JP7399076B2 - Aerodynamic noise reduction structure of current collector and its manufacturing method - Google Patents

Aerodynamic noise reduction structure of current collector and its manufacturing method Download PDF

Info

Publication number
JP7399076B2
JP7399076B2 JP2020219066A JP2020219066A JP7399076B2 JP 7399076 B2 JP7399076 B2 JP 7399076B2 JP 2020219066 A JP2020219066 A JP 2020219066A JP 2020219066 A JP2020219066 A JP 2020219066A JP 7399076 B2 JP7399076 B2 JP 7399076B2
Authority
JP
Japan
Prior art keywords
aerodynamic noise
noise reduction
current collector
cover
reduction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020219066A
Other languages
Japanese (ja)
Other versions
JP2022104076A (en
Inventor
剛 光用
樹幸 小林
裕雅 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2020219066A priority Critical patent/JP7399076B2/en
Publication of JP2022104076A publication Critical patent/JP2022104076A/en
Application granted granted Critical
Publication of JP7399076B2 publication Critical patent/JP7399076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

この発明は、集電装置から発生する空力音を低減する集電装置の空力音低減構造とその製造方法に関する。 The present invention relates to an aerodynamic noise reduction structure for a current collector that reduces aerodynamic noise generated from the current collector, and a method for manufacturing the same.

(多孔質材による空力音低減について)
新幹線(登録商標)の高速化にとって、車両各部から放射される空力音の低減は重要な課題である。パンタグラフは主要な空力音源であり、パンタグラフの各部材のなかでも、舟体・舟支え部は最も寄与が大きい空力音源である。舟体の空力音低減には断面形状の平滑化・貫通孔の適用が有効だが、それだけでは十分ではなく、舟体・舟支え部の流れの干渉を緩和する必要がある。舟体・舟支え部の流れの干渉を緩和する手法の一つとして、舟支え部の頂点カバーの表面に連続気孔を有する多孔質材を適用する(貼り付ける)手法を提案している。
(Regarding aerodynamic noise reduction using porous materials)
In order to increase the speed of Shinkansen (registered trademark) trains, reducing aerodynamic noise emitted from each part of the vehicle is an important issue. A pantograph is a major aerodynamic sound source, and of all the parts of a pantograph, the hull and support section make the largest contribution to the aerodynamic sound source. Smoothening the cross-sectional shape and applying through holes are effective ways to reduce aerodynamic noise in the hull, but this alone is not sufficient; it is also necessary to alleviate flow interference between the hull and the boat support. As one method to alleviate the flow interference between the hull and the boat support, we have proposed a method of applying (pasting) a porous material with continuous pores to the surface of the apex cover of the boat support.

従来の空力音低減構造は、空力音を低減する連続気泡の多孔質体を物体の表面に備えている(例えば、特許文献1参照)。多孔質材の表面貼付による空力音低減効果と集電装置への応用では、円柱供試体の表面に多孔質材を貼付して空力音を低減している(例えば、非特許文献1参照)。パンタグラフの舟支え部への多孔質材適用による空力音低減では、多孔質材を必要最小限の領域に埋め込むことによって空力音を低減する手法を提案している(例えば、非特許文献2参照)。 A conventional aerodynamic noise reduction structure includes an open-cell porous body on the surface of an object to reduce aerodynamic noise (see, for example, Patent Document 1). Regarding the aerodynamic noise reduction effect by attaching a porous material to the surface and its application to a current collector, a porous material is attached to the surface of a cylindrical specimen to reduce aerodynamic noise (see, for example, Non-Patent Document 1). In order to reduce aerodynamic noise by applying porous material to the boat support part of a pantograph, a method of reducing aerodynamic noise by embedding porous material in the minimum necessary area has been proposed (for example, see Non-Patent Document 2). .

(多孔質材の現車への適用と取り付け方法について)
風洞試験では、加工が容易なウレタン樹脂製多孔質材を使用しているが、現車への適用においては、金属製多孔質材を使用し、対象物に強固に取り付ける必要がある。金属多孔質材の取り付けに関しては、接着、リベット止め、又はFRP母材との順次積層などの技術がある。従来のセル構造多孔質金属材の設置構造は、多孔質材及び被固定部材の貫通孔を貫通するリベット体によって多孔質材を非固定部材に固定している(例えば、特許文献2参照)。従来のセル構造多孔質金属材の取付構造は、多孔質材の表面にFRPの皮膜形成材を塗布して固定層を形成し、この固定層と被固定部材とをねじで固定している(例えば、特許文献3参照)。従来の多孔質金属を非固定部材上に与える方法は、多孔質金属の成形パネルの表面に接合層樹脂を浸入させて硬化させ、この接合層樹脂の表面にFRP層を形成している(例えば、特許文献4参照)。
(About the application and installation method of porous materials to existing vehicles)
In the wind tunnel tests, porous urethane resin material, which is easy to process, was used, but when applied to actual vehicles, it is necessary to use porous metal material and firmly attach it to the object. Techniques for attaching porous metal materials include gluing, riveting, or sequential lamination with an FRP matrix. In a conventional installation structure for a porous metal material having a cellular structure, a porous material is fixed to a non-fixed member using a rivet body that passes through a through hole in the porous material and a fixed member (see, for example, Patent Document 2). The conventional mounting structure for cellular porous metal materials is to apply an FRP film-forming material to the surface of the porous material to form a fixing layer, and then fix the fixing layer and the member to be fixed with screws. For example, see Patent Document 3). The conventional method of applying porous metal onto a non-fixed member is to infiltrate a bonding layer resin into the surface of a molded porous metal panel and harden it, and then form an FRP layer on the surface of this bonding layer resin (for example, , see Patent Document 4).

特開2008-136332号公報Japanese Patent Application Publication No. 2008-136332

末木健之、他2名,「多孔質材の表面貼付による空力音低減効果と集電装置への応用」,鉄道総研報告,一般財団法人研友社,2008年,22巻,第5号,p.11-16Takeyuki Sueki, and 2 others, "Aerodynamic noise reduction effect by surface attachment of porous material and its application to current collectors", Railway Research Institute report, Kenyusha General Incorporated Foundation, 2008, Vol. 22, No. 5, p.11-16

光用剛、他3名,「パンタグラフの舟支え部への多孔質材適用による空力音低減」,第28回環境工学総合シンポジウム,一般社団法人日本機械学会,2018年7月11日-12日,No.18-10Tsuyoshi Hikari and 3 others, "Aerodynamic noise reduction by applying porous material to the boat support part of a pantograph", 28th Environmental Engineering Comprehensive Symposium, Japan Society of Mechanical Engineers, July 11-12, 2018 , No.18-10

特開2009-085406号公報Japanese Patent Application Publication No. 2009-085406

特開2009-085407号公報Japanese Patent Application Publication No. 2009-085407

特開2010-208287号公報Japanese Patent Application Publication No. 2010-208287

従来のセル構造多孔質金属材の設置構造などは、パンタグラフ部材の表面に金属多孔質材を接着などで取り付けるものであり、加工上の制約から複雑な三次元曲面への適用が困難であることや、一体成型のような強度の高い方法での製作ができないといった課題がある。 Conventional cellular structure porous metal material installation structures involve attaching the metal porous material to the surface of the pantograph member with adhesive, etc., and it is difficult to apply to complex three-dimensional curved surfaces due to processing constraints. There are also issues such as the inability to manufacture using high-strength methods such as integral molding.

この発明の課題は、簡単な加工で部材に適用でき高強度に取り付けることができて、造形技術によって一体成型することができる集電装置の空力音低減構造とその製造方法を提供する。 An object of the present invention is to provide an aerodynamic noise reduction structure for a current collector that can be applied to a member with simple processing, can be attached with high strength, and can be integrally molded using a molding technique, and a method for manufacturing the same.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図7、図10~図13及び図15に示すように、集電装置(3)から発生する空力音を低減する集電装置の空力音低減構造であって、前記集電装置の頂点カバー(8)の内部に流れ(F)を流入させ、この流入した流れをこの頂点カバーの内部から流出させる複数の開口部(23)と、前記複数の開口部同士を接続する複数の流路(24a~24c)とを備え、前記複数の流路は、前記頂点カバーの内部に複数方向(X,Y,Z)に間隔をあけて配列されており、この頂点カバーの表面の高圧部の開口部から流入した流れを、この頂点カバーの表面の低圧部の開口部から流出させ、前記空力音低減構造の上面部及び側面部は、前記頂点カバーの上面部(8a)及び側面部(8c)と同じ高さになるように、この頂点カバーの一部を構成しており、前記複数の開口部は、前記頂点カバーの上側稜角部(8e)に沿って、この頂点カバーの上面部及び側面部に形成されていることを特徴とする集電装置の空力音低減構造(20A,20B)である。
The present invention solves the above problems by means of solving the problem as described below.
Note that although the description will be given with reference numerals corresponding to the embodiments of the present invention, the present invention is not limited to these embodiments.
The invention of claim 1 is an aerodynamic noise reduction structure for a current collector (3) that reduces aerodynamic noise generated from the current collector (3), as shown in FIGS . 7, 10 to 13, and 15. A plurality of openings (23) for allowing the flow (F) to flow into the inside of the apex cover (8) of the current collector and allowing the flow to flow out from the inside of the apex cover , and connecting the plurality of openings to each other. The plurality of flow passages are arranged at intervals in a plurality of directions (X, Y, Z) inside the vertex cover , and the plurality of flow passages are arranged at intervals in a plurality of directions (X, Y, Z) inside the vertex cover . The flow flowing in from the opening of the high pressure section on the surface flows out from the opening of the low pressure section on the surface of the apex cover , and the top surface and side portions of the aerodynamic sound reduction structure are connected to the top surface (8a) of the apex cover. and the side surface portion (8c), forming a part of this apex cover, and the plurality of openings are formed along the upper edge portion (8e) of the apex cover. This is an aerodynamic noise reduction structure (20A, 20B) for a current collector, characterized in that it is formed on the top and side surfaces of the cover .

請求項2の発明は、請求項1に記載の集電装置の空力音低減構造において、図10、図12、図13及び図15に示すように、前記複数の流路は、前記頂点カバーの内部を三軸方向(X,Y,Z)に延びており、各軸方向に延びる流路が交差部(25)で交差することを特徴とする集電装置の空力音低減構造である。 According to a second aspect of the present invention, in the aerodynamic noise reduction structure for a current collector according to the first aspect, as shown in FIGS. This aerodynamic noise reduction structure for a current collector is characterized in that the interior extends in three axial directions (X, Y, Z), and flow paths extending in each axial direction intersect at an intersection (25).

請求項3の発明は、請求項1又は請求項2に記載の集電装置の空力音低減構造において、図10及び図13に示すように、前記空力音低減構造は、前記頂点カバーの上側稜角部を切り欠くように形成された装着部(8g)に装着されており、前記頂点カバーによって覆われる舟支え部(7)と前記空力音低減構造との間にこの頂点カバーを挟み込むように、この空力音低減構造をこの頂点カバーとともにこの舟支え部に着脱自在に固定する固定部(26)を備えることを特徴とする集電装置の空力音低減構造である。 The invention according to claim 3 is the aerodynamic noise reduction structure for the current collector according to claim 1 or 2, in which, as shown in FIGS. 10 and 13, the aerodynamic noise reduction structure The apex cover is inserted between the boat support part (7) covered by the apex cover and the aerodynamic sound reduction structure, This aerodynamic noise reduction structure for a current collector is characterized by comprising a fixing part (26) that removably fixes this aerodynamic noise reduction structure to the boat support part together with the apex cover .

