JP2016161304A - Resistor - Google Patents

Resistor Download PDF

Info

Publication number
JP2016161304A
JP2016161304A JP2015037715A JP2015037715A JP2016161304A JP 2016161304 A JP2016161304 A JP 2016161304A JP 2015037715 A JP2015037715 A JP 2015037715A JP 2015037715 A JP2015037715 A JP 2015037715A JP 2016161304 A JP2016161304 A JP 2016161304A
Authority
JP
Japan
Prior art keywords
current
resistor
terminal
terminals
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015037715A
Other languages
Japanese (ja)
Inventor
秀行 長井
Hideyuki Nagai
秀行 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015037715A priority Critical patent/JP2016161304A/en
Publication of JP2016161304A publication Critical patent/JP2016161304A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of measuring the quantity measured by a resistor, and improve the manufacturing efficiency.SOLUTION: A resistor includes: a substrate 11; a resistive element 12 provided for the substrate 11; a current terminal C1 provided for a first region 11a of the substrate 11 and connected to one end 12a of the resistive element 12 through a wire W1 provided for the substrate 11; a current terminal C2 provided for a second region 11b of the substrate 11 and connected to the other end 12b of the resistive element 12 through a wire W2 provided for the substrate 11; voltage terminals P1, P2 connected to the one end 12a and the other end 12b of the resistive element 12, respectively; a current terminal C3 provided for the first region 11a; a current terminal C4 provided for the second region 11b; and a wire W3 provided for the substrate 11 along a current path Cc including the wires W1, W2 and the resistive element 12 and connecting the current terminals C3, C4.SELECTED DRAWING: Figure 2

Description

本発明は、第1の電流入出力用端子、第2の電流入出力用端子、および一対の電圧検出用端子を備えた抵抗器に関するものである。   The present invention relates to a resistor including a first current input / output terminal, a second current input / output terminal, and a pair of voltage detection terminals.

この種の抵抗器として、下記特許文献1に開示された電流検出用抵抗器が知られている。この電流検出用抵抗器は、一対の抵抗体層(右側抵抗体層および左側抵抗体層)と、被測定電流を流すための一対の電流電極と、電圧差を取り出す一対の電圧電極とを備え、これらが絶縁基板に形成されて構成されている。この電流検出用抵抗器では、各抵抗体層における各々の一辺同士が対向するように(つまり、平行となるように)各抵抗体層が配置され、各抵抗体層が電流電極に並列に接続されている。また、この電流検出用抵抗器では、各電圧電極が、対向して配置された各抵抗体層の間の中央部(各抵抗体層から等間隔に離間する位置)に配置されている。このため、この電流検出用抵抗器では、被測定電流を流したときに各抵抗体層に等しい電流が平行に流れて、その電流によって発生する磁界が、各電圧電極の配置位置(各抵抗体層の間の中央部)において合成される(互いに逆向きに作用する)結果、各電圧電極に対する相互インダクタンスによって発生する電圧に起因する誤差を小さく抑えることができるため、被測定電流を正確に測定することが可能となっている。   As this type of resistor, a current detection resistor disclosed in Patent Document 1 below is known. The current detection resistor includes a pair of resistor layers (a right resistor layer and a left resistor layer), a pair of current electrodes for flowing a current to be measured, and a pair of voltage electrodes for extracting a voltage difference. These are formed on an insulating substrate. In this current detection resistor, each resistor layer is disposed so that each side of each resistor layer faces each other (that is, in parallel), and each resistor layer is connected in parallel to the current electrode. Has been. Further, in this current detection resistor, each voltage electrode is arranged at a central portion (a position spaced apart from each resistor layer at equal intervals) between the resistor layers arranged to face each other. For this reason, in this current detection resistor, when a current to be measured flows, an equal current flows in parallel to each resistor layer, and the magnetic field generated by the current is changed to the arrangement position of each voltage electrode (each resistor As a result of being synthesized (acting in opposite directions) at the center between the layers, the error due to the voltage generated by the mutual inductance for each voltage electrode can be kept small, so that the measured current can be measured accurately It is possible to do.

特開2009−250731号公報(第8−10頁、第1図)JP 2009-250731 A (page 8-10, FIG. 1)

ところが、上記の電流検出用抵抗器には、以下の問題点がある。すなわち、上記の電流検出用抵抗器では、抵抗体層を一対備える必要があるため、構造が複雑となっている。また、この電流検出用抵抗器では、被測定電流を流したときに各抵抗体層からそれぞれ発生する磁界を互いに逆向きに作用させることで相互インダクタンスの影響を抑える構成のため、各抵抗体層の抵抗値や長さを等しくする必要がある結果、高精度の製造工程が必要となる。したがって、この電流検出用抵抗器には、製造効率の向上が困難であるという問題点が存在する。また、この電流検出用抵抗器では、各抵抗体層の間に各電圧電極を配置する構成のため、電流電極と電圧電極とを配線で接続する必要があり、この配線による電圧降下の影響によって被測定電流の測定精度が低下するおそれがあるという問題点も存在する。   However, the current detection resistor has the following problems. That is, the current detection resistor has a complicated structure because it is necessary to provide a pair of resistor layers. Further, in this current detection resistor, each resistor layer is configured to suppress the influence of mutual inductance by causing magnetic fields generated from each resistor layer to act in opposite directions when a current to be measured flows. As a result, it is necessary to make the resistance value and length equal to each other, so that a highly accurate manufacturing process is required. Therefore, this current detection resistor has a problem that it is difficult to improve manufacturing efficiency. In addition, in this current detection resistor, since each voltage electrode is arranged between each resistor layer, it is necessary to connect the current electrode and the voltage electrode with a wiring. There is also a problem that the measurement accuracy of the current to be measured may be lowered.

本発明は、かかる問題点に鑑みてなされたものであり、被測定量の測定精度の向上および製造効率の向上を実現し得る抵抗器を提供することを主目的とする。   The present invention has been made in view of such problems, and a main object of the present invention is to provide a resistor that can improve the measurement accuracy of a measured amount and the manufacturing efficiency.

上記目的を達成すべく請求項1記載の抵抗器は、支持体と、当該支持体に配設された抵抗体と、前記支持体に配設された第1配線を介して前記抵抗体の一端部に接続されて当該一端部が位置する当該支持体の第1領域に配設された第1の電流入出力用端子と、前記支持体に配設された第2配線を介して前記抵抗体の他端部に接続されて前記支持体における当該他端部が位置する第2領域に配設された第2の電流入出力用端子と、前記抵抗体の前記一端部および前記他端部にそれぞれ接続される一対の電圧検出用端子とを備えた抵抗器であって、前記第1領域に配設された第3の電流入出力用端子と、前記第2領域に配設された第4の電流入出力用端子と、前記第1配線、前記第2配線および前記抵抗体によって構成される電流路に沿って前記支持体に配設されると共に前記第3の電流入出力用端子および第4の電流入出力用端子を接続する第3配線とを備えている。   To achieve the above object, a resistor according to claim 1 is provided with a support, a resistor disposed on the support, and one end of the resistor via a first wiring disposed on the support. The resistor via a first current input / output terminal disposed in a first region of the support body, which is connected to the first end portion, and the second wire disposed in the support body. A second current input / output terminal disposed in a second region where the other end of the support is located, and the one end and the other end of the resistor. A resistor having a pair of voltage detection terminals connected to each other, a third current input / output terminal arranged in the first region, and a fourth arranged in the second region. The current input / output terminal and the current path formed by the first wiring, the second wiring, and the resistor. Together they are disposed lifting member and a third wiring connecting the third current input terminal and the fourth current input terminal.

また、請求項2記載の抵抗器は、請求項1記載の抵抗器において、前記第1の電流入出力用端子、前記第2の電流入出力用端子、前記第3の電流入出力用端子、および前記第4の電流入出力用端子をそれぞれ一対備え、前記各一対の電流入出力用端子のいずれか一方は、同軸型ケーブルの端子を接続可能に構成され、前記各一対の電流入出力用端子の他方は、非同軸型ケーブルの端子を接続可能に構成されている。   The resistor according to claim 2 is the resistor according to claim 1, wherein the first current input / output terminal, the second current input / output terminal, the third current input / output terminal, And a pair of the fourth current input / output terminals, and one of each of the pair of current input / output terminals is configured to be able to connect a terminal of a coaxial cable. The other of the terminals is configured so that a terminal of a non-coaxial cable can be connected.

請求項1記載の抵抗器は、抵抗体の一端部が位置する支持体の第1領域に配設された第3の電流入出力用端子と、抵抗体の他端部が位置する支持体の第2領域に配設された第4の電流入出力用端子と、第1配線、第2配線および抵抗体によって構成される電流路に沿って支持体に配設されると共に第3の電流入出力用端子および第4の電流入出力用端子を接続する第3配線とを備えている。このため、この抵抗器によれば、電流路を流れる電流(測定用電流)の向きとは逆向きに、第3配線に測定用電流を流すことができる結果、電流路を流れる測定用電流によって生じる磁界と、第3配線を流れる測定用電流によって生じる磁界とが打ち消されて、各電圧検出用端子間の電圧に対する、磁界によって誘起される電圧の影響を低く抑えることができる。したがって、この抵抗器によれば、例えば、抵抗器を用いて校正を行う際に、被測定量としての抵抗値を正確に測定することができるため、校正の精度を十分に向上させることができる。また、この抵抗器によれば、構造が単純であるため、製造効率を十分に向上させることができる。   The resistor according to claim 1 includes: a third current input / output terminal disposed in a first region of the support body where one end of the resistor is located; and a support body where the other end of the resistor is located. A fourth current input / output terminal disposed in the second region, a first current line, a second wiring, and a third current input are disposed on the support along the current path constituted by the resistor. And a third wiring for connecting the output terminal and the fourth current input / output terminal. For this reason, according to this resistor, as a result of allowing the measurement current to flow through the third wiring in the direction opposite to the direction of the current flowing through the current path (measurement current), the measurement current flowing through the current path The generated magnetic field and the magnetic field generated by the measurement current flowing through the third wiring are canceled out, and the influence of the voltage induced by the magnetic field on the voltage between the voltage detection terminals can be suppressed to a low level. Therefore, according to this resistor, for example, when the calibration is performed using the resistor, the resistance value as the measurement target can be accurately measured, so that the calibration accuracy can be sufficiently improved. . Moreover, according to this resistor, since the structure is simple, manufacturing efficiency can be sufficiently improved.

また、請求項2記載の抵抗器では、第1から第4の電流入出力用端子をそれぞれ一対備え、各一対の電流入出力用端子のいずれか一方は、同軸型ケーブルの端子を接続可能に構成され、各一対の電流入出力用端子の他方は、非同軸型ケーブルの端子を接続可能に構成されている。このため、この抵抗器によれば、例えば、小さな電流値の測定用電流を用いて測定等を行う際には同軸型ケーブルの端子を、各一対の電流入出力用端子のいずれか一方に接続して測定用電流を供給し、大きな電流値の測定用電流を用いて測定等を行う際には非同軸型ケーブルの端子を、各一対の電流入出力用端子の他方に接続して測定用電流を供給することができる結果、様々な使用形態に対応することができる。   The resistor according to claim 2 includes a pair of first to fourth current input / output terminals, and one of the pair of current input / output terminals can be connected to a terminal of a coaxial cable. The other of the pair of current input / output terminals is configured so that a terminal of a non-coaxial cable can be connected. Therefore, according to this resistor, for example, when performing measurement using a measurement current with a small current value, the terminal of the coaxial cable is connected to one of the pair of current input / output terminals. When measuring with a large current value, connect the non-coaxial cable terminal to the other of each pair of current input / output terminals. As a result of being able to supply an electric current, it can respond to various usage forms.

抵抗器1の斜視図である。1 is a perspective view of a resistor 1. FIG. 抵抗器1の構成を概念的に示す構成図である。1 is a configuration diagram conceptually showing the configuration of a resistor 1. 抵抗器1の使用方法を説明する第1の説明図である。FIG. 3 is a first explanatory diagram explaining how to use the resistor 1. 抵抗器1の使用方法を説明する第2の説明図である。FIG. 6 is a second explanatory diagram explaining how to use the resistor 1. 抵抗器1aの構成を示す構成図である。It is a block diagram which shows the structure of the resistor 1a.

以下、抵抗器の実施の形態について、添付図面を参照して説明する。   Hereinafter, an embodiment of a resistor will be described with reference to the accompanying drawings.

最初に、抵抗器の一例としての図1に示す抵抗器1の構成について、図面を参照して説明する。抵抗器1は、例えば、抵抗測定装置の校正等に用いられる抵抗器であって、同図および図2に示すように、基板11、抵抗体12、電流端子C1、電流端子C2、電圧端子P1、電圧端子P2、電流端子C3、電流端子C4、配線W1、配線W2および配線W3を備えて構成されている。   First, the configuration of the resistor 1 shown in FIG. 1 as an example of the resistor will be described with reference to the drawings. The resistor 1 is, for example, a resistor used for calibration of a resistance measuring device, and as shown in FIG. 2 and FIG. 2, the substrate 11, the resistor 12, the current terminal C1, the current terminal C2, and the voltage terminal P1. , Voltage terminal P2, current terminal C3, current terminal C4, wiring W1, wiring W2, and wiring W3.

基板11は、支持体の一例であって、図1に示すように、矩形の板状に形成されている。また、基板11には、図2に模式的に示すように、3つの導体パターン31a,31b,31cが内部に形成されている。この場合、同図に示すように、各導体パターン31a,31bは、基板11の上面21側において、互いに離間した状態で基板11の長さ方向に沿って延在するように配置されている。また、導体パターン31cは、基板11の厚み方向の中間部分において、導体パターン31a,31bから厚み方向に離間すると共に導体パターン31a,31bに対向し、かつ基板11の長さ方向に沿って延在するように配置されている。また、同図に示すように、基板11には、導体パターン31aに接続されたビア32a,32b、導体パターン31bに接続されたビア32c,32d、および導体パターン31cに接続されたビア32e,32fが形成されている。この場合、各ビア32a〜32fの一端部は上面21に露出している。   The board | substrate 11 is an example of a support body, and as shown in FIG. 1, it is formed in the rectangular plate shape. Further, as schematically shown in FIG. 2, the substrate 11 has three conductor patterns 31a, 31b, and 31c formed therein. In this case, as shown in the figure, the conductor patterns 31a and 31b are arranged on the upper surface 21 side of the substrate 11 so as to extend along the length direction of the substrate 11 while being separated from each other. Further, the conductor pattern 31c is spaced apart from the conductor patterns 31a and 31b in the thickness direction and faces the conductor patterns 31a and 31b and extends along the length direction of the substrate 11 in the middle portion of the substrate 11 in the thickness direction. Are arranged to be. As shown in the figure, the substrate 11 includes vias 32a and 32b connected to the conductor pattern 31a, vias 32c and 32d connected to the conductor pattern 31b, and vias 32e and 32f connected to the conductor pattern 31c. Is formed. In this case, one end of each of the vias 32a to 32f is exposed on the upper surface 21.

抵抗体12は、同図に示すように、基板11の上面21側の中央部に配設されている。   As shown in the figure, the resistor 12 is disposed in the central portion on the upper surface 21 side of the substrate 11.

電流端子C1は、抵抗器1を用いて測定等を行う際に配線W1、抵抗体12および配線W2に流す測定用の電流(以下、「測定用電流Im」ともいう)を入出力させる(後述する抵抗測定装置50の電流端子52aや抵抗測定装置70の電流端子72a(図3,4参照)を接続させる)第1の電流入出力用端子に相当する。この場合、電流端子C1は、図1,2に示すように、基板11の上面21における抵抗体12の一端部12aが位置する第1領域11a(両図における左側の領域)に配設されている。また、電流端子C1は、図2に示すように、配線W1を介して抵抗体12の一端部12aに接続されている。   The current terminal C1 inputs / outputs a measurement current (hereinafter also referred to as “measurement current Im”) that flows through the wiring W1, the resistor 12, and the wiring W2 when measurement is performed using the resistor 1 (to be described later). This corresponds to the first current input / output terminal to which the current terminal 52a of the resistance measuring device 50 and the current terminal 72a (see FIGS. 3 and 4) of the resistance measuring device 70 are connected. In this case, as shown in FIGS. 1 and 2, the current terminal C <b> 1 is disposed in the first region 11 a (the left region in both drawings) where the one end 12 a of the resistor 12 is located on the upper surface 21 of the substrate 11. Yes. Further, as shown in FIG. 2, the current terminal C1 is connected to one end 12a of the resistor 12 via the wiring W1.

電流端子C2は、測定等を行う際に配線W1、抵抗体12および配線W2に流す測定用電流Imを入出力させる(後述する抵抗測定装置50の電流端子52bや短絡部材80(図3,4参照)を接続させる)第2の電流入出力用端子に相当する。この場合、電流端子C2は、図1,2に示すように、基板11の上面21における抵抗体12の他端部12bが位置する第2領域11b(両図における右側の領域)に配設されている。また、電流端子C2は、図2に示すように、配線W2を介して抵抗体12の他端部12bに接続されている。   The current terminal C2 inputs / outputs a measurement current Im flowing through the wiring W1, the resistor 12, and the wiring W2 when performing measurement or the like (a current terminal 52b of the resistance measuring device 50 described later or a short-circuit member 80 (FIGS. 3 and 4). Corresponds to a second current input / output terminal. In this case, as shown in FIGS. 1 and 2, the current terminal C <b> 2 is disposed in the second region 11 b (the right region in both drawings) where the other end portion 12 b of the resistor 12 is located on the upper surface 21 of the substrate 11. ing. Further, as shown in FIG. 2, the current terminal C2 is connected to the other end portion 12b of the resistor 12 via the wiring W2.

電圧端子P1および電圧端子P2は、測定等を行う際に抵抗体12の両端の電圧を検出する(後述する抵抗測定装置50の電圧端子54a,54bや抵抗測定装置70の電圧端子74a,74b(図3,4参照)を接続させる)電圧検出用端子に相当する。この場合、電圧端子P1は、図2に示すように、基板11の上面21における第1領域11aに配設されて抵抗体12の一端部12aに接続されている。また、電圧端子P2は、同図に示すように、基板11の上面21における第2領域11bに配設されて抵抗体12の他端部12bに接続されている。   The voltage terminal P1 and the voltage terminal P2 detect voltages at both ends of the resistor 12 when performing measurement or the like (voltage terminals 54a and 54b of the resistance measuring device 50 and voltage terminals 74a and 74b of the resistance measuring device 70 described later). 3) corresponds to a voltage detection terminal. In this case, as shown in FIG. 2, the voltage terminal P <b> 1 is disposed in the first region 11 a on the upper surface 21 of the substrate 11 and is connected to the one end 12 a of the resistor 12. Further, the voltage terminal P <b> 2 is disposed in the second region 11 b on the upper surface 21 of the substrate 11 and is connected to the other end portion 12 b of the resistor 12, as shown in FIG.

電流端子C3は、配線W1、抵抗体12および配線W2を流れる測定用電流Imの流れの向きとは逆向きに測定用電流Imを配線W3に流すために測定用電流Imを入出力させる(後述する抵抗測定装置50の電流端子52cや抵抗測定装置70の電流端子72b(図3,4参照)を接続させる)第3の電流入出力用端子に相当する。この場合、電流端子C3は、図1,2に示すように、基板11の上面21における第1領域11a(電流端子C1の近傍)に配設されている。   The current terminal C3 inputs / outputs the measurement current Im to flow the measurement current Im through the wiring W3 in the direction opposite to the direction of the measurement current Im flowing through the wiring W1, the resistor 12 and the wiring W2 (described later). This corresponds to a third current input / output terminal to which the current terminal 52c of the resistance measuring device 50 and the current terminal 72b (see FIGS. 3 and 4) of the resistance measuring device 70 are connected. In this case, the current terminal C3 is disposed in the first region 11a (in the vicinity of the current terminal C1) on the upper surface 21 of the substrate 11, as shown in FIGS.

電流端子C4は、電流端子C3と同様にして、測定用電流Imを配線W3に流すために測定用電流Imを入出力させる(後述する抵抗測定装置50の電流端子52dや短絡部材80(図3,4参照)を接続させる)第4の電流入出力用端子に相当し、図1,2に示すように、基板11の上面21における第2領域11b(電流端子C2の近傍)に配設されている。また、図2に示すように、電流端子C3および電流端子C4は、配線W3によって互いに接続されている。   In the same manner as the current terminal C3, the current terminal C4 inputs and outputs the measurement current Im in order to flow the measurement current Im through the wiring W3 (a current terminal 52d of the resistance measuring device 50 described later and a short-circuit member 80 (FIG. 3). , 4) is connected, and is arranged in the second region 11b (near the current terminal C2) on the upper surface 21 of the substrate 11, as shown in FIGS. ing. As shown in FIG. 2, the current terminal C3 and the current terminal C4 are connected to each other by a wiring W3.

配線W1は、図2に示すように、電流端子C1と抵抗体12の一端部12aとを接続する配線であって、基板11に形成されている導体パターン31aおよびビア32aで構成されている。配線W2は、同図に示すように、電流端子C2と抵抗体12の他端部12bとを接続する配線であって、基板11に形成されている導体パターン31bおよびビア32cで構成されている。   As shown in FIG. 2, the wiring W <b> 1 is a wiring that connects the current terminal C <b> 1 and one end portion 12 a of the resistor 12, and includes a conductor pattern 31 a and a via 32 a formed on the substrate 11. As shown in the figure, the wiring W2 is a wiring that connects the current terminal C2 and the other end portion 12b of the resistor 12, and includes a conductor pattern 31b and a via 32c formed on the substrate 11. .

配線W3は、図2に示すように、電流端子C3と電流端子C4とを接続する配線であって、基板11に形成されている導体パターン31cおよびビア32e,32fで構成されて、上記した配線W1、配線W2および抵抗体12によって構成される電流路Cc(同図において破線で示す経路)に沿って基板11内に配設されている。   As shown in FIG. 2, the wiring W3 is a wiring for connecting the current terminal C3 and the current terminal C4, and is composed of the conductor pattern 31c and the vias 32e and 32f formed on the substrate 11, and the wiring described above. It is arranged in the substrate 11 along a current path Cc (path indicated by a broken line in the figure) constituted by W1, the wiring W2, and the resistor 12.

次に、抵抗器1の使用方法について、図面を参照して説明する。   Next, the usage method of the resistor 1 is demonstrated with reference to drawings.

この抵抗器1は、例えば、抵抗測定装置の校正を行う際に標準抵抗器として用いられる。最初に、抵抗器1を標準抵抗器として用いて、4端子対法に対応した抵抗測定装置(例えば、図3に示す抵抗測定装置50)の校正を行う例について説明する。この場合、抵抗測定装置50は、同図に示すように、同軸ケーブル51a,51b、電流端子52a〜52d、ケーブル53a,53b、電圧端子54a,54b、電源部55、電流計56、電圧計57および図外の測定部を備えて構成されている。また、電流端子52a,52bは、同軸ケーブル51a,51bの各芯線61a,61bにそれぞれ接続され、電流端子52c,52dは、同軸ケーブル51a,51bの各シールド62a,62bにそれぞれ接続されている。また、電圧端子54a,54bは、ケーブル53a,53bにそれぞれ接続されている。   For example, the resistor 1 is used as a standard resistor when the resistance measuring apparatus is calibrated. First, an example of calibrating a resistance measuring device (for example, the resistance measuring device 50 shown in FIG. 3) corresponding to the four-terminal pair method using the resistor 1 as a standard resistor will be described. In this case, the resistance measuring device 50 includes coaxial cables 51a and 51b, current terminals 52a to 52d, cables 53a and 53b, voltage terminals 54a and 54b, a power supply unit 55, an ammeter 56, and a voltmeter 57, as shown in FIG. And a measurement unit (not shown). The current terminals 52a and 52b are connected to the core wires 61a and 61b of the coaxial cables 51a and 51b, respectively. The current terminals 52c and 52d are connected to the shields 62a and 62b of the coaxial cables 51a and 51b, respectively. The voltage terminals 54a and 54b are connected to cables 53a and 53b, respectively.

まず、図3に示すように、抵抗測定装置50の電流端子52a,52bを抵抗器1の電流端子C1,C2にそれぞれ接続し、抵抗測定装置50の電流端子52c,52dを抵抗器1の電流端子C3,C4にそれぞれ接続する。次いで、抵抗測定装置50の電圧端子54a,54bを抵抗器1の電圧端子P1,P2にそれぞれ接続する。   First, as shown in FIG. 3, the current terminals 52a and 52b of the resistance measuring device 50 are connected to the current terminals C1 and C2 of the resistor 1, respectively, and the current terminals 52c and 52d of the resistance measuring device 50 are connected to the current of the resistor 1. Connect to terminals C3 and C4, respectively. Next, the voltage terminals 54a and 54b of the resistance measuring device 50 are connected to the voltage terminals P1 and P2 of the resistor 1, respectively.

続いて、電源部55に測定用電流Im(例えば、交流電流)を出力させる。この際に、図3に示すように、測定用電流Imが、同図において一点鎖線で示す電流経路で流れる。具体的には、測定用電流Imは、抵抗測定装置50における同軸ケーブル51aの芯線61a、および電流端子52aを通って、抵抗器1の電流端子C1に入力し、配線W1、抵抗体12および配線W2(上記した電流路Cc)を流れる。また、電流路Ccを流れた測定用電流Imは、電流端子C2から出力され、抵抗測定装置50の電流端子52b、および同軸ケーブル51bの芯線61bを通って、電流計56に入力する。この際に、電流計56によって測定用電流Imの電流値が検出される。   Subsequently, the power source 55 outputs a measurement current Im (for example, an alternating current). At this time, as shown in FIG. 3, the measurement current Im flows through a current path indicated by a one-dot chain line in FIG. Specifically, the measurement current Im is input to the current terminal C1 of the resistor 1 through the core wire 61a of the coaxial cable 51a and the current terminal 52a in the resistance measuring device 50, and the wiring W1, the resistor 12 and the wiring It flows through W2 (the above-described current path Cc). The measurement current Im flowing through the current path Cc is output from the current terminal C2, and is input to the ammeter 56 through the current terminal 52b of the resistance measuring device 50 and the core wire 61b of the coaxial cable 51b. At this time, the ammeter 56 detects the current value of the measurement current Im.

次いで、図3に示すように、測定用電流Imは、抵抗測定装置50における同軸ケーブル51bのシールド62b、および電流端子52dを通って、抵抗器1の電流端子C4に入力し、配線W3を流れる。この場合、電流路Ccを流れる測定用電流Imの向きと、配線W3を流れる測定用電流Imの向きとが逆向きとなる。   Next, as shown in FIG. 3, the measurement current Im is input to the current terminal C4 of the resistor 1 through the shield 62b of the coaxial cable 51b and the current terminal 52d in the resistance measuring device 50, and flows through the wiring W3. . In this case, the direction of the measurement current Im flowing through the current path Cc is opposite to the direction of the measurement current Im flowing through the wiring W3.

続いて、配線W3を流れた測定用電流Imは、電流端子C3から出力され、抵抗測定装置50の電流端子52c、および同軸ケーブル51aのシールド62aを通って、電源部55に戻る。   Subsequently, the measurement current Im flowing through the wiring W3 is output from the current terminal C3, and returns to the power supply unit 55 through the current terminal 52c of the resistance measuring device 50 and the shield 62a of the coaxial cable 51a.

一方、抵抗測定装置50の電圧計57は、抵抗器1における電圧端子P1と電圧端子P2との間の電圧値を電圧端子54a,54bおよびケーブル53a,53bを介して検出する。次いで、抵抗測定装置50における図外の測定部が、電流計56によって検出された測定用電流Imの電流値と電圧計57によって検出された電圧値とに基づいて抵抗値を測定する。この場合、測定した抵抗値が校正値となる。   On the other hand, the voltmeter 57 of the resistance measuring device 50 detects the voltage value between the voltage terminal P1 and the voltage terminal P2 in the resistor 1 via the voltage terminals 54a and 54b and the cables 53a and 53b. Next, a measurement unit (not shown) in the resistance measurement device 50 measures the resistance value based on the current value of the measurement current Im detected by the ammeter 56 and the voltage value detected by the voltmeter 57. In this case, the measured resistance value becomes the calibration value.

ここで、この抵抗器1は、電流端子C3、電流端子C4、および両端子C3,C4を接続する配線W3を備えているため、電流端子52a〜52dを上記したように電流端子C1〜C4に接続することで、配線W1、抵抗体12および配線W2によって構成される電流路Ccを流れる測定用電流Imの向きとは逆向きに、配線W3に測定用電流Imを流すことができる。このため、この抵抗器1では、電流路Ccを流れる測定用電流Imによって生じる磁界と、配線W3を流れる測定用電流Imによって生じる磁界とが打ち消されて、電圧端子P1,P2間の電圧に対する、磁界によって誘起される電圧の影響を低く抑えることが可能となっている。したがって、この抵抗器1を用いて校正を行うことで、抵抗値を正確に測定することができるため、校正の精度を十分に向上させることが可能となっている。   Here, since the resistor 1 includes the current terminal C3, the current terminal C4, and the wiring W3 connecting the both terminals C3 and C4, the current terminals 52a to 52d are connected to the current terminals C1 to C4 as described above. By connecting, the measurement current Im can be supplied to the wiring W3 in the direction opposite to the direction of the measurement current Im flowing through the current path Cc constituted by the wiring W1, the resistor 12, and the wiring W2. Therefore, in this resistor 1, the magnetic field generated by the measurement current Im flowing through the current path Cc and the magnetic field generated by the measurement current Im flowing through the wiring W3 are canceled out, and the voltage between the voltage terminals P1 and P2 is reduced. The influence of the voltage induced by the magnetic field can be kept low. Therefore, since the resistance value can be accurately measured by performing calibration using the resistor 1, it is possible to sufficiently improve the calibration accuracy.

次に、抵抗器1を標準抵抗器として用いて、4端子法に対応した抵抗測定装置(例えば、図4に示す抵抗測定装置70)の校正を行う例について説明する。この場合、抵抗測定装置70は、同図に示すように、ケーブル71a,71b、電流端子72a,72b、ケーブル73a,73b、電圧端子74a,74b、電源部75、電流計76、電圧計77、および図外の測定部を備えて構成されている。また、電流端子72a,72bは、ケーブル71a,71bにそれぞれ接続され、電圧端子74a,74bは、ケーブル73a,73bにそれぞれ接続されている。   Next, an example of calibrating a resistance measuring device (for example, the resistance measuring device 70 shown in FIG. 4) corresponding to the four-terminal method using the resistor 1 as a standard resistor will be described. In this case, as shown in the figure, the resistance measuring device 70 includes cables 71a and 71b, current terminals 72a and 72b, cables 73a and 73b, voltage terminals 74a and 74b, a power supply unit 75, an ammeter 76, a voltmeter 77, And a measurement unit (not shown). The current terminals 72a and 72b are connected to the cables 71a and 71b, respectively, and the voltage terminals 74a and 74b are connected to the cables 73a and 73b, respectively.

まず、図4に示すように、抵抗器1の電流端子C2と電流端子C4とを短絡部材80(導電性を有する部材)で短絡させる。続いて、抵抗測定装置70の電流端子72a,72bを抵抗器1の電流端子C1,C3にそれぞれ接続する。次いで、抵抗測定装置70の電圧端子74a,74bを抵抗器1の電圧端子P1,P2にそれぞれ接続する。   First, as shown in FIG. 4, the current terminal C2 and the current terminal C4 of the resistor 1 are short-circuited by a short-circuit member 80 (a member having conductivity). Subsequently, the current terminals 72a and 72b of the resistance measuring device 70 are connected to the current terminals C1 and C3 of the resistor 1, respectively. Next, the voltage terminals 74a and 74b of the resistance measuring device 70 are connected to the voltage terminals P1 and P2 of the resistor 1, respectively.

続いて、電源部75に測定用電流Imを出力させる。この際に、図4に示すように、測定用電流Imが、同図において一点鎖線で示す電流経路で流れる。具体的には、測定用電流Imは、抵抗測定装置70におけるケーブル71a、および電流端子72aを通って、抵抗器1の電流端子C1に入力し、配線W1、抵抗体12および配線W2(電流路Cc)を流れる。また、電流路Ccを流れた測定用電流Imは、電流端子C2から出力され、短絡部材80を通って電流端子C4に入力し、配線W3を流れる。この場合、電流路Ccを流れる測定用電流Imの向きと、配線W3を流れる測定用電流Imの向きとが逆向きとなる。次いで、測定用電流Imは、電流端子C3から出力され、抵抗測定装置70の電流端子72b、ケーブル71bおよび電流計76を通って、電源部55に戻る。この際に、電流計76によって測定用電流Imの電流値が検出される。   Subsequently, the power supply unit 75 outputs the measurement current Im. At this time, as shown in FIG. 4, the measurement current Im flows through a current path indicated by a one-dot chain line in FIG. Specifically, the measurement current Im is input to the current terminal C1 of the resistor 1 through the cable 71a and the current terminal 72a in the resistance measuring device 70, and the wiring W1, the resistor 12, and the wiring W2 (current path) Flow through Cc). Further, the measurement current Im flowing through the current path Cc is output from the current terminal C2, is input to the current terminal C4 through the short-circuit member 80, and flows through the wiring W3. In this case, the direction of the measurement current Im flowing through the current path Cc is opposite to the direction of the measurement current Im flowing through the wiring W3. Next, the measurement current Im is output from the current terminal C <b> 3, returns to the power supply unit 55 through the current terminal 72 b of the resistance measurement device 70, the cable 71 b, and the ammeter 76. At this time, the ammeter 76 detects the current value of the measurement current Im.

一方、抵抗測定装置70の電圧計77は、抵抗器1における電圧端子P1と電圧端子P2との間の電圧値を電圧端子74a,74bおよびケーブル73a,73bを介して検出する。続いて、抵抗測定装置70における図外の測定部が、電流計76によって検出された測定用電流Imの電流値と電圧計77によって検出された電圧値とに基づいて抵抗値を測定する。この場合、測定した抵抗値が校正値となる。   On the other hand, the voltmeter 77 of the resistance measuring device 70 detects the voltage value between the voltage terminal P1 and the voltage terminal P2 in the resistor 1 via the voltage terminals 74a and 74b and the cables 73a and 73b. Subsequently, a measurement unit (not shown) in the resistance measurement device 70 measures the resistance value based on the current value of the measurement current Im detected by the ammeter 76 and the voltage value detected by the voltmeter 77. In this case, the measured resistance value becomes the calibration value.

この使用例においても、上記したように、抵抗器1の電流端子C2と電流端子C4とを短絡部材80で短絡させ、電流端子72a,72bを電流端子C1,C3にそれぞれ接続することで、電流路Ccを流れる測定用電流Imの向きとは逆向きに、配線W3に測定用電流Imを流すことができるため、電圧端子P1,P2間の電圧に対する、磁界によって誘起される電圧の影響を低く抑えることが可能となっている。したがって、この使用例においても、抵抗値を正確に測定することができるため、校正の精度を十分に向上させることが可能となっている。   Also in this usage example, as described above, the current terminal C2 and the current terminal C4 of the resistor 1 are short-circuited by the short-circuit member 80, and the current terminals 72a and 72b are connected to the current terminals C1 and C3, respectively. Since the measurement current Im can flow through the wiring W3 in the direction opposite to the direction of the measurement current Im flowing through the path Cc, the influence of the voltage induced by the magnetic field on the voltage between the voltage terminals P1 and P2 is reduced. It is possible to suppress. Therefore, also in this use example, since the resistance value can be measured accurately, it is possible to sufficiently improve the accuracy of calibration.

また、この使用例(4端子法に対応した抵抗測定装置70についての使用例)では、図4に示すように、近接して配置された電流端子C1,C3を介して測定用電流Imの入出力を行うことができるため、測定用電流Imを供給するケーブル71a,71bを近接させることができる結果、各ケーブル71a,71bから発生する磁界が打ち消されて、磁界の影響を低く抑えることができる。また、ケーブル71a,71bを近接させることで、電流経路で囲まれるループ(同図に斜線を付した部分)の面積を小さくすることができるため、電流経路からの磁界の発生を少なく抑えることができると共に、周囲で磁界が発生している場合において、ループを通過する磁界を少なく抑えることができる結果、これらの磁界の影響を低く抑えることができる。   Further, in this use example (use example of the resistance measuring device 70 corresponding to the four-terminal method), as shown in FIG. 4, the measurement current Im is input via the current terminals C1 and C3 arranged in close proximity. Since the output can be performed, the cables 71a and 71b supplying the measurement current Im can be brought close to each other. As a result, the magnetic fields generated from the cables 71a and 71b are canceled out, and the influence of the magnetic fields can be kept low. . Further, by bringing the cables 71a and 71b close to each other, the area of the loop surrounded by the current path (the hatched portion in the figure) can be reduced, so that the generation of a magnetic field from the current path can be reduced. In addition, in the case where a magnetic field is generated in the surroundings, the magnetic field passing through the loop can be suppressed to a low level. As a result, the influence of these magnetic fields can be suppressed to a low level.

このように、この抵抗器1は、抵抗体12の一端部12aが位置する基板11の第1領域11aに配設された電流端子C3と、抵抗体12の他端部12bが位置する基板11の第2領域11bに配設された電流端子C4と、配線W1,W2および抵抗体12によって構成される電流路Ccに沿って基板11に配設されると共に電流端子C3,C4を接続する配線W3とを備えている。このため、この抵抗器1によれば、電流路Ccを流れる測定用電流Imの向きとは逆向きに、配線W3に測定用電流Imを流すことができる結果、電流路Ccを流れる測定用電流Imによって生じる磁界と、配線W3を流れる測定用電流Imによって生じる磁界とが打ち消されて、電圧端子P1,P2間の電圧に対する、磁界によって誘起される電圧の影響を低く抑えることができる。したがって、この抵抗器1によれば、例えば、抵抗器1を用いて校正を行う際に、被測定量としての抵抗値を正確に測定することができるため、校正の精度を十分に向上させることができる。また、この抵抗器1によれば、構造が単純であるため、製造効率を十分に向上させることができる。   As described above, the resistor 1 includes the current terminal C3 disposed in the first region 11a of the substrate 11 where the one end 12a of the resistor 12 is located, and the substrate 11 where the other end 12b of the resistor 12 is located. The current terminal C4 disposed in the second region 11b, the wiring disposed on the substrate 11 along the current path Cc formed by the wirings W1 and W2 and the resistor 12, and connecting the current terminals C3 and C4 W3. For this reason, according to the resistor 1, the measurement current Im can flow through the wiring W3 in the direction opposite to the direction of the measurement current Im flowing through the current path Cc. As a result, the measurement current flowing through the current path Cc. The magnetic field generated by Im and the magnetic field generated by the measurement current Im flowing through the wiring W3 are canceled out, and the influence of the voltage induced by the magnetic field on the voltage between the voltage terminals P1 and P2 can be suppressed low. Therefore, according to the resistor 1, for example, when the calibration is performed using the resistor 1, the resistance value as the amount to be measured can be accurately measured, so that the calibration accuracy can be sufficiently improved. Can do. Moreover, according to this resistor 1, since structure is simple, manufacturing efficiency can fully be improved.

なお、抵抗器の構成は上記の構成に限定されない。例えば、電流端子C1〜C4をそれぞれ1つだけ備えた例について上記したが、電流端子C1〜C4をそれぞれ複数備えた構成を採用することもできる。一例として、図5に示すように、第1の電流入出力用端子としての一対の電流端子C1a,C1b、第2の電流入出力用端子としての一対の電流端子C2a,C2b、第3の電流入出力用端子としての一対の電流端子C3a,C3b、および第4の電流入出力用端子としての一対の電流端子C4a,C4bを備えた抵抗器1aを採用することができる。この抵抗器1aでは、各一対の電流端子のいずれか一方(例えば、電流端子C1a,C2a,C3a,C4a)を、同軸型ケーブルの端子(例えば、BNC端子)との接続が可能な構成とし、各一対の電流端子の他方(例えば、電流端子C1b,C2b,C3b,C4b)を、非同軸型ケーブルの端子(例えば、バナナ端子)との接続が可能な構成とする。   In addition, the structure of a resistor is not limited to said structure. For example, although an example in which only one current terminal C1 to C4 is provided has been described above, a configuration in which a plurality of current terminals C1 to C4 are provided may be employed. As an example, as shown in FIG. 5, a pair of current terminals C1a and C1b as first current input / output terminals, a pair of current terminals C2a and C2b as second current input / output terminals, and a third current The resistor 1a including a pair of current terminals C3a and C3b as input / output terminals and a pair of current terminals C4a and C4b as fourth current input / output terminals can be employed. In this resistor 1a, either one of each pair of current terminals (for example, current terminals C1a, C2a, C3a, C4a) can be connected to a terminal (for example, BNC terminal) of a coaxial cable, The other of each pair of current terminals (for example, current terminals C1b, C2b, C3b, and C4b) is configured to be connectable to a terminal (for example, a banana terminal) of a non-coaxial cable.

このように構成することにより、小さな電流値の測定用電流Imを用いて測定等を行う際には同軸型ケーブルの端子を、一方の端子(電流端子C1a,C2a,C3a,C4a)に接続して測定用電流Imを供給し、大きな電流値の測定用電流Imを用いて測定等を行う際には非同軸型ケーブルの端子を、他方の端子(電流端子C1b,C2b,C3b,C4b)に接続して測定用電流Imを供給することができる結果、様々な使用形態に対応することができる。   With this configuration, the coaxial cable terminal is connected to one terminal (current terminals C1a, C2a, C3a, C4a) when performing measurement using the measurement current Im having a small current value. When the measurement current Im is supplied and measurement is performed using the measurement current Im having a large current value, the terminal of the non-coaxial cable is connected to the other terminal (current terminals C1b, C2b, C3b, C4b). As a result of being connected and supplying the measurement current Im, it is possible to cope with various usage forms.

また、基板11に形成されている導体パターン31a〜31cを第1配線W1〜W3として用いる例について上記したが、例えば、導体パターン31a〜31cが形成されていない基板11の上面21や下面に第1配線W1〜W3として機能する導線を配設する構成を採用することもできる。   Moreover, although the example which uses the conductor patterns 31a-31c formed in the board | substrate 11 as 1st wiring W1-W3 was mentioned above, for example, the upper surface 21 and the lower surface of the board | substrate 11 in which the conductor patterns 31a-31c are not formed are used. It is also possible to employ a configuration in which conductive wires functioning as one wiring W1 to W3 are disposed.

また、抵抗器1を抵抗測定装置の校正を行う際に用いる例について上記したが、抵抗器1の用途はこれに限定されず、例えば、被測定量としての電流を測定する際のシャント抵抗器として用いることもできる。   Further, the example of using the resistor 1 when calibrating the resistance measuring apparatus has been described above. However, the application of the resistor 1 is not limited to this, and for example, a shunt resistor for measuring a current as a measured amount. Can also be used.

1,1a 抵抗器
11 基板
11a 第1領域
11b 第2領域
12 抵抗体
12a 一端部
12b 他端部
31a〜31c 導体パターン
32a〜32f ビア
C1,C1a,C1b 電流端子
C2,C2a,C2b 電流端子
C3,C3a,C3b 電流端子
C4,C4a,C4b 電流端子
Cc 電流経路
P1 電圧端子
P2 電圧端子
W1〜W3 配線
DESCRIPTION OF SYMBOLS 1,1a Resistor 11 Board | substrate 11a 1st area | region 11b 2nd area | region 12 Resistor 12a One end part 12b Other end part 31a-31c Conductor pattern 32a-32f Via C1, C1a, C1b Current terminal C2, C2a, C2b Current terminal C3 C3a, C3b Current terminal C4, C4a, C4b Current terminal Cc Current path P1 Voltage terminal P2 Voltage terminal W1-W3 Wiring

Claims (2)

支持体と、当該支持体に配設された抵抗体と、前記支持体に配設された第1配線を介して前記抵抗体の一端部に接続されて当該一端部が位置する当該支持体の第1領域に配設された第1の電流入出力用端子と、前記支持体に配設された第2配線を介して前記抵抗体の他端部に接続されて前記支持体における当該他端部が位置する第2領域に配設された第2の電流入出力用端子と、前記抵抗体の前記一端部および前記他端部にそれぞれ接続される一対の電圧検出用端子とを備えた抵抗器であって、
前記第1領域に配設された第3の電流入出力用端子と、前記第2領域に配設された第4の電流入出力用端子と、前記第1配線、前記第2配線および前記抵抗体によって構成される電流路に沿って前記支持体に配設されると共に前記第3の電流入出力用端子および第4の電流入出力用端子を接続する第3配線とを備えている抵抗器。
A support, a resistor disposed on the support, and a first wire disposed on the support, connected to one end of the resistor and having the one end positioned Connected to the other end of the resistor via the first current input / output terminal disposed in the first region and the second wiring disposed on the support, the other end of the support A resistor having a second current input / output terminal disposed in the second region where the section is located, and a pair of voltage detection terminals respectively connected to the one end and the other end of the resistor A vessel,
A third current input / output terminal disposed in the first region; a fourth current input / output terminal disposed in the second region; the first wire; the second wire; and the resistor. A resistor provided on the support along a current path constituted by a body and having a third wiring for connecting the third current input / output terminal and the fourth current input / output terminal .
前記第1の電流入出力用端子、前記第2の電流入出力用端子、前記第3の電流入出力用端子、および前記第4の電流入出力用端子をそれぞれ一対備え、
前記各一対の電流入出力用端子のいずれか一方は、同軸型ケーブルの端子を接続可能に構成され、前記各一対の電流入出力用端子の他方は、非同軸型ケーブルの端子を接続可能に構成されている請求項1記載の抵抗器。
A pair of the first current input / output terminal, the second current input / output terminal, the third current input / output terminal, and the fourth current input / output terminal;
Either one of the pair of current input / output terminals can be connected to a coaxial cable terminal, and the other of the pair of current input / output terminals can be connected to a non-coaxial cable terminal. The resistor according to claim 1, which is configured.
JP2015037715A 2015-02-27 2015-02-27 Resistor Pending JP2016161304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037715A JP2016161304A (en) 2015-02-27 2015-02-27 Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037715A JP2016161304A (en) 2015-02-27 2015-02-27 Resistor

Publications (1)

Publication Number Publication Date
JP2016161304A true JP2016161304A (en) 2016-09-05

Family

ID=56846735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037715A Pending JP2016161304A (en) 2015-02-27 2015-02-27 Resistor

Country Status (1)

Country Link
JP (1) JP2016161304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109111A (en) * 2017-12-18 2019-07-04 日置電機株式会社 Circuit board and measuring apparatus
WO2020170683A1 (en) * 2019-02-19 2020-08-27 Koa株式会社 Shunt resistor mounting structure
WO2021181835A1 (en) * 2020-03-10 2021-09-16 Koa株式会社 Current detection device
JP7475167B2 (en) 2020-03-10 2024-04-26 Koa株式会社 Current Detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281280A (en) * 2000-03-31 2001-10-10 Hioki Ee Corp Impedance measuring method by four-terminal method
JP2002319501A (en) * 2001-01-15 2002-10-31 Matsushita Electric Works Ltd Shunt resistor and method for adjusting its resistance
US6876104B1 (en) * 2001-11-27 2005-04-05 Yazaki North America, Inc. High-speed switching circuit and automotive accessory controller using same
JP2009002893A (en) * 2007-06-25 2009-01-08 Hioki Ee Corp Circuit board test method and circuit board test apparatus
JP2009002894A (en) * 2007-06-25 2009-01-08 Hioki Ee Corp Circuit board test method and circuit board test apparatus
JP2010243256A (en) * 2009-04-02 2010-10-28 Nidec-Read Corp Substrate inspection method and substrate inspection device
JP2012233706A (en) * 2011-04-28 2012-11-29 Koa Corp Mounting structure of shunt resistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281280A (en) * 2000-03-31 2001-10-10 Hioki Ee Corp Impedance measuring method by four-terminal method
JP2002319501A (en) * 2001-01-15 2002-10-31 Matsushita Electric Works Ltd Shunt resistor and method for adjusting its resistance
US6876104B1 (en) * 2001-11-27 2005-04-05 Yazaki North America, Inc. High-speed switching circuit and automotive accessory controller using same
JP2009002893A (en) * 2007-06-25 2009-01-08 Hioki Ee Corp Circuit board test method and circuit board test apparatus
JP2009002894A (en) * 2007-06-25 2009-01-08 Hioki Ee Corp Circuit board test method and circuit board test apparatus
JP2010243256A (en) * 2009-04-02 2010-10-28 Nidec-Read Corp Substrate inspection method and substrate inspection device
JP2012233706A (en) * 2011-04-28 2012-11-29 Koa Corp Mounting structure of shunt resistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109111A (en) * 2017-12-18 2019-07-04 日置電機株式会社 Circuit board and measuring apparatus
WO2020170683A1 (en) * 2019-02-19 2020-08-27 Koa株式会社 Shunt resistor mounting structure
JP2020136458A (en) * 2019-02-19 2020-08-31 Koa株式会社 Shunt resistor mounting structure
JP7305370B2 (en) 2019-02-19 2023-07-10 Koa株式会社 Mounting structure of shunt resistor
WO2021181835A1 (en) * 2020-03-10 2021-09-16 Koa株式会社 Current detection device
JP7475167B2 (en) 2020-03-10 2024-04-26 Koa株式会社 Current Detector

Similar Documents

Publication Publication Date Title
ES2620542T3 (en) Measurement resistance and corresponding measurement procedure
JP5616431B2 (en) Method for estimating the amount of current by detecting the magnetic field generated from the current
CN108061581B (en) Electromagnetic flowmeter
JP6303527B2 (en) Current sensor
JP2019120687A (en) Offset current sensor structure
CN106537156A (en) Shunt resistor
JP5953135B2 (en) Resistance measuring device and circuit board inspection device
JP2016161304A (en) Resistor
CN106663511A (en) Shunt resistor
JP2008216230A (en) Current sensor
US9488701B2 (en) Integrated magnatoresistive sensing device
JP2020186946A (en) Impedance measuring system and impedance measuring system method
JP2017219457A (en) Magneto-impedance sensor
JP6137536B2 (en) Substrate inspection apparatus and substrate inspection method
TWI461706B (en) Impedance measurement device
JP2013053914A (en) Current measuring device
JP2020067304A (en) Current sensor and method of manufacturing bus bar used for the same
US10670634B2 (en) Sensor for measuring current in a conductor
JP2017049010A (en) Electromagnetic field probe
JP7364434B2 (en) Zero adjustment correction method and impedance measurement method
JP2016161383A (en) Terminal unit and resistance device
Tao et al. Precise mutual-inductance analysis of a novel clasp Rogowski coil with symmetrical double-printed imprints
JP6144597B2 (en) Current sensor
JP2015078872A (en) Current measuring device
CN114008465A (en) Current measuring device and method for producing a current measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507