JP4331025B2 - Aerodynamic noise reduction structure for railway vehicles - Google Patents

Aerodynamic noise reduction structure for railway vehicles Download PDF

Info

Publication number
JP4331025B2
JP4331025B2 JP2004076486A JP2004076486A JP4331025B2 JP 4331025 B2 JP4331025 B2 JP 4331025B2 JP 2004076486 A JP2004076486 A JP 2004076486A JP 2004076486 A JP2004076486 A JP 2004076486A JP 4331025 B2 JP4331025 B2 JP 4331025B2
Authority
JP
Japan
Prior art keywords
aerodynamic
vehicle
carriage
railway vehicle
reduction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004076486A
Other languages
Japanese (ja)
Other versions
JP2005262962A (en
Inventor
明朗 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2004076486A priority Critical patent/JP4331025B2/en
Publication of JP2005262962A publication Critical patent/JP2005262962A/en
Application granted granted Critical
Publication of JP4331025B2 publication Critical patent/JP4331025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

この発明は、鉄道車両が移動するときにこの鉄道車両の下部から発生する空力音を低減する空力音低減部を有する鉄道車両の空力音低減構造に関する。 The present invention relates to an aerodynamic sound reduction structure for a railway vehicle having an aerodynamic sound reduction unit that reduces aerodynamic noise generated from the lower part of the railway vehicle when the railway vehicle moves.

従来の移動体の空力音低減構造は、新幹線(登録商標)などの高速車両の集電装置(パンタグラフ)の空力音を低減するための防風カバーの前部に網状体を備えている(例えば、特許文献1参照)。このような従来の移動体の空力音低減構造では、防風カバーに当たる気流を網状体によって細かく分断してこの網状体を通過させ、集電装置から発生する空力音(集電系騒音)を低減した上で、防風カバー自身の空力騒音は人間には聞こえないか、あるいは、遮音しやすい高周波域の騒音にさせている。 A conventional aerodynamic sound reduction structure of a moving body includes a mesh body at a front portion of a windproof cover for reducing aerodynamic sound of a current collector (pantograph) of a high-speed vehicle such as a Shinkansen (registered trademark) (for example, Patent Document 1). In such a conventional moving body aerodynamic sound reduction structure, the airflow hitting the windproof cover is finely divided by the mesh body and passed through the mesh body to reduce the aerodynamic sound (collection system noise) generated from the current collector. Above, the aerodynamic noise of the windproof cover itself is not audible to humans, or it is made to be a high frequency range noise that is easy to isolate.

特開平9-267747号公報Japanese Patent Laid-Open No. 9-267747

高速車両では、集電装置からの空力騒音の寄与が大きく集電系騒音の低減が主な課題であるが、集電装置以外からも空力騒音が発生している。特に、列車速度の向上によって、車両の下部から発生する空力騒音(車両下部空力騒音)が集電系騒音と同様に問題となっている。従来の移動体の空力音低減構造は、集電装置のように車両の屋根上から突出する構造体からの空力音を低減するための対策であり、車両の底面の凹部に台車を配置するような構造体からの空力音の低減については、集電装置などの空力音の低減対策とは別に最適な対策を検討する必要がある。しかし、従来の台車部の空力音低減対策は、試験的に台車部の側方に側板部を設置したり、この側板部の内面に吸音材を貼り付けたりする程度であり、空力音の低減効果が不十分であるという問題点があった。   In a high-speed vehicle, the contribution of aerodynamic noise from the current collector is large, and the main issue is to reduce current collector noise, but aerodynamic noise is also generated from other than the current collector. In particular, as the train speed increases, aerodynamic noise generated from the lower part of the vehicle (vehicle lower aerodynamic noise) has become a problem as well as current collection system noise. The conventional moving body aerodynamic noise reduction structure is a measure for reducing aerodynamic noise from a structure projecting from the roof of the vehicle, such as a current collector, and a carriage is arranged in a recess on the bottom of the vehicle. For the reduction of aerodynamic sound from a simple structure, it is necessary to consider an optimal measure separately from measures for reducing aerodynamic noise such as current collectors. However, the conventional measures to reduce the aerodynamic noise of the trolley part are to install a side plate part on the side of the trolley part on a trial basis or to attach a sound absorbing material to the inner surface of this side plate part. There was a problem that the effect was insufficient.

この発明の課題は、簡単な構造によって移動体の下部から発生する空力音を低減することができる鉄道車両の空力音低減構造を提供することである。 The subject of this invention is providing the aerodynamic sound reduction structure of a railway vehicle which can reduce the aerodynamic sound which generate | occur | produces from the lower part of a moving body by simple structure.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、鉄道車両(1)が移動するときにこの鉄道車両の下部(4)から発生する空力音を低減する空力音低減部を有する鉄道車両の空力音低減構造であって、前記空力音低減部は、前記鉄道車両台車(2)を収納するこの鉄道車両の底面凹部(6)の前方及び後方に設置されており、前記鉄道車両の底面から前記底面凹部に向かって下方に傾斜する傾斜部(7c)と、前記底面凹部の端面(6c)との間に空隙を形成する網状部(7d)とを備え、前記傾斜部は、前記底面凹部の端面と前記鉄道車両の底面(4)とが交わる角部(6d)から前記台車側に張り出して突出する突出部の頂角(θ2)が鋭角に形成されており前記網状部は、前記傾斜部から前記底面凹部の端面に向かう気流を減速させて通過させこの端面に当たる気流を弱めることを特徴とする鉄道車両の空力音低減構造である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention of claim 1 is an aerodynamic sound reducing structure for a railway vehicle having an aerodynamic sound reducing section for reducing an aerodynamic sound generated from a lower part (4) of the railway vehicle when the railway vehicle (1) moves. lower the aerodynamic noise reducing section towards the front and rear are disposed on the bottom surface recess from the bottom of the rail vehicle of the bottom surface recess of the rail vehicle (6) for accommodating the carriage (2) of the rail vehicle And a net-like portion (7d) that forms a gap between the end surface (6c) of the bottom surface recess, and the inclined portion includes the end surface of the bottom surface recess and the railcar . An apex angle (θ 2 ) of a projecting portion protruding from the corner portion (6d) intersecting with the bottom surface (4) and projecting to the cart side is formed at an acute angle, and the net-like portion extends from the inclined portion to the bottom concave portion. The airflow toward the end face of the car is decelerated and allowed to pass through. It is aerodynamic noise reduction structure of the railway vehicle, characterized in that weakening the air flow.

請求項2の発明は、請求項1に記載の鉄道車両の空力音低減構造において、前記空力音低減部は、前記台車の側面を覆う側板部(7a)を備え、前記側板部は、前記台車の側方に設置されていることを特徴とする鉄道車両の空力音低減構造である。 According to a second aspect of the present invention, in the aerodynamic sound reducing structure for a railway vehicle according to the first aspect, the aerodynamic sound reducing portion includes a side plate portion (7a) that covers a side surface of the carriage, and the side plate portion is the cart. The aerodynamic sound reducing structure for a railway vehicle is characterized by being installed on the side of the railway vehicle .

請求項3の発明は、請求項1又は請求項に記載の鉄道車両の空力音低減構造において、前記網状部は、前記鉄道車両の底面に対する角度が45°〜90°であることを特徴とする鉄道車両の空力音低減構造である。 The invention according to claim 3 is the aerodynamic sound reducing structure for a railway vehicle according to claim 1 or 2 , wherein the mesh portion has an angle of 45 ° to 90 ° with respect to a bottom surface of the railway vehicle. This is an aerodynamic noise reduction structure for railway vehicles .

請求項4の発明は、請求項1から請求項までのいずれか1項に記載の鉄道車両の空力音低減構造において、前記網状部は、開口率が30〜60%であることを特徴とする鉄道車両の空力音低減構造である。 The invention of claim 4 is the aerodynamic sound reducing structure for a railway vehicle according to any one of claims 1 to 3 , wherein the mesh portion has an aperture ratio of 30 to 60%. This is an aerodynamic noise reduction structure for railway vehicles .

請求項5の発明は、請求項1から請求項までのいずれか1項に記載の鉄道車両の空力音低減構造において、前記網状部は、線径が3mm以下であることを特徴とする鉄道車両の空力音低減構造である。 A fifth aspect of the present invention, the aerodynamic noise reduction structure of a railway vehicle according to any one of claims 1 to 4, wherein the mesh portion is characterized in that the wire diameter is less than 3mm Railway This is an aerodynamic sound reduction structure for a vehicle .

