を測定する第1〜第N(Nは2以上の整数)の電圧検出部とを含み、第1〜第Nの測定対象電子部品のそれぞれのインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、測定信号発生源の一対の出力端子の一方と他方を第1〜第Nの測定対象電子部品のそれぞれの一方の端子と他方の端子に個別に接続して電流経路を形成し、第1〜第Nの電圧検出部の一方の端子を、第1〜第Nの測定対象電子部品の一方の端子に対してそれぞれ直流的に絶縁した状態にして、第1〜第Nの測定対象電子部品のそれぞれの外部表面に沿って延在する接続線を介してそれぞれ第1〜第Nの測定対象電子部品の他方の端子に接続し、第1〜第Nの電圧検出部の他方の端子をそれぞれ第1〜第Nの測定対象電子部品の他方の端子に接続してゼロアジャストを実行することを特徴とする。 Another aspect of the zero-adjustment correction method according to the present invention is the generation of a measurement signal that supplies a measurement signal of a predetermined frequency to the first to Nth (N is an integer of 2 or more) measurement target electronic components each having a pair of terminals. It includes a source and a voltage detector of the first to Nth (N is an integer of 2 or more) for measuring the voltage generated between both terminals of the electronic components to be measured 1st to Nth. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of each of the Nth measurement target electronic components, and one and the other of the pair of output terminals of the measurement signal generation source are the first to Nth measurement target electronic components. One terminal of each of the above and the other terminal is individually connected to form a current path, and one terminal of the first to Nth voltage detection units is connected to one of the first to Nth measurement target electronic components. The first to Nth measurement target electrons are respectively insulated from the terminals in a DC state via a connection line extending along the outer surface of each of the first to Nth measurement target electronic components. It is characterized by connecting to the other terminal of the component and connecting the other terminal of the first to Nth voltage detectors to the other terminal of the first to Nth measurement target electronic components to execute zero adjustment. And.

本発明に係るインピーダンス測定方法の一側面は、上記したゼロアジャスト補正方法を実施した後に、測定対象電子部品の一方の端子に対して直流的に絶縁した状態を解除し、接続ループを測定対象電子部品から外した状態で電圧検出部の一方の端子を測定対象電子部品の一方の端子に接続し、電圧検出部の他方の端子を測定対象電子部品の他方の端子に接続して測定対象電子部品のインピーダンスを測定することを特徴とする。 One aspect of the impedance measurement method according to the present invention is that after the above-mentioned zero adjustment correction method is performed, the state of being DC-insulated to one terminal of the electronic component to be measured is released, and the connection loop is connected to the electronic component to be measured. With the voltage detector removed, connect one terminal of the voltage detector to one terminal of the electronic component to be measured, and connect the other terminal of the voltage detector to the other terminal of the electronic component to be measured. It is characterized by measuring the impedance of.

本発明に係るインピーダンス測定方法の他の側面は、上記したゼロアジャスト補正方法を実施した後に、測定対象電子部品と同種の電子部品の一方の端子に対して直流的に絶縁した状態を解除し、接続線を測定対象電子部品と同種の電子部品から外した状態で電圧検出部の一方の端子を測定対象電子部品の一方の端子に接続し、電圧検出部の他方の端子を測定対象電子部品の他方の端子に接続して測定対象電子部品のインピーダンスを測定することを特徴とする。 In another aspect of the impedance measurement method according to the present invention, after the above-mentioned zero adjustment correction method is performed, the state of being DC-insulated to one terminal of an electronic component of the same type as the electronic component to be measured is released. With the connection wire removed from the same type of electronic component as the electronic component to be measured, connect one terminal of the voltage detector to one terminal of the electronic component to be measured, and connect the other terminal of the voltage detector to the electronic component to be measured. It is characterized in that it is connected to the other terminal to measure the impedance of the electronic component to be measured.

測定対象の端子付近における電流計測線の一部で発生する磁束漏れにより測定対象の端子付近における電圧計測線の一部で生じる電磁誘導の影響を低減できるインピーダンス測定システムおよび測定方法を提供することができる。 It is possible to provide an impedance measurement system and a measurement method that can reduce the influence of electromagnetic induction that occurs on a part of the voltage measurement line near the terminal to be measured due to magnetic flux leakage that occurs on a part of the current measurement line near the terminal to be measured. it can.

本発明の第1の実施の形態に係るゼロアジャスト補正方法を説明するための接続構成態様を示した図である。It is a figure which showed the connection structure mode for demonstrating the zero adjustment correction method which concerns on 1st Embodiment of this invention. 測定値の再現性試験の実施における電流計測ループと電圧計測ループの配線パターンを示した図である。It is a figure which showed the wiring pattern of the current measurement loop and the voltage measurement loop in carrying out the reproducibility test of the measured value. 測定値の再現性試験における第1の実施の形態に係るゼロアジャスト治具と従来のゼロアジャスト治具を用いて図2の3種類の配線パターンにおいて実施したインピーダンス測定の結果を示したグラフである。It is a graph which showed the result of the impedance measurement performed in the three kinds of wiring patterns of FIG. 2 using the zero adjustment jig which concerns on the 1st Embodiment in the reproducibility test of the measured value, and the conventional zero adjustment jig. .. 本発明の第2の実施の形態に係るゼロアジャスト補正方法を説明するための図である。It is a figure for demonstrating the zero adjustment correction method which concerns on 2nd Embodiment of this invention. 従来のゼロアジャスト補正方法を説明するための図である。It is a figure for demonstrating the conventional zero adjustment correction method. 従来のゼロアジャスト補正方法を説明するための接続構成態様を示した図である。It is a figure which showed the connection structure mode for demonstrating the conventional zero adjustment correction method.

<第1の実施の形態>
以下に、図1を参照して本発明に係るゼロアジャスト補正方法の第1の実施の形態について、測定対象としてバッテリセルを例に挙げて説明する。なお、インピーダンス測定装置の測定対象電子部品(以下、「測定対象」と呼ぶ。)は、バッテリセル(電池セル)、電気回路を構成する素子であり、インピーダンスの測定は、バッテリセルや素子の特性評価等に重要な電気的パラメータとしてのインピーダンスを測定する。
<First Embodiment>
Hereinafter, the first embodiment of the zero adjustment correction method according to the present invention will be described with reference to FIG. 1 by taking a battery cell as an example of measurement. The electronic component to be measured (hereinafter referred to as “measurement target”) of the impedance measuring device is a battery cell (battery cell) or an element constituting an electric circuit, and impedance measurement is a characteristic of the battery cell or the element. Measure impedance as an important electrical parameter for evaluation.

[インピーダンス測定装置の構成]
インピーダンス測定装置1は、測定信号を発生する測定信号源10、電流検出部としての電流計15及び電圧検出部としての電圧計20を含んで構成されている。なお、測定信号源10は請求項1の測定信号発生源に相当する。
[Configuration of impedance measuring device]
The impedance measuring device 1 includes a measuring signal source 10 for generating a measuring signal, an ammeter 15 as a current detecting unit, and a voltmeter 20 as a voltage detecting unit. The measurement signal source 10 corresponds to the measurement signal generation source of claim 1.