請求項4の発明は、集電装置(3)から発生する空力音を低減する集電装置の空力音低減構造の製造方法であって、請求項1から請求項3までのいずれか1項に記載の集電装置の空力音低減構造(20A,20B)を造形装置によって製造することを特徴とする集電装置の空力音低減構造の製造方法である。 The invention of claim 4 is a method for manufacturing an aerodynamic noise reduction structure for a current collector that reduces aerodynamic noise generated from the current collector (3), which This is a method for manufacturing an aerodynamic noise reduction structure for a current collector, characterized in that the aerodynamic noise reduction structure (20A, 20B) for the current collector described above is manufactured using a shaping device.

この発明によると、簡単な加工で部材に適用でき高強度に取り付けることができて、造形技術によって一体成型することができる。 According to this invention, it can be applied to a member with simple processing, it can be attached with high strength, and it can be integrally molded using a molding technique.

この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置の一部を概略的に示す斜視図である。1 is a perspective view schematically showing a part of a current collector including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention; FIG. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す側面図である。1 is a side view schematically showing a current collector including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す平面図である。1 is a plan view schematically showing a current collector including an aerodynamic noise reduction structure for a current collector according to a first embodiment of the present invention; FIG. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す正面図である。FIG. 1 is a front view schematically showing a current collector including an aerodynamic noise reduction structure for a current collector according to a first embodiment of the present invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置を概略的に示す背面図である。1 is a rear view schematically showing a current collector including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention; FIG. この発明の第1実施形態に係る集電装置の空力音低減構造を備える集電装置の構造を概略的に示す模式図である。FIG. 1 is a schematic diagram schematically showing the structure of a current collector including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える頂点カバーを概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing a vertex cover including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える頂点カバーを概略的に示す平面図である。FIG. 2 is a plan view schematically showing a vertex cover including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention. この発明の第1実施形態に係る集電装置の空力音低減構造を備える頂点カバーを概略的に示す側面図である。FIG. 2 is a side view schematically showing a vertex cover including an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention. 図8のX-X線で切断した状態を示す断面図である。9 is a cross-sectional view taken along the line XX in FIG. 8. FIG. この発明の第1実施形態に係る集電装置の空力音低減構造を概略的に示す外観図であり、(A)は平面図であり、(B)は側面図であり、(C)は背面図である。1 is an external view schematically showing an aerodynamic noise reduction structure of a current collector according to a first embodiment of the present invention, in which (A) is a plan view, (B) is a side view, and (C) is a rear view. It is a diagram. 図11(B)のXII-XII線で切断した状態を示す断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11(B). 図11(B)のXIII-XIII線で切断した状態を示す断面図である。FIG. 12 is a cross-sectional view taken along line XIII-XIII in FIG. 11(B). この発明の第1実施形態に係る集電装置の空力音低減構造の作用を説明するための写真であり、(A)は空力音低減構造を模擬した多孔質材を拡大して示す写真であり、(B)(C)は空力音低減構造を備える場合の流れ場のコンター図であり、(E)(F)は空力音低減構造を備えていない場合の流れ場のコンター図である。It is a photograph for explaining the effect of the aerodynamic noise reduction structure of the current collector according to the first embodiment of the present invention, and (A) is a photograph showing an enlarged view of a porous material simulating the aerodynamic noise reduction structure. , (B) and (C) are contour diagrams of the flow field when the aerodynamic noise reduction structure is provided, and (E) and (F) are contour diagrams of the flow field when the aerodynamic noise reduction structure is not provided. この発明の第2実施形態に係る集電装置の空力音低減構造を概略的に示す外観図であり、(A)は平面図であり、(B)は側面図であり、(C)は背面図である。FIG. 6 is an external view schematically showing an aerodynamic noise reduction structure of a current collector according to a second embodiment of the present invention, in which (A) is a plan view, (B) is a side view, and (C) is a rear view. It is a diagram. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験に使用した風洞試験装置を概略的に示す模式図である。FIG. 2 is a schematic diagram schematically showing a wind tunnel test apparatus used in an aerodynamic noise reduction effect test using an aerodynamic noise reduction structure of a current collector according to an embodiment of the present invention. この発明の実施例に係る集電装置の空力音低減構造による空力音低減効果試験の試験結果及び試験状況を示す図であり、(A)~(C)は各供試体の試験結果を示すグラフ及び試験状況を示す写真である。It is a figure which shows the test result and test situation of the aerodynamic noise reduction effect test by the aerodynamic noise reduction structure of the current collector based on the Example of this invention, (A)-(C) is a graph which shows the test result of each specimen. and photos showing the test situation.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1、図2及び図4~図6に示す架線1は、線路上空に架設される架空電車線である。架線1は、所定の間隔をあけて支持点で支持されている。トロリ線1aは、集電装置3が接触移動する電線である。トロリ線1aは、集電装置3が摺動することによって、車両2に負荷電流を供給する。図2及び図4~図6に示す車両2は、電車又は電気機関車などの電気車である。車両2は、例えば、高速で走行する新幹線などの鉄道車両である。車体2aは、乗客又は貨物を積載し輸送するための構造物である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
An overhead contact line 1 shown in FIGS. 1, 2, and 4 to 6 is an overhead contact line installed above the railroad tracks. The overhead wire 1 is supported at support points at predetermined intervals. The contact wire 1a is an electric wire that the current collector 3 moves in contact with. The contact wire 1a supplies a load current to the vehicle 2 when the current collector 3 slides thereon. The vehicle 2 shown in FIGS. 2 and 4 to 6 is an electric vehicle such as a train or an electric locomotive. The vehicle 2 is, for example, a railway vehicle such as a Shinkansen that runs at high speed. The vehicle body 2a is a structure for loading and transporting passengers or cargo.

図1~図7に示す集電装置3は、トロリ線1aから車両2に電力を導くための装置である。集電装置3は、図1~図6に示すすり板4と、図1~図7、図9及び図10に示す舟体(集電舟)5と、図1~図6に示す枠組6と、図6に示す台枠17と、図2~図6に示す風防カバー18と、図2及び図4~図6に示すがいし19と、図1~図13に示す空力音低減構造20A,20Bなどを備えている。図1~図7に示す集電装置3は、図1、図2及び図6に示すように、車両2の進行方向Dに対して非対称であり、一方向又は双方向に使用可能なシングルアーム式パンタグラフである。集電装置3は、図1、図2及び図6に示すように、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向で使用したときには空力音が比較的小さくなり、車両2の進行方向後側に中間ヒンジ13が位置する反なびき方向で使用したときには空力音が比較的大きくなる。図1~図7に示す集電装置3は、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向に移動している。 The current collector 3 shown in FIGS. 1 to 7 is a device for guiding electric power from the contact wire 1a to the vehicle 2. The current collector 3 includes a slide plate 4 shown in FIGS. 1 to 6, a boat body (current collection boat) 5 shown in FIGS. 1 to 7, 9 and 10, and a framework 6 shown in FIGS. 1 to 6. , the underframe 17 shown in FIG. 6, the windshield cover 18 shown in FIGS. 2 to 6, the insulator 19 shown in FIGS. 2 and 4 to 6, the aerodynamic noise reduction structure 20A shown in FIGS. 1 to 13, Equipped with 20B etc. The current collector 3 shown in FIGS. 1 to 7 is a single arm that is asymmetrical with respect to the traveling direction D of the vehicle 2 and can be used in one direction or both directions, as shown in FIGS. 1, 2, and 6. It is a type pantograph. As shown in FIGS. 1, 2, and 6, when the current collector 3 is used in the fluttering direction in which the intermediate hinge 13 is located on the front side in the direction of travel of the vehicle 2, the aerodynamic noise becomes relatively small, and the When used in the anti-swing direction where the intermediate hinge 13 is located on the rear side, aerodynamic noise becomes relatively loud. The current collector 3 shown in FIGS. 1 to 7 is moving in a fluctuating direction in which the intermediate hinge 13 is located on the front side in the direction in which the vehicle 2 travels.

図1~図6に示すすり板4は、トロリ線1aと摺動する部材である。すり板4は、図1及び図3~図5に示すように、車両2の進行方向Dと直交する方向(まくらぎ方向)に伸びた金属製又は炭素製の板状部材である。すり板4は、舟体5とは別個に製造される別部品であり、舟体5の長さ方向(まくらぎ方向)に複数並べた状態で、この舟体5の上部に取り付けられている。すり板4は、舟体5との間で相対変位可能なようにばねなどの弾性体によって支持されている。 The slider plate 4 shown in FIGS. 1 to 6 is a member that slides on the contact wire 1a. As shown in FIGS. 1 and 3 to 5, the slide plate 4 is a plate-like member made of metal or carbon that extends in a direction (sleeper direction) orthogonal to the traveling direction D of the vehicle 2. The slide plates 4 are separate parts manufactured separately from the boat body 5, and are attached to the upper part of the boat body 5 with a plurality of them arranged in the length direction (sleeper direction) of the boat body 5. . The slide plate 4 is supported by an elastic body such as a spring so as to be movable relative to the boat body 5.

図1~図7、図9及び図10に示す舟体5は、すり板4を支持する部材である。舟体5は、一般にトロリ線1aと直交する方向(まくらぎ方向)に伸びた細長い金属製の柱状部材である。舟体5は、例えば、図2に示すように、この舟体5の中心軸に対して前後対称であり、前後がいずれも同一形状に形成されている。舟体5は、流れ(気流)Fのはく離を可能な限り防止するために断面形状が流線型又は流線型に近似した曲面で構成されており、滑らかな曲線によって構成されている。舟体5は、例えば、数値流体力学(Computational Fluid Dynamics(CFD))解析及び最適化手法を組み合わせた手法によって、空力音低減及び揚力特性安定化を両立可能なように舟体断面形状が平滑化されている平滑化舟体(平滑形状舟体)である。図1~図7、図9及び図10に示す舟体5は、例えば、トロリ線1aに対する追従性能を向上させた新幹線用(高速用)パンタグラフ舟体である。舟体5は、図1~図5に示すように、ホーン5aなどを備えている。 The boat body 5 shown in FIGS. 1 to 7, 9, and 10 is a member that supports the slide plate 4. As shown in FIGS. The boat body 5 is generally an elongated metal columnar member extending in a direction perpendicular to the contact wire 1a (sleeper direction). For example, as shown in FIG. 2, the boat body 5 is symmetrical in the front and rear with respect to the central axis of the boat body 5, and both the front and rear sides are formed in the same shape. The boat body 5 has a streamlined cross-sectional shape or a curved surface approximating a streamlined shape in order to prevent separation of the flow (airflow) F as much as possible, and is configured with a smooth curve. For example, the cross-sectional shape of the hull 5 has been smoothed using a method that combines Computational Fluid Dynamics (CFD) analysis and optimization to achieve both reduction of aerodynamic noise and stabilization of lift characteristics. This is a smooth hull (smooth shaped hull). The hull 5 shown in FIGS. 1 to 7, 9, and 10 is, for example, a pantograph hull for a Shinkansen (high speed) with improved tracking performance for the contact wire 1a. The boat body 5 includes a horn 5a and the like, as shown in FIGS. 1 to 5.

ホーン5aは、車両2が分岐器を通過するときに、この分岐器の上方で交差する2本のトロリ線1aのうち車両2の進行方向とは異なる方向のトロリ線1aへの割込みを防止するための部材である。ホーン5aは、舟体5の長さ方向の両端部から突出しており、図1、図4及び図5に示すように先端部が下方に向かって湾曲して形成された金属製の部材である。 The horn 5a prevents an interruption to the contact wire 1a in a direction different from the traveling direction of the vehicle 2 among the two contact wires 1a that intersect above the switch when the vehicle 2 passes the switch. It is a member for The horn 5a is a metal member that protrudes from both longitudinal ends of the boat body 5 and has a tip curved downward as shown in FIGS. 1, 4, and 5. .