この発明によると、簡単な構造によって移動体の下部から発生する空力音を低減することができる。   According to the present invention, it is possible to reduce aerodynamic noise generated from the lower part of the moving body with a simple structure.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1は、この発明の第1実施形態に係る移動体の空力音低減構造の外観図であり、図1(A)は正面図であり、図1(B)は側面図であり、図1(C)は底面図である。図2は、図1(C)のII-II線で切断した状態を示す断面図である。図3は、この発明の第1実施形態に係る移動体の空力音低減構造の拡大図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an external view of an aerodynamic sound reduction structure for a moving body according to the first embodiment of the present invention, FIG. 1 (A) is a front view, FIG. 1 (B) is a side view, and FIG. (C) is a bottom view. FIG. 2 is a cross-sectional view showing a state cut along line II-II in FIG. FIG. 3 is an enlarged view of the aerodynamic sound reduction structure for a moving body according to the first embodiment of the present invention.

図1及び図2に示す車両1は、軌道に沿って移動する移動体である。車両1は、300km/h以上の高速で走行する新幹線(登録商標)の車両などであり、台車2と車体3などを備えている。台車2は、車体3を支持して走行する走行装置であり、車体3の底面凹部6に設置されている。台車2は、図2に示すように、レールと転がり接触する車輪2aと、この車輪2aを取り付ける車軸2bと、この車軸2bを支持する台車枠2cなどから構成されている。車体3は、乗客を積載し輸送するための構造物であり、車体底面(車両床下)4と、車体側面5と、底面凹部6などを備えている。車体底面4は、軌道面と対向する側の面であり、図1に示すように耐寒耐雪車両の雪氷害対策の一つとして車両1の床下機器が平坦なカバーによって覆われたボディマウント構造の鉄道車両の底面である。車体側面5は、軌道面に対して略垂直な面である。 A vehicle 1 shown in FIGS. 1 and 2 is a moving body that moves along a track. The vehicle 1 is a Shinkansen (registered trademark) vehicle that travels at a high speed of 300 km / h or more, and includes a carriage 2 and a vehicle body 3. The carriage 2 is a traveling device that travels while supporting the vehicle body 3, and is installed in the bottom recess 6 of the vehicle body 3. As shown in FIG. 2, the carriage 2 includes a wheel 2a that is in rolling contact with the rail, an axle 2b to which the wheel 2a is attached, a carriage frame 2c that supports the axle 2b, and the like. The vehicle body 3 is a structure for loading and transporting passengers, and includes a vehicle body bottom surface (under the vehicle floor) 4, a vehicle body side surface 5, a bottom surface recess 6, and the like. The vehicle body bottom surface 4 is a surface on the side facing the raceway surface, and as shown in FIG. 1, as a measure against snow and ice damage of a cold and snow resistant vehicle, the underfloor equipment of the vehicle 1 is covered with a flat cover. It is the bottom of the railway vehicle. The vehicle body side surface 5 is a surface substantially perpendicular to the track surface.

底面凹部6は、台車2を収納する収納部であり、ボディマウント構造の車体底面4に形成された切欠部(キャビティ)である。底面凹部6は、図2及び図3に示すように、台車2を支持する略水平な底面6aと、この底面6aの長さ方向(車両1の長さ方向)の両端部にそれぞれ形成された角部6bと、底面6aの長さ方向の両端部にそれぞれ形成され底面6aに対して略垂直な端面6cと、車体底面4と端面6cとが略垂直に交わる角部6dとを備えている。   The bottom recess 6 is a storage portion that stores the carriage 2 and is a notch (cavity) formed in the bottom surface 4 of the vehicle body of the body mount structure. As shown in FIGS. 2 and 3, the bottom surface recess 6 is formed on the substantially horizontal bottom surface 6 a that supports the carriage 2 and at both ends in the length direction of the bottom surface 6 a (the length direction of the vehicle 1). A corner portion 6b, an end surface 6c formed at both ends in the length direction of the bottom surface 6a and substantially perpendicular to the bottom surface 6a, and a corner portion 6d at which the vehicle body bottom surface 4 and the end surface 6c intersect substantially perpendicularly are provided. .

空力音低減部7は、車両1が走行するときにこの車両1の下部から発生する空力音を低減するための部分である。空力音低減部7は、車体底面4を台車2に向かって流れる空気のうち一部の空気を台車2からそらし、台車2に向かって流れる残りの空気を減速させて通過させるとともに、車体側面5を流れる空気が底面凹部6をスムーズに流れるようにする。空力音低減部7は、図1〜図3に示すように、台車2(底面凹部6)の側方、前方及び後方に設置されており、側板部7aと網状部7bなどを備えている。   The aerodynamic sound reduction unit 7 is a part for reducing aerodynamic sound generated from the lower part of the vehicle 1 when the vehicle 1 travels. The aerodynamic sound reduction unit 7 diverts a part of the air flowing toward the carriage 2 on the bottom surface 4 of the vehicle body from the carriage 2, decelerates and passes the remaining air flowing toward the carriage 2, and the side surface 5 of the vehicle body 5. So that the air flowing through the bottom recess 6 flows smoothly. As shown in FIGS. 1 to 3, the aerodynamic sound reduction unit 7 is installed on the side, front, and rear of the carriage 2 (bottom surface recess 6), and includes a side plate portion 7 a and a mesh portion 7 b.

側板部7aは、車体側面5を底面凹部6に向かって流れる空気がこの底面凹部6から剥離するのを抑制する部分である。側板部7aは、台車2の側面を覆う側カバー部として機能し、台車2の点検作業時に支障がないように車体3に着脱自在に装着されている。側板部7aは、図1に示すように、底面凹部6の切欠部を塞ぐように台車2の側方に設置されており、車体底面4から軌道面に向かって車両限界の範囲内で僅かに突出する程度の高さに形成されている。側板部7aは、長さ方向の両端部が傾斜しておりこの両端部の角度は網状部7bの角度θ1と同一傾斜角度に形成されている。側板部7aは、車両1に底面凹部6のみが形成されている場合にはこの底面凹部6に新たに設置され、車両1の底面凹部6に既存の側カバー部が設置されている場合には、この側カバー部の下端を延長するようにこの側カバー部に設置される。 The side plate portion 7 a is a portion that suppresses separation of air flowing from the vehicle body side surface 5 toward the bottom surface recess 6 from the bottom surface recess 6. The side plate portion 7a functions as a side cover portion that covers the side surface of the carriage 2 and is detachably attached to the vehicle body 3 so as not to hinder the inspection operation of the carriage 2. As shown in FIG. 1, the side plate portion 7 a is installed on the side of the carriage 2 so as to close the cutout portion of the bottom surface recess 6, and is slightly within the vehicle limit range from the vehicle body bottom surface 4 toward the track surface. It is formed so as to protrude. The side plate portion 7a is inclined at both end portions in the length direction, and the angle between the both end portions is the same as the angle θ 1 of the mesh portion 7b. The side plate portion 7 a is newly installed in the bottom surface recess 6 when only the bottom surface recess 6 is formed in the vehicle 1, and when the existing side cover portion is installed in the bottom surface recess 6 of the vehicle 1. The side cover portion is installed on the side cover portion so as to extend the lower end of the side cover portion.

網状部7bは、車体底面4を台車2に向かって流れる空気の一部を減速させて通過させそれ以外の空気を台車2からそらす部分である。網状部7bは、底面凹部6の前後に設置されており、台車2に向かう空気の流れと交差するように配置されている。網状部7bは、車両1が走行するときに発生する気流の一部を細かく分断して通過させる金属製の鉄線、高張力鋼線、ピアノ線などによって形成された金網(メッシュ)である。網状部7bは、車両1が高速で走行したときに台車2に向かって流れる空気をそらすディフレクタ(Deflector)としても機能する。網状部7bは、図1〜図3に示すように、車体底面4から台車2に向かって下方(軌道側)に傾斜しており、車体底面4及び側板部7aに固定される図示しないフレーム部によって支持されている。   The mesh portion 7 b is a portion that decelerates and passes a part of the air flowing toward the carriage 2 through the bottom surface 4 of the vehicle body and diverts the other air from the carriage 2. The net-like part 7 b is installed before and after the bottom surface recessed part 6, and is arranged so as to intersect the air flow toward the carriage 2. The mesh portion 7b is a wire mesh (mesh) formed of a metal iron wire, a high-tensile steel wire, a piano wire, or the like that finely divides and passes a part of the airflow generated when the vehicle 1 travels. The mesh portion 7b also functions as a deflector that deflects the air flowing toward the carriage 2 when the vehicle 1 travels at a high speed. As shown in FIGS. 1 to 3, the mesh portion 7 b is inclined downward (track side) from the bottom surface 4 of the vehicle body toward the carriage 2, and is a frame portion (not shown) fixed to the bottom surface 4 and the side plate portion 7 a. Is supported by.

