JP2021069206A - Aerodynamic sound reduction structure of current collector - Google Patents

Aerodynamic sound reduction structure of current collector Download PDF

Info

Publication number
JP2021069206A
JP2021069206A JP2019193569A JP2019193569A JP2021069206A JP 2021069206 A JP2021069206 A JP 2021069206A JP 2019193569 A JP2019193569 A JP 2019193569A JP 2019193569 A JP2019193569 A JP 2019193569A JP 2021069206 A JP2021069206 A JP 2021069206A
Authority
JP
Japan
Prior art keywords
aerodynamic
aerodynamic sound
current collector
cover
sound reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019193569A
Other languages
Japanese (ja)
Inventor
剛 光用
Takeshi Mitsumoji
剛 光用
裕雅 平川
Hiromasa Hirakawa
裕雅 平川
隆之 臼田
Takayuki Usuda
隆之 臼田
達志 磯野
Tatsushi Isono
達志 磯野
恭平 長尾
Kyohei Nagao
恭平 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2019193569A priority Critical patent/JP2021069206A/en
Publication of JP2021069206A publication Critical patent/JP2021069206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

To provide an aerodynamic sound reduction structure of a current collector capable of protecting an aerodynamic sound reduction unit without impairing aerodynamic sound reduction effect.SOLUTION: An aerodynamic sound reduction structure 21A reduces aerodynamic sound generated from an aerodynamic sound generation source of a current collector 3. The aerodynamic sound reduction unit 23 covers a surface of the aerodynamic sound generation source to reduce the aerodynamic sound. A protection unit 24 has a plurality of through holes 24a through which flow F flows into and out of the aerodynamic sound reduction unit 23, and covers a surface of the aerodynamic sound reduction unit 23 to protect the aerodynamic sound reduction unit 23. The aerodynamic sound reduction unit 23 covers a surface of the aerodynamic sound generation source of an apex cover 8 of the current collector 3. In the protective portion 24, an opening ratio of the through holes 24a is 30% or more and 60% or less. In the protective portion 24, inner diameters of the through holes 24a are 3.0 mm or more and 8.0 mm or less. The aerodynamic noise reducing unit 23 is a porous metal material. In the protection portion 24, the plurality of through holes 24a are arranged so that center lines L of the plurality of through holes 24a coincides with a direction of the flow F.SELECTED DRAWING: Figure 8

Description

この発明は、集電装置の空力音発生源から発生する空力音を低減する集電装置の空力音低減構造に関する。 The present invention relates to an aerodynamic sound reduction structure of a current collector that reduces aerodynamic sound generated from an aerodynamic sound generation source of the current collector.

(新幹線パンタグラフの空力音低減について)
新幹線(登録商標)の高速化にとって、車両各部から放射される空力音の低減は重要な課題である。パンタグラフは主要な空力音源であり、パンタグラフの各部材のなかでも、舟体・舟支え部は最も寄与が大きい空力音源である。舟体の空力音低減には断面形状の平滑化・貫通孔の適用が有効だが、それだけでは十分ではなく、舟体・舟支え部の流れの干渉を緩和する必要がある。
(About reducing aerodynamic noise in Shinkansen pantographs)
Reducing the aerodynamic noise emitted from each part of the vehicle is an important issue for increasing the speed of the Shinkansen (registered trademark). The pantograph is the main aerodynamic sound source, and among the members of the pantograph, the boat body and the boat support part are the aerodynamic sound sources that make the largest contribution. Smoothing the cross-sectional shape and applying through holes are effective in reducing the aerodynamic noise of the hull, but that is not enough, and it is necessary to mitigate the interference of the flow of the hull and the hull support.

舟体・舟支え部の流れの干渉を緩和する手法の一つとして、舟支え部の頂点カバーの表面に連続気孔を有する多孔質材を適用する(貼り付ける)手法を提案している。多孔質材の表面貼付による空力音低減効果と集電装置への応用では、円柱供試体の表面に多孔質材を貼付して空力音を低減している(例えば、非特許文献1参照)。従来の空力音低減構造は、空力音を低減する連続気孔の多孔質材を物体の表面に備えている(例えば、特許文献1参照)。パンタグラフの舟支え部への多孔質材適用による空力音低減では、多孔質材を必要最小限の領域に埋め込むことによって空力音を低減する手法を提案している(例えば、非特許文献2参照)。 As one of the methods for alleviating the interference of the flow of the boat body and the boat support part, we propose a method of applying (pasting) a porous material with continuous pores on the surface of the apex cover of the boat support part. In the effect of reducing aerodynamic noise by attaching the surface of the porous material and its application to a current collector, the porous material is attached to the surface of the cylindrical specimen to reduce the aerodynamic noise (see, for example, Non-Patent Document 1). The conventional aerodynamic sound reduction structure is provided with a porous material having continuous pores for reducing aerodynamic sound on the surface of the object (see, for example, Patent Document 1). In reducing aerodynamic noise by applying a porous material to the boat support of a pantograph, we have proposed a method to reduce aerodynamic noise by embedding the porous material in the minimum necessary area (see, for example, Non-Patent Document 2). ..

(多孔質材の現車への適用と取り付け方法について)
風洞試験では、加工が容易なウレタン樹脂製多孔質材を使用しているが、現車への適用においては、金属製多孔質材を使用し、対象物に強固に取り付ける必要がある。金属多孔質材の取り付けに関しては、接着、リベット止め、又はFRP母材との順次積層などの技術がある。従来のセル構造多孔質金属材の設置構造は、多孔質材及び被固定部材の貫通孔を貫通するリベット体によって多孔質材を非固定部材に固定している(例えば、特許文献2参照)。従来のセル構造多孔質金属材の取付構造は、多孔質材の表面にFRPの皮膜形成材を塗布して固定層を形成し、この固定層と被固定部材とをねじで固定している(例えば、特許文献3参照)。従来の多孔質金属を非固定部材上に与える方法は、多孔質金属の成形パネルの表面に接合層樹脂を浸入させて硬化させ、この接合層樹脂の表面にFRP層を形成している(例えば、特許文献4参照)。
(About application and installation method of porous material to the current car)
In the wind tunnel test, a urethane resin porous material that is easy to process is used, but in application to the current vehicle, it is necessary to use a metal porous material and firmly attach it to the object. Regarding the attachment of the porous metal material, there are techniques such as adhesion, riveting, and sequential lamination with the FRP base material. In the conventional installation structure of the porous metal material having a cell structure, the porous material is fixed to the non-fixing member by a rivet body penetrating the through hole of the porous material and the member to be fixed (see, for example, Patent Document 2). In the conventional mounting structure of a porous metal material, an FRP film-forming material is applied to the surface of the porous material to form a fixed layer, and the fixed layer and the fixed member are fixed with screws ( For example, see Patent Document 3). In the conventional method of applying a porous metal onto a non-fixing member, a bonding layer resin is impregnated into the surface of a molded panel of the porous metal and cured, and an FRP layer is formed on the surface of the bonding layer resin (for example). , Patent Document 4).

末木健之、他2名,「多孔質材の表面貼付による空力音低減効果と集電装置への応用」,鉄道総研報告,一般財団法人研友社,2008年,22巻,第5号,p.11-16Takeyuki Sueki, 2 others, "Aerodynamic noise reduction effect by sticking the surface of a porous material and its application to current collectors", Railway Technical Research Institute, Kenyusha, 2008, Vol. 22, No. 5, p.11-16

特開2008-136332号公報Japanese Unexamined Patent Publication No. 2008-136332

光用剛、他3名,「パンタグラフの舟支え部への多孔質材適用による空力音低減」,第28回環境工学総合シンポジウム,一般社団法人日本機械学会,2018年7月11日-12日,No.18-10Tsuyoshi Hikari, 3 others, "Reduction of aerodynamic noise by applying porous material to boat support of pantograph", 28th Environmental Engineering Symposium, Japan Society of Mechanical Engineers, July 11-12, 2018 , No.18-10

特開2009-085406号公報Japanese Unexamined Patent Publication No. 2009-085406

特開2009-085407号公報Japanese Patent Application Laid-Open No. 2009-085407

特開2010-208287号公報Japanese Unexamined Patent Publication No. 2010-208287

従来のセル構造多孔質金属材の設置構造などは、母材と多孔質材との接合に関する技術である。このため、多孔質材を現車に適用した場合に、多孔質材の表面に物体が衝突するようなときには、多孔質材の取り付け強度に課題が残ってしまう問題点がある。 The conventional cell structure, such as the installation structure of the porous metal material, is a technique for joining the base material and the porous material. Therefore, when the porous material is applied to the current vehicle, when an object collides with the surface of the porous material, there is a problem that the mounting strength of the porous material remains a problem.

この発明の課題は、空力音低減効果を阻害することなく、空力音低減部を保護することができる集電装置の空力音低減構造を提供することである。 An object of the present invention is to provide an aerodynamic sound reduction structure of a current collector capable of protecting an aerodynamic sound reduction unit without impairing the aerodynamic sound reduction effect.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1〜図4、図6〜図13及び図15〜図20に示すように、集電装置(3)の空力音発生源(8d,14e,14f,14g,19f,19g,19h;8e;19i,26e,26f)から発生する空力音を低減する集電装置の空力音低減構造であって、前記空力音発生源の表面を被覆して、前記空力音を低減する空力音低減部(23)と、前記空力音低減部に流れ(F)が流入及び流出する複数の貫通孔(24a)を有し、この空力音低減部の表面を被覆して、この空力音低減部を保護する保護部(24)とを備える集電装置の空力音低減構造(21A〜21C;21D)である。
The present invention solves the above problems by means of solutions as described below.
Although the description will be given with reference numerals corresponding to the embodiments of the present invention, the present invention is not limited to this embodiment.
The invention of claim 1 is an aerodynamic sound generation source (8d, 14e, 14f, 14g, 19f) of the current collector (3), as shown in FIGS. 1 to 4, 6 to 13 and 15 to 20. , 19g, 19h; 8e; 19i, 26e, 26f). It is an aerodynamic sound reduction structure of a current collector that reduces the aerodynamic sound, and covers the surface of the aerodynamic sound generation source to reduce the aerodynamic sound. The aerodynamic sound reduction unit (23) and the aerodynamic sound reduction unit have a plurality of through holes (24a) through which the flow (F) flows in and out, and the surface of the aerodynamic sound reduction unit is covered to cover the aerodynamic force. It is an aerodynamic sound reduction structure (21A-21C; 21D) of a current collector including a protection unit (24) that protects the sound reduction unit.

請求項2の発明は、請求項1に記載の集電装置の空力音低減構造において、図1〜図4、図6〜図9及び図15〜図19に示すように、前記空力音低減部は、前記集電装置の頂点カバー(8)の空力音発生源(8d;8e)の表面を被覆することを特徴とする集電装置の空力音低減構造(21A)である。 According to the second aspect of the present invention, in the aerodynamic sound reducing structure of the current collector according to the first aspect, as shown in FIGS. 1 to 4, 6 to 9 and 15 to 19, the aerodynamic sound reducing unit. Is an aerodynamic sound reduction structure (21A) of the current collector, which covers the surface of the aerodynamic sound generation source (8d; 8e) of the apex cover (8) of the current collector.

請求項3の発明は、請求項1に記載の集電装置の空力音低減構造において、図1〜図4、図6及び図10に示すように、前記空力音低減部は、前記集電装置の中間ヒンジカバー(14)の空力音発生源(14e〜14g)の表面を被覆することを特徴とする集電装置の空力音低減構造(21B)である。 According to the invention of claim 3, in the aerodynamic sound reducing structure of the current collector according to claim 1, as shown in FIGS. 1 to 4, 6 and 10, the aerodynamic sound reducing unit is the current collector. It is an aerodynamic sound reduction structure (21B) of a current collector characterized by covering the surface of the aerodynamic sound generation source (14e to 14g) of the intermediate hinge cover (14).

請求項4の発明は、請求項1に記載の集電装置の空力音低減構造において、図1〜図4、図11及び図19に示すように、前記空力音低減部は、前記集電装置の風防カバー(19)の空力音発生源(19f〜19h;19i)の表面を被覆することを特徴とする集電装置の空力音低減構造(21C)である。 According to the invention of claim 4, in the aerodynamic sound reduction structure of the current collector according to claim 1, as shown in FIGS. 1 to 4, 11 and 19, the aerodynamic sound reduction unit is the current collector. It is an aerodynamic sound reduction structure (21C) of a current collector characterized by covering the surface of the aerodynamic sound generation source (19f to 19h; 19i) of the windshield cover (19).

請求項5の発明は、請求項1に記載の集電装置の空力音低減構造において、図19及び図20に示すように、前記空力音低減部は、前記集電装置の主軸カバー(26)の空力音発生源(26e,16f)の表面を被覆することを特徴とする集電装置の空力音低減構造(21D)である。 The invention of claim 5 is the aerodynamic sound reduction structure of the current collector according to claim 1, as shown in FIGS. 19 and 20, the aerodynamic sound reduction unit is a spindle cover (26) of the current collector. It is an aerodynamic sound reduction structure (21D) of a current collector characterized by covering the surface of the aerodynamic sound generation source (26e, 16f).

請求項6の発明は、請求項1から請求項5までのいずれか1項に記載の集電装置の空力音低減構造において、前記保護部は、前記貫通孔の開孔率が30%以上60%以下であることを特徴とする集電装置の空力音低減構造である。 The invention of claim 6 is the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 5, wherein the protective portion has an aperture ratio of 30% or more of the through hole 60. It is a structure for reducing aerodynamic noise of a current collector, which is characterized by being less than or equal to%.

請求項7の発明は、請求項1から請求項5までのいずれか1項に記載の集電装置の空力音低減構造において、前記保護部は、前記貫通孔の内径が3.0mm以上8.0mm以下であることを特徴とする集電装置の空力音低減構造である。 The invention of claim 7 is the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 5, wherein the protective portion has an inner diameter of 3.0 mm or more and 8.0 mm or less. It is a structure for reducing aerodynamic noise of a current collector, which is characterized in that.