図1~図6に示す枠組6は、舟体5を支持する部材である。枠組6は、舟体5を支持した状態で上下方向に動作可能なリンク機構を備えている。枠組6は、図1、図4~図10に示す舟支え部7と、図1~図10に示す頂点カバー8と、図1~図10に示す上枠9と、図6に示す舟支えリンク(平衡棒)10と、図1、図2、図4~図6に示す下枠11と、図6に示す釣り合い棒12と、図1~図6に示す中間ヒンジ(屈曲部)13などを備えている。枠組6は、使用時には図6に示す主ばね16の付勢力によって上昇し、非使用時(折畳時)には主ばね16の付勢力に抗してシリンダ装置が発生する駆動力によって下降する。 The framework 6 shown in FIGS. 1 to 6 is a member that supports the boat body 5. The frame 6 includes a link mechanism that can move vertically while supporting the boat body 5. The framework 6 includes a boat support part 7 shown in FIGS. 1 and 4 to 10, an apex cover 8 shown in FIGS. 1 to 10, an upper frame 9 shown in FIGS. 1 to 10, and a boat support part 7 shown in FIG. A link (balance rod) 10, a lower frame 11 shown in FIGS. 1, 2, and 4 to 6, a counterbalance rod 12 shown in FIG. 6, an intermediate hinge (bending portion) 13 shown in FIGS. 1 to 6, etc. It is equipped with When in use, the framework 6 is raised by the biasing force of the main spring 16 shown in FIG. 6, and when not in use (when folded), it is lowered by the driving force generated by the cylinder device against the biasing force of the main spring 16. .

図1、図4~図10に示す舟支え部7は、舟体5を支持する部分である。舟支え部7は、舟体5を架線1に対して水平に押上げるとともに、舟体5にばねによる緩衝作用を与える。舟支え部7は、舟体5の平衡維持を図るとともに、トロリ線1aへの追従性を向上させる。舟支え部7は、図1、図2、図4~図9に示すように、上枠9の頂部に支持されている。 The boat support section 7 shown in FIGS. 1, 4 to 10 is a part that supports the boat body 5. The boat support section 7 pushes up the boat body 5 horizontally with respect to the overhead wire 1 and provides a buffering effect to the boat body 5 by a spring. The boat support section 7 maintains the balance of the boat body 5 and improves the ability to follow the contact wire 1a. The boat support part 7 is supported on the top of the upper frame 9, as shown in FIGS. 1, 2, and 4 to 9.

図1~図10に示す頂点カバー8は、舟支え部7を覆う部材である。頂点カバー8は、図6に示すように、上枠9及び舟支えリンク10と舟支え部7とを回転自在に連結するヒンジ部(頂点ヒンジ部)を覆うように、上枠9の上端部(頂部)に着脱自在に装着されており、図1、図2及び図7~図9に示すように流れFを妨げないような形状に形成されている。頂点カバー8は、舟支え部7内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。頂点カバー8は、例えば、不燃性又は難燃性を有する金属製又は繊維強化プラスチック(Fiber Reinforced Plastics(FRP))製の被覆部材である。頂点カバー8は、図8に示すように平面形状が略U字状であり、図10に示すように縦断面形状が略U次字状の部材である。頂点カバー8は、図7~図11及び図13に示す上面部8aと、図7、図9及び図10に示す下面部8bと、図7及び図9~図13に示す側面部8cと、図7~図9に示す背面部8dと、図7~図11及び図13に示す上側稜角部(上側縁部)8eと、図7、図9及び図10に示す下側稜角部(下側縁部)8fと、図7~図10に示す装着部8gと、図10に示す貫通孔8hなどを備えている。頂点カバー8は、図7に示すように、上面部8a、下面部8b、側面部8c及び背面部8dから構成される多面体であり、図10に示すように多面体の隣り合う二面が上側稜角部8e及び下側稜角部8fで交わっている。 The vertex cover 8 shown in FIGS. 1 to 10 is a member that covers the boat support portion 7. As shown in FIG. 6, the apex cover 8 is arranged at the upper end of the upper frame 9 so as to cover the hinge part (apex hinge part) that rotatably connects the upper frame 9 and the boat support link 10 to the boat support part 7. It is removably attached to the top (top), and is formed in a shape that does not obstruct the flow F, as shown in FIGS. 1, 2, and 7 to 9. The apex cover 8 prevents the flow F from entering the boat support portion 7 and generating large aerodynamic noise, and also prevents air resistance from increasing. The vertex cover 8 is, for example, a covering member made of non-flammable or flame-retardant metal or fiber-reinforced plastics (FRP). The vertex cover 8 is a member having a substantially U-shaped planar shape as shown in FIG. 8, and a substantially U-shaped vertical cross-sectional shape as shown in FIG. The vertex cover 8 includes an upper surface part 8a shown in FIGS. 7 to 11 and 13, a lower surface part 8b shown in FIGS. 7, 9 and 10, and a side surface part 8c shown in FIGS. 7 and 9 to 13. The back surface portion 8d shown in FIGS. 7 to 9, the upper edge portion (upper edge) 8e shown in FIGS. 7 to 11 and 13, and the lower edge portion (lower edge) shown in FIGS. 8f, a mounting portion 8g shown in FIGS. 7 to 10, and a through hole 8h shown in FIG. 10. As shown in FIG. 7, the vertex cover 8 is a polyhedron composed of an upper surface portion 8a, a lower surface portion 8b, a side surface portion 8c, and a back surface portion 8d, and as shown in FIG. 10, two adjacent faces of the polyhedron form an upper edge angle. It intersects at the portion 8e and the lower ridge corner portion 8f.

図7~図11及び図13に示す上面部8aは、頂点カバー8の上面を構成する部分である。上面部8aは、図7及び図9に示すように、上枠9の上面と略同じ高さ(面一)になるように平坦な傾斜面に形成されている。図7、図9及び図10に示す下面部8bは、頂点カバー8の下面を構成する部分である。下面部8bは、図10に示すように、前側が上枠9の下面と略同じ高さ(面一)であり、後側が上枠9の下面よりも高く(下方に突出)、図9に示すように前側から後側に向かって複数の傾斜角度で傾斜する平坦な傾斜面に形成されている。 The upper surface portion 8a shown in FIGS. 7 to 11 and 13 is a portion that constitutes the upper surface of the vertex cover 8. As shown in FIGS. As shown in FIGS. 7 and 9, the upper surface portion 8a is formed into a flat inclined surface so as to have approximately the same height (flushness) as the upper surface of the upper frame 9. As shown in FIGS. The lower surface portion 8b shown in FIGS. 7, 9, and 10 is a portion that constitutes the lower surface of the vertex cover 8. As shown in FIG. 10, the lower surface portion 8b has a front side that is approximately the same height (flush) as the lower surface of the upper frame 9, and a rear side that is higher than the lower surface of the upper frame 9 (projects downward). As shown, it is formed into a flat inclined surface that slopes at a plurality of inclination angles from the front side to the rear side.

図7及び図9~図13に示す側面部8cは、頂点カバー8の両側面を構成する部分である。側面部8cは、図7及び図10に示すように、上枠9の上端部の両側面を挟み込むように、上枠9の上端部の両側面にそれぞれ着脱自在に取り付けられる。側面部8cは、図7及び図9に示すように、前側及び後側に丸みが形成された平坦な板状部である。図7~図9に示す背面部8dは、頂点カバー8の背面を構成する部分である。背面部8dは、図8及び図9に示すように、外観が略球面状に形成されており、上面部8a、下面部8b及び側面部8cの後側を接続するように、上面部8a、下面部8b及び側面部8cと同じ高さ(面一)に形成されている。 The side portions 8c shown in FIGS. 7 and 9 to 13 constitute both side surfaces of the apex cover 8. As shown in FIG. As shown in FIGS. 7 and 10, the side parts 8c are detachably attached to both sides of the upper end of the upper frame 9 so as to sandwich both sides of the upper end of the upper frame 9. As shown in FIGS. 7 and 9, the side surface portion 8c is a flat plate-shaped portion with rounded front and rear sides. The back surface portion 8d shown in FIGS. 7 to 9 is a portion that constitutes the back surface of the apex cover 8. As shown in FIGS. As shown in FIGS. 8 and 9, the back surface portion 8d has a substantially spherical appearance, and has an upper surface portion 8a, It is formed at the same height (flush) as the lower surface part 8b and the side surface part 8c.

図7~図11及び図13に示す上側稜角部8eは、上面部8aと側面部8cとが交わる部分である。上側稜角部8eは、図7~図9に示すように、上面部8a及び側面部8cの長さ方向に沿って直線状に形成されており、図10に示すように断面形状が角に形成されている。図7、図9及び図10に示す下側稜角部8fは、下面部8bと側面部8cとが交わる部分である。下側稜角部8fは、図7及び図9に示すように、下面部8b及び側面部8cの長さ方向に沿って曲線状及び直線状に形成されており、図10に示すように断面形状が角に形成されている。 The upper edge portion 8e shown in FIGS. 7 to 11 and 13 is a portion where the upper surface portion 8a and the side surface portion 8c intersect. The upper ridge corner portion 8e is formed linearly along the length direction of the upper surface portion 8a and the side surface portion 8c, as shown in FIGS. 7 to 9, and has an angular cross-sectional shape as shown in FIG. has been done. The lower edge portion 8f shown in FIGS. 7, 9, and 10 is a portion where the lower surface portion 8b and the side surface portion 8c intersect. As shown in FIGS. 7 and 9, the lower ridge portion 8f is formed in a curved and linear shape along the length direction of the lower surface portion 8b and the side surface portion 8c, and has a cross-sectional shape as shown in FIG. is formed at the corner.

図7~図10に示す装着部8gは、空力音低減構造20A,20Bを装着する部分である。装着部8gは、図10に示すように、上面部8a及び側面部8cに所定の深さで形成された凹部であり、上側稜角部8eを切り欠くように、図8~図10に示すように所定の長さ及び幅で形成されている。装着部8gは、空力音低減構造20A,20Bが着脱自在に嵌合するように、図8及び図9に示すように平面形状及び側面形状が四角形に形成されている。図10に示す貫通孔8hは、頂点カバー8を貫通する部分である。貫通孔8hは、頂点カバー8の側面部8cを貫通するように形成されている。 The mounting portion 8g shown in FIGS. 7 to 10 is a portion to which the aerodynamic noise reduction structures 20A and 20B are mounted. As shown in FIG. 10, the mounting portion 8g is a recess formed at a predetermined depth in the upper surface portion 8a and the side surface portion 8c, and is formed by cutting out the upper edge portion 8e as shown in FIGS. 8 to 10. It is formed with a predetermined length and width. As shown in FIGS. 8 and 9, the mounting portion 8g has a rectangular planar shape and side surface shape so that the aerodynamic noise reduction structures 20A and 20B are removably fitted therein. The through hole 8h shown in FIG. 10 is a portion that penetrates the vertex cover 8. The through hole 8h is formed to penetrate the side surface 8c of the vertex cover 8.

図1~図10に示す上枠9は、舟支え部7に回転自在に連結される部材である。上枠9は、枠組6の上半分を構成する筒状部材であり、図6に示す舟支えリンク10を内部に収容している。上枠9は、この上枠9の一端が舟支え部7に回転自在に連結されており、この上枠9の他端が下枠11に回転自在に連結されている。舟支えリンク10は、舟体5及び舟支え部7を所定の姿勢に維持する部材である。舟支えリンク10は、この舟支えリンク10の一端が舟支え部7に回転自在に連結されており、この舟支えリンク10の他端が下枠11に回転自在に連結されている。 The upper frame 9 shown in FIGS. 1 to 10 is a member rotatably connected to the boat support section 7. The upper frame 9 is a cylindrical member that constitutes the upper half of the framework 6, and accommodates a boat support link 10 shown in FIG. 6 therein. One end of the upper frame 9 is rotatably connected to the boat support section 7, and the other end of the upper frame 9 is rotatably connected to the lower frame 11. The boat support link 10 is a member that maintains the boat body 5 and the boat support section 7 in a predetermined posture. One end of the boat support link 10 is rotatably connected to the boat support part 7, and the other end of the boat support link 10 is rotatably connected to the lower frame 11.