網状部7bは、図3に示す車体底面4に対する角度θ1が45°未満では高周波域で発生する網状部7bの風切り音が大きくなり、角度θ1が90°を超えると小さなゴミなどの飛来物が溜まりやすくなるため、角度θ1を45〜90°に設定することが好ましい。網状部7bは、開口率が30%未満では気流の通過が不十分で気流が剥離する可能性があり、開口率が60%を超えると気流を十分に減速させることができないため、開口率を30〜60%に設定することが好ましく、40〜50%の範囲に設定することが特に好ましい。網状部7bは、線径(太さ)が3mmを超えると網状部7bの風切り音の周波数が聞こえ易い周波数域に入ってくるだけでなく、そのパワーも大きくなるため、線径を3mm以下に設定することが好ましい。実用上可能な限り線径を細くすることが網状部7bの風切り音の抑制効果を高めるものとなる。 When the angle θ 1 with respect to the bottom surface 4 of the vehicle body shown in FIG. 3 is less than 45 °, the mesh portion 7b has a large wind noise of the mesh portion 7b generated in the high frequency region, and when the angle θ 1 exceeds 90 °, small dust and the like fly. It is preferable to set the angle θ 1 to 45 to 90 ° because things are easily collected. When the aperture ratio is less than 30%, the mesh portion 7b may not allow the airflow to pass through and may be peeled off. If the aperture ratio exceeds 60%, the airflow cannot be sufficiently reduced. It is preferably set to 30 to 60%, particularly preferably set to a range of 40 to 50%. When the wire diameter (thickness) exceeds 3 mm, the mesh portion 7 b not only enters the frequency range where the wind noise of the mesh portion 7 b is easy to hear but also increases its power, so the wire diameter is set to 3 mm or less. It is preferable to set. Making the wire diameter as thin as practical increases the effect of suppressing the wind noise of the mesh portion 7b.

次に、この発明の第1実施形態に係る移動体の空力音低減構造の作用を説明する。
図1に示すように、車両1がA方向に走行すると車両1の先頭側から後尾側に向かって車体底面4と軌道面との間にB方向に空気が流れる。図1〜図3に示す側板部7aが存在しない場合には車体側面5に沿ってB方向に流れる空気が底面凹部6で車体側面5から剥離し、網状部7bが存在しない場合には車体底面4に沿ってB方向に流れる空気が底面凹部6で車体底面4から剥離する。その結果、剥離した空気が台車2及びこの台車2の後側の端面6cに当たり大きな圧力の変動が引き起こされて、底面凹部での共鳴音も入り混じるような空力騒音が発生する。
Next, the operation of the moving body aerodynamic sound reducing structure according to the first embodiment of the present invention will be described.
As shown in FIG. 1, when the vehicle 1 travels in the A direction, air flows in the B direction between the vehicle body bottom surface 4 and the track surface from the front side to the rear side of the vehicle 1. When the side plate portion 7a shown in FIGS. 1 to 3 is not present, the air flowing in the B direction along the vehicle body side surface 5 is separated from the vehicle body side surface 5 by the bottom surface concave portion 6, and when the mesh portion 7b is not present, The air flowing in the B direction along 4 is peeled off from the bottom surface 4 of the vehicle body at the bottom recess 6. As a result, the separated air hits the carriage 2 and the end face 6c on the rear side of the carriage 2 to cause a large pressure fluctuation, and aerodynamic noise is generated in which resonance noise in the bottom recess is mixed.

一方、図1〜図3に示すように、側板部7aが存在する場合には、車体側面5に沿って流れる空気の剥離を側板部7aが抑制するため、車体側面5に沿って空気がスムーズに流れる。また、網状部7bが存在する場合には、台車2に向かう気流の一部が網状部7bによって台車2から気流がそれるように流れを乱さずに適度に曲げられるとともに、それ以外の気流が網状部7bを通過することで細かく分断される。このため、網状部7bを通過する気流の速度が低下し、台車2及び端面6cに当たる気流の風当たりを網状部7bが弱めるとともに、軌道面側の圧力変動が大きくなるのを網状部7bが抑制する。その結果、台車2及び底面凹部6付近の低中周波数域の空力音成分が低減されて、車両1の内外への空力騒音が緩和される。なお、図1に示すA方向とは逆方向に車両1が走行する場合には、車両1の先頭部側とは反対側(図3に示す右側)の網状部7bが同様に空力騒音を抑制する。   On the other hand, as shown in FIGS. 1 to 3, when the side plate portion 7 a exists, the side plate portion 7 a suppresses the separation of the air flowing along the vehicle body side surface 5, so that the air is smooth along the vehicle body side surface 5. Flowing into. In addition, when the mesh portion 7b exists, a part of the airflow toward the carriage 2 is appropriately bent without disturbing the flow so that the airflow deviates from the carriage 2 by the mesh portion 7b, and other airflows By passing through the mesh portion 7b, it is finely divided. For this reason, the velocity of the airflow passing through the mesh portion 7b is reduced, the mesh portion 7b weakens the wind contact of the airflow hitting the carriage 2 and the end surface 6c, and the mesh portion 7b suppresses an increase in pressure fluctuation on the raceway surface side. . As a result, the aerodynamic sound components in the low and medium frequency regions near the carriage 2 and the bottom recess 6 are reduced, and the aerodynamic noise in and out of the vehicle 1 is mitigated. When the vehicle 1 travels in the direction opposite to the direction A shown in FIG. 1, the mesh portion 7b on the opposite side (right side shown in FIG. 3) of the vehicle 1 similarly suppresses aerodynamic noise. To do.

この発明の第1実施形態に係る移動体の空力音低減構造には、以下に記載するような効果がある。
(1) この第1実施形態では、車両1が走行するときにこの車両1の下部から発生する空力音を低減する空力音低減部7が台車2の前後に設置されている。このため、台車2付近から発生する風切音などの空力騒音を抑制することができる。特に、この第1実施形態では、空力音低減部7が底面凹部6の前後に設置されているため、台車2及び底面凹部6から発生する風切音や共鳴音などの空力騒音を抑制することができる。
The moving body aerodynamic sound reduction structure according to the first embodiment of the present invention has the following effects.
(1) In the first embodiment, aerodynamic sound reduction units 7 that reduce the aerodynamic sound generated from the lower part of the vehicle 1 when the vehicle 1 travels are installed in front of and behind the carriage 2. For this reason, aerodynamic noise such as wind noise generated from the vicinity of the carriage 2 can be suppressed. In particular, in the first embodiment, since the aerodynamic sound reduction unit 7 is installed before and after the bottom surface recess 6, aerodynamic noise such as wind noise and resonance generated from the carriage 2 and the bottom surface recess 6 is suppressed. Can do.

(2) この第1実施形態では、空力音低減部7が台車2の側方に設置されている。このため、空力音低減部7とともに台車2付近から発生する空力騒音をより一層抑制することができる。特に、この第1実施形態では、空力音低減部7が台車2の側面を覆う側板部7aを備えているため、車体側面5を流れる空気が底面凹部6から剥離するのを簡単な構造によって抑制することができる。 (2) In the first embodiment, the aerodynamic sound reduction unit 7 is installed on the side of the carriage 2. For this reason, the aerodynamic noise which generate | occur | produces from the bogie 2 vicinity with the aerodynamic sound reduction part 7 can be suppressed further. In particular, in the first embodiment, since the aerodynamic sound reduction unit 7 includes the side plate portion 7 a that covers the side surface of the carriage 2, air flowing on the vehicle body side surface 5 is prevented from being separated from the bottom surface recess 6 by a simple structure. can do.

(3) この第1実施形態では、台車2に向かう気流と交差する網状部7bを空力音低減部7が備えている。その結果、車体底面4を台車2及び底面凹部6に向かう気流の一部を減速させて通過させ、それ以外の気流を台車2及び底面凹部6からそらすため、台車2及び底面凹部6において問題となりやすい低中周波数域の空力音成分を低減することができる。 (3) In the first embodiment, the aerodynamic sound reduction unit 7 includes a mesh portion 7 b that intersects with the airflow toward the carriage 2. As a result, a part of the airflow directed toward the carriage 2 and the bottom recess 6 is allowed to pass through the bottom surface 4 of the vehicle body and the other airflow is diverted from the carriage 2 and the bottom recess 6, which causes a problem in the carriage 2 and the bottom recess 6. It is possible to reduce the aerodynamic sound component in the low and medium frequency range that is easy to do.