[測定装置とバッテリセルとの接続態様]
以下に、インピーダンス測定装置1と測定対象であるバッテリセル30との接続態様について説明する。インピーダンス測定装置1でバッテリセル30のインピーダンスを測定するにあたって、測定信号源10、電流計15および電圧計20とバッテリセル30とを電流計測線12、電圧計測線22を介して接続させる。ここで、プローブについては、測定信号源10からバッテリセル30を介して電流計15に流れる電流の経路である測定電流ループ内に含まれる2つの電流プローブ25、26と、バッテリセル30の電圧検出の経路である電圧検出ループ内に含まれる2つの電圧プローブ27、28が用いられる。また、電流プローブ25、26の電気配線として電流計測線12a,12bを互いに捩って形成されたツイストケーブル12が用いられ、電圧プローブ27、28の電気配線として電圧計測線22a,22bを互いに捩って形成されたツイストケーブル22が用いられる。
[Connection mode between measuring device and battery cell]
The connection mode between the impedance measuring device 1 and the battery cell 30 to be measured will be described below. When measuring the impedance of the battery cell 30 with the impedance measuring device 1, the measurement signal source 10, the ammeter 15, the voltmeter 20 and the battery cell 30 are connected via the current measuring line 12 and the voltage measuring line 22. Here, regarding the probes, the voltage detection of the two current probes 25 and 26 included in the measurement current loop, which is the path of the current flowing from the measurement signal source 10 to the ammeter 15 via the battery cell 30, and the battery cell 30. Two voltage probes 27, 28 included in the voltage detection loop, which is the path of the above, are used. Further, a twisted cable 12 formed by twisting the current measuring lines 12a and 12b to each other is used as the electrical wiring of the current probes 25 and 26, and the voltage measuring lines 22a and 22b are twisted to each other as the electrical wiring of the voltage probes 27 and 28. The twisted cable 22 formed in the above is used.

なお、電流計測線12aはHi側ソース線(SOURCE Hi)であり電流プローブ25に接続されており、電流計測線12bはLo側ソース線(SOURCE Lo)であり電流プローブ26に接続されている。電圧計測線22aはHi側センス線(SENSE Hi)であり電流プローブ27に接続されており、電圧計測線22bはLo側センス線(SENSE Lo)であり電流プローブ28に接続されている。 The current measurement line 12a is a Hi-side source line (SOURCE Hi) and is connected to the current probe 25, and the current measurement line 12b is a Lo-side source line (SOURCE Lo) and is connected to the current probe 26. The voltage measurement line 22a is a Hi-side sense line (SENSE Hi) and is connected to the current probe 27, and the voltage measurement line 22b is a Lo-side sense line (SENSE Lo) and is connected to the current probe 28.

測定信号源10の一対の出力端子(図示せず)の一方は、電流計測線12a、電流プローブ25を介してバッテリセル30のタブ端子31に接続され、測定信号源10の一対の出力端子の他方は、電流計15、電流計測線12b、電流プローブ26を介してバッテリセル30のタブ端子35に接続されている。 One of the pair of output terminals (not shown) of the measurement signal source 10 is connected to the tab terminal 31 of the battery cell 30 via the current measurement line 12a and the current probe 25, and is connected to the pair of output terminals of the measurement signal source 10. The other is connected to the tab terminal 35 of the battery cell 30 via an ammeter 15, a current measuring line 12b, and a current probe 26.

電圧計20は、ツイストケーブル22の一端側における電圧計測線22aの端部と電圧計測線22bの端部との間に配設され、上記測定電流ループに流れる測定電流Isに起因して電圧計測線22aの端部と電圧計測線22bの端部との間に生じる電圧V1を測定する機能を有する。なお、測定された電圧V1は図示しない演算処理部(測定装置1内に含まれる)に出力され、後述するインピーダンスのR値とX値を算出する。 The voltmeter 20 is arranged between the end of the voltage measurement line 22a and the end of the voltage measurement line 22b on one end side of the twist cable 22, and measures the voltage due to the measurement current Is flowing in the measurement current loop. It has a function of measuring the voltage V 1 generated between the end of the wire 22a and the end of the voltage measuring wire 22b. The measured voltage V 1 is output to an arithmetic processing unit (included in the measuring device 1) (not shown), and the R value and the X value of the impedance, which will be described later, are calculated.

[ゼロアジャスト治具の構成]
以下に、本発明に係るゼロアジャスト補正方法を実施するためのインピーダンス測定装置に用いられるゼロアジャスト治具の構成について説明する。
[Zero adjustment jig configuration]
Hereinafter, the configuration of the zero adjustment jig used in the impedance measuring device for carrying out the zero adjustment correction method according to the present invention will be described.

ここで、本発明に係るゼロアジャスト補正方法を実施するためのインピーダンス測定装置に用いられるゼロアジャスト治具36は、測定対象のバッテリー30を用いて構成されており、第1の特徴として測定対象であるバッテリセル30の一対のタブ端子31、35間にHi側センス線(SENSE Hi)とLo側センス線(SENSE Lo)を短絡してなる接続ループ29を形成して構成されている。接続ループ29は、タブ端子31から所定距離をおいた点に位置する接続点32から、タブ端子35の厚み方向に直交する端面(バッテリセル30の長手方向に対して直交するタブ端子の側面)における接続点37にかけてバッテリセル30のセル表面に近接させた状態で、かつバッテリセル30のセル表面に沿って形成されている。なお、接続点32は請求項1の電圧検出部の一方の端子に相当し、接続点37は請求項1の測定対象電子部品の他方の端子に相当する。 Here, the zero-adjustment jig 36 used in the impedance measuring device for carrying out the zero-adjustment correction method according to the present invention is configured by using the battery 30 to be measured, and has a first feature of being a measurement target. A connection loop 29 formed by short-circuiting a Hi-side sense wire (SENSE Hi) and a Lo-side sense wire (SENSE Lo) between a pair of tab terminals 31 and 35 of a certain battery cell 30 is formed. The connection loop 29 has an end face orthogonal to the thickness direction of the tab terminal 35 (the side surface of the tab terminal orthogonal to the longitudinal direction of the battery cell 30) from the connection point 32 located at a predetermined distance from the tab terminal 31. It is formed along the cell surface of the battery cell 30 in a state of being close to the cell surface of the battery cell 30 toward the connection point 37 in the above. The connection point 32 corresponds to one terminal of the voltage detection unit of claim 1, and the connection point 37 corresponds to the other terminal of the electronic component to be measured according to claim 1.

第2の特徴として、バッテリセル30のHi側において、電流計測線12a(Hi側ソース線)の一端における接続点33と電圧計測線22a(Hi側センス線)の一端における接続点32が直流的に絶縁されている。すなわち、プローブ25とプローブ27のタブ端子31上における電位が直流的に絶縁されるようにコンデンサ34をプローブ25とプローブ27の間に介在させている。因みに直流的に絶縁できるのであればコンデンサ34をプローブ25とプローブ27の間に介在させる以外の方法でも構わない。また、接続点33は請求項1の測定対象電子部品の一方の端子に相当する。 As a second feature, on the Hi side of the battery cell 30, the connection point 33 at one end of the current measurement line 12a (Hi side source line) and the connection point 32 at one end of the voltage measurement line 22a (Hi side sense line) are direct current. Insulated in. That is, a capacitor 34 is interposed between the probe 25 and the probe 27 so that the potentials of the probe 25 and the probe 27 on the tab terminal 31 are directly insulated. Incidentally, a method other than interposing the capacitor 34 between the probe 25 and the probe 27 may be used as long as it can be insulated by direct current. Further, the connection point 33 corresponds to one terminal of the electronic component to be measured according to claim 1.