図1~図10に示す下枠11は、台枠17に回転自在に連結される部材である。下枠11は、枠組6の下半分を構成する筒状部材であり、図6に示す釣り合い棒12を内部に収容している。下枠11は、この下枠11の一端が上枠9に回転自在に連結されており、この下枠11の他端が主軸14に連結されている。釣り合い棒12は、舟体5を上下変位させる軌跡を調整するための部材である。釣り合い棒12は、この釣り合い棒12の一端が上枠9に回転自在に連結され、この釣り合い棒12の他端が主軸14に回転自在に連結されている。図1~図6に示す中間ヒンジ13は、上枠9と下枠11とを回転自在に連結する部分である。中間ヒンジ13は、図6に示すように、上枠9と下枠11とを連結する関節部として機能する。 The lower frame 11 shown in FIGS. 1 to 10 is a member rotatably connected to the underframe 17. The lower frame 11 is a cylindrical member that constitutes the lower half of the framework 6, and accommodates a counterbalance rod 12 shown in FIG. 6 therein. One end of the lower frame 11 is rotatably connected to the upper frame 9, and the other end of the lower frame 11 is connected to the main shaft 14. The counterbalance rod 12 is a member for adjusting the locus of vertical displacement of the boat body 5. One end of the balance rod 12 is rotatably connected to the upper frame 9, and the other end of the balance rod 12 is rotatably connected to the main shaft 14. The intermediate hinge 13 shown in FIGS. 1 to 6 is a portion that rotatably connects the upper frame 9 and the lower frame 11. The intermediate hinge 13 functions as a joint that connects the upper frame 9 and the lower frame 11, as shown in FIG.

図6に示す主軸14は、枠組6を昇降動作させる部材である。主軸14は、枠組6と連動して動作し、正逆方向に回転することによって枠組6を昇降動作させる。主軸14は、台枠17に回転自在に支持されており、下枠11の下端部と一体となって回転する。てこ部15は、直線運動を回転運動に変換する部分である。てこ部15は、主軸14を支点として主軸14と一体となって回転する。主ばね16は、枠組6に上昇力を付与する部材である。主ばね16は、主軸14が回転して枠組6が上昇するように主軸14を付勢する押上げ用ばねである、主ばね16は、この主ばね16の一端が台枠17に回転自在に連結されており、この主ばね16の他端がてこ部15に回転自在に連結されている。 The main shaft 14 shown in FIG. 6 is a member that moves the framework 6 up and down. The main shaft 14 operates in conjunction with the framework 6, and moves the framework 6 up and down by rotating in forward and reverse directions. The main shaft 14 is rotatably supported by the underframe 17 and rotates together with the lower end of the lower frame 11. The lever portion 15 is a portion that converts linear motion into rotational motion. The lever portion 15 rotates together with the main shaft 14 using the main shaft 14 as a fulcrum. The main spring 16 is a member that applies a lifting force to the framework 6. The main spring 16 is a push-up spring that urges the main shaft 14 so that the main shaft 14 rotates and the framework 6 rises. The other end of the main spring 16 is rotatably connected to the lever portion 15.

図6に示す台枠17は、枠組6を支持する部材である。台枠17は、枠組6の基部を支持した状態で、がいし18を介して車体2aの屋根上に設置されている。台枠17は、枠組6を昇降動作させる主軸14、てこ部15及び主ばね16などから構成される昇降機構部を支持する。 The underframe 17 shown in FIG. 6 is a member that supports the framework 6. The underframe 17 supports the base of the framework 6 and is installed on the roof of the vehicle body 2a via an insulator 18. The underframe 17 supports an elevating mechanism section that includes a main shaft 14, a lever section 15, a main spring 16, and the like for moving the frame 6 up and down.

図2~図6に示す風防カバー18は、台枠17を被覆する部材である。風防カバー18は、図6に示すように、主軸14、てこ部15、主ばね16及び台枠17などを被覆しており、図2及び図3に示すように流れFを妨げないような形状に形成されている。風防カバー18は、台枠17内に流れFが侵入して大きな空力音が発生するのを防ぐとともに、空気抵抗が増加するのを防ぐ。風防カバー18は、例えば、FRP製の被覆部材である。 The windshield cover 18 shown in FIGS. 2 to 6 is a member that covers the underframe 17. As shown in FIG. 6, the windshield cover 18 covers the main shaft 14, lever portion 15, main spring 16, underframe 17, etc., and has a shape that does not impede the flow F as shown in FIGS. 2 and 3. is formed. The windshield cover 18 prevents the flow F from entering into the underframe 17 and generating large aerodynamic noise, and also prevents air resistance from increasing. The windshield cover 18 is, for example, a covering member made of FRP.

図2及び図4~図6に示すがいし19は、車体2aと台枠17との間を電気的に絶縁する部材である。がいし19は、例えば、空力音の発生に対して抑制効果のある形状に形成されている低騒音がいしである。がいし19は、このがいし19の後縁部に発生する渦の放出を抑制するために、水平面で切断したときの断面が略楕円形に形成されている。がいし19は、台枠17の両縁部寄りの底面をそれぞれ支持する。 The insulator 19 shown in FIGS. 2 and 4 to 6 is a member that electrically insulates between the vehicle body 2a and the underframe 17. The insulator 19 is, for example, a low-noise insulator formed in a shape that has the effect of suppressing the generation of aerodynamic noise. The insulator 19 has a substantially elliptical cross section when cut along a horizontal plane in order to suppress the release of vortices generated at the rear edge of the insulator 19. The insulators 19 support the bottom surfaces of the underframe 17 near both edges.

図1~図13に示す空力音低減構造20A,20Bは、集電装置3から発生する空力音を低減する構造である。空力音低減構造20A,20Bは、集電装置3の空力音発生源から発生する空力音を低減する。ここで、空力音発生源とは、頂点カバー8の隣り合う上面部8a及び側面部8cが交わる上側稜角部8eである。空力音低減構造20A,20Bは、頂点カバー8の装着部8gに着脱自在に装着される合成樹脂製又は金属製の流路付き板であり、図7~図10に示すように装着部8gの長さ、幅及び深さと略同じ長さ、幅及び厚さに形成されている。空力音低減構造20A,20Bは、例えば、板厚が10mmである。空力音低減構造20A,20Bは、図7に示すように、頂点カバー8に装着されたときに、この頂点カバー8の中心線を中心として対称構造である。 The aerodynamic noise reduction structures 20A and 20B shown in FIGS. 1 to 13 are structures that reduce aerodynamic noise generated from the current collector 3. The aerodynamic noise reduction structures 20A and 20B reduce aerodynamic noise generated from the aerodynamic noise generation source of the current collector 3. Here, the aerodynamic sound source is the upper edge portion 8e where the adjacent top surface portion 8a and side surface portion 8c of the apex cover 8 intersect. The aerodynamic noise reduction structures 20A and 20B are plates with channels made of synthetic resin or metal that are removably attached to the attachment portion 8g of the vertex cover 8, and as shown in FIGS. It is formed to have substantially the same length, width, and depth as the length, width, and depth. The aerodynamic sound reduction structures 20A and 20B have a plate thickness of, for example, 10 mm. As shown in FIG. 7, the aerodynamic noise reduction structures 20A and 20B have a symmetrical structure with respect to the center line of the apex cover 8 when attached to the apex cover 8.

空力音低減構造20A,20Bは、頂点カバー8の装着部8gに装着されたときに、頂点カバー8の一部を構成しており、この空力音低減構造20A,20Bの上面部、側面部及び上側稜角部が頂点カバー8の上面部8a、側面部8c及び上側稜角部8eの一部をそれぞれ構成する。空力音低減構造20A,20Bは、図7、図9~図11に示すように、空力音低減構造20A,20Bの上面が、頂点カバー8の上面部8aと同じ高さ(面一)になるように平坦面に形成されており、図9及び図11に示すように頂点カバー8の背面部8d寄りの空力音低減構造20A,20Bの上端部が平坦な傾斜面に形成されている。空力音低減構造20A,20Bは、図7、図8及び図10に示すように、空力音低減構造20A,20Bの側面部が、頂点カバー8の側面部8cと同じ高さ(面一)になるように平坦面に形成されている。空力音低減構造20A,20Bは、いずれも同一構造であり、以下では一方の空力音低減構造20Aについて説明し、他方の空力音低減構造20Bについては詳細な説明を省略する。空力音低減構造20A,20Bは、図9~図11に示す接合部21a~21dと、図9及び図10に示す貫通孔22と、図10~図13に示す複数の開口部23と、複数の流路24a~24cと、図10、図12及び図13に示す交差部25と、図7~図10に示す固定部26などを備えている。 The aerodynamic noise reduction structures 20A and 20B constitute a part of the apex cover 8 when attached to the mounting portion 8g of the apex cover 8, and the aerodynamic noise reduction structures 20A and 20B form a part of the top surface, side surface and The upper edge portion constitutes a portion of the upper surface portion 8a, side portion 8c, and upper edge portion 8e of the vertex cover 8, respectively. As shown in FIGS. 7 and 9 to 11, the top surfaces of the aerodynamic noise reduction structures 20A and 20B are at the same height (flush) as the top surface portion 8a of the apex cover 8. As shown in FIGS. 9 and 11, the upper ends of the aerodynamic noise reduction structures 20A and 20B near the back surface 8d of the apex cover 8 are formed as flat inclined surfaces. As shown in FIGS. 7, 8, and 10, the aerodynamic noise reduction structures 20A and 20B have side surfaces that are at the same height (flush) as the side surface 8c of the apex cover 8. It is formed on a flat surface. The aerodynamic noise reduction structures 20A and 20B are both the same structure, and below, one aerodynamic noise reduction structure 20A will be explained, and detailed explanation of the other aerodynamic noise reduction structure 20B will be omitted. The aerodynamic noise reduction structures 20A and 20B include joint portions 21a to 21d shown in FIGS. 9 to 11, through holes 22 shown in FIGS. 9 and 10, and a plurality of openings 23 shown in FIGS. 10 to 13. The cross section 25 shown in FIGS. 10, 12 and 13, and the fixing section 26 shown in FIGS. 7 to 10 are provided.

図9~図11に示す接合部21a~21dは、頂点カバー8の装着部8gと接合する部分である。図9及び図11に示すように、接合部21aは装着部8gの前側の壁部と接合し、接合部21bは装着部8gの後側の壁部と接合し、接合部21cは装着部8gの下側の壁部と接合し、図10に示すように接合部21dは装着部8gの底部と接合する。図9及び図10に示す貫通孔22は、空力音低減構造20A,20Bを貫通する部分である。貫通孔22は、図10に示すように、頂点カバー8の貫通孔8hと対応する位置に形成されている。 The joint parts 21a to 21d shown in FIGS. 9 to 11 are parts that are joined to the mounting part 8g of the vertex cover 8. As shown in FIGS. 9 and 11, the joint part 21a is joined to the front wall of the mounting part 8g, the joint part 21b is joined to the rear wall of the mounting part 8g, and the joint part 21c is joined to the rear wall of the mounting part 8g. As shown in FIG. 10, the joint portion 21d is joined to the bottom of the mounting portion 8g. The through hole 22 shown in FIGS. 9 and 10 is a portion that penetrates the aerodynamic noise reduction structures 20A and 20B. The through hole 22 is formed at a position corresponding to the through hole 8h of the vertex cover 8, as shown in FIG.