(第2実施形態)
図4は、この発明の第2実施形態に係る移動体の空力音低減構造の外観図であり、図4(A)は正面図であり、図4(B)は側面図であり、図4(C)は底面図である。図5は、図4(C)のV-V線で切断した状態を示す断面図である。図6は、この発明の第2実施形態に係る移動体の空力音低減構造図の拡大図である。以下では、図1〜図3に示す部分と同一の部分については、同一の番号を付して詳細な説明を省略する。
(Second Embodiment)
4 is an external view of an aerodynamic sound reducing structure for a moving body according to a second embodiment of the present invention, FIG. 4 (A) is a front view, FIG. 4 (B) is a side view, and FIG. (C) is a bottom view. FIG. 5 is a cross-sectional view showing a state cut along line VV in FIG. FIG. 6 is an enlarged view of the aerodynamic sound reduction structure diagram of the moving body according to the second embodiment of the present invention. In the following, the same parts as those shown in FIGS. 1 to 3 are denoted by the same reference numerals and detailed description thereof is omitted.

図4〜図6に示す空力音低減部7は、側板部7aと、傾斜部7cと、網状部7dとを備えている。傾斜部7cは、車体底面4から台車2に向かう気流を台車2からそらす部分であり、車体底面4から台車2に向かって下方(軌道側)に傾斜している。傾斜部7cは、図5及び図6に示すように、角部6dから台車2側に張り出して突出しており、この突出部の頂角θ2が鋭角に形成されている。網状部7dは、傾斜部7cから車両1の走行方向に対して後側の端面6cに向かう気流を減速させて通過させる部分である。網状部7dは、車両1の走行方向に対して後側の端面6cとの間に隙間を形成しており、端面6cに当たる気流を弱める。網状部7dは、底面6aから傾斜部7cに向かって傾斜するように底面凹部6の前後に設置されている。網状部7dは、図1〜図3に示す網状部7bと同様の部材であり、角部6bと傾斜部7cの先端部とに固定される図示しないフレーム部によって支持されている。 4 to 6 includes a side plate portion 7a, an inclined portion 7c, and a mesh portion 7d. The inclined portion 7 c is a portion that diverts the airflow from the vehicle body bottom surface 4 toward the carriage 2 from the vehicle 2, and is inclined downward (track side) from the vehicle body bottom surface 4 toward the carriage 2. As shown in FIGS. 5 and 6, the inclined portion 7 c protrudes from the corner portion 6 d and protrudes toward the carriage 2, and the apex angle θ 2 of the protruding portion is formed at an acute angle. The net-like part 7d is a part that decelerates and passes the airflow from the inclined part 7c toward the rear end face 6c with respect to the traveling direction of the vehicle 1. The net-like portion 7d forms a gap with the rear end surface 6c with respect to the traveling direction of the vehicle 1, and weakens the airflow hitting the end surface 6c. The mesh portion 7d is installed before and after the bottom surface recess 6 so as to be inclined from the bottom surface 6a toward the inclined portion 7c. The mesh portion 7d is a member similar to the mesh portion 7b shown in FIGS. 1 to 3, and is supported by a frame portion (not shown) fixed to the corner portion 6b and the tip portion of the inclined portion 7c.

次に、この発明の第2実施形態に係る移動体の空力音低減構造の作用を説明する。
図4に示すように、車両1がA方向に走行してB方向に空気が流れると、傾斜部7cが気流を乱さずに台車2から気流がそれるように流れを適度に曲げる。また、台車2の後側(図5に示す右側)の端面6cに向かう気流の速度を網状部7dが低下させるため、端面6cへの風当たりが緩和される。その結果、台車2からの風切音を抑制するとともに、端面6cにおける散乱音の発生を緩和するため、底面凹部6付近の低中周波数域の空力音成分が低減され、車両1の内外への空力騒音が緩和される。なお、図4に示すA方向とは逆方向に車両1が走行する場合には、車両1の先頭部側とは反対側(図5に示す右側)の傾斜部7cと、車両1の先頭部側(図6に示す左側)の網状部7dが同様に空力騒音を抑制する。
Next, the operation of the moving body aerodynamic sound reducing structure according to the second embodiment of the present invention will be described.
As shown in FIG. 4, when the vehicle 1 travels in the A direction and air flows in the B direction, the inclined portion 7 c bends the flow appropriately so that the airflow is deviated from the carriage 2 without disturbing the airflow. Further, since the mesh portion 7d reduces the speed of the airflow toward the end surface 6c on the rear side (right side shown in FIG. 5) of the carriage 2, the wind contact with the end surface 6c is alleviated. As a result, the wind noise from the carriage 2 is suppressed and the generation of scattered sound at the end face 6c is reduced, so that the low and medium frequency aerodynamic sound components near the bottom recess 6 are reduced, and the vehicle 1 enters and leaves Aerodynamic noise is reduced. When the vehicle 1 travels in a direction opposite to the direction A shown in FIG. 4, the inclined portion 7 c on the opposite side (right side shown in FIG. 5) to the head portion side of the vehicle 1 and the head portion of the vehicle 1. The net-like portion 7d on the side (left side shown in FIG. 6) similarly suppresses aerodynamic noise.

(第3実施形態)
図7は、この発明の第3実施形態に係る移動体の空力音低減構造の外観図であり、図7(A)は正面図であり、図7(B)は側面図であり、図7(C)は底面図である。図8は、図7(C)のVIII-VIII線で切断した状態を示す断面図である。図9は、この発明の第3実施形態に係る移動体の空力音低減構造の拡大図である。
(Third embodiment)
7 is an external view of an aerodynamic sound reducing structure for a moving body according to a third embodiment of the present invention, FIG. 7 (A) is a front view, FIG. 7 (B) is a side view, and FIG. (C) is a bottom view. FIG. 8 is a cross-sectional view showing a state cut along line VIII-VIII in FIG. FIG. 9 is an enlarged view of the aerodynamic sound reduction structure for a moving body according to the third embodiment of the present invention.

図7〜図9に示す空力音低減部7は、台車2の車輪2aの側方、下方、前方及び後方に設置されており、側板部7aと、底板部7eと、側板部7fと、網状部7gとを備えている。底板部7eは、台車2(底面凹部6)を覆う底カバー部であり、車体底面4に着脱自在に装着されている。底板部7eは、車輪2aが貫通する貫通孔7hを備えており、図7及び図8に示すように車輪2aの一部をこの貫通孔7hから露出させている。貫通孔7hは、図7(C)に示すように、車両1の曲線通過時に車輪2aが接触しない程度の幅で形成されている。側板部7fは、車輪2aの側面を覆う側カバー部である。側板部7fは、図1〜図6に示す側板部7aと同様の部材であり、貫通孔7hの側方に設置されている。網状部7gは、車体底面4を貫通孔7hに向かって流れる空気の一部を減速させて通過させそれ以外の空気を貫通孔7hからそらす部分である。網状部7gは、図1〜図6に示す網状部7b,7dと同様の部材であり、車輪2aに向かう気流と交差するように貫通孔7hの前後に設置されている。   The aerodynamic sound reduction unit 7 shown in FIGS. 7 to 9 is installed on the side, lower, front and rear of the wheel 2a of the carriage 2, and includes a side plate portion 7a, a bottom plate portion 7e, a side plate portion 7f, and a net-like shape. 7g. The bottom plate portion 7e is a bottom cover portion that covers the carriage 2 (bottom surface recess 6), and is detachably attached to the bottom surface 4 of the vehicle body. The bottom plate portion 7e includes a through hole 7h through which the wheel 2a passes, and a part of the wheel 2a is exposed from the through hole 7h as shown in FIGS. As shown in FIG. 7C, the through hole 7h is formed with a width that does not allow the wheels 2a to contact when the vehicle 1 passes through the curve. The side plate portion 7f is a side cover portion that covers the side surface of the wheel 2a. The side plate portion 7f is a member similar to the side plate portion 7a shown in FIGS. 1 to 6 and is disposed on the side of the through hole 7h. The mesh portion 7g is a portion that decelerates and passes part of the air flowing through the bottom surface 4 of the vehicle body toward the through hole 7h and diverts the other air from the through hole 7h. The mesh portion 7g is a member similar to the mesh portions 7b and 7d shown in FIGS. 1 to 6, and is installed in front of and behind the through hole 7h so as to intersect the airflow toward the wheel 2a.

