JP2021070833A - Manufacturing material of aluminum alloy forged material - Google Patents

Manufacturing material of aluminum alloy forged material Download PDF

Info

Publication number
JP2021070833A
JP2021070833A JP2019196316A JP2019196316A JP2021070833A JP 2021070833 A JP2021070833 A JP 2021070833A JP 2019196316 A JP2019196316 A JP 2019196316A JP 2019196316 A JP2019196316 A JP 2019196316A JP 2021070833 A JP2021070833 A JP 2021070833A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat treatment
quenching
forged material
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019196316A
Other languages
Japanese (ja)
Other versions
JP7423981B2 (en
Inventor
匠 丸山
Takumi Maruyama
匠 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019196316A priority Critical patent/JP7423981B2/en
Publication of JP2021070833A publication Critical patent/JP2021070833A/en
Application granted granted Critical
Publication of JP7423981B2 publication Critical patent/JP7423981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

To provide an aluminum alloy forged material in which a mechanical characteristic difference between a periphery of a surface and a center part is small, in an undercarriage member for an automobile.SOLUTION: In a heat treatment process during manufacture of an aluminum alloy material, namely, during a quenching process in it, average wind speed of the atmosphere around the aluminum alloy material immediately after forging until water quenching is 1.0 m/sec or less.SELECTED DRAWING: Figure 3

Description

本発明は、例えば、4輪自動車に代表される輸送機の車体を支持する足回り部材として好適なアルミニウム6000系合金鍛造材に関する。 The present invention relates to, for example, an aluminum 6000 series alloy forged material suitable as a suspension member for supporting a vehicle body of a transport aircraft represented by a four-wheeled vehicle.

近年、自動車業界における環境規制の要求から、自動車に使用される各種部材、例えば車体を支持する足回り部材、特にサスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンドなどに用いる自動車用足回り部材として、高強度かつ高靭性かつ耐食性に優れるアルミニウム6000系合金(Al−Mg−Si系)が使用されている。 In recent years, due to the demands of environmental regulations in the automobile industry, various members used in automobiles, for example, suspension members for supporting the vehicle body, particularly high as undercarriage members for automobiles used for suspension arms, upper arms, lower arms, tie rod ends, etc. An aluminum 6000 series alloy (Al-Mg-Si series) having excellent strength, high toughness and corrosion resistance is used.

しかしながら近年、より一層の自動車の軽量化が要求されており、この要求を満足させるために、JIS規格6000系合金からより強度を向上させる必要が出てきた。つまりは高強度化することで、部材を薄肉化する必要がある。加えて足回り部材として強度以外にも、応力腐食割れ等の耐食性においても更なる品質向上が求められている。 However, in recent years, there has been a demand for further weight reduction of automobiles, and in order to satisfy this demand, it has become necessary to further improve the strength from JIS standard 6000 series alloys. In other words, it is necessary to reduce the wall thickness of the member by increasing the strength. In addition, as a suspension member, further quality improvement is required not only in strength but also in corrosion resistance such as stress corrosion cracking.

このような要求に応えるため、自動車足回り部材用の高強度アルミニウム6000系合金として、その組成、製造プロセスを制御することで所要の金属組織を得て課題解決を図る提案がされてきた。具体的には、製造工程の焼入れ工程において、水に焼入れる際のアルミニウム合金鍛造材の姿勢を制御することで、所要の金属組織得て課題解決を図る提案がされてきた(下記特許文献1)。 In order to meet such demands, it has been proposed to obtain a required metal structure by controlling the composition and manufacturing process of a high-strength aluminum 6000 series alloy for automobile undercarriage members to solve the problem. Specifically, in the quenching process of the manufacturing process, it has been proposed to obtain a required metal structure and solve the problem by controlling the attitude of the aluminum alloy forged material when quenching in water (Patent Document 1 below). ).

特開2017−179413号公報JP-A-2017-179413

しかしながら、実際の製造工程の焼入れ工程において、姿勢以外にも、外気の温度や、昇温が終わり焼入れされるまでの時間など、外的要因によって所要の特性が得られない恐れがある。 However, in the quenching process of the actual manufacturing process, there is a possibility that the required characteristics cannot be obtained due to external factors such as the temperature of the outside air and the time from the end of the temperature rise to the quenching in addition to the posture.

具体的には、外気温が低い場合、あるいは焼き入れされるまでの時間が長い場合、焼き入れされるまでにアルミニウム合金鍛造材の熱が外気へ放熱され、焼き入れ時に所要の温度を下回るため、十分な過飽和固溶体を得ることを損ね、機械的特性が劣ることがある。 Specifically, when the outside temperature is low or the time until quenching is long, the heat of the aluminum alloy forged material is dissipated to the outside air by the time of quenching, and the temperature falls below the required temperature at the time of quenching. , It is impaired to obtain a sufficient supersaturated solid solution, and the mechanical properties may be inferior.

また、この場合、アルミニウム合金鍛造材の外周部付近が中心部に比べ優先的に放熱され、アルミニウム合金鍛造材の外周部付近および中心部で温度差が生じた状態で焼入れされると、焼き入れ時の冷却時に収縮が均一にならず、形状不良を引き起こすという問題があった。 Further, in this case, when the heat is radiated preferentially in the vicinity of the outer peripheral portion of the aluminum alloy forged material as compared with the central portion and the aluminum alloy forged material is quenched in a state where a temperature difference occurs in the vicinity of the outer peripheral portion and the central portion, quenching There is a problem that the shrinkage is not uniform at the time of cooling, causing a shape defect.

また、本課題は熱間鍛造時において、当該アルミニウム合金鍛造材や熱間鍛造時の成形部材として用いられる金型が高温に加熱されているため、その熱源により上昇気流が発生しており、その上昇気流による空気の流れからも影響を受ける。すなわち、風速が早い場合、焼き入れされるまでの間にアルミニウム合金鍛造材の外周部付近の熱を奪い、上記に記したアルミニウム合金鍛造材の外周部および中心部での温度差を生じさせる。これらの温度差は上記と同様に形状不良を引き起こすという問題があった。 Further, in this subject, during hot forging, the aluminum alloy forging material and the die used as a molding member during hot forging are heated to a high temperature, so that an updraft is generated by the heat source. It is also affected by the flow of air due to the updraft. That is, when the wind speed is high, heat is taken from the vicinity of the outer peripheral portion of the aluminum alloy forged material before quenching, and a temperature difference is generated between the outer peripheral portion and the central portion of the aluminum alloy forged material described above. There is a problem that these temperature differences cause shape defects as described above.

本発明は、かかる技術的背景に鑑みてなされたものであって、アルミニウム合金鍛造材の製造工程の中の焼入れ工程において、風速を制御することで、アルミニウム合金鍛造材の外周部および中心部での温度差を極力排除し、十分な機械的特性を有し且つ焼き入れ時の収縮過程において形状不良を抑制することができるアルミニウム合金鍛造材の製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and in the quenching step in the manufacturing process of the aluminum alloy forged material, the wind speed is controlled so as to be formed at the outer peripheral portion and the central portion of the aluminum alloy forged material. It is an object of the present invention to provide a method for producing an aluminum alloy forged material, which has sufficient mechanical properties and can suppress shape defects in the shrinkage process during quenching.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]溶体化熱処理工程と水焼入れ熱処理工程とを含むアルミニウム合金鍛造材の製造方法であって、
前記溶体化熱処理工程と前記水焼入れ熱処理工程との間の、アルミニウム合金鍛造材の周囲における大気の平均風速が1.0m/sec以下であることを特徴とするアルミニウム合金鍛造材の製造方法。
[1] A method for producing an aluminum alloy forged material, which includes a solution heat treatment step and a water quenching heat treatment step.
A method for producing an aluminum alloy forged material, characterized in that the average wind velocity of the atmosphere around the aluminum alloy forged material between the solution heat treatment step and the water quenching heat treatment step is 1.0 m / sec or less.

[2]アルミニウム合金がAl−Mg−Si系合金である前項1に記載のアルミニウム合金鍛造材の製造方法。 [2] The method for producing an aluminum alloy forged material according to item 1 above, wherein the aluminum alloy is an Al—Mg—Si based alloy.

[3]前記溶体化熱処理工程が鍛造工程における昇温を併用したものである前項1または2に記載のアルミニウム合金鍛造材の製造方法。 [3] The method for producing an aluminum alloy forged material according to item 1 or 2 above, wherein the solution heat treatment step is combined with raising the temperature in the forging step.

[4]前記水焼入れ熱処理工程における水の温度が40℃〜90℃である前項1〜3のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。 [4] The method for producing an aluminum alloy forged material according to any one of items 1 to 3 above, wherein the temperature of water in the water quenching heat treatment step is 40 ° C to 90 ° C.

[5]前記アルミニウム合金鍛造材が自動車用足回り部材である前項1〜4のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。 [5] The method for producing an aluminum alloy forged material according to any one of items 1 to 4 above, wherein the aluminum alloy forged material is an automobile suspension member.

[1]の発明では、大気の平均風速を1.0m/sec以下に制御することで、アルミニウム合金鍛造材の外周部および中心部での温度差を極力排除することができ、十分な機械的特性を有し、かつ、焼き入れ時の収縮過程において形状不良を抑制することができる。さらに、熱処理工程に起因する形状変形が少ないアルミニウム合金鍛造材を提供することができる。 In the invention of [1], by controlling the average wind speed of the atmosphere to 1.0 m / sec or less, it is possible to eliminate the temperature difference between the outer peripheral portion and the central portion of the aluminum alloy forged material as much as possible, and it is sufficiently mechanical. It has characteristics and can suppress shape defects during the shrinkage process during quenching. Further, it is possible to provide an aluminum alloy forged material having less shape deformation due to the heat treatment step.

[2]の発明では、熱処理工程に起因する形状変形が少ないAl−Mg−Si系合金を提供することができる。 In the invention of [2], it is possible to provide an Al—Mg—Si based alloy having less shape deformation due to the heat treatment step.

[3]の発明では、熱処理工程に起因する形状変形が少ないアルミニウム合金材を安価に提供することができる。 In the invention of [3], it is possible to inexpensively provide an aluminum alloy material having less shape deformation due to the heat treatment step.

[4]の発明では、アルミニウム合金部材の熱処理工程に起因する形状変形を更に少なくすることができる。 In the invention of [4], the shape deformation caused by the heat treatment step of the aluminum alloy member can be further reduced.

[5]の発明では、熱処理工程に起因する形状変形が少ないアルミニウム合金製の自動車用足回り部材を提供することができる。 In the invention of [5], it is possible to provide an aluminum alloy undercarriage member with less shape deformation due to a heat treatment step.

本発明のアルミニウム合金鍛造材の製造方法における工程の一例を示す工程フロー図である。It is a process flow diagram which shows an example of the process in the manufacturing method of the aluminum alloy forged material of this invention. 本発明のアルミニウム合金鍛造材の製造方法における製造過程で形成された切断鋳造材の一例を示す斜視図である。It is a perspective view which shows an example of the cut casting material formed in the manufacturing process in the manufacturing method of the aluminum alloy forging material of this invention. 本発明に係るアルミニウム合金材で形成された鍛造品の一例を示す斜視図である。It is a perspective view which shows an example of the forged product made of the aluminum alloy material which concerns on this invention.

以下、本発明に係るアルミニウム合金材および本発明に係るアルミニウム合金鍛造材の製造方法の実施形態について詳細に説明する。なお、以下に示す実施形態は例示に過ぎず、本発明はこれらの例示した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において適宜変更することができる。 Hereinafter, embodiments of the aluminum alloy material according to the present invention and the method for producing the aluminum alloy forged material according to the present invention will be described in detail. The embodiments shown below are merely examples, and the present invention is not limited to these illustrated embodiments, and can be appropriately modified without departing from the technical idea of the present invention.

本発明に係るアルミニウム6000系合金鍛造材は、Al−Mg−Si系合金鍛造材であって、製造過程における焼入れ処理時に、大気に晒され始めてから焼入れされるまでの時間、大気の温度および大気中の風速を一定条件内で制御することを特徴とする。 The aluminum 6000 series alloy forged material according to the present invention is an Al—Mg—Si based alloy forged material, and during the quenching treatment in the manufacturing process, the time from the start of exposure to the atmosphere to the quenching, the temperature of the atmosphere and the atmosphere. It is characterized in that the wind speed inside is controlled within a certain condition.

このような構成であることによって、当該アルミニウム合金鍛造材は外周部および中心部の温度差が極力少ない状態で焼入れされ、十分な過飽和固溶体が得られると同時に、温度差に起因して発生する形状不良を抑制することが可能となる。本発明は上記設計により先述課題を解決し、自動車足回り用部材として好適なアルミニウム6000系合金鍛造材を提供することができる。 With such a configuration, the aluminum alloy forged material is hardened with the temperature difference between the outer peripheral portion and the central portion as small as possible, and a sufficient supersaturated solid solution can be obtained, and at the same time, a shape generated due to the temperature difference. It is possible to suppress defects. The present invention can solve the above-mentioned problems by the above design and provide an aluminum 6000 series alloy forged material suitable as a member for an automobile suspension.

本発明のアルミニウム合金鍛造材の製造方法は、溶体化熱処理工程と水焼入れ熱処理工程とを含み、溶体化熱処理工程と水焼入れ熱処理工程との間の、アルミニウム合金鍛造材の周囲における大気の平均風速が1.0m/sec以下であることを特徴とする。 The method for producing an aluminum alloy forged material of the present invention includes a solution heat treatment step and a water quenching heat treatment step, and the average wind velocity of the atmosphere around the aluminum alloy forged material between the solution heat treatment step and the water quenching heat treatment step. Is 1.0 m / sec or less.

アルミニウム合金鍛造材の周囲における大気の平均風速を1.0m/sec以下に制御する手段としては、例えば、溶体化熱処理工程後、水焼入れ熱処理工程へ移る際のアルミニウム合金鍛造材の搬送区間に、囲いを設けることが挙げられる。このように、囲いを設けることで、搬送区間における大気の風速を制御できる。 As a means for controlling the average wind velocity of the atmosphere around the aluminum alloy forged material to 1.0 m / sec or less, for example, in the transport section of the aluminum alloy forged material when moving to the water quenching heat treatment step after the solution heat treatment step. It is possible to provide an enclosure. By providing the enclosure in this way, the wind speed of the atmosphere in the transport section can be controlled.

また、大気の風速を制御する手段は囲いを設けることに限られず、搬送区間において、大気の平均風速を1.0m/sec以下に制御できればよい。 Further, the means for controlling the wind speed of the atmosphere is not limited to providing an enclosure, and it is sufficient that the average wind speed of the atmosphere can be controlled to 1.0 m / sec or less in the transport section.

また、本発明では、大気の平均風速が1.0m/sec以下となるように制御しているが、平均風速が0m/sec、すなわち無風状態であることが好ましい。このようにすることで、同一品質のアルミニウム合金鍛造品をより高精度に製造することができる。 Further, in the present invention, the average wind speed of the atmosphere is controlled to be 1.0 m / sec or less, but it is preferable that the average wind speed is 0 m / sec, that is, there is no wind. By doing so, it is possible to manufacture an aluminum alloy forged product of the same quality with higher accuracy.

以上のように、溶体化熱処理工程と水焼入れ熱処理工程との間の、アルミニウム合金鍛造材の周囲における大気の平均風速が1.0m/sec以下であることで、アルミニウム合金鍛造材の外周部および中心部での温度差を極力排除することができ、十分な機械的特性を有し、かつ、焼き入れ時の収縮過程において形状不良を抑制することができる。さらに、熱処理工程に起因する形状変形が少ないアルミニウム合金鍛造材を提供することができる。 As described above, the average wind velocity of the atmosphere around the aluminum alloy forged material between the solution heat treatment step and the water quenching heat treatment step is 1.0 m / sec or less, so that the outer peripheral portion of the aluminum alloy forged material and the outer peripheral portion of the aluminum alloy forged material and It is possible to eliminate the temperature difference in the central portion as much as possible, have sufficient mechanical properties, and suppress shape defects in the shrinkage process during quenching. Further, it is possible to provide an aluminum alloy forged material having less shape deformation due to the heat treatment step.

次に、本発明に係るアルミニウム6000系合金鍛造材の製造方法の一例について詳細に説明する。本製造方法は、Al−Mg−Si系合金の溶湯を得る溶湯形成工程と、前記得られた溶湯を鋳造加工することによって鋳造材を得る鋳造工程と、を含む。 Next, an example of a method for producing an aluminum 6000 series alloy forged material according to the present invention will be described in detail. The present manufacturing method includes a molten metal forming step of obtaining a molten metal of an Al—Mg—Si based alloy, and a casting step of obtaining a casting material by casting the obtained molten metal.

前記溶湯形成工程では、SiおよびMgを0.05質量%〜1.3質量%を含み、残部がAl及び不可避不純物からなる組成となるように溶解調製されたアルミニウム合金溶湯を得る。なお本合金溶湯には必要に応じてFe、Cu、Cr、Mn、Ni、Ti、Zr等の金属を添加してもよい。 In the molten metal forming step, an aluminum alloy molten metal prepared by dissolving Si and Mg in an amount of 0.05% by mass to 1.3% by mass and having a composition of Al and unavoidable impurities is obtained. If necessary, metals such as Fe, Cu, Cr, Mn, Ni, Ti, and Zr may be added to the molten alloy.

次に、前記得られた溶湯を鋳造加工することによって鋳造材(鍛造用ビレット)を得る(鋳造工程)。鋳造方法としては、特に限定されるものではなく、従来公知の方法を用いればよく、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等が挙げられる。 Next, a casting material (forging billet) is obtained by casting the obtained molten metal (casting step). The casting method is not particularly limited, and a conventionally known method may be used. Examples thereof include a continuous casting and rolling method and a semi-continuous casting method (DC casting method).

以下のとおり、必要に応じて、さらに、均質化熱処理工程、熱間鍛造工程、溶体化処理工程、焼入れ処理工程、人工時効硬化処理工程等の工程のうちの1ないし複数の工程を選択して実施するようにしてもよい(図1参照)。 As described below, if necessary, further select one or more of the steps such as homogenization heat treatment step, hot forging step, solution treatment step, quenching treatment step, artificial aging curing treatment step, and the like. It may be carried out (see FIG. 1).

(均質化熱処理工程)
得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、準安定相の平衡相への変化が行われる。均質化熱処理により、金属間化合物の大きさを小さくすることができる。このように金属間化合物が小さくなることにより、金属間化合物を起点とする破壊が抑制され、引張強さがさらに向上する。また、均質化熱処理を行うことにより、金属間化合物中に含有される各元素が母材中へ均一に拡散するものとなり、固溶強化及び析出化による更なる引張強さの向上が可能となる。
(Homogenization heat treatment process)
By subjecting the obtained cast material to homogenization heat treatment, microsegregation generated by solidification is homogenized, supersaturated solid solution elements are precipitated, and the metastable phase is changed to an equilibrium phase. The size of the intermetallic compound can be reduced by the homogenization heat treatment. By reducing the size of the intermetallic compound in this way, fracture starting from the intermetallic compound is suppressed, and the tensile strength is further improved. Further, by performing the homogenizing heat treatment, each element contained in the intermetallic compound is uniformly diffused into the base metal, and it is possible to further improve the tensile strength by solid solution strengthening and precipitation. ..

均質化熱処理は、共晶溶融を生じない温度範囲内で、かつ、可能な限り高温で行うことが好ましい。このような条件で均質化熱処理を行うことにより、金属間化合物の母材中への溶解及び拡散が効果的に行われる。その結果、金属間化合物の大きさを小さくすることが可能となる。 The homogenization heat treatment is preferably performed within a temperature range that does not cause eutectic melting and at a high temperature as much as possible. By performing the homogenizing heat treatment under such conditions, the intermetallic compound is effectively dissolved and diffused in the base metal. As a result, the size of the intermetallic compound can be reduced.

次に、前記均質化熱処理を経た後の鋳造材を所定の長さに切断し、鍛造用ビレットを得る。 Next, the cast material after the homogenization heat treatment is cut to a predetermined length to obtain a forging billet.

(熱間鍛造工程)
熱間鍛造の温度条件は、アルミニウム合金の特性をより再現性良く発現させる点で関係性を有し、即ちアルミニウム合金の溶体化処理後のミクロ組織を等軸結晶粒とすることが可能となる。中でも、熱間鍛造は、金型温度を100℃〜300℃に設定し、素材温度を400℃〜550℃に設定して行うことが好ましい。このような条件で熱間鍛造を行うことによって、アルミニウム合金材の引張強さをより向上させることができる。
(Hot forging process)
The temperature conditions of hot forging are related in that the characteristics of the aluminum alloy are expressed more reproducibly, that is, the microstructure after the solution treatment of the aluminum alloy can be made into equiaxed crystal grains. .. Above all, the hot forging is preferably performed by setting the mold temperature to 100 ° C. to 300 ° C. and the material temperature to 400 ° C. to 550 ° C. By performing hot forging under such conditions, the tensile strength of the aluminum alloy material can be further improved.

(溶体化処理工程、焼入れ処理工程、人工時効硬化処理工程)
次に、溶体化処理工程、焼入れ処理工程、人工時効硬化処理工程について説明する。溶体化処理は、アルミニウム合金を高温で保持した後に急冷し、過飽和固溶体を形成する熱処理である。焼入れ処理は、溶体化処理によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。人工時効硬化処理は、アルミニウム合金を比較的低温で加熱保持して過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。これらの熱処理(溶体化処理、焼入れ処理、人工時効硬化処理)を行うことによって、微細な析出物が均一に分散し、強度、延性および靱性が高度にバランスしたアルミニウム合金材を得ることができる。
(Solution treatment process, quenching treatment process, artificial age hardening process)
Next, the solution heat treatment step, the quenching treatment step, and the artificial aging hardening treatment step will be described. The solution treatment is a heat treatment in which an aluminum alloy is held at a high temperature and then rapidly cooled to form a supersaturated solid solution. The quenching treatment is a heat treatment in which the solid solution state obtained by the solution treatment is rapidly cooled to form a supersaturated solid solution. The artificial age hardening treatment is a heat treatment for heating and holding an aluminum alloy at a relatively low temperature to precipitate elements that are supersaturated and solid-solved to impart appropriate hardness. By performing these heat treatments (solution heat treatment, quenching treatment, artificial age hardening treatment), fine precipitates are uniformly dispersed, and an aluminum alloy material having a highly balanced strength, ductility and toughness can be obtained.

また、溶体化処理工程は鍛造工程における昇温を併用することで、次の通りに省略することも可能である。すなわち鍛造工程時において、鍛造直後で高温に保持されたアルミニウム合金をそのまま急冷し過飽和固溶体を形成する工程である。これらの工程(熱間鍛造、鍛造焼入れ)は、従来の鍛造後に一度徐冷し、連続加熱炉ないし単体炉で再度加熱し溶体化処理を施す工程と比較し、同一品質のアルミニウム合金が得られるばかりでなく、再加熱に要するエネルギーを節約するだけでなく、製造時間を大幅に改善することが可能となる。 Further, the solution treatment step can be omitted as follows by using the temperature rise in the forging step together. That is, in the forging process, the aluminum alloy held at a high temperature immediately after forging is rapidly cooled as it is to form a supersaturated solid solution. In these steps (hot forging, forging quenching), aluminum alloys of the same quality can be obtained as compared with the conventional steps of slow cooling once after forging and then heating again in a continuous heating furnace or a single furnace to perform solution treatment. Not only that, it not only saves the energy required for reheating, but also makes it possible to significantly improve the manufacturing time.

このように、溶体化熱処理工程が鍛造工程における昇温を併用することで、熱処理工程に起因する形状変形が少ないアルミニウム合金材を安価に提供することができる。 As described above, by combining the solution heat treatment step with the temperature rise in the forging step, it is possible to inexpensively provide an aluminum alloy material having less shape deformation due to the heat treatment step.

これらの熱処理条件は、成分組成、要求される特性等に応じて選択すればよい。前記溶体化処理は、特に限定されるものではないが、加熱温度を510℃〜560℃、保持時間を0.5時間〜6時間に設定して行うことが好ましく、この場合にはコストと特性のバランスがより良好になる。鍛造焼入れ工程においても同様の温度で、鍛造直後の温度を510℃〜560℃、保持時間、すなわち鍛造直後から焼入れまでの時間を1秒〜30秒に設定して行うことが好ましい。 These heat treatment conditions may be selected according to the component composition, required properties, and the like. The solution treatment is not particularly limited, but is preferably performed by setting the heating temperature to 510 ° C. to 560 ° C. and the holding time to 0.5 hour to 6 hours. In this case, the cost and characteristics. The balance becomes better. In the forging and quenching step, it is preferable to set the temperature immediately after forging to 510 ° C. to 560 ° C. and the holding time, that is, the time from immediately after forging to quenching to 1 second to 30 seconds at the same temperature.

上記焼入れ工程の際、本発明にかかる設計思想を用いると、下記のようになる。すなわち焼入れ工程または鍛造焼入れ工程において、当該アルミニウム合金鍛造材の昇温が終了してから焼入れされるまでの時間および外気温度を一定範囲内に制御し、外気風速を一定値以下に制御する。このような構成であることによって、焼入れされる際のアルミニウム鍛造材において、アルミニウム鍛造材の外周部および中心部の温度差が極力少ない状態、および十分な過飽和固溶体が得られるだけの温度を保持したまま焼入れされることが可能となる。 When the design concept according to the present invention is used in the quenching process, the result is as follows. That is, in the quenching step or the forging quenching step, the time from the completion of the temperature rise of the aluminum alloy forged material to the quenching and the outside air temperature are controlled within a certain range, and the outside air wind speed is controlled to a certain value or less. With such a configuration, in the aluminum forged material at the time of quenching, the temperature difference between the outer peripheral portion and the central portion of the aluminum forged material is kept as small as possible, and the temperature is maintained so that a sufficient supersaturated solid solution can be obtained. It can be hardened as it is.

前記焼入れ処理は、特に限定されるものではないが、10℃〜90℃の水で急冷する(水焼入れ処理する)ことが好ましい。 The quenching treatment is not particularly limited, but it is preferable to quench with water at 10 ° C. to 90 ° C. (water quenching treatment).

特に、水の温度は40℃〜90℃であることが好ましい。これは、アルミニウム合金部材の熱処理工程に起因する形状変形を更に少なくすることができるからである。 In particular, the temperature of water is preferably 40 ° C to 90 ° C. This is because the shape deformation caused by the heat treatment step of the aluminum alloy member can be further reduced.

また、前記人工時効硬化処理は、特に限定されるものではないが、加熱温度を160℃〜250℃、保持時間を10分間〜8時間に設定して行うことが好ましく、この場合にはコストと特性のバランスがより良好になる。 The artificial age hardening treatment is not particularly limited, but is preferably performed by setting the heating temperature to 160 ° C. to 250 ° C. and the holding time to 10 minutes to 8 hours. The balance of characteristics becomes better.

このようにして製造されたアルミニウム合金製品(鋳造品、鍛造品等)は、常温における引張特性に優れ、加えて外的要因を受けやすい面がより高強度となっている特徴を有しているため、例えば、自動車用足回り部品(サスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンド等)の材料として好適に用いられる。 Aluminum alloy products (cast products, forged products, etc.) manufactured in this way have excellent tensile properties at room temperature, and in addition, have higher strength on surfaces that are susceptible to external factors. Therefore, for example, it is suitably used as a material for undercarriage parts for automobiles (suspension arm, upper arm, lower arm, tie rod end, etc.).

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.

<実施例1>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Example 1>
Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, Cr: 0.15% by mass. After heating an aluminum alloy whose balance is Al and unavoidable impurities to obtain a molten aluminum alloy, a continuous cast material was obtained using the molten aluminum alloy. The obtained continuous cast material was homogenized and heat-treated, and then air-cooled.

次いで、空冷後の連続鋳造材を切断した後、該切断鋳造材10(図2参照)に熱間鍛造を行った。得られた鍛造材20(図3参照)を溶体化温度540℃で加熱し50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品20を得た。 Next, after cutting the continuous cast material after air cooling, hot forging was performed on the cut cast material 10 (see FIG. 2). The obtained forged material 20 (see FIG. 3) was heated at a solution temperature of 540 ° C., placed in water at 50 ° C. for water quenching, and then heated at 180 ° C. for 6 hours for artificial age hardening. Forged product 20 was obtained.

この水焼き入れを行う際、外気の平均風速は0.8m/secの状態で焼入れを行った。 When this water quenching was performed, the quenching was performed in a state where the average wind speed of the outside air was 0.8 m / sec.

<実施例2>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Example 2>
Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, Cr: 0.15% by mass. After heating an aluminum alloy whose balance is Al and unavoidable impurities to obtain a molten aluminum alloy, a continuous cast material was obtained using the molten aluminum alloy. The obtained continuous cast material was homogenized and heat-treated, and then air-cooled.

次いで、空冷後の連続鋳造材を切断した後、該切断鋳造材10(図2参照)に、材料温度530℃、金型温度180℃で熱間鍛造を行った。得られた鍛造材20(図3参照)を鍛造後、熱間鍛造時の加熱が保持されている状態で50℃の水中に入れて水焼き入れを行った。その後180℃で6時間加熱して人工時効硬化処理を施し、鍛造品20を得た。 Next, after cutting the continuous cast material after air cooling, the cut cast material 10 (see FIG. 2) was hot forged at a material temperature of 530 ° C. and a mold temperature of 180 ° C. After the obtained forging material 20 (see FIG. 3) was forged, it was placed in water at 50 ° C. and water-quenched while the heating during hot forging was maintained. Then, it was heated at 180 ° C. for 6 hours and subjected to artificial age hardening treatment to obtain a forged product 20.

この水焼き入れを行う際、外気の平均風速は0.8m/secの状態で焼入れを行った。 When this water quenching was performed, the quenching was performed in a state where the average wind speed of the outside air was 0.8 m / sec.

<比較例1>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Comparative example 1>
Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, Cr: 0.15% by mass. After heating an aluminum alloy whose balance is Al and unavoidable impurities to obtain a molten aluminum alloy, a continuous cast material was obtained using the molten aluminum alloy. The obtained continuous cast material was homogenized and heat-treated, and then air-cooled.

次いで、空冷後の連続鋳造材を切断した後、該切断鋳造材10(図2参照)に熱間鍛造を行った。得られた鍛造材20(図3参照)を溶体化温度540℃で加熱し50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品20を得た。 Next, after cutting the continuous cast material after air cooling, hot forging was performed on the cut cast material 10 (see FIG. 2). The obtained forged material 20 (see FIG. 3) was heated at a solution temperature of 540 ° C., placed in water at 50 ° C. for water quenching, and then heated at 180 ° C. for 6 hours for artificial age hardening. Forged product 20 was obtained.

この水焼き入れを行う際、外気の平均風速は1.1m/secの状態で焼入れを行った。 When this water quenching was performed, the quenching was performed in a state where the average wind speed of the outside air was 1.1 m / sec.

<比較例2>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Comparative example 2>
Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, Cr: 0.15% by mass. After heating an aluminum alloy whose balance is Al and unavoidable impurities to obtain a molten aluminum alloy, a continuous cast material was obtained using the molten aluminum alloy. The obtained continuous cast material was homogenized and heat-treated, and then air-cooled.

次いで、空冷後の連続鋳造材を切断した後、該切断鋳造材10(図2参照)に、材料温度530℃、金型温度180℃で熱間鍛造を行った。得られた鍛造材20(図3参照)を鍛造後、熱間鍛造時の加熱が保持されている状態で50℃の水中に入れて水焼き入れを行った。その後180℃で6時間加熱して人工時効硬化処理を施し、鍛造品20を得た。 Next, after cutting the continuous cast material after air cooling, the cut cast material 10 (see FIG. 2) was hot forged at a material temperature of 530 ° C. and a mold temperature of 180 ° C. After the obtained forging material 20 (see FIG. 3) was forged, it was placed in water at 50 ° C. and water-quenched while the heating during hot forging was maintained. Then, it was heated at 180 ° C. for 6 hours and subjected to artificial age hardening treatment to obtain a forged product 20.

この水焼き入れを行う際、外気の平均風速は1.1m/secの状態で焼入れを行った。 When this water quenching was performed, the quenching was performed in a state where the average wind speed of the outside air was 1.1 m / sec.

Figure 2021070833
Figure 2021070833

上記のようにして得られた各鍛造品について下記評価法に基づいて各種評価を行った。 Various evaluations were performed on each forged product obtained as described above based on the following evaluation method.

<硬度測定>
得られた鍛造品において、表層付近の硬度および中心部の硬度をそれぞれ測定した。具体的には、任意のアーム部を切り出し、当該アーム部の表層付近および中心部から10mm角の硬度測定用サンプルを切り出した。なお、それぞれ硬度測定を行う面は、表層付近は表層から約1mmの部分にあたる面を対象とし、中心部は、表層から反対面の層までの1/2の位置に当たる箇所を硬度測定面とした。10mm角に切り出されたサンプルを樹脂埋めし、対象面をエメリー紙で#2000まで研磨を行ったのち、ビッカース硬度計を用いてビッカース硬度を測定した。ビッカース硬度測定の際の荷重は10gで、1試料に対し10点測定し平均のビッカース硬度を算出した。ビッカース硬度の測定結果を表1に示す。なお、評価方法は、硬度が120以上かつ表層付近と中心部の硬度差が5以下で「〇」、いずれか一方でも満足しない場合又は双方ともに満足しない場合を「×」とした。
<Hardness measurement>
In the obtained forged product, the hardness near the surface layer and the hardness at the center were measured, respectively. Specifically, an arbitrary arm portion was cut out, and a sample for hardness measurement of 10 mm square was cut out from the vicinity of the surface layer and the central portion of the arm portion. The surface on which the hardness is measured is the surface in the vicinity of the surface layer which is about 1 mm from the surface layer, and the central portion is the surface where the hardness is measured at a position halved from the surface layer to the opposite surface layer. .. A sample cut into a 10 mm square was embedded in resin, the target surface was polished to # 2000 with emery paper, and then the Vickers hardness was measured using a Vickers hardness tester. The load at the time of measuring the Vickers hardness was 10 g, and 10 points were measured for one sample to calculate the average Vickers hardness. The measurement results of Vickers hardness are shown in Table 1. In the evaluation method, when the hardness was 120 or more and the hardness difference between the vicinity of the surface layer and the central portion was 5 or less, the evaluation method was “◯”, and the case where either one was not satisfied or both were not satisfied was evaluated as “x”.

表1より、実施例1および2において、表層付近と中心部での硬度差が少なく且つ硬度が高いことが分かる。 From Table 1, it can be seen that in Examples 1 and 2, the hardness difference between the vicinity of the surface layer and the central portion is small and the hardness is high.

また、比較例1および2において、表層付近と中心部での硬度差が実施例1および2に比べ大きくかつ硬度が低いことが分かる。 Further, it can be seen that in Comparative Examples 1 and 2, the difference in hardness between the vicinity of the surface layer and the central portion is larger and the hardness is lower than that of Examples 1 and 2.

本発明に係るアルミニウム合金材および本発明の製造方法で得られた足回り用鍛造品は、鍛造品の内部での強度差が少ないため、例えば、自動車用足回りのサスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンド等の材料として好適に用いられるが、特にこのような用途に限定されるものではない。 Since the aluminum alloy material according to the present invention and the forged product for undercarriage obtained by the manufacturing method of the present invention have a small difference in strength inside the forged product, for example, a suspension arm, an upper arm, and a lower arm for an automobile undercarriage. , But it is preferably used as a material for tie rod ends and the like, but is not particularly limited to such applications.

10…鋳造品(鋳造材)
20…鍛造品(鍛造材)
10 ... Casting product (casting material)
20 ... Forged product (forged material)

Claims (5)

溶体化熱処理工程と水焼入れ熱処理工程とを含むアルミニウム合金鍛造材の製造方法であって、
前記溶体化熱処理工程と前記水焼入れ熱処理工程との間の、アルミニウム合金鍛造材の周囲における大気の平均風速が1.0m/sec以下であることを特徴とするアルミニウム合金鍛造材の製造方法。
A method for producing an aluminum alloy forged material, which includes a solution heat treatment step and a water quenching heat treatment step.
A method for producing an aluminum alloy forged material, characterized in that the average wind velocity of the atmosphere around the aluminum alloy forged material between the solution heat treatment step and the water quenching heat treatment step is 1.0 m / sec or less.
アルミニウム合金がAl−Mg−Si系合金である請求項1に記載のアルミニウム合金鍛造材の製造方法。 The method for producing an aluminum alloy forged material according to claim 1, wherein the aluminum alloy is an Al—Mg—Si based alloy. 前記溶体化熱処理工程が鍛造工程における昇温を併用したものである請求項1または2に記載のアルミニウム合金鍛造材の製造方法。 The method for producing an aluminum alloy forged material according to claim 1 or 2, wherein the solution heat treatment step is combined with raising the temperature in the forging step. 前記水焼入れ熱処理工程における水の温度が40℃〜90℃である請求項1〜3のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。 The method for producing an aluminum alloy forged material according to any one of claims 1 to 3, wherein the temperature of water in the water quenching heat treatment step is 40 ° C to 90 ° C. 前記アルミニウム合金鍛造材が自動車用足回り部材である請求項1〜4のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。 The method for producing an aluminum alloy forged material according to any one of claims 1 to 4, wherein the aluminum alloy forged material is an automobile suspension member.
JP2019196316A 2019-10-29 2019-10-29 Manufacturing method for aluminum alloy forgings Active JP7423981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019196316A JP7423981B2 (en) 2019-10-29 2019-10-29 Manufacturing method for aluminum alloy forgings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196316A JP7423981B2 (en) 2019-10-29 2019-10-29 Manufacturing method for aluminum alloy forgings

Publications (2)

Publication Number Publication Date
JP2021070833A true JP2021070833A (en) 2021-05-06
JP7423981B2 JP7423981B2 (en) 2024-01-30

Family

ID=75712587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196316A Active JP7423981B2 (en) 2019-10-29 2019-10-29 Manufacturing method for aluminum alloy forgings

Country Status (1)

Country Link
JP (1) JP7423981B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107863U (en) * 1980-01-19 1981-08-21
JPH08232051A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of aluminum alloy forged product
JPH1112675A (en) * 1997-06-28 1999-01-19 Kobe Steel Ltd Production of aluminum alloy for hot forging and hot forged product
JP2008248283A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Method for quenching forged material of aluminum alloy
JP2012001756A (en) * 2010-06-16 2012-01-05 Sumitomo Light Metal Ind Ltd HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2017179413A (en) * 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207770502U (en) 2018-01-29 2018-08-28 辽宁忠旺集团有限公司 A kind of Multifunctional aluminium alloy extrudate press quenching device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107863U (en) * 1980-01-19 1981-08-21
JPH08232051A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of aluminum alloy forged product
JPH1112675A (en) * 1997-06-28 1999-01-19 Kobe Steel Ltd Production of aluminum alloy for hot forging and hot forged product
JP2008248283A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Method for quenching forged material of aluminum alloy
JP2012001756A (en) * 2010-06-16 2012-01-05 Sumitomo Light Metal Ind Ltd HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2017179413A (en) * 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material

Also Published As

Publication number Publication date
JP7423981B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
EP3009525A1 (en) Aluminium alloy forging and method for producing the same
JP3194742B2 (en) Improved lithium aluminum alloy system
CN103459630B (en) The aluminium alloy of hot properties excellence
KR20210046733A (en) 7XXX-Series Aluminum Alloy Products
JP2005226161A (en) Casting of aluminum alloy
JP6894849B2 (en) New 6xxx Aluminum Alloy Manufacturing Method
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
EP1885897A2 (en) An al-zn-mg-ag high-strength alloy for aerospace and automotive castings
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
JP4081537B2 (en) Bio-based Co-based alloy and method for producing the same
JPS63235454A (en) Prodution of flat rolled product of aluminum base alloy
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2020152965A (en) Aluminum alloy material, method for producing the same, and impeller
JP2021070833A (en) Manufacturing material of aluminum alloy forged material
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP2023549190A (en) Manufacturing method of 2XXX aluminum alloy products
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP7396105B2 (en) Manufacturing method for aluminum alloy forgings
JP2021127507A (en) Manufacturing method of aluminum alloy forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R151 Written notification of patent or utility model registration

Ref document number: 7423981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151