図10~図13に示す開口部23は、頂点カバー8の内部に流れFを流入させ、この流入した流れFをこの頂点カバー8の内部から流出させる部分である。開口部23は、図7~図11に示すように、空力音低減構造20A,20Bの上面部8a及び側面部8cに複数形成されている。開口部23は、頂点カバー8の周辺の流れが頂点カバー8の内部に流入し、この頂点カバー8の内部に流入した流れがこの頂点カバー8からこの頂点カバー8の周辺に流出するように、流れFの入口及び出口を兼ねた入出口として機能する。開口部23は、図7~図9及び図11に示すように、頂点カバー8の上側稜角部8eに沿って、頂点カバー8の上面部8a及び側面部8cに形成されている。開口部23は、この開口部23の形状が円形であり、上面部8a及び側面部8cの長さ方向及び幅方向に間隔をあけて並列に2列配置されている。 The opening 23 shown in FIGS. 10 to 13 is a portion that allows the flow F to flow into the interior of the vertex cover 8 and causes the flow F that has flowed in to flow out from the interior of the vertex cover 8. As shown in FIGS. 7 to 11, a plurality of openings 23 are formed on the top surface portion 8a and side surface portion 8c of the aerodynamic noise reduction structures 20A and 20B. The opening 23 is configured such that the flow around the apex cover 8 flows into the inside of the apex cover 8 and the flow that has flowed into the inside of this apex cover 8 flows out from this apex cover 8 to the periphery of this apex cover 8. It functions as an inlet and an outlet for the flow F. The opening 23 is formed in the top surface 8a and side surface 8c of the vertex cover 8 along the upper edge 8e of the vertex cover 8, as shown in FIGS. 7 to 9 and 11. The openings 23 have a circular shape and are arranged in two rows in parallel at intervals in the length direction and width direction of the top surface portion 8a and side surface portion 8c.

開口部23は、図10~図13に示すように、上面部8aの幅方向(空力音低減構造20A,20Bの幅方向(以下、X軸方向という))と、上面部8a及び側面部8cの長さ方向(空力音低減構造20A,20Bの長さ方向(以下、Y軸方向という))と、側面部8cの高さ方向(空力音低減構造20A,20Bの高さ方向(以下、Z軸方向という))とに間隔をあけて形成されている。開口部23は、例えば、図11に示すように、この開口部23の直径φ=2mmであり、隣り合う開口部23の長さ方向における間隔(中心間距離)d1=5.2mmであり、隣り合う開口部23の幅方向及び高さ方向における間隔(中心間距離)d2=4.0mmである。開口部23は、例えば、図11(A)に示すように上面部8aに54個形成されており、図11(B)に示すように側面部8cに48個形成されている。 As shown in FIGS. 10 to 13, the opening 23 extends in the width direction of the top surface portion 8a (the width direction of the aerodynamic noise reduction structures 20A and 20B (hereinafter referred to as the X-axis direction)), and in the top surface portion 8a and the side surface portion 8c. (the length direction of the aerodynamic noise reduction structures 20A, 20B (hereinafter referred to as the Y-axis direction)) and the height direction of the side surface portion 8c (the height direction of the aerodynamic noise reduction structures 20A, 20B (hereinafter referred to as the Z-axis direction)). They are formed at intervals in the axial direction). For example, as shown in FIG. 11, the opening 23 has a diameter φ=2 mm, and the distance between adjacent openings 23 in the length direction (distance between centers) d 1 =5.2 mm, The distance between adjacent openings 23 in the width direction and height direction (distance between centers) d 2 =4.0 mm. For example, 54 openings 23 are formed in the upper surface part 8a as shown in FIG. 11(A), and 48 openings 23 are formed in the side surface part 8c as shown in FIG. 11(B).

図10~図13に示す流路24a~24cは、複数の開口部23同士を接続する部分である。流路24a~24cは、頂点カバー8の内部に三軸方向(X軸方向、Y軸方向及びZ軸方向)に規則的に配置されている。流路24a~24cは、頂点カバー8の内部で複数の開口部23同士をつなぎ、ある開口部23から他の開口部23に流れFを通過させる。流路24a~24cは、頂点カバー8の内部に複数方向に間隔をあけて配列されており、頂点カバー8の表面の高圧部の開口部23から流入した流れFを、頂点カバー8の表面の低圧部の開口部23から流出させる。流路24a~24cは、例えば、頂点カバー8の表面のよどみ点などの高圧部の開口部23から頂点カバー8の内部に流入した気流を、頂点カバー8の表面のはく離点近傍などの低圧部の開口部23から自然に流出させる。 Flow paths 24a to 24c shown in FIGS. 10 to 13 are portions that connect a plurality of openings 23 to each other. The channels 24a to 24c are regularly arranged inside the vertex cover 8 in three axial directions (X-axis direction, Y-axis direction, and Z-axis direction). The flow paths 24a to 24c connect the plurality of openings 23 inside the vertex cover 8, and allow the flow F to pass from one opening 23 to another opening 23. The flow paths 24a to 24c are arranged at intervals in a plurality of directions inside the vertex cover 8, and direct the flow F flowing in from the opening 23 of the high pressure section on the surface of the vertex cover 8 to the flow paths 24a to 24c. It is made to flow out from the opening 23 of the low pressure section. The flow paths 24a to 24c, for example, direct airflow flowing into the interior of the vertex cover 8 from the opening 23 of a high pressure region such as a stagnation point on the surface of the vertex cover 8 to a low pressure region such as near a peeling point on the surface of the vertex cover 8. Let it flow naturally from the opening 23 of the.

流路24a~24cは、図10、図12及び図13に示すように頂点カバー8の内部で三軸方向に延びており、各軸方向に延びる流路24a~24cが交差部25で交差する。流路24aは、図10~図13に示すように、頂点カバー8の内部をX軸方向に直線状に伸びる管路(横管)であり、側面部8cに対して直交するように配列されている。流路24bは、図11及び図12に示すように、頂点カバー8の内部をY軸方向に直線状に伸びる管路(横管)であり、流路24aに対して直交し、かつ、側面部8cに対して平行になるように配列されている。流路24cは、図10、図11及び図13に示すように、頂点カバー8の内部をZ軸方向に直線状に伸びる管路(縦管)であり、流路24a,24bに対して直交し、かつ、側面部8cに対して平行になるように配列されている。 The channels 24a to 24c extend in three axial directions inside the vertex cover 8, as shown in FIGS. 10, 12, and 13, and the channels 24a to 24c extending in each axial direction intersect at an intersection 25. . As shown in FIGS. 10 to 13, the flow path 24a is a pipe (horizontal pipe) that extends linearly in the X-axis direction inside the vertex cover 8, and is arranged perpendicularly to the side surface 8c. ing. As shown in FIGS. 11 and 12, the flow path 24b is a pipe (horizontal pipe) that extends linearly in the Y-axis direction inside the apex cover 8, and is perpendicular to the flow path 24a and extends from the side surface. They are arranged parallel to the portion 8c. As shown in FIGS. 10, 11, and 13, the flow path 24c is a pipe (vertical pipe) that extends linearly in the Z-axis direction inside the vertex cover 8, and is perpendicular to the flow paths 24a and 24b. Moreover, they are arranged parallel to the side surface portion 8c.

図10、図12及び図13に示す交差部25は、流路24a~24cが交差する部分である。交差部25は、流路24a~24cとの間で流れFが相互に通過可能なように、流路24a~24cを接続する。交差部25は、頂点カバー8の内部に間隔をあけて形成されており、流路24a~24cと同様にX軸方向、Y軸方向及びZ軸方向に間隔をあけて規則的に配置されている。交差部25は、流路24a~24c内を自由に流れFが通過するように、この交差部25で流路24a~24cが互いに直交するように流路24a~24cを接続している。交差部25は、図11に示すように、この交差部25を原点とする3次元の直交座標系を想定したときに、この交差部25を原点としてX軸方向、Y軸方向及びZ軸方向に流路24a~24cが延びている。 The intersection portion 25 shown in FIGS. 10, 12, and 13 is a portion where the channels 24a to 24c intersect. The intersection 25 connects the flow paths 24a to 24c such that the flow F can mutually pass between the flow paths 24a to 24c. The intersection portions 25 are formed at intervals inside the vertex cover 8, and are regularly arranged at intervals in the X-axis direction, Y-axis direction, and Z-axis direction similarly to the flow paths 24a to 24c. There is. The intersection 25 connects the channels 24a to 24c so that the channels 24a to 24c are perpendicular to each other so that the flow F can freely pass through the channels 24a to 24c. As shown in FIG. 11, the intersection 25 is arranged in the X-axis direction, Y-axis direction, and Z-axis direction with this intersection 25 as the origin, assuming a three-dimensional orthogonal coordinate system with the intersection 25 as the origin. Flow paths 24a to 24c extend therein.

図7~図10に示す固定部26は、空力音低減構造20A,20Bを固定する手段である。固定部26は、図10に示すように、舟支え部7の側面部に形成された雌ねじ部と噛み合う雄ねじ部を有するボルトなどの締結部材である。固定部26は、空力音低減構造20A,20Bの貫通孔22及び頂点カバー8の貫通孔8hに挿入されて、空力音低減構造20A,20Bを舟支え部7に着脱自在に固定する。固定部26は、空力音低減構造20A,20Bと舟支え部7との間に頂点カバー8を挟み込むように、空力音低減構造20A,20Bを頂点カバー8とともに舟支え部7に締結(共締め)している。 The fixing portion 26 shown in FIGS. 7 to 10 is a means for fixing the aerodynamic noise reduction structures 20A and 20B. As shown in FIG. 10, the fixing part 26 is a fastening member such as a bolt having a male threaded part that engages with a female threaded part formed on the side surface of the boat support part 7. The fixing portion 26 is inserted into the through hole 22 of the aerodynamic noise reduction structure 20A, 20B and the through hole 8h of the apex cover 8, and detachably fixes the aerodynamic noise reduction structure 20A, 20B to the boat support portion 7. The fixing part 26 fastens the aerodynamic noise reduction structures 20A and 20B to the boat support part 7 together with the apex cover 8 so that the apex cover 8 is sandwiched between the aerodynamic noise reduction structures 20A and 20B and the boat support part 7 (co-tightened together). )are doing.

次に、この発明の第1実施形態に係る集電装置の空力音低減構造の作用を説明する。
図14は、円柱表面に多孔質材を適用した場合の風洞試験による流れ場の変化を示す写真である。図14(A)に示す空力音低減構造は、図11に示す空力音低減構造20A,20Bを模擬した多孔質材である。多孔質材は、気孔同士の壁に微小な孔が形成されており、気孔同士が連通している連続気孔のような三次元の骨格網状構造を有する。多孔質材は、難燃性又は不燃性の金属製の多孔質材のような硬質多孔質材である。
Next, the operation of the aerodynamic noise reduction structure of the current collector according to the first embodiment of the present invention will be explained.
FIG. 14 is a photograph showing changes in the flow field in a wind tunnel test when a porous material is applied to the surface of a cylinder. The aerodynamic noise reduction structure shown in FIG. 14(A) is a porous material that simulates the aerodynamic noise reduction structures 20A and 20B shown in FIG. 11. A porous material has a three-dimensional skeletal network structure in which minute pores are formed in the walls of the pores, and the pores communicate with each other, such as continuous pores. The porous material is a rigid porous material such as a flame retardant or non-combustible metal porous material.