次に、この発明の第3実施形態に係る移動体の空気抵抗低減構造の作用を説明する。
図7に示すように、車両1がA方向に走行してB方向に空気が流れると、底面凹部6からこの空気の流れが剥離するのを底板部7eが抑制するため、底板部7eに沿って空気がスムーズに流れる。また、B方向の空気の流れが貫通孔7hから剥離するのを側板部7fが抑制するとともに、気流の一部を網状部7gが貫通孔7hからそらしそれ以外の気流を網状部7gが通過させる。このため、貫通孔7hから気流が剥離するのを網状部7gが抑制するとともに、貫通孔7hに当たる気流の速度を網状部7gが低下させ風当たりを弱める。その結果、貫通孔7h付近の高周波数域の空力音成分が低減される。なお、図7に示すA方向とは逆方向に車両1が走行する場合には、車両1の先頭部側とは反対側(図9に示す右側)の網状部7gが同様に空力騒音を抑制する。
Next, the operation of the air resistance reduction structure for a moving body according to the third embodiment of the invention will be described.
As shown in FIG. 7, when the vehicle 1 travels in the A direction and air flows in the B direction, the bottom plate portion 7 e prevents the air flow from separating from the bottom recess 6. Air flows smoothly. Further, the side plate portion 7f prevents the air flow in the direction B from being separated from the through hole 7h, and the mesh portion 7g diverts a part of the airflow from the through hole 7h, and the mesh portion 7g passes the other airflow. . For this reason, while the mesh part 7g suppresses that an airflow peels from the through-hole 7h, the mesh-like part 7g reduces the speed of the airflow which hits the through-hole 7h, and weakens wind | power hit | damage. As a result, the aerodynamic sound component in the high frequency region near the through hole 7h is reduced. When the vehicle 1 travels in the direction opposite to the direction A shown in FIG. 7, the net-like portion 7g on the opposite side (the right side shown in FIG. 9) of the vehicle 1 similarly suppresses aerodynamic noise. To do.

(第4実施形態)
図10は、この発明の第4実施形態に係る移動体の空力音低減構造の外観図であり、図10(A)は正面図であり、図10(B)は側面図であり、図10(C)は底面図である。図11は、図10(C)のXI-XI線で切断した状態を示す断面図である。図12は、この発明の第4実施形態に係る移動体の空力音低減構造の拡大図である。
(Fourth embodiment)
FIG. 10 is an external view of an aerodynamic sound reducing structure for a moving body according to the fourth embodiment of the present invention, FIG. 10 (A) is a front view, FIG. 10 (B) is a side view, and FIG. (C) is a bottom view. FIG. 11 is a cross-sectional view showing a state cut along line XI-XI in FIG. FIG. 12 is an enlarged view of the aerodynamic sound reduction structure for a moving body according to the fourth embodiment of the present invention.

図10〜図12に示す空力音低減部7は、側板部7aと、底板部7eと、側板部7fと、傾斜部7iとを備えている。傾斜部7iは、車体底面4から車輪2aに向かって下方(軌道側)に傾斜する部分であり、貫通孔7hの前後に設置されている。傾斜部7iは、図12に示すように、底板部7eから下方に突出する部分の頂角θ3が鈍角に形成されている。 The aerodynamic sound reduction unit 7 shown in FIGS. 10 to 12 includes a side plate portion 7a, a bottom plate portion 7e, a side plate portion 7f, and an inclined portion 7i. The inclined portion 7i is a portion that is inclined downward (orbit side) from the bottom surface 4 of the vehicle body toward the wheel 2a, and is disposed before and after the through hole 7h. As shown in FIG. 12, the inclined portion 7i is formed such that the apex angle θ 3 of the portion protruding downward from the bottom plate portion 7e is an obtuse angle.

次に、この発明の第4実施形態に係る移動体の空力音低減構造の作用を説明する。
図10に示すように、車両1がA方向に走行してB方向に空気が流れると、傾斜部7iが気流を乱さずに貫通孔7hから気流がそれるように流れを適度に曲げるため、貫通孔7h付近の高周波域の空力音成分が低減される。図10に示すA方向とは逆方向に車両1が走行する場合には、車両1の先頭部側とは反対側(図12に示す右側)の傾斜部7iが同様に空力騒音を抑制する。
Next, the operation of the moving body aerodynamic sound reducing structure according to the fourth embodiment of the present invention will be described.
As shown in FIG. 10, when the vehicle 1 travels in the A direction and the air flows in the B direction, the inclined portion 7i bends the flow appropriately so that the airflow is diverted from the through hole 7h without disturbing the airflow, The aerodynamic sound component in the high frequency region near the through hole 7h is reduced. When the vehicle 1 travels in the direction opposite to the direction A shown in FIG. 10, the inclined portion 7i on the opposite side (right side shown in FIG. 12) of the vehicle 1 similarly suppresses aerodynamic noise.

次に、この発明の実施例について説明する。
図13は、空力騒音の測定に使用した風洞試験装置の構成図であり、図13(A)は平面図であり、図13(B)は正面図である。
図13に示す風洞試験装置Tは、模型車両10に空気を流したときにこの空気の流れによって生ずるこの模型車両10の挙動を測定する装置であり、模型車両10から発生する風切音などの空力騒音を測定する。風洞試験装置Tは、空気を吹き出す吹出口(ノズル)T1と、吹出口T1からの空気を模型車両10に流す風洞測定部T2と、床面Gに設置され模型車両10を支持する支持台車T3と、風洞測定部T2からの空気を吸い込む図示しない吸込部(コレクタ)などを備えている。マイクロホンMは、模型車両10に空気を流したときにこの模型車両10から発生する空力騒音を測定する装置である。図13(A)に示す中心線O1は、模型車両10の中心軸線であり、中心線O2は中心線O1と直交し模型車両10の台車20の中心点を通過する軸線である。距離L1は、3125mmであり、距離L2は50mmであり、高さH1は、50mmである。模型車両10は、実際の鉄道車両を模擬(縮小)した車両であり、台車20と車体30とを備えている。模型車両10は、図1〜図12に示す実際の車両1の縮尺1/8で製作されている。
Next, examples of the present invention will be described.
FIG. 13 is a block diagram of a wind tunnel test apparatus used for measuring aerodynamic noise, FIG. 13 (A) is a plan view, and FIG. 13 (B) is a front view.
The wind tunnel test apparatus T shown in FIG. 13 is an apparatus for measuring the behavior of the model vehicle 10 generated by the air flow when air is passed through the model vehicle 10, such as wind noise generated from the model vehicle 10. Measure aerodynamic noise. The wind tunnel test apparatus T supports the model vehicle 10 that is installed on the floor G and has an air outlet (nozzle) T 1 that blows out air, a wind tunnel measurement unit T 2 that flows air from the air outlet T 1 to the model vehicle 10. A support carriage T 3 and a suction section (collector) (not shown) that sucks air from the wind tunnel measurement section T 2 are provided. The microphone M is a device that measures aerodynamic noise generated from the model vehicle 10 when air flows through the model vehicle 10. A center line O 1 shown in FIG. 13A is the center axis of the model vehicle 10, and the center line O 2 is an axis that is orthogonal to the center line O 1 and passes through the center point of the cart 20 of the model vehicle 10. The distance L 1 is 3125 mm, the distance L 2 is 50 mm, and the height H 1 is 50 mm. The model vehicle 10 is a vehicle that simulates (reduces) an actual railway vehicle, and includes a carriage 20 and a vehicle body 30. The model vehicle 10 is manufactured at a scale 1/8 of the actual vehicle 1 shown in FIGS.

図14は、比較例1の模型車両の断面図である。図15は、比較例2の模型車両の断面図である。図16は、実施例1の模型車両の断面図である。図17は、実施例2の模型車両の断面図である。
ここで、図14〜図17に示す長さL11は、480mmであり、深さD11は100mmである。図15及び図16に示す長さL12は、10mmであり、高さH11は20mmである。図16に示す長さL13は、60mmであり、高さH12は10mmである。図14〜図17に示す比較例1,2及び実施例1,2は、模型車両10と同様にいずれも縮尺1/8で製作されている。図14に示す比較例1は、車体底面40に底面凹部60を備えている。図15に示す比較例2は、底面凹部60の側方に側板部70aを備えている。図16に示す実施例1は、底面凹部60の側方に側板部70aを備えるとともに、底面凹部60の前後に網状部70bを備えている。図17に示す実施例2は、底面凹部60の側方に側板部70aを備えるとともに、底面凹部60の前後に傾斜部70c及び網状部70dを備えている。図16及び図17に示す網状部70b,70dは、線径が0.5mmであり、開口率が40〜50%であり、角度θ11は63.4°であり、角度θ12は84.8°であり、角度θ22は35.5°である。
FIG. 14 is a cross-sectional view of the model vehicle of Comparative Example 1. FIG. 15 is a cross-sectional view of the model vehicle of the second comparative example. FIG. 16 is a cross-sectional view of the model vehicle of the first embodiment. FIG. 17 is a cross-sectional view of the model vehicle of the second embodiment.
Here, the length L 11 shown in FIGS. 14 to 17 is 480 mm, and the depth D 11 is 100 mm. The length L 12 shown in FIGS. 15 and 16 are 10 mm, the height H 11 is 20 mm. The length L 13 shown in FIG. 16 is 60 mm, the height H 12 is 10 mm. The comparative examples 1 and 2 and the examples 1 and 2 shown in FIGS. 14 to 17 are each manufactured at a scale of 1/8 as with the model vehicle 10. The comparative example 1 shown in FIG. 14 includes a bottom surface recess 60 on the bottom surface 40 of the vehicle body. The comparative example 2 shown in FIG. 15 includes a side plate portion 70 a on the side of the bottom recess 60. The first embodiment shown in FIG. 16 includes a side plate portion 70 a on the side of the bottom surface recess 60, and includes a mesh portion 70 b before and after the bottom surface recess 60. The second embodiment shown in FIG. 17 includes a side plate portion 70 a on the side of the bottom recess 60, and includes an inclined portion 70 c and a mesh portion 70 d before and after the bottom recess 60. The mesh portions 70b and 70d shown in FIGS. 16 and 17 have a wire diameter of 0.5 mm, an aperture ratio of 40 to 50%, an angle θ 11 of 63.4 °, and an angle θ 12 of 84.8 °. The angle θ 22 is 35.5 °.