請求項8の発明は、請求項1から請求項7までのいずれか1項に記載の集電装置の空力音低減構造において、前記空力音低減は、金属製の多孔質材であることを特徴とする集電装置の空力音低減構造である。 The invention of claim 8 is characterized in that, in the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 7, the aerodynamic sound reduction is a porous metal material. It is an aerodynamic noise reduction structure of the current collector.

請求項9の発明は、請求項1から請求項8までのいずれか1項に記載の集電装置の空力音低減構造において、図13(A)(B)に示すように、前記保護部は、前記複数の貫通孔の中心線(L)が前記流れの方向と一致するように、この複数の貫通孔が配列されていることを特徴とする集電装置の空力音低減構造である。 According to the invention of claim 9, in the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 8, as shown in FIGS. 13 (A) and 13 (B), the protection unit is The structure for reducing aerodynamic noise of a current collector is characterized in that the plurality of through holes are arranged so that the center lines (L) of the plurality of through holes coincide with the direction of the flow.

この発明によると、空力音低減効果を阻害することなく、空力音低減部を保護することができる。 According to the present invention, the aerodynamic sound reducing portion can be protected without impairing the aerodynamic sound reducing effect.

この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す側面図である。It is a side view which shows typically the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す正面図である。It is a front view schematically showing the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す背面図である。It is a rear view which shows typically the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す平面図である。It is a top view which shows typically the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置の構造を概略的に示す模式図である。It is a schematic diagram which shows typically the structure of the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置の一部を概略的に示す斜視図である。It is a perspective view which shows roughly a part of the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える頂点カバーを概略的に示す斜視図である。It is a perspective view which shows typically the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える頂点カバーの一部を破断して示す外観図であり、(A)は平面図であり、(B)は側面図である。It is an external view which shows by breaking a part of the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention, (A) is a plan view, (B) is a side view. is there. 図8のIX-IX線で切断した状態を示す断面図であり、(A)は上側稜角部及び下側稜角部に丸みがある場合の断面図であり、(B)(C)は上側稜角部及び下側稜角部が角である場合の断面図である。FIG. 8 is a cross-sectional view showing a state of being cut along the IX-IX line of FIG. 8, FIG. 8A is a cross-sectional view when the upper ridge angle portion and the lower ridge angle portion are rounded, and (B) and (C) are upper ridge angles. It is sectional drawing in the case where the portion and the lower ridge angle portion are corners. この発明の第1実施形態に係る集電装置の空力音低減構造を備える中間ヒンジカバーの一部を破断して示す外観図であり、(A)は平面図であり、(B)は側面図であり、(C)底面図である。It is an external view which shows by breaking a part of the intermediate hinge cover which provided the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention, (A) is a plan view, (B) is a side view. It is (C) bottom view. この発明の第1実施形態に係る集電装置の空力音低減構造を備える風防カバーの一部を破断して示す外観図であり、(A)は平面図であり、(B)は側面図であり、(C)底面図である。It is an external view which shows by breaking a part of the windshield cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention, (A) is a plan view, (B) is a side view. Yes, it is (C) bottom view. この発明の第1実施形態に係る集電装置の空力音低減構造を模式的に示す断面図である。It is sectional drawing which shows typically the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る集電装置の空力音低減構造の保護部の平面図であり、(A)(C)は保護部の貫通孔が円形状である場合の平面図であり、(B)は保護部の貫通孔がスリット状である場合の平面図である。It is a top view of the protection part of the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention, and (A) (C) is a top view when the through hole of the protection part is circular shape. (B) is a plan view when the through hole of the protective portion has a slit shape. この発明の第1実施形態に係る集電装置の空力音低減構造の空力音低減部の作用を説明するための写真であり、(A)は空力音低減部を拡大して示す写真であり、(B)(C)は空力音低減部を備える場合の流れ場のコンター図であり、(E)(F)は空力音低減部を備えていない場合の流れ場のコンター図である。It is a photograph for demonstrating the operation of the aerodynamic sound reduction part of the aerodynamic sound reduction structure of the current collector which concerns on 1st Embodiment of this invention, and (A) is the photograph which enlarges and shows the aerodynamic sound reduction part. (B) and (C) are contour diagrams of the flow field when the aerodynamic sound reduction unit is provided, and (E) and (F) are contour diagrams of the flow field when the aerodynamic sound reduction unit is not provided. この発明の第2実施形態に係る集電装置の空力音低減構造を備える頂点カバーを概略的に示す斜視図である。It is a perspective view which shows typically the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係る集電装置の空力音低減構造を備える頂点カバーの一部を破断して示す外観図であり、(A)は平面図であり、(B)は側面図である。It is an external view which shows by breaking a part of the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 2nd Embodiment of this invention, (A) is a plan view, (B) is a side view. is there. この発明の第3実施形態に係る集電装置の空力音低減構造を備える頂点カバーの縦断面図であり、(A)は上側稜角部及び下側稜角部に丸みがある場合の断面図であり、(B)(C)は上側稜角部及び下側稜角部が角である場合の断面図である。It is a vertical sectional view of the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 3rd Embodiment of this invention, and (A) is the sectional view when the upper ridge angle portion and the lower ridge angle portion are rounded. , (B) and (C) are cross-sectional views when the upper ridge angle portion and the lower ridge angle portion are corners. この発明の第4実施形態に係る集電装置の空力音低減構造を備える頂点カバーの一部を破断して示す側面図である。It is a side view which shows by breaking a part of the apex cover provided with the aerodynamic sound reduction structure of the current collector which concerns on 4th Embodiment of this invention. この発明の第5実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す側面図である。It is a side view which shows typically the current collector provided with the aerodynamic sound reduction structure of the current collector which concerns on 5th Embodiment of this invention. この発明の第5実施形態に係る集電装置の空力音低減構造を備える主軸カバーの一部を破断して示す外観図であり、(A)は平面図であり、(B)は側面図であり、(C)底面図である。It is an external view which shows by breaking a part of the spindle cover which provided the aerodynamic sound reduction structure of the current collector which concerns on 5th Embodiment of this invention, (A) is a plan view, (B) is a side view. Yes, it is (C) bottom view. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験に使用した風洞試験装置を概略的に示す模式図である。It is a schematic diagram which shows typically the wind tunnel test apparatus used for the aerodynamic sound reduction effect test by the aerodynamic sound reduction structure of the current collector which concerns on embodiment of this invention. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験の試験状況を示す写真である。It is a photograph which shows the test situation of the aerodynamic sound reduction effect test by the aerodynamic sound reduction structure of the current collector which concerns on the Example of this invention. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験に使用したパンチングメタルの平面図であり、(A)は貫通孔の配置を示す平面図であり、(B)は貫通孔の配列を流れの方向と一致させた場合の平面図であり、(C)は貫通孔の配列を流れの方向と直交させた場合の平面図である。It is a top view of the punching metal used for the aerodynamic sound reduction effect test by the aerodynamic sound reduction structure of the current collector according to the Example of this invention, (A) is a top view which shows arrangement of a through hole, (B). Is a plan view when the arrangement of the through holes is made to match the direction of the flow, and (C) is a plan view when the arrangement of the through holes is orthogonal to the direction of the flow. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験の試験結果を示すグラフである。It is a graph which shows the test result of the aerodynamic sound reduction effect test by the aerodynamic sound reduction structure of the current collector which concerns on the Example of this invention.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1〜図3、図5及び図6に示す架線1は、線路上空に架設される架空電車線である。架線1は、所定の間隔をあけて支持点で支持されている。トロリ線1aは、集電装置3が接触移動する電線である。トロリ線1aは、集電装置3が摺動することによって、車両2に負荷電流を供給する。図1〜図3及び図5に示す車両2は、電車又は電気機関車などの電気車である。車両2は、例えば、高速で走行する新幹線などの鉄道車両である。車体2aは、乗客又は貨物を積載し輸送するための構造物である。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings.
The overhead wire 1 shown in FIGS. 1 to 3, 5 and 6 is an overhead train line erected over the railroad track. The overhead wire 1 is supported by support points at predetermined intervals. The trolley wire 1a is an electric wire to which the current collector 3 contacts and moves. The trolley wire 1a supplies a load current to the vehicle 2 by sliding the current collector 3. The vehicle 2 shown in FIGS. 1 to 3 and 5 is an electric vehicle such as a train or an electric locomotive. Vehicle 2 is, for example, a railroad vehicle such as a Shinkansen that travels at high speed. The vehicle body 2a is a structure for loading and transporting passengers or cargo.

図1〜図6に示す集電装置3は、トロリ線1aから車両2に電力を導くための装置である。集電装置3は、図1〜図6に示す舟体(集電舟)4と、すり板5と、枠組6と、図5に示す主軸15と、てこ部16と、主ばね17と、図1〜図5及び図11に示す台枠18と、風防カバー19と、図1〜図3、図5及び図11に示すがいし20と、図1〜図4及び図6〜図12に示す空力音低減構造21A〜21Cなどを備えている。図1〜図6に示す集電装置3は、図1及び図6に示すように、車両2の進行方向D1に対して非対称であり、一方向又は双方向に使用可能なシングルアーム式パンタグラフである。集電装置3は、図1に示すように、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向で使用したときには空力音が比較的小さくなり、車両2の進行方向後側に中間ヒンジ13が位置する反なびき方向で使用したときには空力音が比較的大きくなる。図1及び図6に示す集電装置3は、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向に移動している。 The current collector 3 shown in FIGS. 1 to 6 is a device for guiding electric power from the trolley wire 1a to the vehicle 2. The current collector 3 includes a boat body (current collector boat) 4 shown in FIGS. 1 to 6, a sliding plate 5, a framework 6, a main shaft 15 shown in FIG. 5, a lever portion 16, and a main spring 17. The underframe 18 shown in FIGS. 1 to 5 and 11 and the windshield cover 19 and the insulator 20 shown in FIGS. 1 to 3, 5 and 11, and 1 to 4 and 6 to 12 are shown. It is equipped with aerodynamic sound reduction structures 21A to 21C and the like. As shown in FIGS. 1 and 6, the current collector 3 shown in FIGS. 1 to 6 is a single-arm pantograph that is asymmetric with respect to the traveling direction D 1 of the vehicle 2 and can be used in one direction or both directions. Is. As shown in FIG. 1, when the current collector 3 is used in the fluttering direction in which the intermediate hinge 13 is located on the front side in the traveling direction of the vehicle 2, the aerodynamic noise becomes relatively small, and the intermediate hinge is located on the rear side in the traveling direction of the vehicle 2. When used in the anti-fluttering direction in which 13 is located, the aerodynamic sound becomes relatively loud. The current collector 3 shown in FIGS. 1 and 6 is moving in the fluttering direction in which the intermediate hinge 13 is located on the front side in the traveling direction of the vehicle 2.

図1〜図6に示す舟体4は、すり板5を支持する部材である。舟体4は、一般にトロリ線1aと直交する方向(まくらぎ方向)に伸びた細長い金属製の柱状部材である。舟体4は、図1及び図5に示すように、この舟体4の中心軸に対して前後対称であり、前後がいずれも同一形状に形成されている。舟体4は、流れ(気流)Fのはく離を可能な限り防止するために断面形状が流線型又は流線型に近似した曲面で構成されており、滑らかな曲線によって構成されている。舟体4は、例えば、数値流体力学(Computational Fluid Dynamics(CFD))解析及び最適化手法を組み合わせた手法によって、空力音低減及び揚力特性安定化を両立可能なように舟体断面形状が平滑化されている平滑化舟体(平滑形状舟体)である。図1〜図6に示す舟体4は、例えば、トロリ線1aに対する追従性能を向上させた新幹線用(高速用)パンタグラフ舟体である。舟体4は、図1〜図4及び図6に示すホーン4aなどを備えている。ホーン4aは、車両2が分岐器を通過するときに、この分岐器の上方で交差する2本のトロリ線1aのうち車両2の進行方向とは異なる方向のトロリ線1aへの割込みを防止するための部材である。ホーン4aは、舟体4の長さ方向の両端部から突出しており、図2、図3及び図6に示すように先端部が下方に向かって湾曲して形成された金属製の部材である。 The boat body 4 shown in FIGS. 1 to 6 is a member that supports the sliding plate 5. The hull 4 is generally an elongated metal columnar member extending in a direction orthogonal to the trolley line 1a (sleeper direction). As shown in FIGS. 1 and 5, the hull 4 is symmetrical with respect to the central axis of the hull 4, and both front and rear are formed in the same shape. The hull 4 is formed of a streamlined or curved surface having a cross-sectional shape similar to a streamlined shape in order to prevent the flow (air flow) F from peeling off as much as possible, and is formed of a smooth curve. The hull 4 has a smoothed hull cross-sectional shape so that both aerodynamic noise reduction and lift characteristic stabilization can be achieved by, for example, a method that combines computational fluid dynamics (CFD) analysis and optimization methods. It is a smoothed boat body (smooth shape boat body). The hull 4 shown in FIGS. 1 to 6 is, for example, a Shinkansen (high-speed) pantograph hull with improved tracking performance for the trolley wire 1a. The hull 4 includes a horn 4a and the like shown in FIGS. 1 to 4 and 6. When the vehicle 2 passes through the turnout, the horn 4a prevents an interruption to the trolley line 1a in a direction different from the traveling direction of the vehicle 2 among the two trolley lines 1a intersecting above the turnout. It is a member for. The horn 4a is a metal member that protrudes from both ends in the length direction of the hull 4 and has a tip that is curved downward as shown in FIGS. 2, 3 and 6. ..

図1〜図6に示すすり板5は、トロリ線1aと摺動する部材である。すり板5は、図2、図3及び図6に示すように、車両2の進行方向D1と直交する方向(まくらぎ方向)に伸びた金属製又は炭素製の板状部材である。すり板5は、舟体4とは別個に製造される別部品であり、舟体4の長さ方向(まくらぎ方向)に複数並べた状態で、この舟体4の上部に取り付けられている。すり板5は、舟体4との間で相対変位可能なようにばねなどの弾性体によって支持されている。 The sliding plate 5 shown in FIGS. 1 to 6 is a member that slides on the trolley wire 1a. As shown in FIGS. 2, 3 and 6, the sliding plate 5 is a metal or carbon plate-shaped member extending in a direction (sleeper direction) orthogonal to the traveling direction D 1 of the vehicle 2. The sliding plate 5 is a separate part manufactured separately from the boat body 4, and is attached to the upper part of the boat body 4 in a state where a plurality of the sliding plate 5 are arranged in the length direction (sleeper direction) of the boat body 4. .. The sliding plate 5 is supported by an elastic body such as a spring so that it can be displaced relative to the boat body 4.