図14(A)に示す流れ場の円柱の表面が空力音低減構造を備えていない場合には、図14(B)(C)に示すように円柱の最大幅部よりも僅かに上流側の表面上の剥離点で、矢印方向の流れFが剥離して、この円柱の下流側に空気が交互に回り込む。このため、円柱の表面の剥離せん断層から発生する渦の相互作用によってカルマン渦が発生し、このカルマン渦に起因する騒音や振動が発生する。一方、図14(A)に示す流れ場の円柱の表面が空力音低減構造を備えている場合には、図14(D)(E)に示すように空力音低減構造の内部に流れFが流入し、空力音低減構造内の流れFが剥離点近傍などの低圧部から自然に流出する。その結果、流れ場が安定化して渦の放出が弱まり空力音が低減する。 If the surface of the cylinder in the flow field shown in Fig. 14(A) is not equipped with an aerodynamic sound reduction structure, the surface of the cylinder in the flow field shown in Fig. 14(A) is slightly upstream of the maximum width part of the cylinder as shown in Fig. 14(B) and (C). At the separation point on the surface, the flow F in the direction of the arrow separates, and air alternately flows around the downstream side of this cylinder. Therefore, a Karman vortex is generated by the interaction of vortices generated from the separation shear layer on the surface of the cylinder, and noise and vibration are generated due to this Karman vortex. On the other hand, when the surface of the cylinder in the flow field shown in FIG. 14(A) is equipped with an aerodynamic noise reduction structure, the flow F is inside the aerodynamic noise reduction structure as shown in FIGS. 14(D) and (E). The flow F in the aerodynamic noise reduction structure naturally flows out from a low pressure area such as near the separation point. As a result, the flow field is stabilized, vortex shedding is weakened, and aerodynamic noise is reduced.

図1~図5に示す進行方向Dに車両2が走行すると、図7~図10に示す集電装置3の直線的な上側稜角部8eにおいて流れFの剥離が生ずる。図7~図11に示す頂点カバー8の表面のよどみ点などの高圧部の開口部23から流れFが流入する。高圧部の開口部23から流れFが流入すると、図10~図13に示す流路24a~24c及び交差部25を流れFが通過して、図7~図11に示す頂点カバー8の表面の剥離点近傍などの低圧部の開口部23から流れFが自然に流出する。その結果、流れ場が安定化して渦の放出が弱まり空力音が低減する。 When the vehicle 2 travels in the traveling direction D shown in FIGS. 1 to 5, separation of the flow F occurs at the linear upper corner portion 8e of the current collector 3 shown in FIGS. 7 to 10. Flow F enters from an opening 23 in a high pressure area, such as a stagnation point on the surface of the apex cover 8 shown in FIGS. 7-11. When the flow F flows in from the opening 23 of the high pressure section, the flow F passes through the flow paths 24a to 24c and the intersection 25 shown in FIGS. 10 to 13, and the surface of the apex cover 8 shown in FIGS. Flow F naturally flows out from the opening 23 in the low pressure area near the separation point. As a result, the flow field is stabilized, vortex shedding is weakened, and aerodynamic noise is reduced.

次に、この発明の第1実施形態に係る集電装置の空力音低減構造の製造方法について説明する。
図1~図13に示す空力音低減構造20A,20Bは、造形装置、機械加工、成形又は鋳造によって製造される。ここで、造形装置は、任意の形状の物体を製造する装置である。造形装置は、例えば、仮想の3次元空間上に立体的な形状をコンピュータによって設計する3DCAD(3 Dimensional Computer Aided Design)、又は仮想の3次元空間上に立体的な形状をコンピュータによって作成する3DCG(3 Dimensional Computer Graphics)などによって生成された3次元的なデータで構成された3次元ディジタル・モデルに基づいて物体を製造する3Dプリンタなどである。
Next, a method for manufacturing the aerodynamic noise reduction structure for a current collector according to the first embodiment of the present invention will be described.
The aerodynamic noise reduction structures 20A and 20B shown in FIGS. 1 to 13 are manufactured using a shaping device, machining, molding, or casting. Here, the modeling device is a device that manufactures objects of arbitrary shapes. The modeling device is, for example, 3DCAD (3 Dimensional Computer Aided Design), which uses a computer to design a three-dimensional shape in a virtual three-dimensional space, or 3DCG (which uses a computer to create a three-dimensional shape in a virtual three-dimensional space). 3D printers that manufacture objects based on 3D digital models made up of 3D data generated by 3D computer graphics.

空力音低減構造20A,20Bを樹脂3Dプリンタによって製造する場合には、例えば、液状樹脂に紫外線などを照射して少しずつ硬化させて物体を製造する光造形法、熱で溶解した樹脂を少しずつ積み重ねて物体を製造する熱溶解積層法(Fused Deposition Modeling(FDM)法)、シート材を物体の断面形状に切断して各層を接着及び溶接しながら積層し紫外線を照射又は加熱し硬化させ物体を製造するシート積層法、粉末樹脂に接着剤を吹き付けて物体を製造する粉末固着法、液体の光硬化性樹脂又はワックスをノズルから吹き付けて紫外線を照射又は加熱し硬化させ物体を製造する材料噴射法などによって、空力音低減構造20A,20Bを製造する。 When manufacturing the aerodynamic sound reduction structures 20A and 20B using a resin 3D printer, for example, a stereolithography method in which the object is manufactured by irradiating a liquid resin with ultraviolet rays and curing it little by little, or a method in which the resin melted with heat is gradually manufactured. Fused Deposition Modeling (FDM) method is used to manufacture objects by stacking them on top of each other.The sheet material is cut into the cross-sectional shape of the object, and each layer is laminated by gluing and welding, and the object is cured by irradiation with ultraviolet rays or heating. Sheet lamination method for manufacturing, powder fixing method for manufacturing objects by spraying adhesive on powdered resin, material injection method for manufacturing objects by spraying liquid photocurable resin or wax from a nozzle and curing it by irradiating ultraviolet rays or heating. The aerodynamic noise reduction structures 20A and 20B are manufactured by the following methods.

空力音低減構造20A,20Bを金属3Dプリンタによって製造する場合には、例えば、金属粉末にレーザ光を照射してこの金属粉末を焼結し物体を製造するレーザ焼結法(Selective laser sintering(SLS)法)、レーザ焼結法の炭酸ガスレーザに代えてイッテルビウムレーザ光を金属粉末に照射してこの金属粉末を焼結し物体を製造する直接金属レーザ焼結法(Direct metal laser sintering(DMLS)法)、金属粉末にレーザ光を照射してこの金属粉末を溶融させ物体を製造するレーザ溶融法(Selective laser melting(SLM)法)、金属粉末に電子ビームを照射してこの金属粉末を溶融させ物体を製造する電子ビーム溶解法(Electron Beam Melting(EBM)法、電子ビーム溶解法の金属粉末に代えて金属ワイヤに電子ビームを照射してこの金属ワイヤを溶融させ物体を製造する溶融金属積層法、ノズルから金属粉末を溶融プールに落としレーザ光で焼結して物体を製造するレーザ直接積層法(Laser engineered net shaping(LENS)法などによって、空力音低減構造20A,20Bを製造する。 When manufacturing the aerodynamic sound reduction structures 20A and 20B using a metal 3D printer, for example, selective laser sintering (SLS) is used, in which metal powder is irradiated with laser light and the metal powder is sintered to manufacture the object. ) method), Direct metal laser sintering (DMLS) method, in which a metal powder is irradiated with ytterbium laser light instead of the carbon dioxide laser in the laser sintering method, and the metal powder is sintered to produce an object. ), selective laser melting (SLM) method, in which a metal powder is irradiated with a laser beam to melt the metal powder to produce an object; a metal powder is irradiated with an electron beam to melt the metal powder, and an object is manufactured. Electron Beam Melting (EBM) method for manufacturing objects; molten metal lamination method for manufacturing objects by irradiating a metal wire with an electron beam to melt the metal wire instead of metal powder in the electron beam melting method; The aerodynamic sound reduction structures 20A and 20B are manufactured by a laser engineered net shaping (LENS) method, etc., in which metal powder is dropped into a molten pool from a nozzle and sintered with laser light to manufacture an object.

空力音低減構造20A,20Bを機械加工によって製造する場合には、金属製又は合成樹脂製の板材を切削加工することによって、図11に示す板状部材を製造し、この板状部材に穴あけ加工して開口部23及び流路24a~24cを製造する。例えば、Y軸方向に長いドリルを使用して穴あけ加工した後に不要な流路を塞ぐことによって製造する。空力音低減構造20A,20Bを機械加工又は成形によって製造する場合には、Y軸方向の流路24bを上下半分に分割した分割板を3層に分けて製造し、この分割板を積層して一体化した後に、開口部23及び流路24a,24cを穴あけ加工して製造する。空力音低減構造20A,20Bを鋳造によって製造する場合には、開口部23及び流路24a~24cが予め形成された鋳型に溶融金属を注入して製造する。 When manufacturing the aerodynamic noise reduction structures 20A and 20B by machining, a plate-like member shown in FIG. 11 is manufactured by cutting a metal or synthetic resin plate material, and a hole is drilled in this plate-like member. The opening 23 and the channels 24a to 24c are manufactured by doing this. For example, it is manufactured by drilling holes using a long drill in the Y-axis direction and then blocking unnecessary flow channels. When manufacturing the aerodynamic noise reduction structures 20A and 20B by machining or molding, a dividing plate that divides the flow path 24b in the Y-axis direction into upper and lower halves is manufactured in three layers, and these dividing plates are stacked. After integration, the opening 23 and flow channels 24a, 24c are manufactured by drilling. When manufacturing the aerodynamic noise reduction structures 20A and 20B by casting, they are manufactured by pouring molten metal into a mold in which openings 23 and channels 24a to 24c are formed in advance.

この発明の第1実施形態に係る集電装置の空力音低減構造とその製造方法には、以下に記載するような効果がある。
(1) この第1実施形態では、頂点カバー8の内部に複数の開口部23が流れFを流入させ、この流入した流れFをこの頂点カバー8の内部から複数の開口部23が流出させ、複数の開口部23同士を複数の流路24a~24cが接続する。また、この第1実施形態では、頂点カバー8の内部に複数方向に間隔をあけて複数の流路24a~24cが配列されており、この頂点カバー8の表面の高圧部の開口部23から流入した流れFを、この頂点カバー8の表面の低圧部の開口部23から複数の流路24a~24cが流出させる。このため、部材表面で流れFの流入及び流出を自然に生じさせるような流路24a~24cを設けることによって、空力音を低減することができる。また、従来の多孔質材よりも適用が容易な構造によって空力音低減効果を図ることができるとともに、従来の多孔質材を流路付きの部材によって簡単に代替することができる。
The aerodynamic noise reduction structure of the current collector and the manufacturing method thereof according to the first embodiment of the present invention have the following effects.
(1) In the first embodiment, the plurality of openings 23 allow the flow F to flow into the inside of the vertex cover 8, and the plurality of openings 23 allow the flow F to flow out from the inside of the vertex cover 8. A plurality of channels 24a to 24c connect the plurality of openings 23 to each other. Further, in the first embodiment, a plurality of channels 24a to 24c are arranged inside the apex cover 8 at intervals in a plurality of directions, and inflow flows from the opening 23 of the high pressure section on the surface of the apex cover 8. A plurality of channels 24a to 24c allow the flow F to flow out from the opening 23 of the low pressure portion on the surface of the vertex cover 8. Therefore, aerodynamic noise can be reduced by providing flow paths 24a to 24c that allow the flow F to naturally flow in and out on the member surface. In addition, the aerodynamic sound reduction effect can be achieved with a structure that is easier to apply than conventional porous materials, and the conventional porous materials can be easily replaced by members with flow channels.

(2) この第1実施形態では、頂点カバー8の内部を複数の流路24a~24cが三軸方向に延びており、各軸方向に延びる流路24a~24cが交差部25で交差する。このため、部材に穴あけ加工などを行うだけで頂点カバー8に適用可能であり、多孔質材などに比べて実施が容易であり、単純な形状の簡単な構造によって空力音を低減することができる。また、母材への穴加工であるため頂点カバー8から剥がれることがなく、多孔質材の接着よりも信頼性を向上させることができるとともに、頂点カバー8に容易に適用することができる。 (2) In the first embodiment, a plurality of channels 24a to 24c extend in triaxial directions inside the vertex cover 8, and the channels 24a to 24c extending in each axial direction intersect at an intersection 25. Therefore, it can be applied to the apex cover 8 by simply drilling holes in the member, which is easier to implement than porous materials, and the simple structure with a simple shape can reduce aerodynamic noise. . Further, since the hole is formed in the base material, it will not peel off from the vertex cover 8, and reliability can be improved compared to adhesion of a porous material, and it can be easily applied to the vertex cover 8.

(3) この第1実施形態では、頂点カバー8の上側稜角部8eに沿って、頂点カバー8の上面部8a及び側面部8cに複数の開口部23が形成されている。このため、集電装置3において主要な空力音発生源である頂点カバー8から空力音が発生するのを抑えることができる。 (3) In the first embodiment, a plurality of openings 23 are formed in the top surface portion 8a and side surface portion 8c of the vertex cover 8 along the upper edge portion 8e of the vertex cover 8. Therefore, generation of aerodynamic noise from the vertex cover 8, which is a main source of aerodynamic noise in the current collector 3, can be suppressed.

(4) この第1実施形態では、空力音低減構造20A,20Bを造形装置によって造形する。このため、高強度樹脂や金属を3Dプリンタのような造形装置によって出力し、集電装置3を構成する部材と一体成型することができる。また、従来の多孔質材では接着して取り付けることが困難であった三次元曲面などに簡単に取り付けることができる。その結果、空力音低減構造20A,20Bを容易に製造することができるとともに、空力音低減構造20A,20Bを集電装置3に容易に適用することができる。 (4) In this first embodiment, the aerodynamic noise reduction structures 20A and 20B are shaped using a shaping device. Therefore, high-strength resin or metal can be output using a modeling device such as a 3D printer and integrally molded with the members constituting the current collector 3. In addition, it can be easily attached to three-dimensional curved surfaces, etc., which are difficult to attach using adhesive with conventional porous materials. As a result, the aerodynamic noise reduction structures 20A, 20B can be easily manufactured, and the aerodynamic noise reduction structures 20A, 20B can be easily applied to the current collector 3.

(第2実施形態)
以下では、図1~図13に示す部分と同一の部分については、同一の符号を付して詳細な説明を省略する。
図15に示す空力音低減構造20A,20Bは、図11に示す空力音低減構造20A,20Bとは異なり、側面部8cに形成されている開口部23の個数が多く、側面部8cの略全面に開口部23を備えている。開口部23は、例えば、図15(B)に示すように側面部8cに222個形成されている。この第2実施形態には、第1実施形態と同様の効果がある。
(Second embodiment)
In the following, parts that are the same as those shown in FIGS. 1 to 13 are given the same reference numerals and detailed explanations will be omitted.
Unlike the aerodynamic noise reduction structures 20A and 20B shown in FIG. 11, the aerodynamic noise reduction structures 20A and 20B shown in FIG. is provided with an opening 23. For example, 222 openings 23 are formed in the side surface 8c as shown in FIG. 15(B). This second embodiment has the same effects as the first embodiment.

次に、この発明の実施例について説明する。
(風洞試験)
図17に示すように、平滑化舟体を備える実物の新幹線パンタグラフの頂点カバーに供試体A~Cを取り付けて、風洞試験により空力音の評価を行った。風洞試験は、公益財団法人鉄道総合技術研究所の開放胴型の風洞試験装置を使用した。図16に示すように、風洞試験装置の風洞測定部の第1模型支持台車上に実物の新幹線パンタグラフを支持した状態で、風洞測定部内の新幹線用パンタグラフに吹き出しノズルから風速360km/hの空気を吹き出し、この空気の流れによって新幹線パンタグラフから発生する空力音を空力音測定マイクによって測定した。
Next, embodiments of the invention will be described.
(Wind tunnel test)
As shown in FIG. 17, specimens A to C were attached to the apex cover of an actual Shinkansen pantograph equipped with a smoothed hull, and aerodynamic noise was evaluated through wind tunnel tests. The wind tunnel test used an open-body wind tunnel test device provided by the Railway Technical Research Institute. As shown in Figure 16 , with an actual Shinkansen pantograph supported on the first model support cart of the wind tunnel measurement section of the wind tunnel test equipment, air at a wind speed of 360 km/h is supplied from the blowing nozzle to the Shinkansen pantograph in the wind tunnel measurement section. The aerodynamic sound generated from the Shinkansen pantograph due to the air flow was measured using an aerodynamic sound measurement microphone.

(供試体)
図17(A)に示す供試体Aは、現用品の新幹線パンタグラフの頂点カバーである。供試体Aは、図11に示す頂点カバー8の装着部8gに、開口部23のない板を装着している。図17(B)に示す供試体Bは、現用品の新幹線パンタグラフの頂点カバーの側面部の略全面に開口部が形成されている。供試体Bは、図15に示す第2実施形態であり、側面部8cの略全面に開口部23を有する流路付き板を頂点カバー8の装着部8gに装着している。図17(C)に示す供試体Cは、現用品の新幹線パンタグラフの頂点カバーの角部に位置する2列のみに開口部が形成されている。供試体Cは、図11に示す第1実施形態であり、上側稜角部8eに沿って上面部8a及び側面部8cに開口部23をそれぞれ2列のみ有する流路付き板を頂点カバー8の装着部8gに装着している。図17(B)(C)に示す供試体B,Cは、厚さ10mmの板材に対して直交する三軸方向に直径2mmの流路が形成されている。
(Specimen)
Specimen A shown in FIG. 17(A) is a vertex cover of a current Shinkansen pantograph. In the specimen A, a plate without an opening 23 is attached to the attachment portion 8g of the vertex cover 8 shown in FIG. In the specimen B shown in FIG. 17(B), an opening is formed on substantially the entire side surface of the apex cover of a current Shinkansen pantograph. Specimen B is a second embodiment shown in FIG. 15, in which a plate with a flow path having an opening 23 on substantially the entire surface of the side surface 8c is mounted on the mounting portion 8g of the vertex cover 8. In the specimen C shown in FIG. 17(C), openings are formed only in two rows located at the corners of the vertex cover of the current Shinkansen pantograph. Specimen C is the first embodiment shown in FIG. 11, in which the apex cover 8 is attached to a plate with flow channels having only two rows of openings 23 in the top surface portion 8a and the side surface portion 8c along the upper edge portion 8e. It is attached to part 8g. In specimens B and C shown in FIGS. 17(B) and 17(C), channels with a diameter of 2 mm are formed in three axes perpendicular to a plate material having a thickness of 10 mm.

(空力音の測定結果)
図17は、風洞試験による供試体A~Cの空力音の測定結果である。図17に示す縦軸は、騒音レベルOA値(dB(A))である。その結果、供試体Aに比べて供試体BはOA値を0.2dB程度低減できることが確認された。また、供試体Aに比べて供試体CはOA値を0.4dB程度低減できることが確認された。さらに、供試体Cのほうが供試体Bに比べて空力音低減効果が高いことが確認された。
(Aerodynamic sound measurement results)
FIG. 17 shows the measurement results of aerodynamic noise of specimens A to C in a wind tunnel test. The vertical axis shown in FIG. 17 is the noise level OA value (dB(A)). As a result, it was confirmed that the OA value of specimen B could be reduced by approximately 0.2 dB compared to specimen A. Furthermore, it was confirmed that the OA value of specimen C could be reduced by approximately 0.4 dB compared to specimen A. Furthermore, it was confirmed that specimen C had a higher aerodynamic sound reduction effect than specimen B.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、集電装置3としてシングルアーム式パンタグラフを例に挙げて説明したが、菱型パンタグラフなどの他の形式のパンタグラフについても、この発明を適用することができる。また、この実施形態では、車両2の進行方向前側に中間ヒンジ13が位置するなびき方向に集電装置3が移動する場合を例に挙げて説明したが、車両2の進行方向後側に中間ヒンジ13が位置する反なびき方向に集電装置3が移動する場合についても、この発明を適用することができる。さらに、この実施形態では、隣り合う複数面が交わる稜角部が空力音発生源である場合を例に挙げて説明したが、複数の部材が接合又は近接する箇所の周辺部のような空力音発生源についても、この発明を適用することができる。同様に、この実施形態では、集電装置3の空力音発生源として頂点カバー8の上側稜角部8eを例に挙げて説明したが、上側稜角部8eにこの発明を限定するものではない。例えば、頂点カバー8の下側稜角部8fや、中間ヒンジ13の上側稜角部又は下側稜角部や、風防カバー18の上側稜角部、下側稜角部又は風防カバー18とがいし19との接合部などの空力音発生源から発生する空力音を低減する場合についても、この発明を適用することができる。
(Other embodiments)
This invention is not limited to the embodiments described above, and various modifications and changes can be made as described below, and these are also within the scope of this invention.
(1) Although this embodiment has been described using a single-arm pantograph as an example of the current collector 3, the present invention can also be applied to other types of pantographs such as a diamond-shaped pantograph. In addition, in this embodiment, the case where the current collector 3 moves in the fluttering direction in which the intermediate hinge 13 is located on the front side in the traveling direction of the vehicle 2 has been described as an example; The present invention can also be applied to the case where the current collector 3 moves in the anti-swinging direction where the current collector 13 is located. Furthermore, in this embodiment, a case has been described in which the aerodynamic sound generation source is a ridge corner where a plurality of adjacent surfaces intersect. The present invention can also be applied to sources. Similarly, in this embodiment, the upper edge corner portion 8e of the vertex cover 8 has been described as an example of the aerodynamic noise generation source of the current collector 3, but the present invention is not limited to the upper edge corner portion 8e. For example, the lower edge 8f of the apex cover 8, the upper edge or lower edge of the intermediate hinge 13, the upper edge or lower edge of the windshield cover 18, or the joint between the windshield cover 18 and the insulator 19. The present invention can also be applied to the case of reducing aerodynamic noise generated from aerodynamic noise sources such as.

(2) この実施形態では、頂点カバー8の上側稜角部8eの断面形状が角である場合を例に挙げて説明したが、上側稜角部8eの断面形状が丸である場合についても、この発明を適用することができる。また、この実施形態では、頂点カバー8の上面部8a及び側面部8cの長さ方向に開口部23を2列配置する場合を例に挙げて説明したが、開口部23の配列数を2列配置する場合にこの発明を限定するものではない。例えば、頂点カバー8の上面部8a及び側面部8cの長さ方向に開口部23を1列又は3列以上配置する場合についても、この発明を適用することもできる。また、この実施形態では、開口部23の形状が円形である場合を例に挙げて説明したが、開口部23の形状が楕円形、四角形又は多角形などである場合であっても、この発明を適用することができる。さらに、この実施形態では、空力音低減構造20A,20Bを頂点カバー8とともに舟支え部7に固定部26によって締結する場合を例に挙げて説明したが、このような締結方法にこの発明に限定するものではない。例えば、固定部26の雄ねじ部と噛み合う雌ねじ部を頂点カバー8の側面部8cに形成し、空力音低減構造20A,20Bを頂点カバー8に固定部26によって締結する場合についても、この発明を適用することができる。 (2) In this embodiment, the case in which the cross-sectional shape of the upper edge corner portion 8e of the vertex cover 8 is a square has been described as an example, but the present invention also applies when the cross-sectional shape of the upper edge corner portion 8e is round. can be applied. Further, in this embodiment, the case where the openings 23 are arranged in two rows in the length direction of the top surface part 8a and the side surface part 8c of the vertex cover 8 has been described as an example. The present invention is not limited to this arrangement. For example, the present invention can also be applied to a case where one row or three or more rows of openings 23 are arranged in the length direction of the top surface portion 8a and side surface portion 8c of the vertex cover 8. Further, in this embodiment, the case where the shape of the opening 23 is circular has been described as an example, but the present invention can be applied. Further, in this embodiment, the case where the aerodynamic noise reduction structures 20A and 20B are fastened together with the apex cover 8 to the boat support part 7 using the fixing part 26 has been described as an example, but the present invention is not limited to such a fastening method. It's not something you do. For example, the present invention is also applicable to a case where a female threaded portion that engages with a male threaded portion of the fixing portion 26 is formed on the side surface 8c of the apex cover 8, and the aerodynamic noise reduction structures 20A and 20B are fastened to the apex cover 8 by the fixing portion 26. can do.

(3) この実施形態では、X軸方向、Y軸方向及びZ軸方向に開口部23を等間隔に並列に配置した場合を例に挙げて説明したが、X軸方向、Y軸方向及びZ軸方向に開口部23を千鳥状に配列する場合についても、この発明を適用することができる。また、この実施形態では、X軸方向、Y軸方向及びZ軸方向に流路24a~24cを配列する場合を例に挙げて説明したが、流れFの流入と流出が起こる開口部23を接続するように、一方向又は二方向に流路24a~24cを配列する場合についても、この発明を適用することができる。さらに、この実施形態では、流路24a~24cが交差部25で直交する場合を例に挙げて説明したが、流路24a~24cが交差部25で任意の角度で交差する場合についても、この発明を適用することができる。 (3) In this embodiment, the case where the openings 23 are arranged in parallel at equal intervals in the X-axis direction, Y-axis direction, and Z-axis direction has been described as an example. The present invention can also be applied to a case where the openings 23 are arranged in a staggered manner in the axial direction. Further, in this embodiment, the case where the flow paths 24a to 24c are arranged in the X-axis direction, Y-axis direction, and Z-axis direction has been described as an example, but the openings 23 where the flow F flows in and out are connected. The present invention can also be applied to the case where the channels 24a to 24c are arranged in one direction or two directions. Furthermore, in this embodiment, the case where the channels 24a to 24c intersect at right angles at the intersection 25 has been described as an example, but this also applies to the case where the channels 24a to 24c intersect at an arbitrary angle at the intersection 25. The invention can be applied.

1 架線
1a トロリ線
2 車両
2a 車体
3 集電装置
4 すり板
5 舟体
6 枠組
7 舟支え部
8 頂点カバー
8a 上面部
8b 下面部
8c 側面部
8d 背面部
8e 上側稜角部(空力音発生源)
8f 下側稜角部
8g 装着部
8h 雌ねじ部
9 上枠
11 下枠
13 中間ヒンジ
17 台枠
20A,20B 空力音低減構造
21a~21d 接合部
22 貫通孔
23 開口部
24a~24c 流路
25 交差部
26 固定部
F 流れ
D 進行方向
1 Overhead wire 1a Contact wire 2 Vehicle 2a Car body 3 Current collector 4 Slide plate 5 Boat body 6 Frame 7 Boat support section 8 Vertex cover 8a Top section 8b Bottom section 8c Side section 8d Back section 8e Upper ridge corner (aerodynamic sound source)
8f Lower edge part 8g Mounting part 8h Female thread part 9 Upper frame 11 Lower frame 13 Intermediate hinge 17 Underframe 20A, 20B Aerodynamic noise reduction structure 21a to 21d Joint part 22 Through hole 23 Opening part 24a to 24c Channel 25 Intersection part 26 Fixed part F Flow D Direction of movement

Claims (4)

集電装置から発生する空力音を低減する集電装置の空力音低減構造であって、
前記集電装置の頂点カバーの内部に流れを流入させ、この流入した流れをこの頂点カバーの内部から流出させる複数の開口部と、
前記複数の開口部同士を接続する複数の流路とを備え、
前記複数の流路は、前記頂点カバーの内部に複数方向に間隔をあけて配列されており、この頂点カバーの表面の高圧部の開口部から流入した流れを、この頂点カバーの表面の低圧部の開口部から流出させ、
前記空力音低減構造の上面部及び側面部は、前記頂点カバーの上面部及び側面部と同じ高さになるように、この頂点カバーの一部を構成しており、
前記複数の開口部は、前記頂点カバーの上側稜角部に沿って、この頂点カバーの上面部及び側面部に形成されていること、
を特徴とする集電装置の空力音低減構造。
An aerodynamic noise reduction structure for a current collector that reduces aerodynamic noise generated from the current collector,
a plurality of openings for allowing flow to flow into the interior of the apex cover of the current collector and for allowing the flow to flow out from the interior of the apex cover ;
a plurality of flow paths connecting the plurality of openings,
The plurality of flow paths are arranged at intervals in a plurality of directions inside the apex cover , and the flow flowing in from the opening of the high pressure section on the surface of the apex cover is directed to the low pressure section on the surface of the apex cover. flow out from the opening of
The top surface part and side surface part of the aerodynamic noise reduction structure constitute a part of the vertex cover so as to be at the same height as the top surface part and side surface part of the vertex cover,
The plurality of openings are formed in the top and side surfaces of the vertex cover along the upper edge corner of the vertex cover;
Aerodynamic noise reduction structure for current collector featuring:
請求項1に記載の集電装置の空力音低減構造において、
前記複数の流路は、前記頂点カバーの内部を三軸方向に延びており、各軸方向に延びる流路が交差部で交差すること、
を特徴とする集電装置の空力音低減構造。
The aerodynamic noise reduction structure of the current collector according to claim 1,
The plurality of channels extend in triaxial directions inside the apex cover, and the channels extending in each axial direction intersect at an intersection,
Aerodynamic noise reduction structure for current collector featuring:
請求項1又は請求項2に記載の集電装置の空力音低減構造において、
前記空力音低減構造は、前記頂点カバーの上側稜角部を切り欠くように形成された装着部に装着されており、
前記頂点カバーによって覆われる舟支え部と前記空力音低減構造との間にこの頂点カバーを挟み込むように、この空力音低減構造をこの頂点カバーとともにこの舟支え部に着脱自在に固定する固定部を備えること、
を特徴とする集電装置の空力音低減構造。
In the aerodynamic noise reduction structure of the current collector according to claim 1 or 2,
The aerodynamic noise reduction structure is attached to a mounting portion formed by cutting out an upper edge corner portion of the apex cover,
A fixing part that removably fixes the aerodynamic noise reduction structure to the boat support part together with the apex cover so as to sandwich the apex cover between the boat support part covered by the apex cover and the aerodynamic noise reduction structure. be prepared,
Aerodynamic noise reduction structure for current collector featuring:
集電装置から発生する空力音を低減する集電装置の空力音低減構造の製造方法であって、
請求項1から請求項3までのいずれか1項に記載の集電装置の空力音低減構造を造形装置によって造形すること、
を特徴とする集電装置の空力音低減構造の製造方法。
A method for manufacturing an aerodynamic noise reduction structure for a current collector that reduces aerodynamic noise generated from the current collector, the method comprising:
modeling the aerodynamic sound reduction structure of the current collector according to any one of claims 1 to 3 using a modeling device;
A method for manufacturing an aerodynamic noise reduction structure for a current collector, characterized by:
JP2020219066A 2020-12-28 2020-12-28 Aerodynamic noise reduction structure of current collector and its manufacturing method Active JP7399076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020219066A JP7399076B2 (en) 2020-12-28 2020-12-28 Aerodynamic noise reduction structure of current collector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020219066A JP7399076B2 (en) 2020-12-28 2020-12-28 Aerodynamic noise reduction structure of current collector and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022104076A JP2022104076A (en) 2022-07-08
JP7399076B2 true JP7399076B2 (en) 2023-12-15

Family

ID=82279463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020219066A Active JP7399076B2 (en) 2020-12-28 2020-12-28 Aerodynamic noise reduction structure of current collector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7399076B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098109A1 (en) 2000-06-19 2001-12-27 Stephen James Atkins A vehicle appendage and components therefor
JP2009089561A (en) 2007-10-02 2009-04-23 Railway Technical Res Inst Aerodynamic sound reduction structure
JP2015119601A (en) 2013-12-20 2015-06-25 西日本旅客鉄道株式会社 Pantagraph vertex cover and pantagraph having vertex cover
JP2018177042A (en) 2017-04-14 2018-11-15 日本飛行機株式会社 Noise absorbing panel
JP2020172076A (en) 2019-04-12 2020-10-22 株式会社ブリヂストン Method for manufacturing seat pad, seat pad, and three-dimensional modelling data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098109A1 (en) 2000-06-19 2001-12-27 Stephen James Atkins A vehicle appendage and components therefor
JP2009089561A (en) 2007-10-02 2009-04-23 Railway Technical Res Inst Aerodynamic sound reduction structure
JP2015119601A (en) 2013-12-20 2015-06-25 西日本旅客鉄道株式会社 Pantagraph vertex cover and pantagraph having vertex cover
JP2018177042A (en) 2017-04-14 2018-11-15 日本飛行機株式会社 Noise absorbing panel
JP2020172076A (en) 2019-04-12 2020-10-22 株式会社ブリヂストン Method for manufacturing seat pad, seat pad, and three-dimensional modelling data

Also Published As

Publication number Publication date
JP2022104076A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
EP2565022B1 (en) Method for manufacturing of parts
US10724227B2 (en) Lining panel with integrated electric lines for an aircraft and method for manufacturing a lining panel
US20130291979A1 (en) Plasma-enhanced active laminar flow actuator system
ES2767741T3 (en) Aircraft wings, aircraft, and related methods
ES2907850T3 (en) Robotic Arm Assembly Construction
JP6910801B2 (en) Laminar flow panel
CN102548841B (en) Device for boundary layer suction and the composite component for it
US20130062004A1 (en) Aerodynamic surfaces having drag-reducing riblets and method of fabricating the same
CN105936335B (en) Thermoplastic truss structure and method of manufacture
ES2936471T3 (en) Method for manufacturing an aeronautical structure
CN103569348B (en) Overall composite construction for the vehicles
US20200247561A1 (en) Methods of forming and assembling a rotor blade using additive manufacturing processes
JP7399076B2 (en) Aerodynamic noise reduction structure of current collector and its manufacturing method
US10967966B2 (en) Method of fabricating a rotor blade filler body, and a rotor blade filler body comprising at least one cellular assembly having closed cells
US20130062469A1 (en) Surface entity for the reduction of the air resistance of an aviation vehicle
JP2012122903A (en) Flow rate regulating structure for wind tunnel testing apparatuses, and wind tunnel testing apparatus
JP6601985B2 (en) Vehicle fall prevention structure
JP2022174891A (en) Aerodynamic noise reduction structure of pantograph
CN115715252A (en) Apparatus for manufacturing composite airfoils and composite structure
US11866172B2 (en) Flow body for a vehicle and method for manufacturing a flow body
Wiedemann et al. The suction panel-xHLFC and structural solution for energy efficient aviation
US11319052B2 (en) Leading-edge arrangement for a flow body of a vehicle
JP2021069206A (en) Aerodynamic sound reduction structure of current collector
Keidel et al. Design and testing of a lattice morphing wing
JP6953045B1 (en) Metal-organic frameworks and composite members, and methods for manufacturing composite members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R150 Certificate of patent or registration of utility model

Ref document number: 7399076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150