図14〜図17に示す比較例1,2及び実施例1,2の模型車両10を図13に示す風洞試験装置Tに設置して、台車20及び底面凹部60から発生する空力音を計測した。先ず、図13に示すように、無響室内開放胴(3m×2.5m)に支持台車(幅4m、長さ8m) T3を設置し、この支持台車T3上に低騒音型支持脚(高さ50mm)を設置して、図14〜図17に示す比較例1,2及び実施例1,2の模型車両10をこの低騒音型支持脚に固定した。次に、実験風速300km/hの気流を開放胴に流し、1/2インチのマイクロホンMによって無指向性収音により空力音を計測した。計測は、騒音アンプを通してマイクロホンMからの出力信号をFFTアナライザ(DS-2000)によってパワースペクトル及び1/3オクターブバンドを分析して行った。分析周波数範囲は、125Hz〜40kHzであり、平均回数は128回であり、騒音アンプは20HzHPFであり、特性はFLATである。 The model vehicles 10 of Comparative Examples 1 and 2 and Examples 1 and 2 shown in FIGS. 14 to 17 were installed in the wind tunnel test apparatus T shown in FIG. 13, and aerodynamic sounds generated from the carriage 20 and the bottom recess 60 were measured. . First, as shown in FIG. 13, a support cart (width 4 m, length 8 m) T 3 is installed on an open chamber (3 m × 2.5 m) in an anechoic chamber, and a low noise type support leg (on the support cart T 3 ( A model vehicle 10 of Comparative Examples 1 and 2 and Examples 1 and 2 shown in FIGS. 14 to 17 was fixed to the low noise type support legs. Next, an aerodynamic sound was measured by omnidirectional sound collection with a 1/2 inch microphone M by flowing an air flow of 300 km / h in the experimental wind speed through the open body. The measurement was performed by analyzing the power spectrum and 1/3 octave band of the output signal from the microphone M through a noise amplifier using an FFT analyzer (DS-2000). The analysis frequency range is 125 Hz to 40 kHz, the average number is 128 times, the noise amplifier is 20 Hz HPF, and the characteristic is FLAT.

図18は、比較例1,2及び実施例1,2の空力騒音について周波数換算とA特性補正を行った後の測定結果を示すグラフである。図19は、比較例1,2及び実施例1,2の空力騒音のS特性補正後の測定結果を示すグラフである。S特性補正の定義は後述する。
図18及び図19に示す横軸は、換算周波数(Hz)であり、図18に示す縦軸はA特性音圧レベル(dB)であり、図19に示す縦軸はS特性音圧レベル(dB)である。図18及び図19は、300km/h風速下における図13に示すマイクロホンMによる測定結果である。図18は、比較例1,2及び実施例1,2の騒音(以下、A特性補正値という)の1/3オクターブバンドスペクトルを示し、換算周波数は実周波数を1/8倍した周波数である。図19は、図18に示すA特性補正値に遮音特性補正を便宜的に付加した場合の騒音(以下、S特性補正値という)のスペクトルを示す。ここで、S特性音圧レベルは、A特性補正後に1kHzバンドを境にして1オクターブ当たり3dBだけ、遮蔽物を回折しやすい低周波数側のバンド値を大きく(遮蔽物を回折し難い高周波数側のバンド値を小さく)補正したものである。その結果、防音壁による高周波数側の遮蔽効果をある程度考慮して、比較例1,2及び実施例1,2をS特性音圧レベルによって比較することができる。A特性音圧レベルでは、概して250Hz〜2kHzの周波数帯が大きいが、S特性音圧レベルでは大きい周波数帯は300Hzを中心とするものに変化している。なお、S特性音圧レベルの場合には、1kHzバンドに対する遮音度が与えられれば、スペクトル全体をそのレベル差分だけ低下させれば側方の評価点における遮音効果を考慮したスペクトルが推定できる。図19に示すように、S特性音圧レベルの場合には、1kHz以上の高周波バンド成分は、相対的に小さく全体の騒音レベルに与える寄与が小さい。従って、S特性音圧レベルでみると、実施例1は比較例1に対して騒音低減効果をもつことが検証された。図18及び図19に示すように、実施例2は比較例1に対してA特性音圧レベル、S特性音圧レベルのどちらでも騒音低減効果をもつことが検証された。
FIG. 18 is a graph showing measurement results after frequency conversion and A-characteristic correction for the aerodynamic noises of Comparative Examples 1 and 2 and Examples 1 and 2. FIG. 19 is a graph showing the measurement results after correcting the aerodynamic noise S characteristics of Comparative Examples 1 and 2 and Examples 1 and 2. The definition of S characteristic correction will be described later.
The horizontal axis shown in FIGS. 18 and 19 is the conversion frequency (Hz), the vertical axis shown in FIG. 18 is the A characteristic sound pressure level (dB), and the vertical axis shown in FIG. dB). 18 and 19 show measurement results obtained by the microphone M shown in FIG. 13 under a wind speed of 300 km / h. FIG. 18 shows 1/3 octave band spectra of the noises of Comparative Examples 1 and 2 and Examples 1 and 2 (hereinafter referred to as A characteristic correction values), and the conversion frequency is a frequency obtained by multiplying the actual frequency by 1/8. . FIG. 19 shows a spectrum of noise (hereinafter referred to as S characteristic correction value) when the sound insulation characteristic correction is added for convenience to the A characteristic correction value shown in FIG. Here, the S characteristic sound pressure level is 3 dB per octave after the A characteristic correction, and the band value on the low frequency side where the shielding object is easily diffracted is large (the high frequency side where the shielding object is difficult to diffract). The band value is corrected (smaller). As a result, the comparative examples 1 and 2 and the examples 1 and 2 can be compared by the S characteristic sound pressure level in consideration of the shielding effect on the high frequency side by the soundproof wall to some extent. In the A-characteristic sound pressure level, the frequency band of 250 Hz to 2 kHz is generally large, but in the S-characteristic sound pressure level, the large frequency band is changed to center around 300 Hz. In the case of the S characteristic sound pressure level, if the sound insulation degree for the 1 kHz band is given, the spectrum considering the sound insulation effect at the side evaluation point can be estimated by reducing the entire spectrum by the level difference. As shown in FIG. 19, in the case of the S characteristic sound pressure level, the high frequency band component of 1 kHz or higher is relatively small and contributes little to the overall noise level. Therefore, in terms of the S characteristic sound pressure level, it was verified that Example 1 had a noise reduction effect compared to Comparative Example 1. As shown in FIGS. 18 and 19, it was verified that Example 2 had a noise reduction effect at both the A characteristic sound pressure level and the S characteristic sound pressure level as compared with Comparative Example 1.