図1〜図6に示す枠組6は、舟体4を支持する部材である。枠組6は、舟体4を支持した状態で上下方向に動作可能なリンク機構を備えている。枠組6は、図1〜図9に示す舟支え部7と、頂点カバー8と、図1〜図8に示す上枠9と、図5に示す舟支えリンク(平衡棒)10と、図1〜図6に示す下枠11と、図5に示す釣り合い棒12と、図1〜図6及び図10に示す中間ヒンジ(屈曲部)13と、中間ヒンジカバー14などを備えている。枠組6は、使用時には図5に示す主ばね17の付勢力によって上昇し、非使用時(折畳時)には主ばね17の付勢力に抗してシリンダ装置が発生する駆動力によって下降する。 The framework 6 shown in FIGS. 1 to 6 is a member that supports the boat body 4. The framework 6 includes a link mechanism that can move in the vertical direction while supporting the hull 4. The framework 6 includes a boat support portion 7 shown in FIGS. 1 to 9, a vertex cover 8, an upper frame 9 shown in FIGS. 1 to 8, a boat support link (balance bar) 10 shown in FIG. 5, and FIG. The lower frame 11 shown in FIG. 6, the balancing rod 12 shown in FIG. 5, the intermediate hinge (bent portion) 13 shown in FIGS. 1 to 6 and 10, the intermediate hinge cover 14 and the like are provided. The framework 6 is raised by the urging force of the main spring 17 shown in FIG. 5 when in use, and is lowered by the driving force generated by the cylinder device against the urging force of the main spring 17 when not in use (when folded). ..

図1〜図9に示す舟支え部7は、舟体4を支持する部分である。舟支え部7は、舟体4を架線1に対して水平に押上げるとともに、舟体4にばねによる緩衝作用を与える。舟支え部7は、舟体4の平衡維持を図るとともに、トロリ線1aへの追従性を向上させる。舟支え部7は、図1〜図8に示すように、上枠9の頂部に支持されている。 The boat support portion 7 shown in FIGS. 1 to 9 is a portion that supports the boat body 4. The boat support portion 7 pushes up the boat body 4 horizontally with respect to the overhead wire 1 and gives the boat body 4 a cushioning action by a spring. The boat support portion 7 maintains the equilibrium of the boat body 4 and improves the followability to the trolley wire 1a. As shown in FIGS. 1 to 8, the boat support portion 7 is supported by the top of the upper frame 9.

図1〜図9に示す頂点カバー8は、舟支え部7を被覆する部材である。頂点カバー8は、図5に示すように、上枠9及び舟支えリンク10と舟支え部7とを回転自在に連結するヒンジ部(頂点ヒンジ部)を被覆しており、図1、図6及び図8に示すように流れFを妨げないような形状に形成されている。頂点カバー8は、舟支え部7内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。頂点カバー8は、例えば、不燃性又は難燃性を有する金属製又は繊維強化プラスチック(Fiber Reinforced Plastics(FRP))製の被覆部材である。頂点カバー8は、図9に示すように、断面形状が略逆U字状の上部カバー8Aと、この上部カバー8Aと着脱自在に接合する断面形状が略U字状の下部カバー8Bとに分割可能である。頂点カバー8は、上部カバー8Aと下部カバー8Bとを舟支え部7の上下から被せることによって、舟支え部7の全面を被覆する構造である。頂点カバー8は、図8に示すように、この頂点カバー8の上側傾斜面を構成する上部8aと、この頂点カバー8の下側傾斜面を構成する下部8bと、この頂点カバー8の両側面を構成する側部8cと、上部8aと側部8cとが交わる上側稜角部(上側縁部)8dと、下部8bと側部8cとが交わる下側稜角部(下側縁部)8eとを備えている。頂点カバー8は、上部8a、下部8b及び側部8cから構成される多面体であり、多面体の隣り合う二面が上側稜角部8d及び下側稜角部8eで交わっている。頂点カバー8は、例えば、図9(A)に示すように、上側稜角部8d及び下側稜角部8eに丸みが形成、又は、図9(B)に示すように、上側稜角部8d及び下側稜角部8eが角に形成されている。頂点カバー8は、図9(A)に示すように、上側稜角部8dに丸みが形成されているときには、上側稜角部8dの形状に沿って空力音低減部23を比較的薄く貼り付けている。一方、頂点カバー8は、図9(B)(C)に示すように、上側稜角部8dが角に形成されているときには、上側稜角部8dに空力音低減部23を比較的厚く貼り付けることによって角の形状を構成している。頂点カバー8は、図9(B)に示すように、上側稜角部8dの上部及び側部に沿って空力音低減部23をL字状に貼り付けたり、図9(C)に示すように、上側稜角部8dの側部に沿って空力音低減部23を板状に貼り付けたりして構成している。 The apex cover 8 shown in FIGS. 1 to 9 is a member that covers the boat support portion 7. As shown in FIG. 5, the apex cover 8 covers a hinge portion (apex hinge portion) that rotatably connects the upper frame 9, the boat support link 10, and the boat support portion 7, and is covered with FIGS. 1 and 6. And, as shown in FIG. 8, it is formed in a shape that does not obstruct the flow F. The apex cover 8 prevents the flow F from entering the boat support portion 7 and generating a loud aerodynamic noise, and also prevents the air resistance from increasing. The apex cover 8 is, for example, a covering member made of nonflammable or flame-retardant metal or fiber reinforced plastic (FRP). As shown in FIG. 9, the apex cover 8 is divided into an upper cover 8A having a substantially inverted U-shaped cross section and a lower cover 8B having a substantially U-shaped cross section that is detachably joined to the upper cover 8A. It is possible. The apex cover 8 has a structure that covers the entire surface of the boat support portion 7 by covering the upper cover 8A and the lower cover 8B from above and below the boat support portion 7. As shown in FIG. 8, the apex cover 8 includes an upper portion 8a forming an upper inclined surface of the apex cover 8, a lower portion 8b forming a lower inclined surface of the apex cover 8, and both side surfaces of the apex cover 8. The side portion 8c constituting the above, the upper ridge angle portion (upper edge portion) 8d where the upper portion 8a and the side portion 8c intersect, and the lower ridge angle portion (lower edge portion) 8e where the lower portion 8b and the side portion 8c intersect. I have. The apex cover 8 is a polyhedron composed of an upper portion 8a, a lower portion 8b, and a side portion 8c, and two adjacent surfaces of the polyhedron intersect at an upper ridge angle portion 8d and a lower ridge angle portion 8e. In the vertex cover 8, for example, as shown in FIG. 9 (A), the upper ridge angle portion 8d and the lower ridge angle portion 8e are rounded, or as shown in FIG. 9 (B), the upper ridge angle portion 8d and the lower side are rounded. The side ridge angle portion 8e is formed at the corner. As shown in FIG. 9A, the apex cover 8 has the aerodynamic sound reducing portion 23 attached relatively thinly along the shape of the upper ridge angle portion 8d when the upper ridge angle portion 8d is rounded. .. On the other hand, as shown in FIGS. 9B and 9C, when the upper ridge angle portion 8d is formed at the corner of the apex cover 8, the aerodynamic sound reducing portion 23 is attached to the upper ridge angle portion 8d relatively thickly. The shape of the corner is composed of. On the apex cover 8, as shown in FIG. 9 (B), the aerodynamic sound reducing portion 23 is attached in an L shape along the upper portion and the side portion of the upper ridge angle portion 8d, or as shown in FIG. 9 (C). The aerodynamic sound reducing portion 23 is attached in a plate shape along the side portion of the upper ridge angle portion 8d.

図1〜図8に示す上枠9は、舟支え部7に回転自在に連結される部材である。上枠9は、枠組6の上半分を構成する筒状部材であり、図5に示す舟支えリンク10を内部に収容している。上枠9は、この上枠9の一端が舟支え部7に回転自在に連結されており、この上枠9の他端が下枠11に回転自在に連結されている。舟支えリンク10は、舟体4及び舟支え部7を所定の姿勢に維持する部材である。舟支えリンク10は、この舟支えリンク10の一端が舟支え部7に回転自在に連結されており、この舟支えリンク10の他端が下枠11に回転自在に連結されている。 The upper frame 9 shown in FIGS. 1 to 8 is a member rotatably connected to the boat support portion 7. The upper frame 9 is a tubular member forming the upper half of the framework 6, and houses the boat support link 10 shown in FIG. 5 inside. In the upper frame 9, one end of the upper frame 9 is rotatably connected to the boat support portion 7, and the other end of the upper frame 9 is rotatably connected to the lower frame 11. The boat support link 10 is a member that maintains the boat body 4 and the boat support portion 7 in a predetermined posture. In the boat support link 10, one end of the boat support link 10 is rotatably connected to the boat support portion 7, and the other end of the boat support link 10 is rotatably connected to the lower frame 11.

図1〜図6に示す下枠11は、台枠18に回転自在に連結される部材である。下枠11は、枠組6の下半分を構成する筒状部材であり、図5に示す釣り合い棒12を内部に収容している。下枠11は、この下枠11の一端が上枠9に回転自在に連結されており、この下枠11の他端が主軸15に連結されている。釣り合い棒12は、舟体4を上下変位させる軌跡を調整するための部材である。釣り合い棒12は、この釣り合い棒12の一端が上枠9に回転自在に連結され、この釣り合い棒12の他端が主軸15に回転自在に連結されている。図1〜図6及び図10に示す中間ヒンジ13は、上枠9と下枠11とを回転自在に連結する部分である。中間ヒンジ13は、上枠9と下枠11とを連結する関節部として機能する。 The lower frame 11 shown in FIGS. 1 to 6 is a member rotatably connected to the underframe 18. The lower frame 11 is a tubular member that constitutes the lower half of the framework 6, and houses the balancing rod 12 shown in FIG. 5 inside. In the lower frame 11, one end of the lower frame 11 is rotatably connected to the upper frame 9, and the other end of the lower frame 11 is connected to the main shaft 15. The balance rod 12 is a member for adjusting a locus for vertically displacing the boat body 4. In the balancing rod 12, one end of the balancing rod 12 is rotatably connected to the upper frame 9, and the other end of the balancing rod 12 is rotatably connected to the spindle 15. The intermediate hinge 13 shown in FIGS. 1 to 6 and 10 is a portion that rotatably connects the upper frame 9 and the lower frame 11. The intermediate hinge 13 functions as a joint portion that connects the upper frame 9 and the lower frame 11.

図1〜図6及び図10に示す中間ヒンジカバー14は、中間ヒンジ13を被覆する部材である。中間ヒンジカバー14は、図5に示すように、上枠9及び舟支えリンク10と下枠11及び釣り合い棒12とを回転自在に連結するヒンジ部を被覆しており、図1、図6及び図10に示すように流れFを妨げないような形状に形成されている。中間ヒンジカバー14は、中間ヒンジ13内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。中間ヒンジカバー14は、例えば、FRP製の被覆部材である。中間ヒンジカバー14は、図10に示すように、この中間ヒンジカバー14の上側傾斜面を構成する上部14aと、この中間ヒンジカバー14の上側傾斜面を構成し上部14aと逆方向に傾斜する上部14bと、この中間ヒンジカバー14の下側傾斜面を構成する下部14cと、この中間ヒンジカバー14の両側面を構成する側部14dと、上部14a,14bと側部14dとが交わる上側稜角部(上側縁部)14e,14fと、下部14cと側部14dとが交わる下側稜角部(下側縁部)14gとを備えている。中間ヒンジカバー14は、上部14a,14b、下部14c及び側部14dから構成される多面体であり、多面体の隣り合う二面が上側稜角部14e,14f及び下側稜角部14gで交わっている。中間ヒンジカバー14は、上側稜角部14e,14f及び下側稜角部14gに丸みが形成されている。 The intermediate hinge cover 14 shown in FIGS. 1 to 6 and 10 is a member that covers the intermediate hinge 13. As shown in FIG. 5, the intermediate hinge cover 14 covers a hinge portion that rotatably connects the upper frame 9 and the boat support link 10 with the lower frame 11 and the balancing rod 12, and covers FIGS. 1, 6 and 6. As shown in FIG. 10, the shape is formed so as not to obstruct the flow F. The intermediate hinge cover 14 prevents the flow F from entering the intermediate hinge 13 and generating a loud aerodynamic noise, and also prevents the air resistance from increasing. The intermediate hinge cover 14 is, for example, a covering member made of FRP. As shown in FIG. 10, the intermediate hinge cover 14 has an upper portion 14a forming an upper inclined surface of the intermediate hinge cover 14 and an upper portion forming an upper inclined surface of the intermediate hinge cover 14 and inclining in the direction opposite to the upper portion 14a. 14b, a lower portion 14c forming a lower inclined surface of the intermediate hinge cover 14, side portions 14d forming both side surfaces of the intermediate hinge cover 14, and an upper ridge angle portion where the upper portions 14a, 14b and the side portion 14d intersect. (Upper edge portion) 14e and 14f, and a lower ridge angle portion (lower edge portion) 14g where the lower portion 14c and the side portion 14d intersect are provided. The intermediate hinge cover 14 is a polyhedron composed of an upper portion 14a, 14b, a lower portion 14c, and a side portion 14d, and two adjacent surfaces of the polyhedron intersect at the upper ridge angle portions 14e, 14f and the lower ridge angle portion 14g. The intermediate hinge cover 14 is rounded at the upper ridge corners 14e and 14f and the lower ridge 14g.

図5に示す主軸15は、枠組6を昇降動作させる部材である。主軸15は、枠組6と連動して動作し、正逆方向に回転することによって枠組6を昇降動作させる。主軸15は、台枠18に回転自在に支持されており、下枠11の下端部と一体となって回転する。てこ部16は、直線運動を回転運動に変換する部分である。てこ部16は、主軸15を支点として主軸15と一体となって回転する。主ばね17は、枠組6に上昇力を付与する部材である。主ばね17は、主軸15が回転して枠組6が上昇するように主軸15を付勢する押上げ用ばねである、主ばね17は、この主ばね17の一端が台枠18に回転自在に連結されており、この主ばね17の他端がてこ部16に回転自在に連結されている。 The spindle 15 shown in FIG. 5 is a member that raises and lowers the framework 6. The spindle 15 operates in conjunction with the framework 6 and moves the framework 6 up and down by rotating in the forward and reverse directions. The spindle 15 is rotatably supported by the underframe 18, and rotates integrally with the lower end of the lower frame 11. The lever portion 16 is a portion that converts linear motion into rotary motion. The lever portion 16 rotates integrally with the spindle 15 with the spindle 15 as a fulcrum. The main spring 17 is a member that applies an ascending force to the framework 6. The main spring 17 is a push-up spring that urges the main shaft 15 so that the main shaft 15 rotates and the frame 6 rises. The main spring 17 has one end of the main spring 17 rotatably attached to the underframe 18. It is connected, and the other end of the main spring 17 is rotatably connected to the lever portion 16.

図1〜図5及び図11に示す台枠18は、枠組6を支持する部材である。台枠18は、図5に示すように、枠組6の基部を支持した状態で、がいし20を介して車体2aの屋根上に設置されている。台枠18は、主軸15、てこ部16及び主ばね17などの枠組6を昇降動作させる昇降機構部を支持する。 The underframe 18 shown in FIGS. 1 to 5 and 11 is a member that supports the framework 6. As shown in FIG. 5, the underframe 18 is installed on the roof of the vehicle body 2a via the insulator 20 in a state of supporting the base of the framework 6. The underframe 18 supports an elevating mechanism portion that elevates and elevates the framework 6 such as the main shaft 15, the lever portion 16, and the main spring 17.

図1〜図5及び図11に示す風防カバー19は、台枠18を被覆する部材である。風防カバー19は、図5に示すように、主軸15、てこ部16、主ばね17及び台枠18などを被覆しており、図1、図4及び図11に示すように流れFを妨げないような形状に形成されている。風防カバー19は、台枠18内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。風防カバー19は、例えば、FRP製の被覆部材である。風防カバー19は、図11に示すように、この風防カバー19の上側傾斜面を構成する上部19aと、この風防カバー19の上側傾斜面を構成し上部19aとは逆方向に傾斜する上部19bと、この風防カバー19の下側傾斜面を構成する下部19cと、この風防カバー19の下側傾斜面を構成し下部19cとは逆方向に傾斜する下部19dと、この風防カバー19の両側面を構成する側部19eと、上部19a,19bと側部19eとが交わる上側稜角部(上側縁部)19fと、下部19c,19dと側部19eとが交わる下側稜角部(下側縁部)19gと、この風防カバー19ががいし20と接合する接合部の周辺の接合部周辺19hとを備えている。風防カバー19は、上部19a,19b、下部19c,19d及び側部19eから構成される多面体であり、多面体の隣り合う二面が上側稜角部19f及び下側稜角部19gで交わっている。風防カバー19は、上側稜角部19f及び下側稜角部19gに丸みが形成されている。 The windshield cover 19 shown in FIGS. 1 to 5 and 11 is a member that covers the underframe 18. As shown in FIG. 5, the windshield cover 19 covers the main shaft 15, the lever portion 16, the main spring 17, the underframe 18, and the like, and does not obstruct the flow F as shown in FIGS. 1, 4, and 11. It is formed in such a shape. The windshield cover 19 prevents the flow F from entering the underframe 18 and generating a loud aerodynamic noise, and also prevents the air resistance from increasing. The windshield cover 19 is, for example, a covering member made of FRP. As shown in FIG. 11, the windshield cover 19 includes an upper portion 19a forming an upper inclined surface of the windshield cover 19 and an upper portion 19b forming an upper inclined surface of the windshield cover 19 and inclining in a direction opposite to the upper portion 19a. , The lower portion 19c forming the lower inclined surface of the windshield cover 19, the lower portion 19d forming the lower inclined surface of the windshield cover 19 and inclining in the direction opposite to the lower portion 19c, and both side surfaces of the windshield cover 19. The upper ridge angle portion (upper edge portion) 19f where the constituent side portions 19e, the upper portions 19a, 19b and the side portions 19e intersect, and the lower ridge angle portion (lower side edge portion) where the lower portions 19c, 19d and the side portion 19e intersect. It includes 19 g and 19 h around the joint portion around the joint portion where the windshield cover 19 joins with the gable 20. The windshield cover 19 is a polyhedron composed of an upper portion 19a, 19b, a lower portion 19c, 19d, and a side portion 19e, and two adjacent surfaces of the polyhedron intersect at an upper ridge angle portion 19f and a lower ridge angle portion 19g. The windshield cover 19 is rounded at the upper ridge angle portion 19f and the lower ridge angle portion 19g.

図1〜図3、図5及び図11に示すがいし20は、車体2aと台枠18との間を電気的に絶縁する部材である。図1〜図3及び図11に示すがいし20は、空力音の発生に対して抑制効果のある形状に形成されている低騒音がいしである。がいし20は、このがいし20の後縁部に発生する渦の放出を抑制するために、図11(C)に示すように水平面で切断したときの断面形状が略楕円形に形成されている。がいし20は、台枠18の両縁部寄りの底面をそれぞれ支持する。 The insulator 20 shown in FIGS. 1 to 3, 5 and 11 is a member that electrically insulates between the vehicle body 2a and the underframe 18. The insulator 20 shown in FIGS. 1 to 3 and 11 is a low noise insulator formed in a shape having an effect of suppressing the generation of aerodynamic sound. As shown in FIG. 11C, the insulator 20 has a substantially elliptical cross-sectional shape when cut in a horizontal plane in order to suppress the emission of vortices generated at the trailing edge of the insulator 20. The insulator 20 supports the bottom surfaces of the underframe 18 near both edges.

図1〜図4及び図6〜図12に示す空力音低減構造21A〜21Cは、集電装置3の空力音発生源から発生する空力音を低減する構造である。ここで、空力音発生部とは、例えば、隣り合う複数面が交わる稜角部、複数の部材が接合又は近接する箇所の周辺部などである。図1〜図4及び図6〜図9に示す空力音低減構造21Aは、頂点カバー8の空力音発生源である上側稜角部8dから発生する空力音を低減する。空力音低減構造21Aは、図6及び図7に示すように、上側稜角部8dに沿って形成されている。図1〜図4、図6及び図10に示す空力音低減構造21Bは、中間ヒンジカバー14の空力音発生源である上側稜角部14e,14f及び下側稜角部14gから発生する空力音を低減する。空力音低減構造21Bは、図10に示すように、上側稜角部14e,14f及び下側稜角部14gに沿って形成されている。図1〜図4及び図11に示す空力音低減構造21Cは、風防カバー19の空力音発生源である上側稜角部19f、下側稜角部19g及び接合部周辺19hから発生する空力音を低減する。空力音低減構造21Cは、図11(B)に示すように、上側稜角部19f及び下側稜角部19gに沿って形成されているとともに、図11(C)に示すように接合部周辺19hに形成されている。 The aerodynamic sound reduction structures 21A to 21C shown in FIGS. 1 to 4 and 6 to 12 are structures for reducing the aerodynamic sound generated from the aerodynamic sound generation source of the current collector 3. Here, the aerodynamic sound generating portion is, for example, a ridge angle portion where a plurality of adjacent surfaces intersect, a peripheral portion of a portion where a plurality of members are joined or close to each other, and the like. The aerodynamic sound reduction structure 21A shown in FIGS. 1 to 4 and 6 to 9 reduces the aerodynamic sound generated from the upper ridge angle portion 8d, which is the aerodynamic sound generation source of the apex cover 8. As shown in FIGS. 6 and 7, the aerodynamic sound reduction structure 21A is formed along the upper ridge angle portion 8d. The aerodynamic sound reduction structure 21B shown in FIGS. 1 to 4, 6 and 10 reduces the aerodynamic sound generated from the upper ridge angle portions 14e and 14f and the lower ridge angle portions 14g, which are the aerodynamic sound generation sources of the intermediate hinge cover 14. To do. As shown in FIG. 10, the aerodynamic sound reduction structure 21B is formed along the upper ridge angle portions 14e and 14f and the lower ridge angle portion 14g. The aerodynamic sound reduction structure 21C shown in FIGS. 1 to 4 and 11 reduces the aerodynamic sound generated from the upper ridge angle portion 19f, the lower ridge angle portion 19g, and the joint portion peripheral 19h, which are the aerodynamic sound generation sources of the windshield cover 19. .. The aerodynamic sound reduction structure 21C is formed along the upper ridge angle portion 19f and the lower ridge angle portion 19g as shown in FIG. 11 (B), and is formed around the joint portion 19h as shown in FIG. 11 (C). It is formed.

空力音低減構造21A〜21Cは、図8〜図10及び図12に示す収容部22と、空力音低減部23と、図1〜図4及び図6〜図13に示す保護部24と、図9及び図12に示す固定部25などを備えている。空力音低減構造21A〜21Cは、空力音低減部23に物体が衝撃するようなときに、空力音低減部23を保護部24によって保護し、空力音低減部23による空力音低減効果を阻害することなく、空力音低減部23の取付強度を向上させる。 The aerodynamic sound reduction structures 21A to 21C include a housing unit 22 shown in FIGS. 8 to 10 and 12, an aerodynamic sound reduction unit 23, and a protection unit 24 shown in FIGS. 1 to 4 and 6 to 13. 9 and the fixing portion 25 shown in FIG. 12 are provided. The aerodynamic sound reduction structures 21A to 21C protect the aerodynamic sound reduction unit 23 by the protection unit 24 when an object impacts the aerodynamic sound reduction unit 23, and hinders the aerodynamic sound reduction effect of the aerodynamic sound reduction unit 23. Without doing so, the mounting strength of the aerodynamic noise reducing unit 23 is improved.

図8〜図10及び図12に示す収容部22は、空力音低減部23を収容する手段である。収容部22は、図7及び図8に示す頂点カバー8の上側稜角部8dと、図10に示す中間ヒンジカバー14の上側稜角部14e,14f及び下側稜角部14gと、図11に示す風防カバー19の上側稜角部19f、下側稜角部19g及び接合部周辺19hとに沿って形成されている。収容部22は、図12に示すように、所定の深さで形成された凹部である。収容部22は、例えば、切削などの機械加工によって形成される。 The accommodating unit 22 shown in FIGS. 8 to 10 and 12 is a means for accommodating the aerodynamic sound reducing unit 23. The accommodating portion 22 includes the upper ridge angle portion 8d of the apex cover 8 shown in FIGS. 7 and 8, the upper ridge angle portions 14e and 14f and the lower ridge angle portion 14g of the intermediate hinge cover 14 shown in FIG. 10, and the windshield shown in FIG. It is formed along the upper ridge angle portion 19f, the lower ridge angle portion 19g, and the periphery 19h of the joint portion of the cover 19. As shown in FIG. 12, the accommodating portion 22 is a recess formed at a predetermined depth. The accommodating portion 22 is formed by machining such as cutting, for example.

図8〜図10及び図12に示す空力音低減部23は、空力音発生源の表面を被覆して、空力音を低減する手段である。空力音低減部23は、図7及び図8に示す集電装置3の頂点カバー8の空力音発生源の表面と、図10に示す集電装置3の中間ヒンジカバー14の空力音発生源の表面と、図11に示す集電装置3の風防カバー19の空力音発生源の表面とを被覆する。空力音低減部23は、図7及び図8に示す頂点カバー8の上側稜角部8dと、図10に示す中間ヒンジカバー14の上側稜角部14e,14f及び下側稜角部14gと、図11に示す風防カバー19の上側稜角部19f、下側稜角部19g及び接合部周辺19hとに貼り付けられている。空力音低減部23は、気孔同士の壁に微小な孔が形成されており、気孔同士が連通している連続気孔のような三次元の骨格網状構造を有する。空力音低減部23は、例えば、難燃性又は不燃性の金属製の多孔質材のような硬質多孔質材である。空力音低減部23は、収容部22に接着剤などによって貼り付けられており、収容部22内に充填され埋め込まれている。 The aerodynamic sound reduction unit 23 shown in FIGS. 8 to 10 and 12 is a means for reducing the aerodynamic sound by covering the surface of the aerodynamic sound generation source. The aerodynamic sound reduction unit 23 includes the surface of the aerodynamic sound source of the apex cover 8 of the current collector 3 shown in FIGS. 7 and 8 and the aerodynamic sound source of the intermediate hinge cover 14 of the current collector 3 shown in FIG. The surface is covered with the surface of the aerodynamic sound generation source of the windshield cover 19 of the current collector 3 shown in FIG. The aerodynamic sound reducing unit 23 includes the upper ridge angle portion 8d of the apex cover 8 shown in FIGS. 7 and 8, the upper ridge angle portions 14e and 14f and the lower ridge angle portion 14g of the intermediate hinge cover 14 shown in FIG. It is attached to the upper ridge angle portion 19f, the lower ridge angle portion 19g, and the periphery 19h of the joint portion of the windshield cover 19 shown. The aerodynamic sound reducing unit 23 has a three-dimensional skeletal network structure such as continuous pores in which minute holes are formed in the walls of the pores and the pores communicate with each other. The aerodynamic noise reducing unit 23 is a hard porous material such as a flame-retardant or non-flammable metal porous material. The aerodynamic sound reducing portion 23 is attached to the accommodating portion 22 with an adhesive or the like, and is filled and embedded in the accommodating portion 22.

空力音低減部23は、一般に吸音効果を目的とする場合にはセルの小さいものが選択されるが、空力音低減を目的とする場合には吸音効果を目的とする場合に比べてセルの大きなものが選択される。空力音低減部23は、長さ25mm(1インチ)の直線上の気孔の数を表すセル範囲が6を下回り55を超えると騒音レベルの低下が期待できないため、セル範囲が6以上55以下のものが好ましく、セル範囲が11以上16以下のものが特に好ましい。空力音低減部23は、セル範囲が適切であっても、多孔質材と同形状な無垢物(バルク材)の体積と多孔質材が有する空気部分の体積との比率である空隙率(気孔率又は空孔率)が低い場合には、騒音レベルの低下が期待できないため、80%以上の高い空隙率を有するものが好ましい。 The aerodynamic sound reduction unit 23 is generally selected to have a small cell when the sound absorption effect is intended, but when the aerodynamic sound reduction is intended, the cell is larger than when the sound absorption effect is intended. The one is selected. In the aerodynamic sound reduction unit 23, if the cell range representing the number of pores on a straight line having a length of 25 mm (1 inch) is less than 6 and exceeds 55, the noise level cannot be expected to decrease. Therefore, the cell range is 6 or more and 55 or less. Those having a cell range of 11 or more and 16 or less are particularly preferable. The aerodynamic noise reducing unit 23 has a porosity (pores) which is a ratio of the volume of a solid material (bulk material) having the same shape as the porous material to the volume of the air portion of the porous material, even if the cell range is appropriate. When the rate or porosity) is low, the noise level cannot be expected to decrease, so that a high porosity of 80% or more is preferable.

図1〜図4及び図6〜図13に示す保護部24は、空力音低減部23の表面を被覆して、空力音低減部23を保護する手段である。保護部24は、図7〜図10、図12及び図13に示すように、空力音低減部23に気流が流入及び流出する複数の貫通孔24aを有する。保護部24は、図9〜図11に示すように、頂点カバー8、中間ヒンジカバー14及び風防カバー19の表面に沿った形状に形成されており、頂点カバー8、中間ヒンジカバー14及び風防カバー19の表面に被せて装着される。保護部24は、例えば、図13(A)(C)に示すように、貫通孔24aが円形状に形成、又は、図13(B)に示すように、貫通孔24aがスリット状(長孔状)に形成されている。保護部24は、図12に示すように、頂点カバー8、中間ヒンジカバー14及び風防カバー19の表面とこの保護部24の表面とが同じ高さになるように、頂点カバー8、中間ヒンジカバー14及び風防カバー19の表面に接着剤などによって接着されている。保護部24は、例えば、アルミニウム合金製又はステンレス製のパンチングメタルのような多孔板(穴開き板)である。保護部24は、貫通孔24aの開孔率が30%を下回ると空力音低減効果が低下し、貫通孔24aの開孔率が60%を超えると強度が不足するため、貫通孔24aの開孔率を30%以上60%以下に設定することが好ましい。保護部24は、空力音低減効果を損なわずに取付強度を維持するために、貫通孔24aの内径を3.0mm以上8.0mm以下に設定することが好ましい。保護部24は、図13(A)(B)に示すように、複数の貫通孔24aの中心線Lが流れFの方向と一致するように、又は、図13(C)に示すように複数の貫通孔24aの中心線Lが流れFの方向と直交するように、複数の貫通孔24aが配列されている。 The protection unit 24 shown in FIGS. 1 to 4 and 6 to 13 is a means for covering the surface of the aerodynamic sound reduction unit 23 to protect the aerodynamic sound reduction unit 23. As shown in FIGS. 7 to 10, 12 and 13, the protection unit 24 has a plurality of through holes 24a through which airflow flows in and out of the aerodynamic sound reduction unit 23. As shown in FIGS. 9 to 11, the protective portion 24 is formed in a shape along the surfaces of the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19, and the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19 are formed. It is mounted over the surface of 19. In the protective portion 24, for example, as shown in FIGS. 13 (A) and 13 (C), the through hole 24a is formed in a circular shape, or as shown in FIG. 13 (B), the through hole 24a has a slit shape (long hole). Shape). As shown in FIG. 12, the protective portion 24 includes the apex cover 8, the intermediate hinge cover 14, and the intermediate hinge cover so that the surfaces of the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19 are at the same height as the surface of the protective portion 24. It is adhered to the surfaces of 14 and the windshield cover 19 with an adhesive or the like. The protective portion 24 is, for example, a perforated plate (perforated plate) such as a punched metal made of an aluminum alloy or stainless steel. When the opening ratio of the through hole 24a is less than 30%, the aerodynamic noise reduction effect of the protective portion 24 is reduced, and when the opening ratio of the through hole 24a exceeds 60%, the strength is insufficient. Therefore, the through hole 24a is opened. It is preferable to set the pore ratio to 30% or more and 60% or less. The protective portion 24 preferably has an inner diameter of the through hole 24a set to 3.0 mm or more and 8.0 mm or less in order to maintain the mounting strength without impairing the aerodynamic noise reduction effect. As shown in FIGS. 13 (A) and 13 (B), a plurality of protective portions 24 are provided so that the center lines L of the plurality of through holes 24a coincide with the direction of the flow F, or as shown in FIG. 13 (C). A plurality of through holes 24a are arranged so that the center line L of the through holes 24a is orthogonal to the direction of the flow F.

図9及び図12に示す固定部25は、保護部24を固定する手段である。固定部25は、保護部24と収容部22との間に空力音低減部23を挟み込むように、頂点カバー8、中間ヒンジカバー14及び風防カバー19に保護部24を着脱自在に固定する。固定部25は、例えば、頂点カバー8、中間ヒンジカバー14及び風防カバー19の雌ねじ部と噛み合う雄ねじ部を有するボルトなどの締結部材である。固定部25は、図7〜図11に示すように、空力音低減部23及び保護部24の4隅に形成された貫通孔に挿入されて、頂点カバー8、中間ヒンジカバー14及び風防カバー19に空力音低減部23及び保護部24を固定している。 The fixing portion 25 shown in FIGS. 9 and 12 is a means for fixing the protection portion 24. The fixing portion 25 detachably fixes the protective portion 24 to the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19 so as to sandwich the aerodynamic sound reducing portion 23 between the protective portion 24 and the accommodating portion 22. The fixing portion 25 is, for example, a fastening member such as a bolt having a male threaded portion that meshes with the female threaded portion of the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19. As shown in FIGS. 7 to 11, the fixing portion 25 is inserted into the through holes formed at the four corners of the aerodynamic noise reducing portion 23 and the protective portion 24, and the apex cover 8, the intermediate hinge cover 14, and the windshield cover 19 are inserted. The aerodynamic sound reduction unit 23 and the protection unit 24 are fixed to the.

次に、この発明の第1実施形態に係る集電装置の空力音低減構造の作用を説明する。
図14(A)に示す流れ場の円柱の表面が空力音低減部23を備えていない場合には、図14(B)(C)に示すように円柱の最大幅部よりも僅かに上流側の表面上の剥離点で、矢印方向の流れFが剥離して、この円柱の下流側に空気が交互に回り込む。このため、円柱の表面の剥離せん断層から発生する渦の相互作用によってカルマン渦が発生し、このカルマン渦に起因する騒音や振動が発生する。一方、図14(A)に示す流れ場の円柱の表面が空力音低減部23を備えている場合には、図14(D)(E)に示すように空力音低減部23の内部に流れFが流入し、空力音低減部23内の流れFが剥離点近傍などの低圧部から自然に流出する。その結果、流れ場が安定化して渦の放出が弱まり空力音が低減する。
Next, the operation of the aerodynamic sound reduction structure of the current collector according to the first embodiment of the present invention will be described.
When the surface of the cylinder of the flow field shown in FIG. 14 (A) does not have the aerodynamic sound reducing portion 23, it is slightly upstream of the maximum width portion of the cylinder as shown in FIGS. 14 (B) and 14 (C). At the peeling point on the surface of the cylinder, the flow F in the direction of the arrow is peeled off, and air alternately wraps around the downstream side of the cylinder. Therefore, Karman vortices are generated by the interaction of vortices generated from the peeling shear layer on the surface of the cylinder, and noise and vibration caused by the Karman vortices are generated. On the other hand, when the surface of the cylinder of the flow field shown in FIG. 14 (A) is provided with the aerodynamic sound reducing unit 23, the flow flows inside the aerodynamic sound reducing unit 23 as shown in FIGS. 14 (D) and 14 (E). F flows in, and the flow F in the aerodynamic noise reducing portion 23 naturally flows out from the low pressure portion such as near the peeling point. As a result, the flow field is stabilized, the emission of vortices is weakened, and the aerodynamic noise is reduced.

図1〜図4に示す進行方向D1に車両2が走行すると、集電装置3の直線的又は二次元的な上側稜角部8d,14e,14f,19f及び下側稜角部14g,19gにおいて流れFの剥離が生ずる。図12に示すように、よどみ点などの高圧部から保護部24の貫通孔24aを通じて空力音低減部23の内部に流れFが流入し、空力音低減部23内の流れFが剥離点近傍などの低圧部から保護部24の貫通孔24aを通じて自然に流出する。その結果、流れ場が安定化して渦の放出が弱まり空力音が低減する。空力音低減部23の表面を保護部24が覆っているため、空力音低減部23に物体が直接衝突することがなく、空力音低減部23を保護部24が保護し、空力音低減部23の取付強度が向上する。 When the vehicle 2 travels in the traveling direction D 1 shown in FIGS. 1 to 4, the current flows at the linear or two-dimensional upper ridge angles 8d, 14e, 14f, 19f and the lower ridges 14g, 19g of the current collector 3. Peeling of F occurs. As shown in FIG. 12, the flow F flows into the aerodynamic sound reduction unit 23 from the high-pressure portion such as the stagnation point through the through hole 24a of the protection unit 24, and the flow F in the aerodynamic noise reduction unit 23 is near the peeling point. Naturally flows out from the low pressure portion of the above through the through hole 24a of the protection portion 24. As a result, the flow field is stabilized, the emission of vortices is weakened, and the aerodynamic noise is reduced. Since the protection unit 24 covers the surface of the aerodynamic sound reduction unit 23, the object does not directly collide with the aerodynamic sound reduction unit 23, the aerodynamic sound reduction unit 23 is protected by the protection unit 24, and the aerodynamic sound reduction unit 23 is protected. The mounting strength of the is improved.

この発明の第1実施形態に係る集電装置の空力音低減構造には、以下に記載するような効果がある。
(1) この第1実施形態では、空力音発生源の表面を被覆して、空力音低減部23が空力音を低減し、空力音低減部23に流れFが流入及び流出する複数の貫通孔24aを保護部24が有し、空力音低減部23の表面を保護部24が被覆して、空力音低減部23を保護部24が保護する。このため、空力音低減部23の表面に物体が衝撃しても、空力音低減部23を保護部24によって保護し、空力音低減部23による空力音低減効果を阻害することなく、空力音低減部23の取付強度を向上させることができる。また、保護部24の貫通孔24aを通じて流体(空気)と空力音低減部23の表面においてやり取りを行うことができ、空力音低減効果を維持することができる。さらに、接着剤のみでは空力音低減部23を固定するのが困難な部位であっても、保護部24によって空力音低減部23を確実に固定することができる。
The aerodynamic noise reduction structure of the current collector according to the first embodiment of the present invention has the following effects.
(1) In this first embodiment, the surface of the aerodynamic sound generation source is covered, the aerodynamic sound reduction unit 23 reduces the aerodynamic sound, and the flow F flows into and out of the aerodynamic sound reduction unit 23. The protection unit 24 has 24a, the surface of the aerodynamic sound reduction unit 23 is covered by the protection unit 24, and the aerodynamic sound reduction unit 23 is protected by the protection unit 24. Therefore, even if an object impacts the surface of the aerodynamic sound reduction unit 23, the aerodynamic sound reduction unit 23 is protected by the protection unit 24, and the aerodynamic sound reduction effect is not impaired by the aerodynamic sound reduction unit 23. The mounting strength of the portion 23 can be improved. Further, the fluid (air) can be exchanged with the surface of the aerodynamic sound reducing unit 23 through the through hole 24a of the protective unit 24, and the aerodynamic sound reducing effect can be maintained. Further, even in a portion where it is difficult to fix the aerodynamic noise reducing portion 23 only with the adhesive, the aerodynamic noise reducing portion 23 can be reliably fixed by the protective portion 24.

(2) この第1実施形態では、集電装置3の頂点カバー8の空力音発生源の表面を空力音低減部23が被覆する。集電装置3の三次元的又は曲面的な先端部はあまり空力音には影響せず、このような三次元的又は曲面的な先端部に空力音低減構造21A〜21Cを適用する場合には、空力音低減構造21A〜21Cの加工が困難である。この第1実施形態では流れFの剥離が生じていると推測される直線的又は二次元的な上側稜角部8dに空力音低減構造21Aを適用している。このため、空力音発生源の最小限の領域を空力音低減部23によって被覆することによって、頂点カバー8の空力音発生源である上側稜角部8dから発生する空力音を低減することができる。また、空力音が発生する最小限の領域を空力音低減部23によって被覆する。 (2) In this first embodiment, the aerodynamic sound reducing unit 23 covers the surface of the aerodynamic sound generating source of the apex cover 8 of the current collector 3. The three-dimensional or curved tip of the current collector 3 does not affect the aerodynamic sound so much, and when the aerodynamic sound reduction structures 21A to 21C are applied to such a three-dimensional or curved tip, the aerodynamic sound reduction structure 21A to 21C is applied. , It is difficult to process the aerodynamic noise reduction structures 21A to 21C. In this first embodiment, the aerodynamic sound reduction structure 21A is applied to the linear or two-dimensional upper ridge angle portion 8d where it is presumed that the flow F is separated. Therefore, by covering the minimum region of the aerodynamic sound generation source with the aerodynamic sound reduction unit 23, the aerodynamic sound generated from the upper ridge angle portion 8d, which is the aerodynamic sound generation source of the apex cover 8, can be reduced. Further, the minimum area where the aerodynamic sound is generated is covered by the aerodynamic sound reducing unit 23.

(3) この第1実施形態では、集電装置3の中間ヒンジカバー14の空力音発生源の表面を空力音低減部23が被覆する。このため、中間ヒンジカバー14の空力音発生源である上側稜角部14e,14f及び下側稜角部14gから発生する空力音を低減することができる。 (3) In this first embodiment, the aerodynamic sound reducing unit 23 covers the surface of the aerodynamic sound generating source of the intermediate hinge cover 14 of the current collector 3. Therefore, the aerodynamic sound generated from the upper ridge angle portions 14e and 14f and the lower ridge angle portion 14g, which are the sources of the aerodynamic sound of the intermediate hinge cover 14, can be reduced.

(4) この第1実施形態では、集電装置3の風防カバー19の空力音発生源の表面を空力音低減部23が被覆する。このため、風防カバー19の空力音発生源である上側稜角部19f及び下側稜角部19gから発生する空力音を低減することができる。また、風防カバー19とがいし20との間の干渉流れによって発生する空力音を、接合部周辺19hの空力音低減部23によって緩和することができる。 (4) In the first embodiment, the aerodynamic sound reducing unit 23 covers the surface of the aerodynamic sound generating source of the windshield cover 19 of the current collector 3. Therefore, the aerodynamic sound generated from the upper ridge angle portion 19f and the lower ridge angle portion 19g, which are the sources of the aerodynamic sound of the windshield cover 19, can be reduced. Further, the aerodynamic noise generated by the interference flow between the windshield cover 19 and the wheel 20 can be alleviated by the aerodynamic noise reducing portion 23 around the joint portion 19h.

(5) この第1実施形態では、空力音低減部23が金属製の多孔質材である。このため、多孔質材の内部に流れFが流入し、多孔質材内の流れFを剥離点近傍などの低圧部から自然に流出させることができる。その結果、流れ場を安定化させることができ、渦の放出を弱めて空力音を低減することができる。 (5) In this first embodiment, the aerodynamic sound reducing portion 23 is a porous metal material. Therefore, the flow F flows into the inside of the porous material, and the flow F in the porous material can be naturally discharged from the low pressure portion such as near the peeling point. As a result, the flow field can be stabilized, the emission of vortices can be weakened, and the aerodynamic noise can be reduced.

(6) この第1実施形態では、保護部24の複数の貫通孔24aの中心線が流れFの方向と一致するように、複数の貫通孔24aが配列されている。このため、空力音低減効果をより一層向上させることができる。 (6) In this first embodiment, the plurality of through holes 24a are arranged so that the center lines of the plurality of through holes 24a of the protection portion 24 coincide with the direction of the flow F. Therefore, the aerodynamic sound reduction effect can be further improved.

(第2実施形態)
以下では、図1〜図13に示す部分と同一の部分については、同一の符号を付して詳細な説明を省略する。
図15及び図16に示す空力音低減構造21Aは、頂点カバー8の上部8a及び上側稜角部8dに沿って形成されている。収容部22は、図16に示すように、頂点カバー8の上部8a及び上側稜角部8dに沿って形成されている。図15及び図16に示す空力音低減部23は、図8及び図9に示す空力音低減部23とは異なり、頂点カバー8の上側稜角部8d及び上部8aに貼り付けられている。この第2実施形態には、第1実施形態と同様の効果がある。
(Second Embodiment)
In the following, the same parts as those shown in FIGS. 1 to 13 are designated by the same reference numerals and detailed description thereof will be omitted.
The aerodynamic sound reduction structure 21A shown in FIGS. 15 and 16 is formed along the upper portion 8a and the upper ridge angle portion 8d of the apex cover 8. As shown in FIG. 16, the accommodating portion 22 is formed along the upper portion 8a and the upper ridge angle portion 8d of the apex cover 8. Unlike the aerodynamic sound reduction unit 23 shown in FIGS. 8 and 9, the aerodynamic sound reduction unit 23 shown in FIGS. 15 and 16 is attached to the upper ridge angle portion 8d and the upper portion 8a of the apex cover 8. This second embodiment has the same effect as the first embodiment.

(第3実施形態)
図17に示す頂点カバー8は、断面形状が略U字状であり、舟支え部7の下から着脱可能である。頂点カバー8は、舟支え部7の下から被せることによって、舟支え部7の下面及び両側面を被覆する構造である。頂点カバー8は、例えば、図17(A)に示すように、上側稜角部8d及び下側稜角部8eに丸みが形成、又は、図17(B)(C)に示すように、上側稜角部8d及び下側稜角部8eが角に形成されている。図17に示す頂点カバー8は、図9に示す頂点カバー8と同様に、空力音低減部23が貼り付けられている。保護部24は、断面形状が略逆U字状であり、舟支え部7の側面と頂点カバー8の内側側面との間に挟み込まれる挟み込み部24bを備えている。保護部24は、舟支え部7の側面と頂点カバー8の内側側面との間に挟み込み部24bを噛ませた状態で、固定部25によって頂点カバー8に着脱自在に固定されている。この第3実施形態には、第1実施形態と同様の効果がある。
(Third Embodiment)
The apex cover 8 shown in FIG. 17 has a substantially U-shaped cross section and can be attached and detached from under the boat support portion 7. The apex cover 8 has a structure that covers the lower surface and both side surfaces of the boat support portion 7 by covering the boat support portion 7 from below. In the apex cover 8, for example, as shown in FIG. 17 (A), the upper ridge angle portion 8d and the lower ridge angle portion 8e are rounded, or as shown in FIGS. 17 (B) and 17 (C), the upper ridge angle portion is formed. 8d and the lower ridge angle portion 8e are formed at the corners. The aerodynamic sound reduction unit 23 is attached to the apex cover 8 shown in FIG. 17, similarly to the apex cover 8 shown in FIG. The protective portion 24 has a substantially inverted U-shape in cross section, and includes a sandwiching portion 24b sandwiched between the side surface of the boat support portion 7 and the inner side surface of the apex cover 8. The protective portion 24 is detachably fixed to the apex cover 8 by the fixing portion 25 in a state where the sandwiching portion 24b is bitten between the side surface of the boat support portion 7 and the inner side surface of the apex cover 8. This third embodiment has the same effect as that of the first embodiment.

(第4実施形態)
図18に示す集電装置3は、図1に示す車両2の進行方向D1とは逆方向の進行方向D2に移動しており、進行方向後側に中間ヒンジ13が位置する反なびき方向に移動している。図18に示す空力音低減部23は、集電装置3の頂点カバー8の空力音発生源の表面を被覆する。空力音低減構造21Aは、頂点カバー8の空力音発生源である上側稜角部8d及び下側稜角部8eから発生する空力音を低減する。空力音低減構造21Aは、上側稜角部8d及び下側稜角部8eに沿って形成されている。収容部22は、頂点カバー8の上側稜角部8d及び下側稜角部8eに沿って形成されている。空力音低減部23は、頂点カバー8の上側稜角部8d及び下側稜角部8eに貼り付けられている。この発明の第4実施形態では、第1実施形態〜第3実施形態の効果に加えて、集電装置3が双方向(進行方向D1,D2)に使用可能なシングルアーム式パンタグラフである場合に、上側稜角部8d及び下側稜角部8eから発生する空力音を低減することができる。
(Fourth Embodiment)
The current collector 3 shown in FIG. 18 is moving in the traveling direction D 2 in the direction opposite to the traveling direction D 1 of the vehicle 2 shown in FIG. 1, and the intermediate hinge 13 is located behind the traveling direction in the anti-fluttering direction. Have moved to. The aerodynamic sound reduction unit 23 shown in FIG. 18 covers the surface of the aerodynamic sound generation source of the apex cover 8 of the current collector 3. The aerodynamic sound reduction structure 21A reduces the aerodynamic sound generated from the upper ridge angle portion 8d and the lower ridge angle portion 8e, which are the aerodynamic sound generation sources of the apex cover 8. The aerodynamic sound reduction structure 21A is formed along the upper ridge angle portion 8d and the lower ridge angle portion 8e. The accommodating portion 22 is formed along the upper ridge angle portion 8d and the lower ridge angle portion 8e of the apex cover 8. The aerodynamic sound reducing portion 23 is attached to the upper ridge angle portion 8d and the lower ridge angle portion 8e of the apex cover 8. In the fourth embodiment of the present invention, in addition to the effects of the first to third embodiments, the current collector 3 is a single-arm pantograph that can be used in both directions (travel directions D 1 , D 2). In this case, the aerodynamic sound generated from the upper ridge angle portion 8d and the lower ridge angle portion 8e can be reduced.

(第5実施形態)
図19に示す風防カバー19は、この風防カバー19と主軸カバー26とが近接する近接部の周辺の近接部周辺19iを備えている。図19及び図20に示す主軸カバー26は、主軸15を被覆する部材である。主軸カバー26は、下枠11と主軸15とを連結する連結部を被覆しており、流れFを妨げないような形状に形成されている。主軸カバー26は、台枠18内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。主軸カバー26は、例えば、FRP製の被覆部材である。主軸カバー26は、この主軸カバー26の上面を構成する上部26aと、この主軸カバー26の下側傾斜面を構成する下部26bと、上部26aと下部26bとを接続する湾曲面を構成する湾曲部26cと、この主軸カバー26の側面を構成する側部26dと、下部26bと側部26dとが交わる下側稜角部(下側縁部)26eと、湾曲部26cと側部26dとが交わる上側稜角部(上側縁部)26fとを備えている。主軸カバー26は、上部26a、下部26b、湾曲部26c及び側部26dから構成されており、隣り合う平面と湾曲面とが下側稜角部26e及び上側稜角部26fで交わっている。主軸カバー26は、下側稜角部26e及び上側稜角部26fに丸みが形成されている。
(Fifth Embodiment)
The windshield cover 19 shown in FIG. 19 includes a proximity portion peripheral 19i around a proximity portion in which the windshield cover 19 and the spindle cover 26 are close to each other. The spindle cover 26 shown in FIGS. 19 and 20 is a member that covers the spindle 15. The spindle cover 26 covers a connecting portion that connects the lower frame 11 and the spindle 15, and is formed in a shape that does not obstruct the flow F. The spindle cover 26 prevents the flow F from entering the underframe 18 and generating a loud aerodynamic noise, and also prevents the air resistance from increasing. The spindle cover 26 is, for example, a covering member made of FRP. The spindle cover 26 is a curved portion that constitutes an upper portion 26a that constitutes the upper surface of the spindle cover 26, a lower portion 26b that constitutes the lower inclined surface of the spindle cover 26, and a curved surface that connects the upper portion 26a and the lower portion 26b. The upper side where the 26c, the side portion 26d forming the side surface of the main shaft cover 26, the lower ridge angle portion (lower edge portion) 26e where the lower portion 26b and the side portion 26d intersect, and the curved portion 26c and the side portion 26d intersect. It is provided with a ridge angle portion (upper edge portion) 26f. The spindle cover 26 is composed of an upper portion 26a, a lower portion 26b, a curved portion 26c and a side portion 26d, and adjacent planes and curved surfaces intersect at the lower ridge angle portion 26e and the upper ridge angle portion 26f. The spindle cover 26 is rounded at the lower ridge angle portion 26e and the upper ridge angle portion 26f.

図19に示す空力音低減構造21Cは、風防カバー19の空力音発生源である近接部周辺19iから発生する空力音を低減する。空力音低減構造21Cは、近接部周辺19iに沿って形成されている。図19及び図20に示す空力音低減構造21Dは、集電装置3の空力音発生源から発生する空力音を低減する構造である。空力音低減構造21Dは、主軸カバー26の空力音発生源である下側稜角部26e及び上側稜角部26fから発生する空力音を低減する。空力音低減構造21Dは、図19及び図20に示すように、下側稜角部26e及び上側稜角部26fに沿って形成されている。空力音低減構造21Dは、図12及び図20に示すように、収容部22と、空力音低減部23と、保護部24と、固定部25などを備えている。空力音低減構造21Dは、空力音低減部23に物体が衝撃するようなときに、空力音低減部23を保護部24によって保護し、空力音低減部23による空力音低減効果を阻害することなく、空力音低減部23の取付強度を向上させる。図12及び図20に示す収容部22は、図19に示す風防カバー19の近接部周辺19iと、図20に示す主軸カバー26の下側稜角部26e及び上側稜角部26fとに沿って形成されている。 The aerodynamic sound reduction structure 21C shown in FIG. 19 reduces the aerodynamic sound generated from the vicinity 19i, which is the aerodynamic sound generation source of the windshield cover 19. The aerodynamic sound reduction structure 21C is formed along the vicinity 19i of the proximity portion. The aerodynamic sound reduction structure 21D shown in FIGS. 19 and 20 is a structure that reduces the aerodynamic sound generated from the aerodynamic sound generation source of the current collector 3. The aerodynamic sound reduction structure 21D reduces the aerodynamic sound generated from the lower ridge angle portion 26e and the upper ridge angle portion 26f, which are the aerodynamic sound generation sources of the spindle cover 26. As shown in FIGS. 19 and 20, the aerodynamic sound reduction structure 21D is formed along the lower ridge angle portion 26e and the upper ridge angle portion 26f. As shown in FIGS. 12 and 20, the aerodynamic sound reduction structure 21D includes an accommodating unit 22, an aerodynamic sound reduction unit 23, a protective unit 24, a fixing unit 25, and the like. The aerodynamic sound reduction structure 21D protects the aerodynamic sound reduction unit 23 by the protection unit 24 when an object impacts the aerodynamic sound reduction unit 23, without hindering the aerodynamic sound reduction effect of the aerodynamic sound reduction unit 23. , The mounting strength of the aerodynamic noise reducing unit 23 is improved. The accommodating portion 22 shown in FIGS. 12 and 20 is formed along the vicinity 19i of the proximity portion of the windshield cover 19 shown in FIG. 19 and the lower ridge angle portion 26e and the upper ridge angle portion 26f of the spindle cover 26 shown in FIG. ing.

空力音低減部23は、図19に示すように、集電装置3の風防カバー19の空力音発生源の表面と、集電装置3の主軸カバー26の空力音発生源の表面とを被覆する。空力音低減部23は、図19に示す風防カバー19の近接部周辺19iと、図19及び図20に示す主軸カバー26の下側稜角部26e及び上側稜角部26fとに貼り付けられている。 As shown in FIG. 19, the aerodynamic sound reducing unit 23 covers the surface of the aerodynamic sound generation source of the windshield cover 19 of the current collector 3 and the surface of the aerodynamic sound generation source of the spindle cover 26 of the current collector 3. .. The aerodynamic noise reducing portion 23 is attached to the vicinity 19i of the proximity portion of the windshield cover 19 shown in FIG. 19 and the lower ridge angle portion 26e and the upper ridge angle portion 26f of the spindle cover 26 shown in FIGS. 19 and 20.

図19及び図20に示す保護部24は、風防カバー19及び主軸カバー26の表面に沿った形状に形成されており、風防カバー19及び主軸カバー26の表面に被せて装着される。保護部24は、図12に示すように、風防カバー19及び主軸カバー26の表面とこの保護部24の表面とが同じ高さになるように、風防カバー19及び主軸カバー26の表面に接着剤などによって接着されている。 The protective portion 24 shown in FIGS. 19 and 20 is formed in a shape along the surfaces of the windshield cover 19 and the spindle cover 26, and is mounted on the surfaces of the windshield cover 19 and the spindle cover 26. As shown in FIG. 12, the protective portion 24 has an adhesive on the surfaces of the windshield cover 19 and the spindle cover 26 so that the surfaces of the windshield cover 19 and the spindle cover 26 and the surface of the protective portion 24 are at the same height. It is glued by such as.

図12及び図20に示す固定部25は、保護部24と収容部22との間に空力音低減部23を挟み込むように、風防カバー19及び主軸カバー26に保護部24を着脱自在に固定する。固定部25は、図20に示すように、空力音低減部23及び保護部24の4隅に形成された貫通孔に挿入されて、風防カバー19及び主軸カバー26に空力音低減部23及び保護部24を固定している。 The fixing portion 25 shown in FIGS. 12 and 20 detachably fixes the protective portion 24 to the windshield cover 19 and the spindle cover 26 so as to sandwich the aerodynamic noise reducing portion 23 between the protective portion 24 and the accommodating portion 22. .. As shown in FIG. 20, the fixing portion 25 is inserted into the through holes formed at the four corners of the aerodynamic noise reducing portion 23 and the protective portion 24, and the aerodynamic noise reducing portion 23 and the protection are provided on the windshield cover 19 and the spindle cover 26. The part 24 is fixed.

この発明の第5実施形態に係る集電装置の空力音低減構造には、第1実施形態〜第4実施形態に加えて、以下に記載するような効果がある。
この第5実施形態では、集電装置3の主軸カバー26の空力音発生源の表面を空力音低減部23が被覆する。このため、主軸カバー26の空力音発生源である下側稜角部26e及び上側稜角部26fから発生する空力音を低減することができる。また、風防カバー19と主軸カバー26との間の干渉流れによって発生する空力音を、近接部周辺19iの空力音低減部23によって緩和することができる。
The aerodynamic noise reduction structure of the current collector according to the fifth embodiment of the present invention has the following effects in addition to the first to fourth embodiments.
In the fifth embodiment, the aerodynamic sound reducing unit 23 covers the surface of the aerodynamic sound generating source of the spindle cover 26 of the current collector 3. Therefore, the aerodynamic sound generated from the lower ridge angle portion 26e and the upper ridge angle portion 26f, which are the sources of the aerodynamic sound of the spindle cover 26, can be reduced. Further, the aerodynamic sound generated by the interference flow between the windshield cover 19 and the spindle cover 26 can be alleviated by the aerodynamic sound reducing unit 23 around the proximity portion 19i.

次に、この発明の実施例について説明する。
(風洞試験)
図22に示すように、多数の貫通孔を有する平滑化舟体を備える実物の新幹線パンタグラフの頂点カバーに多孔質材を貼り付け、この多孔質材を覆うパンチングメタルを取り付けて、風洞試験により空力音の評価を行った。風洞試験は、公益財団法人鉄道総合技術研究所の開放胴型の風洞試験装置を使用した。実物の新幹線パンタグラフの舟支え部の頂点カバーに凹部を形成し、この凹部内に多孔質材を貼り付け、この多孔質材の表面を円形の貫通孔を有するパンチングメタルによって被覆した。なお、図22に示すように、多孔質材の表面の一部の領域については、パンチングメタルによって被覆されていない。図21に示すように、風洞試験装置の風洞測定部の支持台車上に実物の新幹線パンタグラフを支持した状態で、風洞測定部内の新幹線用パンタグラフに吹き出しノズルから風速360km/hの空気を吹き出し、この空気の流れによって新幹線パンタグラフから発生する空力音をマイクロホンによって測定した。
Next, examples of the present invention will be described.
(Wind tunnel test)
As shown in FIG. 22, a porous material is attached to the apex cover of a real Shinkansen pantograph having a smoothing boat body having a large number of through holes, a punching metal covering the porous material is attached, and aerodynamics is performed by a wind tunnel test. The sound was evaluated. For the wind tunnel test, an open-body wind tunnel test device of the Railway Technical Research Institute was used. A recess was formed in the apex cover of the boat support portion of the actual Shinkansen pantograph, a porous material was attached to the recess, and the surface of the porous material was covered with a punching metal having a circular through hole. As shown in FIG. 22, a part of the surface of the porous material is not covered with the punching metal. As shown in FIG. 21, with the actual Shinkansen pantograph supported on the support carriage of the wind tunnel measurement section of the wind tunnel test device, air at a wind speed of 360 km / h is blown out from the blow nozzle to the Shinkansen pantograph in the wind tunnel measurement section. The aerodynamic sound generated from the Shinkansen pantograph due to the air flow was measured with a microphone.

(供試体)
表1は、空力音低減効果試験に使用した供試体A〜Iの種類である。表2は、空力音低減効果試験に使用した供試体C〜Hのパンチングメタルの孔の開口条件である。
(Sample)
Table 1 shows the types of specimens A to I used in the aerodynamic sound reduction effect test. Table 2 shows the opening conditions of the holes of the punching metal of the specimens C to H used in the aerodynamic sound reduction effect test.

Figure 2021069206
Figure 2021069206

Figure 2021069206
Figure 2021069206

表1に示す多孔質材は、株式会社イノアックコーポレーション製の商品名モルトフィルター(ウレタン樹脂)、厚さ5mm、セル範囲が11以上16以下の製品(品番MF-13)を使用した。パンチングメタルは、図23(A)に示すように、アルミニウム板に所定の開口条件で孔を開けて製作した。表2に示す「ピッチP」は、図23(A)に示すような隣り合う貫通孔24aの中心間の長さであり、「骨B」はこの隣り合う貫通孔24aの縁の間隔であり、「開孔率」は1枚の板に対して貫通孔の占める割合である。表2に示す「縦タイプ」は、図23(B)に示すような貫通孔24aの中心線Lが流れFの方向と一致するように貫通孔24aが配列されている場合である。「横タイプ」は、図23(C)に示すような複数の貫通孔24aの中心線Lが流れFの方向と直交するように貫通孔24aが配列されている場合である。 As the porous material shown in Table 1, a product (product number MF-13) having a trade name of malt filter (urethane resin) manufactured by Inoac Corporation, a thickness of 5 mm, and a cell range of 11 or more and 16 or less was used. As shown in FIG. 23 (A), the punching metal was manufactured by punching holes in an aluminum plate under predetermined opening conditions. “Pitch P” shown in Table 2 is the length between the centers of adjacent through holes 24a as shown in FIG. 23 (A), and “bone B” is the distance between the edges of the adjacent through holes 24a. , "Aperture ratio" is the ratio of through holes to one plate. The “vertical type” shown in Table 2 is a case where the through holes 24a are arranged so that the center line L of the through holes 24a as shown in FIG. 23 (B) coincides with the direction of the flow F. The "horizontal type" is a case where the through holes 24a are arranged so that the center lines L of the plurality of through holes 24a as shown in FIG. 23C are orthogonal to the direction of the flow F.

(空力音の測定結果)
図24は、風洞試験による供試体A〜Iの空力音の測定結果である。図24に示す縦軸は、騒音レベルPOA値(dB(A))である。空力音の測定結果は、8kHzまでの周波数帯域における部分オーバオール値(Partial Overall Value)で評価した。図24に示す供試体Aは、多孔質材がない場合の測定結果である。供試体Bは、貫通孔のない板で多孔質材を完全に覆った場合の測定結果である。供試体Bは、パンチングメタルの貫通孔をアルミニウムテープによって塞いだ構造である。供試体C〜Hは、表1に示す各パンチングメタルの孔の開口条件による場合の測定結果である。供試体Iは、板で覆わない多孔質材のみの場合の測定結果である。
(Measurement result of aerodynamic sound)
FIG. 24 shows the measurement results of the aerodynamic sounds of the specimens A to I by the wind tunnel test. The vertical axis shown in FIG. 24 is the noise level POA value (dB (A)). The measurement result of aerodynamic sound was evaluated by the partial overall value in the frequency band up to 8 kHz. Specimen A shown in FIG. 24 is a measurement result when there is no porous material. Specimen B is a measurement result when the porous material is completely covered with a plate having no through holes. The specimen B has a structure in which the through holes of the punching metal are closed with aluminum tape. Specimens C to H are measurement results under the opening conditions of the holes of each punching metal shown in Table 1. Specimen I is a measurement result in the case of only a porous material not covered with a plate.

図24に示すように、全体的な傾向として、供試体C〜Iが供試体A,Bに比べて騒音低減効果が高く、パンチングメタルで多孔質材を覆った場合には多孔質材のみの場合と略同等の騒音レベルであることが確認された。その結果、パンチングメタルで多孔質材を覆った場合であっても、多孔質材による空力音低減効果を阻害しないことが確認された。 As shown in FIG. 24, as an overall tendency, the specimens C to I have a higher noise reduction effect than the specimens A and B, and when the porous material is covered with the punching metal, only the porous material is used. It was confirmed that the noise level was almost the same as the case. As a result, it was confirmed that even when the porous material was covered with the punching metal, the aerodynamic noise reduction effect of the porous material was not impaired.

パンチングメタルの孔の配置については、供試体C1,C2と供試体Dとを比較すると、図23(B)に示す縦タイプのほうが、図23(C)に示す横タイプよりも空力音低減効果が大きいことが確認された。このため、図13(A)(B)に示すような縦配列の貫通孔24aを稜角部に沿って配置するほうが、図13(C)に示すような横配列の貫通孔24aを稜角部に沿って配置よりも、空力音低減効果が優れていることが確認された。 Regarding the arrangement of the holes in the punching metal, comparing the specimens C1 and C2 with the specimen D, the vertical type shown in FIG. 23 (B) has a more aerodynamic sound reduction effect than the horizontal type shown in FIG. 23 (C). Was confirmed to be large. Therefore, it is better to arrange the vertically arranged through holes 24a as shown in FIGS. 13 (A) and 13 (B) along the ridge angle portion, so that the horizontally arranged through holes 24a as shown in FIG. 13 (C) are arranged at the ridge angle portion. It was confirmed that the aerodynamic sound reduction effect was superior to the arrangement along the line.

開孔率については、実験結果からは明確な傾向はなかったが、開孔率33%であっても十分な空力音低減効果が確認された。その結果、実験結果から開孔率30%以上60%以下の範囲内で十分な空力音低減効果を得られると推定される。 Regarding the aperture ratio, there was no clear tendency from the experimental results, but a sufficient aerodynamic noise reduction effect was confirmed even when the aperture ratio was 33%. As a result, it is estimated from the experimental results that a sufficient aerodynamic sound reduction effect can be obtained within the range of the aperture ratio of 30% or more and 60% or less.

パンチングメタルの板厚については、供試体E1,E2,F1,F2を比較すると板厚t1.0mmのほうが板厚t0.5mmよりも騒音レベルが大きいことが確認された。また、供試体C1,C2については、板厚t1.0mm及び板厚t0.5mmのいずれについても、騒音レベルは略同じであることが確認された。このため、パンチングメタルの板厚は薄い方が空力音への影響が小さいことが確認された。 Regarding the plate thickness of the punching metal, when the specimens E1, E2, F1 and F2 were compared, it was confirmed that the plate thickness t1.0 mm had a higher noise level than the plate thickness t0.5 mm. Further, it was confirmed that the noise levels of the specimens C1 and C2 were substantially the same for both the plate thickness t1.0 mm and the plate thickness t0.5 mm. Therefore, it was confirmed that the thinner the punching metal, the smaller the effect on the aerodynamic sound.

パンチングメタルの孔径については、供試体C〜Hの孔径の範囲内である3mm以上8mm以下の範囲内において騒音レベルが小さくなることが確認された。特に、供試体F1,F2,Hの場合に騒音レベルが小さくなることが確認された。この風洞試験では、孔径が3mmである供試体Hが最も空力音への影響が小さく、空力音を最も低減可能であることが確認された。 Regarding the hole diameter of the punching metal, it was confirmed that the noise level was reduced within the range of 3 mm or more and 8 mm or less, which is within the range of the hole diameters of the specimens C to H. In particular, it was confirmed that the noise level was reduced in the case of the specimens F1, F2, and H. In this wind tunnel test, it was confirmed that the specimen H having a hole diameter of 3 mm has the least influence on the aerodynamic noise and can reduce the aerodynamic noise the most.

Figure 2021069206
Figure 2021069206

表3は、各供試体C〜Hの曲げ強度の比の試算結果である。表3に示す供試体0は、貫通孔なし、板厚0.5mmの鋼板である。表3に示す「曲げ強度比」は、供試体0の曲げ強度を1としたときの各供試体C〜Hの曲げ強度を正規化した値である。「リガメント効率」は、骨幅を孔径で除した値である。パンチングメタルの強度については、表3に示すように、一般に、板厚が厚くなると強度が高くなるが、図24に示すように板厚が厚くなるほど空力音が増加する傾向がある。また、表3に示すように、供試体G,Hのような開孔率が低いものはリガメント効率が高く、曲げ強度比も高い。その結果、表3に示すように、一般に、リガメント効率が大きいほど強度が高く、孔径が小さいほうが強度上有利であることが確認された。表3に示すように、供試体C2,E2,F2の板厚1.0mmのパンチングメタルは、供試体0の孔なし、板厚0.5mmの鋼板と略同程度の強度を有することが確認された。図24に示すように、この風洞試験を実施した中では、供試体Hが空力音低減効果及び強度の両面で最適なパンチングメダルであることが確認された。 Table 3 shows the calculation results of the ratio of the bending strength of each specimen C to H. Specimen 0 shown in Table 3 is a steel plate having no through holes and a plate thickness of 0.5 mm. The “bending strength ratio” shown in Table 3 is a value obtained by normalizing the bending strength of each of the specimens C to H when the bending strength of the specimen 0 is 1. "Ligament efficiency" is a value obtained by dividing the bone width by the pore size. As for the strength of the punching metal, as shown in Table 3, the strength generally increases as the plate thickness increases, but as shown in FIG. 24, the aerodynamic sound tends to increase as the plate thickness increases. Further, as shown in Table 3, those having a low aperture ratio such as specimens G and H have high ligament efficiency and a high bending strength ratio. As a result, as shown in Table 3, it was generally confirmed that the higher the ligament efficiency, the higher the strength, and the smaller the pore diameter, the more advantageous in terms of strength. As shown in Table 3, it was confirmed that the punching metal of the specimens C2, E2, and F2 having a plate thickness of 1.0 mm had substantially the same strength as the steel plate having no holes in the specimen 0 and having a plate thickness of 0.5 mm. .. As shown in FIG. 24, in conducting this wind tunnel test, it was confirmed that the specimen H was the optimum punching medal in terms of both the aerodynamic sound reduction effect and the strength.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、集電装置3としてシングルアーム式パンタグラフを例に挙げて説明したが、菱型パンタグラフなどの他の形式のパンタグラフについても、この発明を適用することができる。また、この実施形態では、集電装置3の頂点カバー8、中間ヒンジ13、風防カバー19及び主軸カバー26の空力音発生源から発生する空力音を低減する場合を例に挙げて説明したが、これらの空力音発生源にこの発明を限定するものではない。例えば、ホーン4aやがいし20などの他の空力音発生源から発生する空力音を低減する場合についても、この発明を適用することができる。さらに、この実施形態では、集電装置3に多孔質材を適用して空力音を低減する場合を例に挙げて説明したが、集電装置3以外に多孔質材を適用して空力音を低減する場合についても、この発明を適用することができる。
(Other embodiments)
The present invention is not limited to the embodiments described above, and various modifications or modifications can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, a single-arm pantograph has been described as an example of the current collector 3, but the present invention can also be applied to other types of pantographs such as a diamond-shaped pantograph. Further, in this embodiment, the case of reducing the aerodynamic sound generated from the aerodynamic sound source of the aerodynamic sound source of the aerodynamic sound source of the aerodynamic sound source of the apex cover 8, the intermediate hinge 13, the windshield cover 19 and the spindle cover 26 of the current collector 3 has been described as an example. The present invention is not limited to these aerodynamic sound sources. For example, the present invention can be applied to the case of reducing the aerodynamic sound generated from other aerodynamic sound sources such as the horn 4a and the insulator 20. Further, in this embodiment, the case where the porous material is applied to the current collector 3 to reduce the aerodynamic sound has been described as an example, but the aerodynamic sound is produced by applying the porous material to the current collector 3 other than the current collector 3. The present invention can also be applied to the case of reduction.

(2) この実施形態では、空力音低減部23が連続気孔の多孔質材である場合を例に挙げて説明したが、空力音低減部23が網状の多孔質材である場合についても、この発明を適用することができる。また、この実施形態では、保護部24の貫通孔24aが円形状又はスリット状である場合を例に挙げて説明したが、四角形状、六角形状又は楕円形状などである場合についても、この発明を適用することができる。 (2) In this embodiment, the case where the aerodynamic sound reducing unit 23 is a porous material having continuous pores has been described as an example, but the case where the aerodynamic sound reducing unit 23 is a mesh-like porous material is also described. The invention can be applied. Further, in this embodiment, the case where the through hole 24a of the protective portion 24 has a circular shape or a slit shape has been described as an example, but the present invention also applies to a case where the protective portion 24 has a circular shape, a hexagonal shape, an elliptical shape, or the like. Can be applied.

(3) この実施形態では、保護部24の厚さと同じ深さの貫通孔24aを有する保護部24によって空力音低減部23を被覆する場合を例に挙げて説明したが、空力音低減部23と接触する側に保護部24の貫通孔24aの周囲を立ち上げて突起状に形成(バーリング)する場合についても、この発明を適用することができる。この場合には、貫通孔24aの周囲の突起部によって保護部24の強度を向上させることができる。また、この第1実施形態〜第3実施形態及び第5実施形態では、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向に集電装置3が移動する場合を例に挙げて説明したが、車両2の進行方向後側に中間ヒンジ13が位置する反なびき方向に集電装置3が移動する場合についても、この発明を適用することができる。 (3) In this embodiment, the case where the aerodynamic sound reduction unit 23 is covered with the protection unit 24 having the through hole 24a having the same depth as the thickness of the protection unit 24 has been described as an example, but the aerodynamic sound reduction unit 23 has been described. The present invention can also be applied to a case where the periphery of the through hole 24a of the protective portion 24 is raised on the side in contact with the protective portion 24 to form a protrusion (burring). In this case, the strength of the protective portion 24 can be improved by the protrusions around the through hole 24a. Further, in the first to third embodiments and the fifth embodiment, the case where the current collector 3 moves in the fluttering direction in which the intermediate hinge 13 is located on the front side in the traveling direction of the vehicle 2 has been described as an example. However, the present invention can also be applied to the case where the current collector 3 moves in the anti-fluttering direction in which the intermediate hinge 13 is located on the rear side in the traveling direction of the vehicle 2.

1 架線
1a トロリ線
2 車両
2a 車体
3 集電装置
4 舟体
5 すり板
6 枠組
7 舟支え部
8 頂点カバー
8A 上部カバー
8B 下部カバー
8d 上側稜角部(空力音発生源)
8e 下側稜角部(空力音発生源)
9 上枠
11 下枠
13 中間ヒンジ
14 中間ヒンジカバー
14e,14f 上側稜角部(空力音発生源)
14g 下側稜角部(空力音発生源)
15 主軸
18 台枠
19 風防カバー
19f 上側稜角部(空力音発生源)
19g 下側稜角部(空力音発生源)
19h 接合部周辺(空力音発生源)
19i 近接部周辺(空力音発生源)
20 がいし
21A〜21D 空力音低減構造
22 収容部
23 空力音低減部
24 保護部
24a 貫通孔
25 固定部
26 主軸カバー
26e 下側稜角部(空力音発生源)
26f 上側稜角部(空力音発生源)
F 流れ
1,D2 進行方向
L 中心線
1 Overhead line 1a Tram line 2 Vehicle 2a Body 3 Current collector 4 Boat body 5 Slip plate 6 Frame 7 Boat support 8 Top cover 8A Top cover 8B Bottom cover 8d Upper ridge angle (aerodynamic sound source)
8e Lower ridge angle (aerodynamic sound source)
9 Upper frame 11 Lower frame 13 Intermediate hinge 14 Intermediate hinge cover 14e, 14f Upper ridge angle (aerodynamic sound source)
14g Lower ridge angle (aerodynamic sound source)
15 Main shaft 18 Underframe 19 Windshield cover 19f Upper ridge angle (aerodynamic sound source)
19g Lower ridge angle (aerodynamic sound source)
19h Around the joint (aerodynamic sound source)
19i Proximity area (aerodynamic sound source)
20 Insulators 21A-21D Aerodynamic noise reduction structure 22 Accommodating unit 23 Aerodynamic noise reduction unit 24 Protective unit 24a Through hole 25 Fixed unit 26 Main shaft cover 26e Lower ridge angle (aerodynamic sound source)
26f Upper ridge angle (aerodynamic sound source)
F Flow D 1 , D 2 Direction of travel L Center line

Claims (9)

集電装置の空力音発生源から発生する空力音を低減する集電装置の空力音低減構造であって、
前記空力音発生源の表面を被覆して、前記空力音を低減する空力音低減部と、
前記空力音低減部に流れが流入及び流出する複数の貫通孔を有し、この空力音低減部の表面を被覆して、この空力音低減部を保護する保護部と、
を備える集電装置の空力音低減構造。
It is an aerodynamic sound reduction structure of the current collector that reduces the aerodynamic sound generated from the aerodynamic sound source of the current collector.
An aerodynamic sound reduction unit that covers the surface of the aerodynamic sound generation source to reduce the aerodynamic sound,
A protective portion that has a plurality of through holes through which a flow flows in and out of the aerodynamic noise reducing portion, covers the surface of the aerodynamic noise reducing portion, and protects the aerodynamic noise reducing portion.
Aerodynamic noise reduction structure of the current collector equipped with.
請求項1に記載の集電装置の空力音低減構造において、
前記空力音低減部は、前記集電装置の頂点カバーの空力音発生源の表面を被覆すること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to claim 1,
The aerodynamic sound reducing unit covers the surface of the aerodynamic sound source of the apex cover of the current collector.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1に記載の集電装置の空力音低減構造において、
前記空力音低減部は、前記集電装置の中間ヒンジカバーの空力音発生源の表面を被覆すること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to claim 1,
The aerodynamic sound reducing unit covers the surface of the aerodynamic sound source of the intermediate hinge cover of the current collector.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1に記載の集電装置の空力音低減構造において、
前記空力音低減部は、前記集電装置の風防カバーの空力音発生源の表面を被覆すること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to claim 1,
The aerodynamic sound reducing unit covers the surface of the aerodynamic sound generation source of the windshield cover of the current collector.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1に記載の集電装置の空力音低減構造において、
前記空力音低減部は、前記集電装置の主軸カバーの空力音発生源の表面を被覆すること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to claim 1,
The aerodynamic sound reducing unit covers the surface of the aerodynamic sound generation source of the spindle cover of the current collector.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1から請求項5までのいずれか1項に記載の集電装置の空力音低減構造において、
前記保護部は、前記貫通孔の開孔率が30%以上60%以下であること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 5.
In the protective portion, the opening ratio of the through hole is 30% or more and 60% or less.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1から請求項5までのいずれか1項に記載の集電装置の空力音低減構造において、
前記保護部は、前記貫通孔の内径が3.0mm以上8.0mm以下であること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 5.
The protective portion has an inner diameter of 3.0 mm or more and 8.0 mm or less of the through hole.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1から請求項7までのいずれか1項に記載の集電装置の空力音低減構造において、
前記空力音低減は、金属製の多孔質材であること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 7.
The aerodynamic noise reduction is that the material is a porous metal material.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
請求項1から請求項8までのいずれか1項に記載の集電装置の空力音低減構造において、
前記保護部は、前記複数の貫通孔の中心線が前記流れの方向と一致するように、この複数の貫通孔が配列されていること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 8.
In the protective portion, the plurality of through holes are arranged so that the center lines of the plurality of through holes coincide with the direction of the flow.
The aerodynamic noise reduction structure of the current collector, which is characterized by.
JP2019193569A 2019-10-24 2019-10-24 Aerodynamic sound reduction structure of current collector Pending JP2021069206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019193569A JP2021069206A (en) 2019-10-24 2019-10-24 Aerodynamic sound reduction structure of current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193569A JP2021069206A (en) 2019-10-24 2019-10-24 Aerodynamic sound reduction structure of current collector

Publications (1)

Publication Number Publication Date
JP2021069206A true JP2021069206A (en) 2021-04-30

Family

ID=75637663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193569A Pending JP2021069206A (en) 2019-10-24 2019-10-24 Aerodynamic sound reduction structure of current collector

Country Status (1)

Country Link
JP (1) JP2021069206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495375B2 (en) 2021-05-12 2024-06-04 公益財団法人鉄道総合技術研究所 Aerodynamic noise reduction structure for current collector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002215172A (en) * 2001-01-23 2002-07-31 Ngk Insulators Ltd Acoustic material an acoustic structure
JP2003295867A (en) * 2002-02-01 2003-10-15 Ngk Insulators Ltd Sound absorption structure
JP2010022167A (en) * 2008-07-14 2010-01-28 Railway Technical Res Inst Pantograph

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002215172A (en) * 2001-01-23 2002-07-31 Ngk Insulators Ltd Acoustic material an acoustic structure
JP2003295867A (en) * 2002-02-01 2003-10-15 Ngk Insulators Ltd Sound absorption structure
JP2010022167A (en) * 2008-07-14 2010-01-28 Railway Technical Res Inst Pantograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495375B2 (en) 2021-05-12 2024-06-04 公益財団法人鉄道総合技術研究所 Aerodynamic noise reduction structure for current collector

Similar Documents

Publication Publication Date Title
JPH09507554A (en) Body surface exposed to surrounding fluid
JP6404042B2 (en) Lift control device
JP4377720B2 (en) Noise absorption panel for high-speed railway vehicles
JP2021069206A (en) Aerodynamic sound reduction structure of current collector
JP4331025B2 (en) Aerodynamic noise reduction structure for railway vehicles
JP2018177222A (en) Vehicle falling prevention structure
JP4399299B2 (en) Bogie cover for high-speed rail cars
JP5083863B2 (en) Aerodynamic sound reduction structure
JP5679952B2 (en) Lift adjustment device for current collector and lift control device for current collector
JP7495375B2 (en) Aerodynamic noise reduction structure for current collector
JP4222826B2 (en) Railway vehicle
JP2011168158A (en) Air current peeling-off suppression structure of moving body
JP6831761B2 (en) Noise reduction device
JP2003219505A (en) Noise-absorbing sidewall structure for pantograph cover device
JP2023068891A (en) Aerodynamic sound reduction structure of current collector
JP2022174891A (en) Aerodynamic noise reduction structure of pantograph
JP4613815B2 (en) Noise barrier for railway vehicles
JP4430880B2 (en) Projection for electrostatic antenna of high-speed traveling vehicle
JP4475535B2 (en) Noise suppression structure for current collector
JP6931725B2 (en) Current collection system
JP7399076B2 (en) Aerodynamic noise reduction structure of current collector and its manufacturing method
JP2022091528A (en) Collector head
JP4725835B2 (en) Lifting characteristics stabilization structure of current collector boat
JP6671804B2 (en) Current collector
JP2018065414A (en) Railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230113