上記した従来のゼロアジャスト補正方法を実施するためのインピーダンス測定装置に用いられるゼロアジャスト治具が、測定対象であるバッテリセルと同形状のものであり測定電流の流れる電流経路と異なる電流経路をゼロアジャスト治具の内部に有するものであるのに対し、本発明に係るゼロアジャスト補正方法を実施するためのインピーダンス測定装置に用いられるゼロアジャスト治具は、上記したように測定対象のバッテリセルと同形状のものであり測定電流の流れる電流経路も同じである点で両者は異なる。 The zero-adjust jig used in the impedance measuring device for carrying out the above-mentioned conventional zero-adjust correction method has the same shape as the battery cell to be measured, and has a current path different from the current path through which the measured current flows. While the zero adjust jig is provided inside the adjust jig, the zero adjust jig used in the impedance measuring device for carrying out the zero adjust correction method according to the present invention is the same as the battery cell to be measured as described above. The two differ in that they have the same shape and the current path through which the measured current flows is the same.

[測定方法]
ゼロアジャスト治具36を用いて測定装置1を構成する電流プローブ25と電圧プローブ27をそれぞれタブ端子31の接続点(ノード)33と接続点32に接続し、電流プローブ26と電圧プローブ28をそれぞれタブ端子35の接続点38と接続点37に接続した上で、測定信号源10から供給される測定電流Isが電流計15により測定され、接続点32と接続点37の間に発生する電圧V1が電圧計20により測定される。測定された電圧Vと測定電流Isに基づいて算出されるインピーダンスのR値とX値(Z=R+jX;R値:レジスタンス値、X値:リアクタンス値)をオフセット値とし、このゼロアジャストを実行した後にゼロアジャスト治具36(接続ループ29が形成されたバッテリセル30)を外し、さらにコンデンサ34も外した上で、測定対象であるバッテリセル30に対してインピーダンス測定をする時に、電圧プローブ27をバッテリセル30のタブ端子31の接続点39(図1右下側のインピーダンス測定時の部分拡大図参照)に接続してHi側センス線22aとLo側センス線22bをバッテリセル30の内部を介して接続させた状態でバッテリセル30のインピーダンスのR値とX値を測定する。測定されたインピーダンスのR値とX値から上記オフセット値を差し引いた値を算出し、その算出された値がゼロアジャスト実行後の測定インピーダンス(R値、X値)となる。なお、電流計測線12aはHi側ソース線(SOURCE Hi)であり電流プローブ25に接続されており、電流計測線12bはLo側ソース線(SOURCE Lo)であり電流プローブ26に接続されている。電圧計測線22aはHi側センス線(SENSE Hi)であり電圧プローブ27に接続されており、電圧計測線22bはLo側センス線(SENSE Lo)であり電圧プローブ28に接続されている。
[Measuring method]
Using the zero adjust jig 36, the current probe 25 and the voltage probe 27 constituting the measuring device 1 are connected to the connection point (node) 33 and the connection point 32 of the tab terminal 31, respectively, and the current probe 26 and the voltage probe 28 are connected, respectively. After connecting to the connection point 38 and the connection point 37 of the tab terminal 35, the measurement current Is supplied from the measurement signal source 10 is measured by the ammeter 15, and the voltage V generated between the connection point 32 and the connection point 37. 1 is measured by the voltmeter 20. This zero adjustment was executed with the R value and X value (Z = R + jX; R value: resistance value, X value: reactance value) of the impedance calculated based on the measured voltage V and the measured current Is as offset values. Later, after removing the zero adjust jig 36 (the battery cell 30 in which the connection loop 29 is formed) and the capacitor 34, the voltage probe 27 is used when measuring the impedance of the battery cell 30 to be measured. Connect to the connection point 39 of the tab terminal 31 of the battery cell 30 (see the partially enlarged view at the time of impedance measurement on the lower right side of FIG. 1), and connect the Hi side sense wire 22a and the Lo side sense wire 22b through the inside of the battery cell 30. The R value and the X value of the impedance of the battery cell 30 are measured in the connected state. A value obtained by subtracting the above offset value from the R value and X value of the measured impedance is calculated, and the calculated value becomes the measured impedance (R value, X value) after executing zero adjustment. The current measurement line 12a is a Hi-side source line (SOURCE Hi) and is connected to the current probe 25, and the current measurement line 12b is a Lo-side source line (SOURCE Lo) and is connected to the current probe 26. The voltage measurement line 22a is a Hi-side sense line (SENSE Hi) and is connected to the voltage probe 27, and the voltage measurement line 22b is a Lo-side sense line (SENSE Lo) and is connected to the voltage probe 28.

[測定値の再現性試験]
以下に、本発明のゼロアジャスト補正方法を実施するためのインピーダンス測定装置に用いられるゼロアジャスト治具36、すなわち測定対象のバッテリセル30を用いて構成されるゼロアジャスト治具36と、上記した従来の測定対象であるバッテリセルと同形状のゼロアジャスト治具を用いて行った測定値の再現性試験について説明する。図3は測定値の再現性試験における本実施の形態のゼロアジャスト治具と従来のゼロアジャスト治具を用いて3種類の配線パターンにおいて実施したインピーダンス測定の結果を示したグラフである。なお、3種類の配線パターン(図2参照)で測定を行ったのは、電磁誘導の影響が異なる配線パターンで測定することにより再現性の判定をより正確に行うことができるからである。
[Measured value reproducibility test]
Below, the zero-adjustment jig 36 used in the impedance measuring device for carrying out the zero-adjustment correction method of the present invention, that is, the zero-adjustment jig 36 configured by using the battery cell 30 to be measured, and the above-mentioned conventional zero-adjustment jig 36. The reproducibility test of the measured value performed using the zero adjust jig having the same shape as the battery cell to be measured will be described. FIG. 3 is a graph showing the results of impedance measurement performed in three types of wiring patterns using the zero adjustment jig of the present embodiment and the conventional zero adjustment jig in the reproducibility test of measured values. The reason why the measurement was performed with three types of wiring patterns (see FIG. 2) is that the reproducibility can be determined more accurately by measuring with wiring patterns having different effects of electromagnetic induction.

再現性試験は、本発明に係るゼロアジャスト補正方法に用いられるゼロアジャスト治具36を用いてインピーダンス測定装置1を構成する電流プローブ25と電圧プローブ27をそれぞれタブ端子31の接続点33と接続点32に接続し、電流プローブ26と電圧プローブ28をそれぞれタブ端子35の接続点38と接続点37に接続した上で、測定信号源10から供給される測定電流Isとその時の接続点32と接続点37の間に発生する電圧V1が電圧計20により測定され、その、電圧Vと測定電流Isに基づいて算出されるインピーダンスのR値、X値をオフセット値としてゼロアジャストを実行する。そしてゼロアジャストを実行した後にゼロアジャスト治具36を外す。すなわち、バッテリセル30から接続ループ29を外し、さらにコンデンサ34も外した上で、測定対象であるバッテリセル30に対してインピーダンス測定をする時に、電圧プローブ27をバッテリセル30のタブ端子31の接続点39(図1右下側のインピーダンス測定時の部分拡大図参照)に接続してHi側センス線22aとLo側センス線22bをバッテリセル30の内部を介して接続させた状態でバッテリセル30のインピーダンスを測定し、測定されたインピーダンスのR値、X値から上記オフセット値を差し引いた値をゼロアジャスト後の測定インピーダンスのR値、X値とする。 In the reproducibility test, the current probe 25 and the voltage probe 27 constituting the impedance measuring device 1 are connected to the connection point 33 of the tab terminal 31 and the connection point, respectively, by using the zero adjustment jig 36 used in the zero adjustment correction method according to the present invention. After connecting to 32, the current probe 26 and the voltage probe 28 are connected to the connection point 38 and the connection point 37 of the tab terminal 35, respectively, and then connected to the measurement current Is supplied from the measurement signal source 10 and the connection point 32 at that time. The voltage V 1 generated between the points 37 is measured by the voltmeter 20, and zero adjustment is executed with the R value and X value of the impedance calculated based on the voltage V and the measured current Is as offset values. Then, after executing the zero adjustment, the zero adjustment jig 36 is removed. That is, when the connection loop 29 is removed from the battery cell 30, the capacitor 34 is also removed, and the impedance is measured with respect to the battery cell 30 to be measured, the voltage probe 27 is connected to the tab terminal 31 of the battery cell 30. The battery cell 30 is connected to the point 39 (see the partially enlarged view at the time of impedance measurement on the lower right side of FIG. 1) and the Hi side sense wire 22a and the Lo side sense wire 22b are connected via the inside of the battery cell 30. The impedance of the measured impedance is measured, and the value obtained by subtracting the above offset value from the measured R value and X value of the impedance is defined as the R value and X value of the measured impedance after zero adjustment.

上記測定において図3のA1は、図2の左側上下図に示す配線パターン1、すなわちHi側ソース線12aおよびLow側ソース線12bのループの面(ループで囲まれた領域の面をいい、「以下、「ループ面」と呼ぶ。)とHi側センス線22aおよびLow側センス線22bのループ面を、バッテリセル30を用いたゼロアジャスト治具36を挟んで左右に配置させた状態で上記したゼロアジャストを実行した後に接続ループ29を外し、さらにコンデンサ34も外した上で、測定対象であるバッテリセル30に対してインピーダンス測定をする時に、電圧プローブ27をバッテリセル30のタブ端子31の接続点39(図1右下側のインピーダンス測定時の部分拡大図参照)に接続してHi側センス線22aとLo側センス線22bをバッテリセル30の内部を介して接続させた状態でインピーダンス測定して得られた測定インピーダンス(R値、X値)を示したものである。なお、A1配線パターンによる実施例は以降、「実施例A1」と呼ぶこととする。 In the above measurement, A1 in FIG. 3 refers to the loop surface (the surface of the region surrounded by the loop) of the wiring pattern 1 shown in the upper and lower left side views of FIG. 2, that is, the Hi side source line 12a and the Low side source line 12b. Hereinafter referred to as a “loop surface”) and the loop surfaces of the Hi side sense wire 22a and the Low side sense wire 22b are arranged on the left and right sides of the zero adjustment jig 36 using the battery cell 30. After performing zero adjustment, the connection loop 29 is removed, the capacitor 34 is also removed, and when impedance measurement is performed on the battery cell 30 to be measured, the voltage probe 27 is connected to the tab terminal 31 of the battery cell 30. Impedance is measured in a state where it is connected to point 39 (see the partially enlarged view at the time of impedance measurement on the lower right side of FIG. 1) and the Hi side sense wire 22a and the Lo side sense wire 22b are connected via the inside of the battery cell 30. The measured impedance (R value, X value) obtained in the above is shown. In addition, the Example based on the A1 wiring pattern will be referred to as "Example A1" hereafter.

図3のA2は、図2の中央上下図に示す配線パターン2、すなわちHi側ソース線12aおよびLow側ソース線12bのループ面とHi側センス線22aおよびLow側センス線22bのループ面をそれぞれ互いに直交させて、かつ、ゼロアジャスト治具36を挟んで配置させた状態で上記したゼロアジャストを実行した後に接続ループ29を外し、さらにコンデンサ34も外した上で、測定対象であるバッテリセル30に対してインピーダンス測定をする時に、電圧プローブ27をバッテリセル30のタブ端子31の接続点39(図1右下側のインピーダンス測定時の部分拡大図参照)に接続してHi側センス線22aとLo側センス線22bをバッテリセル30の内部を介して接続させた状態でインピーダンス測定して得られた測定インピーダンスZのR値とX値(Z=R+jX;R値:レジスタンス値、X値:リアクタンス値)を示したものである。なお、A2配線パターンによる実施例は以降、「実施例A2」と呼ぶこととする。 In A2 of FIG. 3, the wiring pattern 2 shown in the upper and lower central views of FIG. 2, that is, the loop surface of the Hi side source line 12a and the low side source line 12b and the loop surface of the Hi side sense line 22a and the low side sense line 22b, respectively After executing the above-mentioned zero adjustment in a state where they are orthogonal to each other and arranged with the zero adjust jig 36 sandwiched between them, the connection loop 29 is removed, and the capacitor 34 is also removed, and then the battery cell 30 to be measured is measured. When the impedance is measured, the voltage probe 27 is connected to the connection point 39 of the tab terminal 31 of the battery cell 30 (see the partially enlarged view at the time of impedance measurement on the lower right side of FIG. 1) with the Hi side sense wire 22a. R value and X value (Z = R + jX; R value: resistance value, X value: reactance) of the measured impedance Z obtained by impedance measurement with the Lo side sense wire 22b connected via the inside of the battery cell 30. Value) is shown. In addition, the Example based on the A2 wiring pattern will be referred to as "Example A2" hereafter.

図3のA3は、図2の右側上下図に示す配線パターン3、すなわちHi側ソース線12aおよびLow側ソース線12bのループ面とHi側センス線22aおよびLow側センス線22bのループ面をそれぞれ重ねて、かつ、ゼロアジャスト治具36を挟んで配置させた状態で上記したゼロアジャストを実行した後に接続ループ29を外し、さらにコンデンサ34も外した上で、測定対象であるバッテリセル30に対してインピーダンス測定をする時に、電圧プローブ27をバッテリセル30のタブ端子31の接続点39(図1右下側のインピーダンス測定時の部分拡大図参照)に接続してHi側センス線22aとLo側センス線22bをバッテリセル30の内部を介して接続させた状態でインピーダンス測定して得られた測定インピーダンス(R値、X値)を示したものである。なお、A3配線パターンによる実施例は以降、「実施例A3」と呼ぶこととする。 A3 of FIG. 3 shows the wiring pattern 3 shown in the upper and lower views on the right side of FIG. 2, that is, the loop surface of the Hi side source line 12a and the low side source line 12b and the loop surface of the Hi side sense line 22a and the low side sense line 22b, respectively. After executing the above-mentioned zero adjustment in a state where the zero adjustment jigs 36 are placed on top of each other and sandwiching the zero adjust jig 36, the connection loop 29 is removed, and the capacitor 34 is also removed, and then the battery cell 30 to be measured is subjected to the measurement. When the impedance is measured, the voltage probe 27 is connected to the connection point 39 of the tab terminal 31 of the battery cell 30 (see the partially enlarged view at the time of impedance measurement on the lower right side of FIG. 1), and the Hi side sense wire 22a and the Lo side. It shows the measured impedance (R value, X value) obtained by impedance measurement in a state where the sense wire 22b is connected via the inside of the battery cell 30. In addition, the example based on the A3 wiring pattern will be referred to as "Example A3" hereafter.

図3のB1は、図5に示した方法(上記段落(0003)に記載したゼロアジャスト方法)でゼロアジャスト実行した後に、または、測定対象であるバッテリセルの形状と同一形状であって内部構造が異なるゼロアジャスト治具でゼロアジャスト実行(上記段落(0006)に記載した方法でゼロアジャスト実行)した後に、Hi側ソース線およびLow側ソース線、Hi側センス線およびLow側センス線を測定対象であるバッテリセルに接続し直してインピーダンス測定して得られた測定インピーダンス(R値、X値)を示す。ここで、Hi側ソース線およびLow側ソース線のループ面と、Hi側センス線およびLow側センス線のループ面はバッテリセルを挟んで左右に配置された状態となっている(ループ面同志の配置状態は図2左側下図と同様)。なお、B1配線パターンによる実施例は以降、「実施例B1」と呼ぶこととする。 B1 of FIG. 3 has an internal structure after performing zero adjustment by the method shown in FIG. 5 (the zero adjustment method described in the above paragraph (0003)) or having the same shape as the battery cell to be measured. After performing zero adjustment with different zero adjustment jigs (zero adjust execution by the method described in paragraph (0006) above), the Hi side source line and Low side source line, the Hi side sense line, and the Low side sense line are measured. The measured impedance (R value, X value) obtained by reconnecting to the battery cell and measuring the impedance is shown. Here, the loop surfaces of the Hi-side source line and the Low-side source line and the loop surfaces of the Hi-side sense line and the Low-side sense line are arranged on the left and right sides of the battery cell (loop surfaces of each other). The arrangement state is the same as the lower left figure of FIG. 2). In addition, the Example based on the B1 wiring pattern will be referred to as "Example B1" hereafter.

図3のB2は、図5に示した方法(上記段落(0003)に記載したゼロアジャスト方法)でゼロアジャスト実行した後に、または、測定対象であるバッテリセルの形状と同一形状であって内部構造が異なるゼロアジャスト治具でゼロアジャスト実行(上記段落(0006)に記載した方法でゼロアジャスト実行)した後に、Hi側ソース線およびLow側ソース線、Hi側センス線およびLow側センス線を測定対象であるバッテリセルに接続し直してインピーダンス測定して得られた測定インピーダンス(R値、X値)を示す。ここで、Hi側ソース線およびLow側ソース線のループ面と、Hi側センス線およびLow側センス線のループ面をそれぞれ互いに直交させて、かつ、バッテリセルを挟んで左右に配置された状態となっている(ループ面同志の配置状態は図2中央下図と同様)。なお、B2配線パターンによる実施例は以降、「実施例B2」と呼ぶこととする。 B2 of FIG. 3 has an internal structure after performing zero adjustment by the method shown in FIG. 5 (the zero adjustment method described in the above paragraph (0003)) or having the same shape as the battery cell to be measured. After performing zero adjustment with different zero adjustment jigs (zero adjust execution by the method described in paragraph (0006) above), the Hi side source line and Low side source line, the Hi side sense line, and the Low side sense line are measured. The measured impedance (R value, X value) obtained by reconnecting to the battery cell and measuring the impedance is shown. Here, the loop surfaces of the Hi-side source line and the Low-side source line and the loop surfaces of the Hi-side sense line and the Low-side sense line are orthogonal to each other, and are arranged on the left and right sides of the battery cell. (The arrangement of the loop surfaces is the same as in the lower center of Fig. 2). In addition, the Example based on the B2 wiring pattern will be referred to as "Example B2" hereafter.

図3のB3は、図5に示した方法(上記段落(0003)に記載したゼロアジャスト方法)でゼロアジャスト実行した後に、または、測定対象であるバッテリセルの形状と同一形状であって内部構造が異なるゼロアジャスト治具でゼロアジャストを実行(上記段落(0006)に記載した方法でゼロアジャスト実行)した後に、Hi側ソース線およびLow側ソース線、Hi側センス線およびLow側センス線を測定対象であるバッテリセルに接続し直してインピーダンス測定して得られた測定インピーダンス(R値、X値)を示す。ここで、Hi側ソース線およびLow側ソース線のループ面と、Hi側センス線およびLow側センス線のループ面をそれぞれ重ねて、かつ、バッテリセルを挟んで配置された状態となっている(ループ面同志の配置状態は図2右側下図と同様)。なお、B3配線パターンによる実施例は以降、「実施例B3」と呼ぶこととする。 B3 of FIG. 3 has an internal structure after performing zero adjustment by the method shown in FIG. 5 (the zero adjustment method described in the above paragraph (0003)) or having the same shape as the battery cell to be measured. After executing zero adjustment with different zero adjustment jigs (execution of zero adjustment by the method described in the above paragraph (0006)), measure the Hi side source line and the Low side source line, the Hi side sense line and the Low side sense line. The measured impedance (R value, X value) obtained by reconnecting to the target battery cell and measuring the impedance is shown. Here, the loop surfaces of the Hi-side source line and the Low-side source line and the loop surfaces of the Hi-side sense line and the Low-side sense line are overlapped with each other, and are arranged so as to sandwich the battery cell (). The arrangement of the loop surfaces is the same as in the lower right side of FIG. 2). In addition, the Example based on the B3 wiring pattern will be referred to as "Example B3" hereafter.

以下に、測定値の再現性試験の結果について考察する。図3に示すように本発明に係るゼロアジャスト補正方法に用いられるゼロアジャスト治具36を用いたインピーダンス測定におけるR値は実施例A1〜実施例A3で6.29(mΩ)〜6.31(mΩ)の範囲内であるのに対し、従来のゼロアジャスト治具を用いたインピーダンス測定におけるR値は、6.27(mΩ)〜6.31(mΩ)の範囲内であった。実施例A1〜実施例A3におけるR値の最大値と最小値の差は0.02mΩを下回っており、実施例B1〜実施例B3におけるR値の最大値と最小値の差である概ね0.04mΩと比較して測定結果の変動量が減少していることがわかる。 The results of the measured value reproducibility test will be considered below. As shown in FIG. 3, the R value in the impedance measurement using the zero adjustment jig 36 used in the zero adjustment correction method according to the present invention is 6.29 (mΩ) to 6.31 (mΩ) to 6.31 in Examples A1 to A3. While it was in the range of mΩ), the R value in the impedance measurement using the conventional zero adjustment jig was in the range of 6.27 (mΩ) to 6.31 (mΩ). The difference between the maximum value and the minimum value of the R value in Examples A1 to A3 is less than 0.02 mΩ, which is the difference between the maximum value and the minimum value of the R value in Examples B1 to B3. It can be seen that the amount of fluctuation in the measurement result is reduced as compared with 04 mΩ.

また、X値はA1〜A3で2.05(mΩ)〜2.15(mΩ)の範囲内であるのに対し、従来のゼロアジャスト治具を用いたインピーダンス測定におけるX値は、1.8(mΩ)〜2.25(mΩ)の範囲内であった。実施例A1〜実施例A3におけるX値の最大値と最小値の差は0.1mΩを下回っており、実施例B1〜実施例B3におけるX値の最大値と最小値の差である概ね0.45mΩと比較して測定結果の変動量が減少していることがわかる。 Further, the X value is in the range of 2.05 (mΩ) to 2.15 (mΩ) for A1 to A3, whereas the X value in the impedance measurement using the conventional zero adjustment jig is 1.8. It was in the range of (mΩ) to 2.25 (mΩ). The difference between the maximum value and the minimum value of the X value in Examples A1 to A3 is less than 0.1 mΩ, which is the difference between the maximum value and the minimum value of the X value in Examples B1 to B3. It can be seen that the amount of fluctuation in the measurement result is reduced as compared with 45 mΩ.

このことは、本発明に係るゼロアジャスト補正方法に用いられるゼロアジャスト治具を用いたインピーダンス測定による測定値が測定誤差を抑制し再現性のあるものであることがわかる。つまり、実際の測定対象であるバッテリセルをそのまま利用することによりバッテリセルの内部構造に起因して発生する渦電流、磁束を考慮してゼロアジャストできるので、ゼロアジャスト実行後に算出されるオフセット値も渦電流、磁束を考慮した値となっている。そのため、ゼロアジャスト実行後の実際の測定において、バッテリセルの内部構造に起因して発生する渦電流、磁束を原因とするインピーダンス測定誤差に結び付く影響の量(誤差影響量)がキャンセル(相殺)され、電磁誘導、渦電流に起因する誤差(オフセット)を抑制できるため測定値はより誤差の少ない値となる。したがって、EV向けの1mΩ以下のバッテリセルのような微小な内部インピーダンスの測定の精度を上げることが可能となる。 This shows that the measured value by the impedance measurement using the zero adjustment jig used in the zero adjustment correction method according to the present invention suppresses the measurement error and is reproducible. In other words, by using the battery cell that is the actual measurement target as it is, zero adjustment can be performed in consideration of the eddy current and magnetic flux generated due to the internal structure of the battery cell, so the offset value calculated after executing zero adjustment is also The value takes into account eddy current and magnetic flux. Therefore, in the actual measurement after executing zero adjustment, the amount of influence (error influence amount) that leads to the impedance measurement error due to the eddy current and magnetic flux generated due to the internal structure of the battery cell is canceled (cancelled). Since the error (offset) caused by electromagnetic induction and eddy current can be suppressed, the measured value becomes a value with less error. Therefore, it is possible to improve the accuracy of measuring a minute internal impedance such as a battery cell of 1 mΩ or less for EV.

(変形例)
上記第1の実施の形態は測定対象そのものを用いて構成されたゼロアジャスト治具を利用してゼロアジャストを実施した例であるが、測定対象と同種のものを用いて上記第1の実施の形態と同様の接続態様で構成したゼロアジャスト治具を用いてゼロアジャストを実施することもできる。例えば、測定対象がバッテリセルの場合には、そのバッテリセルと同種のバッテリセルを用いてゼロアジャストを行い、ゼロアジャスト後は、実際の測定対象のバッテリセルに入れ変えて、かつ、配線(電流計測線、電圧計測線)の状態をゼロアジャスト時の配線の状態と同じにして測定を行う。なお、接続ループは、バッテリセルと同種のバッテリセル(以下、「同種バッテリセル」と呼ぶ。)の一方のタブ端子から所定距離をおいた点に位置する他方のタブ端子にかけてバッテリセル30のセル表面に近接させた状態で、かつバッテリセルの表面に沿って形成させる。なお、同種とは測定対象の形状(規格)と概ね同形状(同一規格)のものをいう。
(Modification example)
The first embodiment is an example in which zero adjustment is performed using a zero adjustment jig configured by using the measurement target itself, but the first embodiment is performed using the same type as the measurement target. It is also possible to carry out zero adjustment using a zero adjustment jig configured in the same connection mode as the embodiment. For example, when the measurement target is a battery cell, zero adjustment is performed using a battery cell of the same type as the battery cell, and after zero adjustment, the battery cell is replaced with the actual measurement target battery cell, and wiring (current) is performed. The measurement is performed with the state of the measurement line and voltage measurement line) the same as the state of the wiring at the time of zero adjustment. The connection loop is a cell of the battery cell 30 extending from one tab terminal of a battery cell of the same type as the battery cell (hereinafter, referred to as “same type battery cell”) to the other tab terminal located at a predetermined distance. It is formed in close proximity to the surface and along the surface of the battery cell. The same type means a shape (same standard) that is substantially the same as the shape (standard) of the measurement target.

この変形例によれば、最初に測定対象と同種のものを用いてゼロアジャストしているのでその後複数の測定対象に対して測定する場合にその都度ゼロアジャストを行う必要はない。 According to this modification, since zero adjustment is first performed using the same type of measurement target, it is not necessary to perform zero adjustment each time when measuring for a plurality of measurement targets thereafter.

[第2の実施の形態]
以下に、図4を参照して本発明に係るゼロアジャスト補正方法の第2の実施の形態について説明する。上記した第1の実施の形態に係るゼロアジャスト補正方法が、一つのゼロアジャスト治具が用いられるバッテリセルの個数が一つ(単数)であったのに対し、本第2の実施の形態では一つのゼロアジャスト治具が用いられるバッテリセルの個数が複数である点が異なる。なお、図4において電圧計測ループ(Hi側センス線、Lo側センス線)およびHi側センス線の一端に接続される接続点、Lo側センス線の一端に接続される接続点については便宜上省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the zero adjustment correction method according to the present invention will be described with reference to FIG. In the zero adjustment correction method according to the first embodiment described above, the number of battery cells in which one zero adjustment jig is used is one (singular), whereas in the second embodiment, the number of battery cells is one (singular). The difference is that the number of battery cells in which one zero adjustment jig is used is multiple. In FIG. 4, the voltage measurement loop (Hi side sense line, Lo side sense line), the connection point connected to one end of the Hi side sense line, and the connection point connected to one end of the Lo side sense line are omitted for convenience. ..

バッテリセルの測定検査は、一般に生産ラインに複数個のバッテリセルが収容された専用トレイ(図示せず)が搬送される。この専用トレイの中に収容された複数個のバッテリセルはそれぞれ同じ向きに並べられている。この専用トレイの中に収容された複数個のバッテリセルのインピーダンスを測定する際、インピーダンス測定装置の定電流源から流れる測定電流による漏れ磁束と隣接するバッテリセルの金属ケースで生じる渦電流により測定誤差が生じてしまう。 In the measurement and inspection of battery cells, a dedicated tray (not shown) containing a plurality of battery cells is generally transported to a production line. A plurality of battery cells housed in this dedicated tray are arranged in the same direction. When measuring the impedance of a plurality of battery cells housed in this dedicated tray, measurement error is caused by the leakage flux due to the measurement current flowing from the constant current source of the impedance measuring device and the eddy current generated in the metal case of the adjacent battery cell. Will occur.

例えば、図4の左上図に示すように、専用トレイの中に5個のバッテリセル40,42,44,46,48(電圧計測ループにおける接続点は41,43,45,47,49である)が収容され、中央のバッテリセル44に対してインピーダンス測定をする場合に、中央のバッテリセル44は、両側のバッテリセル42,46の金属ケースから生じる渦電流の影響を受けてしまい測定誤差が生じる原因になってしまう。また、両端に配置されたバッテリセル48(または40)に対してインピーダンス測定をする場合に、図4の左下図に示すように、両側のバッテリセル48(または40)は、それぞれ隣接するバッテリセル46(または42)の金属ケースから生じる渦電流の影響を受けてしまい測定誤差が生じる原因になってしまう。 For example, as shown in the upper left figure of FIG. 4, five battery cells 40, 42, 44, 46, 48 (the connection points in the voltage measurement loop are 41, 43, 45, 47, 49) in the dedicated tray. ) Is accommodated, and when impedance measurement is performed on the central battery cell 44, the central battery cell 44 is affected by eddy currents generated from the metal cases of the battery cells 42 and 46 on both sides, resulting in a measurement error. It will cause it to occur. Further, when impedance measurement is performed on the battery cells 48 (or 40) arranged at both ends, as shown in the lower left figure of FIG. 4, the battery cells 48 (or 40) on both sides are adjacent to each other. It is affected by the eddy current generated from the 46 (or 42) metal case, which causes a measurement error.

これに対して、本第2の実施の形態は、上記第1の実施の形態に係るゼロアジャスト治具を複数個専用トレイの中に収容し、ゼロアジャスト治具50,52,54,56,58のそれぞれに対して個別に上記した第1の実施の形態と同様の方法でゼロアジャストを実行し、ゼロアジャストを実行した後にそれぞれ接続ループ60,62,64,66,68を外して、Hi側センス線とLo側センス線を、各ゼロアジャスト治具を構成するバッテリセルの内部を介して接続させた状態で各バッテリセルのインピーダンスのR値とX値を測定する(図4右図参照)。なお、インピーダンス測定装置をゼロアジャスト治具の個数と同じ個数用意し、同時にインピーダンス測定をするようにしてもよい。また、同時測定の場合は電磁誘導の影響量の変動を抑制するために各測定信号の同期が必要となる。 On the other hand, in the second embodiment, the zero adjustment jigs according to the first embodiment are housed in a plurality of dedicated trays, and the zero adjustment jigs 50, 52, 54, 56, The zero adjustment is individually executed for each of the 58 in the same manner as in the first embodiment described above, and after the zero adjustment is executed, the connection loops 60, 62, 64, 66, and 68 are removed, respectively, and the jig is removed. The R value and X value of the impedance of each battery cell are measured with the side sense wire and the Lo side sense wire connected via the inside of the battery cells constituting each zero adjustment jig (see the right figure of FIG. 4). ). It is also possible to prepare the same number of impedance measuring devices as the number of zero adjustment jigs and measure the impedance at the same time. Further, in the case of simultaneous measurement, it is necessary to synchronize each measurement signal in order to suppress fluctuations in the amount of influence of electromagnetic induction.

本第2の実施の形態に係るインピーダンス測定方法によれば、複数のバッテリセルの間(複数チャンネル間)においてバッテリセルごとに電磁誘導、渦電流の影響が異なり、それに起因してチャンネル間ごとのバッテリセルのインピーダンス値の最大値と最小値の差分のバラツキを低減するとともに、測定処理時間の短縮を図ることができる。 According to the impedance measurement method according to the second embodiment, the effects of electromagnetic induction and eddy current are different for each battery cell among a plurality of battery cells (between a plurality of channels), and due to this, each channel has a different effect. It is possible to reduce the variation in the difference between the maximum value and the minimum value of the impedance value of the battery cell and shorten the measurement processing time.

また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Further, the embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

1 インピーダンス測定装置
10 測定信号源
12 電流計測線
15 電流計
20 電圧計
22 電圧計測線
25、26 電流プローブ
27,28 電圧プローブ
29、60、62、64、66、68 接続ループ(接続線)
30、40、42、44、46、48、 バッテリセル
31、35 タブ端子
32、33、37、38、39 接続点
34 コンデンサ
36、50、52、54、56、58 ゼロアジャスト治具

1 Impedance measuring device 10 Measuring signal source 12 Current measuring line 15 Ammeter 20 Voltmeter 22 Voltage measuring line 25, 26 Current probe 27,28 Voltage probe 29, 60, 62, 64, 66, 68 Connection loop (connection line)
30, 40, 42, 44, 46, 48, Battery cell 31, 35 Tab terminal 32, 33, 37, 38, 39 Connection point 34 Capacitor 36, 50, 52, 54, 56, 58 Zero adjustment jig

Claims (6)

一対の端子を有する測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、前記測定対象電子部品の両端子間に発生する電圧を測定する電圧検出部とを含み、前記測定対象電子部品のインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、
前記測定信号発生源の一対の出力端子の一方と他方をそれぞれ前記測定対象電子部品の一方の端子と他方の端子に接続して電流経路を形成し、
前記電圧検出部の一方の端子を、前記測定対象電子部品の一方の端子に対して直流的に絶縁した状態にして前記測定対象電子部品の外部表面に沿って延在する接続線を介して前記測定対象電子部品の他方の端子に接続し、前記電圧検出部の他方の端子を前記測定対象電子部品の他方の端子に接続してゼロアジャストを実行する、
ことを特徴とするゼロアジャスト補正方法。
The measurement target includes a measurement signal generation source that supplies a measurement signal of a predetermined frequency to a measurement target electronic component having a pair of terminals, and a voltage detection unit that measures a voltage generated between both terminals of the measurement target electronic component. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of electronic components.
One and the other of the pair of output terminals of the measurement signal generation source are connected to one terminal and the other terminal of the electronic component to be measured, respectively, to form a current path.
One terminal of the voltage detection unit is made DC-insulated from one terminal of the electronic component to be measured, and the connection line extending along the outer surface of the electronic component to be measured is used. It is connected to the other terminal of the electronic component to be measured, and the other terminal of the voltage detection unit is connected to the other terminal of the electronic component to be measured to perform zero adjustment.
A zero adjustment correction method characterized by this.
一対の端子を有する測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、前記測定対象電子部品の両端子間に発生する電圧を測定する電圧検出部とを含み、前記測定対象電子部品のインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、
前記測定信号発生源の一対の出力端子の一方と他方をそれぞれ前記測定対象電子部品と同種の電子部品の一方の端子と他方の端子に接続して電流経路を形成し、
前記電圧検出部の一方の端子を、前記同種の電子部品の一方の端子に対して直流的に絶縁した状態にして前記同種の電子部品の外部表面に沿って延在する接続線を介して前記同種の電子部品の他方の端子に接続し、前記電圧検出部の他方の端子を前記同種の電子部品の他方の端子に接続してゼロアジャストを実行する、
ことを特徴とするゼロアジャスト補正方法。
The measurement target includes a measurement signal generation source that supplies a measurement signal of a predetermined frequency to a measurement target electronic component having a pair of terminals, and a voltage detection unit that measures a voltage generated between both terminals of the measurement target electronic component. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of electronic components.
One and the other of the pair of output terminals of the measurement signal generation source are connected to one terminal and the other terminal of an electronic component of the same type as the electronic component to be measured, respectively, to form a current path.
One terminal of the voltage detection unit is made DC-insulated from one terminal of the same type of electronic component, and the connection line extending along the outer surface of the same type of electronic component is used. Connect to the other terminal of the same type of electronic component, connect the other terminal of the voltage detector to the other terminal of the same type of electronic component, and perform zero adjustment.
A zero adjustment correction method characterized by this.
それぞれ一対の端子を有する第1〜第N(Nは2以上の整数)の測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、前記第1〜第Nの測定対象電子部品のそれぞれの両端子間に発生する電圧を測定する電圧検出部とを含み、前記第1〜第Nの測定対象電子部品のそれぞれのインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、
前記測定信号発生源の一対の出力端子の一方と他方を前記第1〜第Nの測定対象電子部品のそれぞれの一方の端子と他方の端子に個別に接続して電流経路を形成し、
前記電圧検出部の一方の端子を、前記第1〜第Nの測定対象電子部品の測定ごとに、前記第1〜第Nの測定対象電子部品のそれぞれの一方の端子に対して直流的に絶縁した状態にして前記第1〜第Nの測定対象電子部品のそれぞれの外部表面に沿って延在する接続線を介して前記第1〜第Nの測定対象電子部品の他方の端子のそれぞれに接続し、前記電圧検出部の他方の端子を前記第1〜第Nの測定対象電子部品のそれぞれの他方の端子に接続してゼロアジャストを実行する、
ことを特徴とするゼロアジャスト補正方法。
A measurement signal source that supplies a measurement signal of a predetermined frequency to the first to Nth (N is an integer of 2 or more) measurement target electronic components each having a pair of terminals, and the first to Nth measurement target electronic components. This is a zero-adjustment correction method in an impedance measuring device that measures the impedance of each of the first to Nth measurement target electronic components, including a voltage detection unit that measures the voltage generated between each of the two terminals.
One and the other of the pair of output terminals of the measurement signal generation source are individually connected to one terminal and the other terminal of the first to Nth measurement target electronic components to form a current path.
One terminal of the voltage detection unit is electrically insulated from each one terminal of the first to Nth measurement target electronic components for each measurement of the first to Nth measurement target electronic components. In this state, it is connected to each of the other terminals of the first to Nth measurement target electronic components via a connection line extending along the outer surface of each of the first to Nth measurement target electronic components. Then, the other terminal of the voltage detection unit is connected to the other terminal of each of the first to Nth measurement target electronic components to execute zero adjustment.
A zero adjustment correction method characterized by this.
それぞれ一対の端子を有する第1〜第N(Nは2以上の整数)の測定対象電子部品に所定周波数の測定信号を供給する測定信号発生源と、前記第1〜第Nの測定対象電子部品のそれぞれの両端子間に発生する電圧を測定する第1〜第N(Nは2以上の整数)の電圧検出部とを含み、前記第1〜第Nの測定対象電子部品のそれぞれのインピーダンスを測定するインピーダンス測定装置におけるゼロアジャスト補正方法であって、
前記測定信号発生源の一対の出力端子の一方と他方を前記第1〜第Nの測定対象電子部品のそれぞれの一方の端子と他方の端子に個別に接続して電流経路を形成し、
前記第1〜第Nの電圧検出部の一方の端子を、前記第1〜第Nの測定対象電子部品の一方の端子に対してそれぞれ直流的に絶縁した状態にして、前記第1〜第Nの測定対象電子部品のそれぞれの外部表面に沿って延在する接続線を介してそれぞれ前記第1〜第Nの測定対象電子部品の他方の端子に接続し、前記第1〜第Nの電圧検出部の他方の端子をそれぞれ前記第1〜第Nの測定対象電子部品の他方の端子に接続してゼロアジャストを実行する、
ことを特徴とするゼロアジャスト補正方法。
A measurement signal source that supplies a measurement signal of a predetermined frequency to the first to Nth (N is an integer of 2 or more) measurement target electronic components each having a pair of terminals, and the first to Nth measurement target electronic components. 1st to Nth (N is an integer of 2 or more) voltage detectors for measuring the voltage generated between the two terminals of the above, and the impedance of each of the first to Nth measurement target electronic components. This is a zero-adjustment correction method for measuring impedance measuring devices.
One and the other of the pair of output terminals of the measurement signal generation source are individually connected to one terminal and the other terminal of the first to Nth measurement target electronic components to form a current path.
One terminal of the first to first N voltage detection units is in a state of being electrically insulated from one terminal of the first to Nth measurement target electronic components, respectively, and the first to first Nth voltages are isolated from each other. 1st to Nth voltage detection by connecting to the other terminal of the 1st to Nth measurement target electronic components via a connecting line extending along the outer surface of each of the measurement target electronic components. The other terminal of the unit is connected to the other terminal of the first to Nth measurement target electronic components, respectively, and zero adjustment is executed.
A zero adjustment correction method characterized by this.
請求項1に記載のゼロアジャスト補正方法を実施した後に、前記測定対象電子部品の一方の端子に対して直流的に絶縁した状態を解除し、前記接続線を前記測定対象電子部品から外した状態で前記電圧検出部の一方の端子を前記測定対象電子部品の一方の端子に接続し、前記電圧検出部の他方の端子を前記測定対象電子部品の他方の端子に接続して前記測定対象電子部品のインピーダンスを測定する、
ことを特徴とするインピーダンス測定方法。
After carrying out the zero-adjustment correction method according to claim 1, a state in which the state of being DC-insulated to one terminal of the measurement target electronic component is released and the connection line is removed from the measurement target electronic component. Connect one terminal of the voltage detection unit to one terminal of the electronic component to be measured, and connect the other terminal of the voltage detection unit to the other terminal of the electronic component to be measured. To measure the impedance of
An impedance measurement method characterized by this.
請求項2に記載のゼロアジャスト補正方法を実施した後に、前記測定対象電子部品と同種の電子部品の一方の端子に対して直流的に絶縁した状態を解除し、前記接続線を前記測定対象電子部品と同種の電子部品から外した状態で前記電圧検出部の一方の端子を前記測定対象電子部品の一方の端子に接続し、前記電圧検出部の他方の端子を前記測定対象電子部品の他方の端子に接続して前記測定対象電子部品のインピーダンスを測定する、
ことを特徴とするインピーダンス測定方法。

After carrying out the zero-adjustment correction method according to claim 2, the state of being DC-insulated to one terminal of an electronic component of the same type as the electronic component to be measured is released, and the connection line is connected to the electronic component to be measured. One terminal of the voltage detection unit is connected to one terminal of the measurement target electronic component in a state of being removed from the same type of electronic component as the component, and the other terminal of the voltage detection unit is connected to the other terminal of the measurement target electronic component. Connect to the terminal and measure the impedance of the electronic component to be measured.
An impedance measurement method characterized by this.

JP2019206275A 2019-11-14 2019-11-14 Zero adjustment correction method and impedance measurement method Active JP7364434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206275A JP7364434B2 (en) 2019-11-14 2019-11-14 Zero adjustment correction method and impedance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206275A JP7364434B2 (en) 2019-11-14 2019-11-14 Zero adjustment correction method and impedance measurement method

Publications (2)

Publication Number Publication Date
JP2021081202A true JP2021081202A (en) 2021-05-27
JP7364434B2 JP7364434B2 (en) 2023-10-18

Family

ID=75964778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206275A Active JP7364434B2 (en) 2019-11-14 2019-11-14 Zero adjustment correction method and impedance measurement method

Country Status (1)

Country Link
JP (1) JP7364434B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117971A (en) * 2013-12-17 2015-06-25 新電元工業株式会社 Device and method for measuring impedance
JP2019086474A (en) * 2017-11-09 2019-06-06 日置電機株式会社 System and method for measuring impedance
JP2020186946A (en) * 2019-05-10 2020-11-19 日置電機株式会社 Impedance measuring system and impedance measuring system method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117971A (en) * 2013-12-17 2015-06-25 新電元工業株式会社 Device and method for measuring impedance
JP2019086474A (en) * 2017-11-09 2019-06-06 日置電機株式会社 System and method for measuring impedance
JP2020186946A (en) * 2019-05-10 2020-11-19 日置電機株式会社 Impedance measuring system and impedance measuring system method
JP7315372B2 (en) * 2019-05-10 2023-07-26 日置電機株式会社 Impedance measurement system and impedance measurement method

Also Published As

Publication number Publication date
JP7364434B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
US10151779B2 (en) Measuring resistor and corresponding measuring method
US20030020592A1 (en) Current detection resistor, mounting structure thereof and method of measuring effective inductance
US20110260711A1 (en) Method and device for determining a direct current and resistance welding device
CN107271932B (en) Improved B-H measuring coil and method for measuring two-dimensional magnetic characteristics of cubic sample based on improved B-H measuring coil
JP4321412B2 (en) Current measuring device
JP7315372B2 (en) Impedance measurement system and impedance measurement method
JP2018041581A (en) Inspection method for secondary battery
JP4448732B2 (en) Circuit board inspection equipment
JP2022167857A (en) current sensor
JP2020204524A (en) Current sensor and measuring device
US20040027891A1 (en) Configuration for testing semiconductor devices
KR102158640B1 (en) Circuit board inspection apparatus and circuit board inspection method
US11346898B2 (en) Magnetic sensor module and IC chip employed in same
JP7364434B2 (en) Zero adjustment correction method and impedance measurement method
KR101354031B1 (en) Impedance measurement apparatus
US20230408552A1 (en) Two-in-one coil current sensor
JP2016161304A (en) Resistor
JPH0318765A (en) Clamp ammeter
CN108333416B (en) Device for precisely measuring high-frequency micro-current
CN217587394U (en) Low-noise four-wire system measuring device
JP2020067304A (en) Current sensor and method of manufacturing bus bar used for the same
JP5849923B2 (en) Impedance measuring device
CN221148794U (en) Impedance measuring system
JP7163120B2 (en) Measuring device and method
JPH0713932B2 (en) Iron core testing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150