Figure 0004331025
Figure 0004331025

表1は、周波数換算後にA特性補正したときの騒音低減効果と周波数換算後にS特性補正したときの騒音低減効果とを示す。表1に示すように、比較例1と比較例2とを比較すると、側板部70aの設置によって4dB以上の騒音低減効果が確認された。次に、実施例1と比較例2とを比較すると、側板部70a及び網状部70bの設置によって3dB程度の騒音低減効果が確認された。ただし、A特性補正後の20Hz〜4kHzバンドでは、低減効果が1dB未満に下がっている。これは、周波数換算により0.5mmの線径が8倍の4mmに換算されたためであり、4mmの線径では、網状部の風切り音の影響が現れることを示すものである。従って、線径を3mm以下が好ましいとしているのもこのためである。実施例2については、比較例2との比較により、傾斜部70c及び網状部70dの設置によって1.6dB程度の騒音低減効果が確認された。   Table 1 shows the noise reduction effect when the A characteristic is corrected after frequency conversion and the noise reduction effect when the S characteristic is corrected after frequency conversion. As shown in Table 1, when Comparative Example 1 and Comparative Example 2 were compared, a noise reduction effect of 4 dB or more was confirmed by the installation of the side plate portion 70a. Next, when Example 1 and Comparative Example 2 were compared, a noise reduction effect of about 3 dB was confirmed by the installation of the side plate portion 70a and the mesh portion 70b. However, the reduction effect is reduced to less than 1 dB in the 20 Hz to 4 kHz band after the A characteristic correction. This is because the wire diameter of 0.5 mm was converted to 4 mm, which is eight times as high as the frequency, and this indicates that the influence of wind noise from the mesh portion appears at the wire diameter of 4 mm. Therefore, the reason why the wire diameter is preferably 3 mm or less is also the reason. As for Example 2, a noise reduction effect of about 1.6 dB was confirmed by the installation of the inclined portion 70c and the mesh portion 70d by comparison with Comparative Example 2.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、移動体が鉄道車両である場合を例に挙げて説明したが、自動車などの他の移動体についてもこの発明を適用することができる。また、この実施形態では、底面凸部が車輪2aである場合を例に挙げて説明したが、鉄道車両や自動車などの底面から突出する床下機器などについてもこの発明を適用することができる。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the moving body is a railway vehicle has been described as an example. However, the present invention can also be applied to other moving bodies such as automobiles. Further, in this embodiment, the case where the bottom surface convex portion is the wheel 2a has been described as an example, but the present invention can also be applied to an underfloor device that protrudes from the bottom surface of a railway vehicle, an automobile, or the like.

(2) この実施形態では、網状体7b,7d,7gが金網である場合を例に挙げて説明したが、多数の開口部を有する金属製の板材などについてもこの発明を適用することができる。また、この実施形態では、空力音低減部7を台車2の前後に設置した場合を例に挙げて説明したが、台車2の前後いずれか一方に設置することもできる。 (2) In this embodiment, the case where the nets 7b, 7d, and 7g are wire nets has been described as an example. However, the present invention can also be applied to a metal plate having a large number of openings. . In this embodiment, the case where the aerodynamic sound reduction unit 7 is installed before and after the carriage 2 has been described as an example. However, the aerodynamic sound reduction unit 7 can be installed either before or after the carriage 2.

(3) この実施形態では、先頭車両や後尾車両に空力音低減部7を設置する場合を例に挙げて説明したが、空力音低減部7を中間車両に設置することもできる。また、この実施形態では、網状部7b,7d,7gの開口率を30〜60%に設定する場合を例に挙げて説明したが、空力騒音を発生させる物体の大きさや形状に応じて開口率を任意に調整することもできる。さらに、この第3実施形態及び第4実施形態では、車両1が主電動機を有する電動車であり、この主電動機と底板部7eとが干渉しないように、この底板部7eを車体底面4よりも僅かに低く設置しているが、このような構造に限定するものではない。例えば、車両1が主電動機を有さない付随車である場合には、車体床面4と同一高さになるように底板部7eを車体床面4に設置することもできる。 (3) In this embodiment, the case where the aerodynamic sound reducing unit 7 is installed in the leading vehicle and the trailing vehicle has been described as an example. However, the aerodynamic sound reducing unit 7 can also be installed in the intermediate vehicle. In this embodiment, the case where the aperture ratios of the mesh portions 7b, 7d, and 7g are set to 30 to 60% has been described as an example. However, the aperture ratio depends on the size and shape of an object that generates aerodynamic noise. Can be adjusted arbitrarily. Furthermore, in this 3rd Embodiment and 4th Embodiment, the vehicle 1 is an electric vehicle which has a main motor, and this bottom plate part 7e is made rather than the vehicle body bottom face 4 so that this main motor and the bottom plate part 7e may not interfere. Although it is installed slightly lower, it is not limited to such a structure. For example, when the vehicle 1 is an accompanying vehicle that does not have a main motor, the bottom plate portion 7 e can be installed on the vehicle body floor surface 4 so as to be the same height as the vehicle body floor surface 4.

この発明の第1実施形態に係る移動体の空力音低減構造の外観図であり、(A)は正面図であり、(B)は側面図であり、(C)は底面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the aerodynamic sound reduction structure of the moving body which concerns on 1st Embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a bottom view. 図1(C)のII-II線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the II-II line | wire of FIG. この発明の第1実施形態に係る移動体の空力音低減構造の拡大図である。It is an enlarged view of the aerodynamic sound reduction structure of the moving body which concerns on 1st Embodiment of this invention. この発明の第2実施形態に係る移動体の空力音低減構造の外観図であり、(A)は正面図であり、(B)は側面図であり、(C)は底面図である。It is an external view of the aerodynamic sound reduction structure of the moving body which concerns on 2nd Embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a bottom view. 図4(C)のV-V線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the VV line | wire of FIG.4 (C). この発明の第2実施形態に係る移動体の空力音低減構造図の拡大図である。It is an enlarged view of the aerodynamic sound reduction structure figure of the moving body which concerns on 2nd Embodiment of this invention. この発明の第3実施形態に係る移動体の空力音低減構造の外観図であり、(A)は正面図であり、(B)は側面図であり、(C)は底面図である。It is an external view of the aerodynamic sound reduction structure of the moving body which concerns on 3rd Embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a bottom view. 図7(C)のVIII-VIII線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the VIII-VIII line of FIG.7 (C). この発明の第3実施形態に係る移動体の空力音低減構造の拡大図である。It is an enlarged view of the aerodynamic sound reduction structure of the moving body which concerns on 3rd Embodiment of this invention. この発明の第4実施形態に係る移動体の空力音低減構造の外観図であり、(A)は正面図であり、(B)は側面図であり、(C)は底面図である。It is an external view of the aerodynamic sound reduction structure of the moving body which concerns on 4th Embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a bottom view. 図10(C)のXI-XI線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the XI-XI line of FIG.10 (C). この発明の第4実施形態に係る移動体の空力音低減構造の拡大図である。It is an enlarged view of the aerodynamic sound reduction structure of the moving body which concerns on 4th Embodiment of this invention. 空力騒音の測定に使用した風洞試験装置の構成図であり、(A)は平面図であり、(B)は正面図である。It is a block diagram of the wind tunnel test apparatus used for the measurement of aerodynamic noise, (A) is a top view, (B) is a front view. 比較例1の模型車両の断面図である。It is sectional drawing of the model vehicle of the comparative example 1. 比較例2の模型車両の断面図である。It is sectional drawing of the model vehicle of the comparative example 2. 実施例1の模型車両の断面図である。It is sectional drawing of the model vehicle of Example 1. FIG. 実施例2の模型車両の断面図である。It is sectional drawing of the model vehicle of Example 2. FIG. 比較例1,2及び実施例1,2の空力騒音のA特性補正後の測定結果を示すグラフである。It is a graph which shows the measurement result after A characteristic correction | amendment of the aerodynamic noise of Comparative Examples 1 and 2 and Examples 1,2. 比較例1,2及び実施例1,2の空力騒音のS特性補正後の測定結果を示すグラフである。It is a graph which shows the measurement result after S characteristic correction | amendment of the aerodynamic noise of the comparative examples 1 and 2 and Examples 1,2.

符号の説明Explanation of symbols

1 車両(移動体)
2 台車
2a 車輪(底面凸部)
3 車体
4 車体底面
5 車体側面
6 底面凹部
6a 底面
6b 角部
6c 端面
6d 角部
7 空力音低減部
7a 側板部
7b 網状部
7c 傾斜部
7d 網状部
7e 底板部
7f 側板部
7g 網状部
7h 貫通孔
7i 傾斜部

1 Vehicle (moving body)
2 dolly 2a wheel (bottom surface convex part)
3 Vehicle body 4 Vehicle body bottom surface 5 Vehicle body side surface 6 Bottom surface recess 6a Bottom surface 6b Corner portion 6c End surface 6d Corner portion 7 Aerodynamic sound reduction portion 7a Side plate portion 7b Net-like portion 7c Inclined portion 7d Net-like portion 7e Bottom plate portion 7f Side plate portion 7g Net-like hole portion 7g 7i inclined part

Claims (5)

鉄道車両が移動するときにこの鉄道車両の下部から発生する空力音を低減する空力音低減部を有する鉄道車両の空力音低減構造であって、
前記空力音低減部は、
前記鉄道車両台車を収納するこの鉄道車両の底面凹部の前方及び後方に設置されており、
前記鉄道車両の底面から前記底面凹部に向かって下方に傾斜する傾斜部と、
前記底面凹部の端面との間に空隙を形成する網状部とを備え、
前記傾斜部は、前記底面凹部の端面と前記鉄道車両の底面とが交わる角部から前記台車側に張り出して突出する突出部の頂角が鋭角に形成されており
前記網状部は、前記傾斜部から前記底面凹部の端面に向かう気流を減速させて通過させこの端面に当たる気流を弱めること、
を特徴とする鉄道車両の空力音低減構造。
An aerodynamic sound reducing structure for a railway vehicle having an aerodynamic sound reducing unit that reduces aerodynamic sound generated from the lower part of the railway vehicle when the railway vehicle moves,
The aerodynamic sound reduction unit is
Installed at the front and rear of the bottom recess of the railway vehicle for storing the railway vehicle carriage ,
An inclined portion inclined downward from the bottom surface of the railway vehicle toward the bottom surface recess,
A net-like portion that forms a gap with the end surface of the bottom recess,
The inclined portion has an apex angle of projection projecting overhangs the carriage side from the bottom surface and intersect the corners of the end surface and the railway vehicle of the bottom surface recess is formed at an acute angle,
The mesh portion decelerates the airflow from the inclined portion toward the end surface of the bottom surface recess, and weakens the airflow hitting the end surface;
Aerodynamic noise reduction structure for railway vehicles .
請求項1に記載の鉄道車両の空力音低減構造において、
前記空力音低減部は、前記台車の側面を覆う側板部を備え、
前記側板部は、前記台車の側方に設置されていること、
を特徴とする鉄道車両の空力音低減構造。
In the aerodynamic sound reduction structure for a railway vehicle according to claim 1,
The aerodynamic sound reduction unit includes a side plate that covers a side surface of the carriage,
The side plate is installed on a side of the carriage ;
Aerodynamic noise reduction structure for railway vehicles .
請求項1又は請求項に記載の鉄道車両の空力音低減構造において、
前記網状部は、前記鉄道車両の底面に対する角度が45°〜90°であること、
を特徴とする鉄道車両の空力音低減構造。
In the aerodynamic sound reduction structure for a railway vehicle according to claim 1 or 2 ,
The mesh portion has an angle with respect to the bottom surface of the railway vehicle of 45 ° to 90 °,
Aerodynamic noise reduction structure for railway vehicles .
請求項1から請求項までのいずれか1項に記載の鉄道車両の空力音低減構造において、
前記網状部は、開口率が30〜60%であること、
を特徴とする鉄道車両の空力音低減構造。
In the aerodynamic sound reduction structure for a railway vehicle according to any one of claims 1 to 3 ,
The mesh portion has an aperture ratio of 30 to 60%;
Aerodynamic noise reduction structure for railway vehicles .
請求項1から請求項までのいずれか1項に記載の鉄道車両の空力音低減構造において、
前記網状部は、線径が3mm以下であること、
を特徴とする鉄道車両の空力音低減構造。
In the aerodynamic sound reduction structure for a railway vehicle according to any one of claims 1 to 4 ,
The mesh portion has a wire diameter of 3 mm or less,
Aerodynamic noise reduction structure for railway vehicles .
JP2004076486A 2004-03-17 2004-03-17 Aerodynamic noise reduction structure for railway vehicles Expired - Fee Related JP4331025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076486A JP4331025B2 (en) 2004-03-17 2004-03-17 Aerodynamic noise reduction structure for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076486A JP4331025B2 (en) 2004-03-17 2004-03-17 Aerodynamic noise reduction structure for railway vehicles

Publications (2)

Publication Number Publication Date
JP2005262962A JP2005262962A (en) 2005-09-29
JP4331025B2 true JP4331025B2 (en) 2009-09-16

Family

ID=35087971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076486A Expired - Fee Related JP4331025B2 (en) 2004-03-17 2004-03-17 Aerodynamic noise reduction structure for railway vehicles

Country Status (1)

Country Link
JP (1) JP4331025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260769A1 (en) 2020-06-22 2021-12-30 株式会社日立製作所 Railway vehicle and control method for movable cover of railway vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099371B2 (en) * 2012-11-22 2017-03-22 川崎重工業株式会社 Railway vehicle
JP6039400B2 (en) * 2012-12-18 2016-12-07 株式会社日立製作所 Railway vehicle with reduced air resistance and railway vehicle organization incorporating this railway vehicle
KR101524010B1 (en) * 2013-12-26 2015-05-29 한국철도기술연구원 Bogie air dam
EP2952404A1 (en) * 2014-06-04 2015-12-09 Hitachi Ltd. Bogie and associated structure
JP6887316B2 (en) * 2017-06-07 2021-06-16 株式会社日立製作所 A railroad vehicle having an end fusagi plate and an end fusagi plate of a railroad vehicle
JP7145043B2 (en) * 2018-11-09 2022-09-30 川崎車両株式会社 rail car
CN109591840B (en) * 2018-11-23 2020-07-17 中车唐山机车车辆有限公司 Snow accumulation prevention device for vehicle bogie, bogie and rail train
JP7075903B2 (en) * 2019-01-23 2022-05-26 公益財団法人鉄道総合技術研究所 Railroad vehicle aerodynamic noise reduction structure
JP7389325B2 (en) * 2019-09-12 2023-11-30 日本製鉄株式会社 Railway vehicles and trains

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053669U (en) * 1983-09-22 1985-04-15 財団法人鉄道総合技術研究所 Snow accretion prevention structure for body-mounted railway vehicles
JP3375357B2 (en) * 1993-01-19 2003-02-10 近畿車輌株式会社 Pantograph cover device
JP3173255B2 (en) * 1993-11-05 2001-06-04 株式会社日立製作所 Railcar bogie
JPH07172311A (en) * 1993-12-20 1995-07-11 Central Japan Railway Co Low aerodynamic sound moving body
JPH09267747A (en) * 1996-03-29 1997-10-14 Railway Technical Res Inst Method of reducing aerodynamic sound generated from windbreak cover for high-speed traveling body and windbreak cover used for the same
JP2000280899A (en) * 1999-03-30 2000-10-10 West Japan Railway Co Recessed part with bar for aerodynamic sound reducing structure
JP2002067941A (en) * 2000-08-25 2002-03-08 Central Japan Railway Co Soundproof construction for railway rolling stock
JP4531992B2 (en) * 2001-01-10 2010-08-25 西日本旅客鉄道株式会社 Aerodynamic noise reduction structure of recess with rod
JP2003146002A (en) * 2001-08-29 2003-05-21 Ryotaro Nakagawa Wheel noise preventing cover
JP2003219506A (en) * 2002-01-22 2003-07-31 Central Japan Railway Co Pantograph noise reducing method and pantograph cover device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260769A1 (en) 2020-06-22 2021-12-30 株式会社日立製作所 Railway vehicle and control method for movable cover of railway vehicle

Also Published As

Publication number Publication date
JP2005262962A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4331025B2 (en) Aerodynamic noise reduction structure for railway vehicles
JP6677309B2 (en) Bogies for railway vehicles, railway vehicles and trains
JP4531992B2 (en) Aerodynamic noise reduction structure of recess with rod
JPH07172311A (en) Low aerodynamic sound moving body
JP4438669B2 (en) Wind speed reduction structure for moving objects
JP3173255B2 (en) Railcar bogie
JP5083863B2 (en) Aerodynamic sound reduction structure
JP4222826B2 (en) Railway vehicle
Martens et al. High speed train noise-sound source localization at fast passing trains
JP2000280899A (en) Recessed part with bar for aerodynamic sound reducing structure
JP2006021672A (en) Optimum arrangement method and sound absorption structure for sound absorbing material in railway vehicle
CN112810639A (en) Control device for reducing drag and noise of high-speed train
JP2021069206A (en) Aerodynamic sound reduction structure of current collector
JP4235120B2 (en) Railcar bogie skirt
JPH0898306A (en) Windbreaking cover of current collector
JP2589839Y2 (en) Pantograph windproof cover and aerodynamic noise reduction structure
JP3155214B2 (en) Air intake of traveling body
JP3829262B2 (en) Single arm pantograph
JP2000069602A (en) Collector shoe for pantograph
JPH0742163Y2 (en) Noise prevention structure for train rooftop equipment
JP2022065742A (en) Low noise device for railway vehicle
JP2005153755A (en) Railroad vehicle
JP7332884B2 (en) bogies and railcars
JP2006159938A (en) Sound insulating board of current collector for vehicle
JPH0674001U (en) Windproof structure of pantograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees