JP2021065837A - Catalyst for cleaning exhaust gas - Google Patents
Catalyst for cleaning exhaust gas Download PDFInfo
- Publication number
- JP2021065837A JP2021065837A JP2019192705A JP2019192705A JP2021065837A JP 2021065837 A JP2021065837 A JP 2021065837A JP 2019192705 A JP2019192705 A JP 2019192705A JP 2019192705 A JP2019192705 A JP 2019192705A JP 2021065837 A JP2021065837 A JP 2021065837A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- less
- range
- gas purification
- purification catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 104
- 238000004140 cleaning Methods 0.000 title abstract 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 145
- 239000011148 porous material Substances 0.000 claims abstract description 118
- 239000007789 gas Substances 0.000 claims abstract description 115
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 71
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 55
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 55
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 238000001179 sorption measurement Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 19
- 238000000746 purification Methods 0.000 claims description 87
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical compound CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 claims description 12
- 239000010970 precious metal Substances 0.000 claims description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 31
- 239000002245 particle Substances 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 13
- 150000002430 hydrocarbons Chemical class 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 8
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 229910052700 potassium Inorganic materials 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 229910002090 carbon oxide Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000000693 micelle Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、排気ガス浄化用触媒に関する。 The present invention relates to an exhaust gas purification catalyst.
自動四輪車や自動二輪車(乗鞍型車両ともいう)等のガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排気ガス中には、未燃燃料による炭化水素(HC)、不完全燃焼による一酸化炭素(CO)、過度の燃焼温度による窒素酸化物(NOx)等の有害成分が含まれている。このような内燃機関からの排気ガスを処理するために、排気ガス浄化用触媒が用いられている。排気ガス中の例えば炭化水素(HC)は酸化して水と二酸化炭素に転化させて浄化する。一酸化炭素は(CO)は酸化して二酸化炭素に転化させて浄化する。また、窒素酸化物(NOx)は還元して窒素に転化させて浄化する。排気ガス浄化用触媒は、例えば触媒機能を有する白金、パラジウム、ロジウム等の貴金属が、担体に担持された状態で使用される。触媒は、担体の表面で反応するため、比表面積が大きい担体に触媒が担持されているほど、触媒活性が高くなる。 Exhaust gas emitted from gasoline engines such as motorcycles and motorcycles (also called saddle-type vehicles) and internal combustion engines such as diesel engines contains hydrocarbons (HC) from unburned fuel and one due to incomplete combustion. It contains harmful components such as carbon oxide (CO) and nitrogen oxides (NOx) due to excessive combustion temperature. In order to treat the exhaust gas from such an internal combustion engine, an exhaust gas purification catalyst is used. For example, hydrocarbons (HC) in the exhaust gas are oxidized and converted into water and carbon dioxide for purification. Carbon monoxide (CO) is oxidized and converted to carbon dioxide for purification. In addition, nitrogen oxides (NOx) are reduced and converted to nitrogen for purification. The exhaust gas purification catalyst is used in a state where, for example, a noble metal such as platinum, palladium, or rhodium having a catalytic function is supported on a carrier. Since the catalyst reacts on the surface of the carrier, the catalyst activity increases as the catalyst is supported on a carrier having a large specific surface area.
例えば特許文献1には、2〜20nmの細孔径と400〜1400m2/gの比表面積を有するメソポーラスシリカの細孔表面を結晶化させてなる触媒の担体が開示されている。 For example, Patent Document 1 discloses a catalyst carrier obtained by crystallizing the pore surface of mesoporous silica having a pore diameter of 2 to 20 nm and a specific surface area of 400 to 1400 m 2 / g.
しかしながら、メソポーラスシリカは、熱的安定性が低く、高温域において細孔が消失しやすく、高い触媒活性を維持できる温度範囲が狭い。排気ガス中の炭化水素(HC)の触媒による浄化は、排気ガス温度の影響が強く、一般に300℃以上の高温が必要とされており、車両の走行状態によっては800℃以上の高温になる場合もある。そのため、触媒機能を有する貴金属を担持する担体にも、耐熱性の改善が求められている。 However, mesoporous silica has low thermal stability, pores tend to disappear in a high temperature range, and the temperature range in which high catalytic activity can be maintained is narrow. Purification of hydrocarbons (HC) in exhaust gas with a catalyst is strongly affected by the exhaust gas temperature, and generally requires a high temperature of 300 ° C or higher. Depending on the running condition of the vehicle, the temperature may reach 800 ° C or higher. There is also. Therefore, a carrier that supports a noble metal having a catalytic function is also required to have improved heat resistance.
そこで本発明は、厳しい熱環境下においても使用可能であり、触媒活性及び耐熱性をより向上した排気ガス浄化用触媒を提供することを目的とする。 Therefore, an object of the present invention is to provide an exhaust gas purification catalyst that can be used even in a harsh thermal environment and has improved catalytic activity and heat resistance.
本発明は、
貴金属と、
アルカリ金属と、
メソポーラスシリカと、を含む排気ガス浄化用触媒であって、
窒素吸着等温線の吸着側の等温線をDH法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有し、
前記メソポーラスシリカの含有量(Bmol%)に対する前記アルカリ金属の含有量(Amol%)の比A/Bが、1.0×10−4以上5.0×10−3以下の範囲内である、排気ガス浄化用触媒である。
The present invention
With precious metals
Alkali metal and
An exhaust gas purification catalyst containing mesoporous silica.
In the pore diameter distribution curve of the exhaust gas purification catalyst obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method, the pore diameter is 1 nm or more and 5 nm or less and 10 nm or more and 50 nm or less, respectively. Has one or more peaks
The ratio A / B of the alkali metal content (Amol%) to the mesoporous silica content (Bmol%) is in the range of 1.0 × 10 -4 or more and 5.0 × 10 -3 or less. It is a catalyst for purifying exhaust gas.
本発明が提案する排気ガス浄化用触媒は、厳しい熱環境下においても細孔構造を維持し、耐熱性をより向上した排気ガス浄化用触媒を提供することができる。 The exhaust gas purification catalyst proposed by the present invention can provide an exhaust gas purification catalyst that maintains a pore structure even in a harsh thermal environment and has further improved heat resistance.
次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on examples of embodiments. However, the present invention is not limited to the embodiments described below.
本発明の実施形態の一例は、貴金属と、アルカリ金属と、メソポーラスシリカと、を含む排気ガス浄化用触媒であって、窒素吸着等温線の吸着側の等温線をDH(Dollimore−Heal:DH)法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有し、前記メソポーラスシリカの含有量(Bmol%)に対する前記アルカリ金属の含有量(Amol%)の比A/Bが、1.0×10−4以上5.0×10−3以下の範囲内である、排気ガス浄化用触媒である。 An example of the embodiment of the present invention is an exhaust gas purification catalyst containing a noble metal, an alkali metal, and mesoporous silica, and the isotherm on the adsorption side of the nitrogen adsorption isotherm is DH (Dollimore-Heal: DH). In the pore diameter distribution curve of the exhaust gas purification catalyst obtained by analysis by the method, the pore diameter has one or more peaks in the range of 1 nm or more and 5 nm or less and the range of 10 nm or more and 50 nm or less, respectively, and the mesoporous silica has one or more peaks. For exhaust gas purification, the ratio A / B of the alkali metal content (Amol%) to the content (Bmol%) is in the range of 1.0 × 10 -4 or more and 5.0 × 10 -3 or less. It is a catalyst.
貴金属
貴金属は、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)及びオスミウム(Os)からなる群から選ばれる少なくとも1種である。貴金属のうち、Rh、Pd、Pt、Ir、Ru、及びOsからなる白金族から選ばれる少なくとも1種であってもよい。貴金属は、高温下においても、排気ガス中の炭化水素(HC)の触媒による浄化をより促進するために、Pt、Pd及びRhからなる群から選ばれる少なくとも1種であることが好ましい。
Precious metals Precious metals are at least selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). It is one kind. Among the noble metals, at least one selected from the platinum group consisting of Rh, Pd, Pt, Ir, Ru, and Os may be used. The noble metal is preferably at least one selected from the group consisting of Pt, Pd and Rh in order to further promote the catalytic purification of hydrocarbons (HC) in the exhaust gas even at high temperatures.
メソポーラスシリカ
排気ガス浄化用触媒は、窒素吸着等温線の吸着側の等温線をDH法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線(以下、「細孔径分布曲線」ともいう。)において、1nm以上5nm以下の範囲と、10nm以上50nm以下の範囲にそれぞれ1つのピークを有する、二元細孔を有するメソポーラスシリカ(Bimodal mesoporous silica、以下「BMS」ともいう。)を含む。排気ガス浄化用触媒において、BMSは、触媒及びアルカリ金属を担持する担体である。BMSは、細孔径分布曲線において、1nm以上5nm以下の範囲にピークを有し、1nm以上5nm以下の範囲の孔径を有する第一の細孔と、10nm以上50nm以下の範囲にピークを有し、10nm以上50nm以下の範囲の孔径を有する第二の細孔を有する。1nm以上5nm以下の範囲の孔径を有する第一の細孔は、メソポーラスシリカの個々の粒子に形成された構造規定剤由来の細孔であると推測される。また、BMSには通常のメソポーラスシリカ(以下「MS」ともいう。)とは異なり、10nm以上50nm以下の範囲に孔径を有する第二の細孔がある。10nm以上50nm以下の範囲に孔径を有する第二の孔径は、メソポーラスシリカの粒子間隙に由来する細孔であると推測される。BMSは、構造規定剤に由来する第一の細孔によって比表面積を拡大して触媒活性を高めるとともに、粒子間隙に由来する比較的大きな孔径の第二の細孔が、粒子間隙における排気ガスの拡散性を向上させ、触媒活性を高めることができる。加えて、第二の細孔は例えば800℃以上の高温下においても維持できることからBMSの耐熱性を高め、触媒活性の向上に寄与することができるとともに、担持した貴金属の凝集や埋没抑制効果もあると推測される。
The mesoporous silica exhaust gas purification catalyst is also referred to as a pore size distribution curve (hereinafter, also referred to as “pore size distribution curve”) of the exhaust gas purification catalyst obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method. ) Includes mesoporous silica (also referred to as "BMS") having binary pores having one peak in the range of 1 nm or more and 5 nm or less and one peak in the range of 10 nm or more and 50 nm or less. In the exhaust gas purification catalyst, BMS is a carrier that supports the catalyst and the alkali metal. In the pore size distribution curve, BMS has a peak in the range of 1 nm or more and 5 nm or less, a first pore having a pore diameter in the range of 1 nm or more and 5 nm or less, and a peak in the range of 10 nm or more and 50 nm or less. It has a second pore with a pore diameter in the range of 10 nm or more and 50 nm or less. It is presumed that the first pores having a pore size in the range of 1 nm or more and 5 nm or less are pores derived from the structure defining agent formed in the individual particles of mesoporous silica. Further, unlike ordinary mesoporous silica (hereinafter, also referred to as “MS”), BMS has a second pore having a pore diameter in the range of 10 nm or more and 50 nm or less. The second pore diameter having a pore diameter in the range of 10 nm or more and 50 nm or less is presumed to be pores derived from the particle gaps of mesoporous silica. In BMS, the specific surface area is expanded by the first pores derived from the structure-defining agent to enhance the catalytic activity, and the second pores having a relatively large pore size derived from the particle gaps are the exhaust gas in the particle gaps. Diffusibility can be improved and catalytic activity can be enhanced. In addition, since the second pores can be maintained even at a high temperature of, for example, 800 ° C. or higher, the heat resistance of BMS can be enhanced, which can contribute to the improvement of catalytic activity, and also the effect of suppressing aggregation and burial of the supported precious metal. It is presumed that there is.
アルカリ金属
アルカリ金属は、Li、Na、K及びRbからなる群から選ばれる少なくとも1種であることが好ましく、Li、Na及びKからなる群から選ばれる少なくとも1種であることがより好ましい。
Alkali metal The alkali metal is preferably at least one selected from the group consisting of Li, Na, K and Rb, and more preferably at least one selected from the group consisting of Li, Na and K.
排気ガス浄化用触媒において、メソポーラスシリカの含有量(Bmol%)に対するアルカリ金属の含有量(Amol%)の比A/Bが、1.0×10−4以上5.0×10−3以下の範囲内である。排気ガス浄化用触媒の前記比A/Bは、好ましくは2.0×10−4以上4.5×10−3以下の範囲内であり、より好ましくは3.0×10−4以上4.0×10−3以下の範囲内である。排気ガス浄化用触媒は、前記比A/Bが前記範囲内となるアルカリ金属を含むことによって、触媒活性が向上する。排気ガス浄化用触媒において、アルカリ金属を含有すると、例えば800℃以上の高温下におかれた場合、後述するようにBMSの比表面積は減少する傾向がある。しかしながら、排気ガス浄化用触媒にアルカリ金属が含まれていると、BMS上の酸素原子の電子密度が増加し、電子密度の増加によって陽イオンとなる貴金属と結合しやすくなるため、触媒が高温に曝された場合においても、貴金属は分散した状態を保つことができる。そのため、排気ガス浄化用触媒に、貴金属と、アルカリ金属と、BMSが含まれていると、高分散した貴金属と反応基質である炭化水素(例えばC3H6)の接触頻度が増加し、触媒活性を向上させることができると推測される。排気ガス浄化用触媒中のアルカリ金属は、前記比A/Bが1.0×10−4未満になる量であると、アルカリ金属が少なすぎて、貴金属の分散や触媒活性を向上させ難い。排気ガス浄化用触媒中のアルカリ金属は、前記比A/Bが5.0×10−3を超える量であると、メソポーラスシリカを構成するSi−O−Siのネットワークが切断されやすくなり、800℃以上の高温下で、メソポーラスシリカの細孔が縮合、再結合して、細孔が壊れやすくなり、比表面積が小さくなり触媒活性が低下する。 In the exhaust gas purification catalyst, the ratio A / B of the alkali metal content (Amol%) to the mesoporous silica content (Bmol%) is 1.0 × 10 -4 or more and 5.0 × 10 -3 or less. It is within the range. The ratio A / B of the exhaust gas purification catalyst is preferably in the range of 2.0 × 10 -4 or more and 4.5 × 10 -3 or less, and more preferably 3.0 × 10 -4 or more. It is within the range of 0 × 10 -3 or less. The exhaust gas purification catalyst contains an alkali metal whose ratio A / B is within the above range, so that the catalytic activity is improved. When an alkali metal is contained in the exhaust gas purification catalyst, the specific surface area of BMS tends to decrease, as will be described later, when the catalyst is placed at a high temperature of, for example, 800 ° C. or higher. However, if the catalyst for purifying exhaust gas contains an alkali metal, the electron density of oxygen atoms on the BMS increases, and the increase in electron density makes it easier to bond with a noble metal that becomes a cation, so that the catalyst becomes hot. The precious metal can remain dispersed even when exposed. Therefore, when the exhaust gas purification catalyst contains a noble metal, an alkali metal, and BMS , the contact frequency between the highly dispersed noble metal and the hydrocarbon (for example, C 3 H 6 ) which is a reaction substrate increases, and the catalyst It is presumed that the activity can be improved. If the ratio A / B of the alkali metal in the exhaust gas purification catalyst is less than 1.0 × 10 -4 , the amount of the alkali metal is too small, and it is difficult to improve the dispersion of the noble metal and the catalytic activity. When the ratio A / B of the alkali metal in the exhaust gas purification catalyst exceeds 5.0 × 10 -3 , the Si—O—Si network constituting the mesoporous silica is easily cut, and 800. At high temperatures of ° C. or higher, the pores of mesoporous silica are condensed and recombined, the pores are easily broken, the specific surface area is reduced, and the catalytic activity is reduced.
排気ガス浄化用触媒において、貴金属の含有量(Pmol%)に対するアルカリ金属の含有量(Amol%)の比A/Pは、好ましくは0.03以上2.00以下の範囲内であり、より好ましくは0.05以上1.80以下の範囲内であり、さらに好ましくは0.10以上1.50以下の範囲内である。排気ガス浄化用触媒において、貴金属の含有量に対するアルカリ金属の含有量の比A/Pが、0.03以上2.00以下の範囲内であれば、貴金属に対して十分量のBMS上の酸素原子の電子密度増加効果が得られるため、例えば800℃以上の高温に曝された後でも貴金属が高分散な状態を保つことができ、触媒活性を向上させることができると推測される。 In the exhaust gas purification catalyst, the ratio A / P of the alkali metal content (Amol%) to the noble metal content (Pmol%) is preferably in the range of 0.03 or more and 2.00 or less, more preferably. Is in the range of 0.05 or more and 1.80 or less, and more preferably in the range of 0.10 or more and 1.50 or less. In the exhaust gas purification catalyst, if the ratio A / P of the content of the alkali metal to the content of the noble metal is within the range of 0.03 or more and 2.00 or less, a sufficient amount of oxygen on the BMS with respect to the noble metal Since the effect of increasing the electron density of the atom can be obtained, it is presumed that the noble metal can maintain a highly dispersed state even after being exposed to a high temperature of, for example, 800 ° C. or higher, and the catalytic activity can be improved.
排気ガス浄化用触媒は、細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有する。
排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲のピークは、メソポーラスシリカの細孔径1nm以上5nm以下の範囲の第一の細孔に由来する。
排気ガス浄化用触媒の細孔径分布曲線において、細孔径が10nm以上50nm以下の範囲のピークは、メソポーラスシリカの細孔径10nm以上50nm以下の範囲の第二の細孔に由来する。
排気ガス浄化用触媒は、細孔径分布曲線において、耐熱試験前において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有する。本明細書において、耐熱試験は、貴金属と、アルカリ金属と、メソポーラスシリカを含む排気ガス浄化用触媒を800℃以上1000℃以下の範囲で1時間以上及び10時間以内の熱処理を行うことをいう。
The exhaust gas purification catalyst has one or more peaks in the pore diameter distribution curve of 1 nm or more and 5 nm or less and 10 nm or more and 50 nm or less, respectively.
In the pore diameter distribution curve of the exhaust gas purification catalyst, the peak having a pore diameter in the range of 1 nm or more and 5 nm or less is derived from the first pore in the pore diameter range of 1 nm or more and 5 nm or less of mesoporous silica.
In the pore diameter distribution curve of the exhaust gas purification catalyst, the peak having a pore diameter in the range of 10 nm or more and 50 nm or less is derived from the second pore in the pore diameter range of 10 nm or more and 50 nm or less of mesoporous silica.
The exhaust gas purification catalyst has one or more peaks in the pore size distribution curve in the range of 1 nm or more and 5 nm or less and the range of 10 nm or more and 50 nm or less before the heat resistance test. In the present specification, the heat resistance test means to heat-treat an exhaust gas purification catalyst containing a noble metal, an alkali metal, and mesoporous silica in a range of 800 ° C. or higher and 1000 ° C. or lower for 1 hour or more and 10 hours or less.
排気ガス浄化用触媒は、細孔径分布曲線において、1nm以上100nm以下の範囲における総積算細孔容積Va(mL/g)に対する、1nm以上5nm以下の範囲における積算細孔容積V1(mL/g)の細孔容積比V1/Vaが、好ましくは0.300以上0.600以下の範囲内であり、より好ましくは0.400以上0.580以下の範囲内であり、さらに好ましくは0.420以上0.550以下の範囲内である。本明細書において、細孔容積比V1/Vaは、耐熱試験前の排気ガス浄化用触媒の細孔径分布曲線から求められる。耐熱試験前の排気ガス浄化用触媒の細孔径分布曲線において、細孔容積比V1/Vaが0.300以上0.600以下の範囲内であれば、粒子に形成された1nm以上5nm以下の範囲の構造規定剤由来の第一の細孔が十分に存在し、比表面積を増大させて、触媒活性を向上させることができる。ここで、総積算細孔容積Va(mL/g)は、窒素吸着等温線の吸着側の等温線をDH法で解析して得られた細孔径分布曲線の1nm以上100nm以下の範囲を積分して得られた値をいう。また、積算細孔容積V1(mL/g)は、前記細孔径分布曲線の1nm以上5nm以下の範囲を積分して得られた値をいう。 The exhaust gas purification catalyst has an integrated pore volume V1 (mL / g) in the range of 1 nm or more and 5 nm or less with respect to the total integrated pore volume Va (mL / g) in the range of 1 nm or more and 100 nm or less in the pore diameter distribution curve. The pore volume ratio V1 / Va is preferably in the range of 0.300 or more and 0.600 or less, more preferably in the range of 0.400 or more and 0.580 or less, and further preferably 0.420 or more. It is in the range of 0.550 or less. In the present specification, the pore volume ratio V1 / Va is obtained from the pore diameter distribution curve of the exhaust gas purification catalyst before the heat resistance test. In the pore size distribution curve of the exhaust gas purification catalyst before the heat resistance test, if the pore volume ratio V1 / Va is in the range of 0.300 or more and 0.600 or less, the range of 1 nm or more and 5 nm or less formed in the particles. The first pores derived from the structural defining agent of No. 1 are sufficiently present, and the specific surface area can be increased to improve the catalytic activity. Here, the total integrated pore volume Va (mL / g) is obtained by integrating the range of 1 nm or more and 100 nm or less of the pore diameter distribution curve obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method. The value obtained by The integrated pore volume V1 (mL / g) refers to a value obtained by integrating the range of 1 nm or more and 5 nm or less of the pore diameter distribution curve.
排気ガス浄化用触媒は、細孔径分布曲線において、1nm以上100nm以下の範囲における総積算細孔容積Va(mL/g)に対する、10nm以上50nm以下の範囲における積算細孔容積V2(mL/g)の細孔容積比V2/Vaが、好ましくは0.300以上0.600以下の範囲内であり、より好ましくは0.400以上0.550以下の範囲内であり、さらに好ましくは0.450以上0.520以下の範囲内である。本明細書において、細孔容積比V2/Vaは、耐熱試験前の排気ガス浄化用触媒の細孔径分布曲線から求められる。耐熱試験前の排気ガス浄化用触媒の細孔径分布曲線において、細孔容積比V2/Vaが0.300以上0.600以下の範囲内であれば、10nm以上50nm以下の範囲の粒子間の間隙に由来する第二の細孔が十分に存在し、貴金属の凝集を抑制し、耐熱性を高めることができるとともに、排気ガスの粒子間隙内の拡散性を向上させることができる。ここで、積算細孔容積V2(mL/g)は、窒素吸着等温線の吸着側の等温線をDH法で解析して得られた細孔径分布曲線の10nm以上50nm以下の範囲を積分して得られた値をいう。 The exhaust gas purification catalyst has an integrated pore volume V2 (mL / g) in the range of 10 nm or more and 50 nm or less with respect to the total integrated pore volume Va (mL / g) in the range of 1 nm or more and 100 nm or less in the pore diameter distribution curve. The pore volume ratio V2 / Va is preferably in the range of 0.300 or more and 0.600 or less, more preferably in the range of 0.400 or more and 0.550 or less, and further preferably 0.450 or more. It is within the range of 0.520 or less. In the present specification, the pore volume ratio V2 / Va is obtained from the pore diameter distribution curve of the exhaust gas purification catalyst before the heat resistance test. In the pore size distribution curve of the exhaust gas purification catalyst before the heat resistance test, if the pore volume ratio V2 / Va is within the range of 0.300 or more and 0.600 or less, the gap between particles in the range of 10 nm or more and 50 nm or less. The second pores derived from the above are sufficiently present, and the aggregation of the noble metal can be suppressed, the heat resistance can be enhanced, and the diffusivity of the exhaust gas in the particle gap can be improved. Here, the integrated pore volume V2 (mL / g) is obtained by integrating the range of 10 nm or more and 50 nm or less of the pore diameter distribution curve obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method. The obtained value.
排気ガス浄化用触媒は、排気ガス浄化用触媒の細孔径分布曲線において、1nm以上100nm以下の範囲における積算細孔容積V1(mL/g)が、好ましくは0.300以上0.600以下の範囲内であり、より好ましくは0.320以上0.580以下の範囲内であり、さらに好ましくは0.350以上0.550以下の範囲内であり、特に好ましくは0.380以上0.540以下の範囲内である。排気ガス浄化用触媒は、排気ガス浄化用触媒の細孔径分布曲線において、1nm以上10nm以下の範囲における積算細孔容積V1(mL/g)が、前記範囲内であれば、比表面積が増大し、触媒活性を向上させることができる。 The exhaust gas purification catalyst has an integrated pore volume V1 (mL / g) in the range of 1 nm or more and 100 nm or less, preferably in the range of 0.300 or more and 0.600 or less in the pore diameter distribution curve of the exhaust gas purification catalyst. Of the above, more preferably in the range of 0.320 or more and 0.580 or less, further preferably in the range of 0.350 or more and 0.550 or less, and particularly preferably in the range of 0.380 or more and 0.540 or less. It is within the range. In the exhaust gas purification catalyst, the specific surface area increases when the integrated pore volume V1 (mL / g) in the range of 1 nm or more and 10 nm or less in the pore diameter distribution curve of the exhaust gas purification catalyst is within the above range. , The catalytic activity can be improved.
排気ガス浄化用触媒は、排気ガス浄化用触媒の細孔径分布曲線において、10nm以上50nm以下の範囲における積算細孔容積V2(mL/g)が、好ましくは0.400以上0.600以下の範囲内であり、より好ましくは0.42以上0.580以下の範囲内であり、さらに好ましくは0.450以上0.570以下の範囲内である。排気ガス浄化用触媒は、排気ガス浄化用触媒の細孔径分布曲線において、10nm以上50m以下の範囲における積算細孔容積V2(mL/g)が、前記範囲内であれば、粒子間の間隙に由来する第二の細孔が十分に存在し、貴金属の凝集を抑制し、耐熱性を高めることができるとともに、排気ガスの粒子間隙内の拡散性を向上させることができる。 The exhaust gas purification catalyst has an integrated pore volume V2 (mL / g) in the range of 10 nm or more and 50 nm or less, preferably in the range of 0.400 or more and 0.600 or less in the pore diameter distribution curve of the exhaust gas purification catalyst. It is more preferably in the range of 0.42 or more and 0.580 or less, and further preferably in the range of 0.450 or more and 0.570 or less. In the exhaust gas purification catalyst, if the integrated pore volume V2 (mL / g) in the range of 10 nm or more and 50 m or less is within the above range in the pore diameter distribution curve of the exhaust gas purification catalyst, the gap between the particles is formed. The second pores from which the gas is derived are sufficiently present, and the aggregation of the noble metal can be suppressed, the heat resistance can be enhanced, and the diffusivity of the exhaust gas in the particle gap can be improved.
排気ガス浄化用触媒の製造方法
次に排気ガス浄化用触媒組成物の製造方法の一例について説明する。排気ガス浄化用触媒組成物の製造方法は、以下に記載する例に限定されない。
Method for producing exhaust gas purification catalyst Next, an example of a method for producing an exhaust gas purification catalyst composition will be described. The method for producing the exhaust gas purification catalyst composition is not limited to the examples described below.
排気ガス浄化用触媒の製造方法は、細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有する二元細孔を有するメソポーラスシリカ(BMS)を準備する工程と、BMSと、貴金属又は貴金属を含有する化合物と、アルカリ金属又はアルカリ金属を含有する化合物と、を接触させて、BMSに貴金属及びアルカリ金属を付着させる工程と、貴金属及びアルカリ金属を付着させたBMSを熱処理して、貴金属と、アルカリ金属と、BMSとを含む排気ガス浄化用触媒を得る工程と、を含む。 A method for producing a catalyst for purifying exhaust gas is a mesoporous silica having binary pores having one or more peaks in a pore diameter range of 1 nm or more and 5 nm or less and a pore diameter of 10 nm or more and 50 nm or less in a pore diameter distribution curve. The step of preparing BMS), the step of bringing the BMS into contact with the precious metal or the compound containing the noble metal, and the compound containing the alkali metal or the alkali metal to attach the noble metal and the alkali metal to the BMS, and the noble metal and This includes a step of heat-treating the BMS to which the alkali metal is attached to obtain a catalyst for purifying exhaust gas containing the noble metal, the alkali metal, and the BMS.
メソポーラスシリカ(BMS)を準備する工程
次に、メソポーラスシリカを準備する工程として、メソポーラスシリカの製造方法の一例について説明する。メソポーラスシリカの製造方法は、以下に記載する例に限定されない。メソポーラスシリカは、一般的にゾルゲル法により形成することができる。まず、構造規定剤として、臨界ミセル濃度以上の濃度の界面活性剤を水に溶解させて棒状ミセル粒子を形成し、しばらく静置すると、コロイド粒子となる。ここで、溶液中にシリカ源を加え、所定のpHとなるように所定の酸又は塩基を触媒として加えると、コロイド粒子の隙間でゾルゲル反応が進行し、シリカゲル骨格を有するゲルが形成される。その後、500℃以上の温度でゲルを熱処理することによってメソポーラスシリカを製造することができる。界面活性剤としては、例えばセチルトリメチルアンモニウムクロライド(CH3(CH2)15N(CH3)3Cl:CTAC)が挙げられる。シリカ源としては例えばテトラエトキシシラン(Si(OC2H5)4:TEOS)が挙げられる。得られたメソポーラスシリカは、棒状ミセル粒子の存在していた箇所が空隙となった細孔を有する。メソポーラスシリカを形成する際のpH値を調整することによって、メソポーラスシリカの凝集の程度が変化し、構造規定剤に由来する第一の細孔と、粒子間隙に由来する第二の細孔との、二元細孔を有するメソポーラスシリカ(BMS)を形成することができる。BMSは、例えば界面活性剤とテトラエトキシシランを含む溶液のpHを9から10.5となるように塩基性化合物を加えて調整することが好ましい。BMSの製造方法において、ゲルを得た後、例えば50℃以上の温度で乾燥して、メソポーラスシリカ前駆体を得て、このメソポーラスシリカ前駆体を熱処理して、BMSを得てもよい。本明細書において、ゲル又はメソポーラスシリカ前駆体に行う熱処理を第一熱処理という場合がある。得られたゲル又はメソポーラスシリカ前駆体を、第一熱処理する温度は、500℃以上であることが好ましく、550℃以上800℃以下の範囲内の温度であってもよく、700℃以下の温度でもよい。第一熱処理を行う雰囲気は、大気雰囲気でもよく、窒素等の不活性ガス雰囲気であってもよい。第一熱処理を行う雰囲気圧力は、大気圧下であってもよい。
Step of Preparing Mesoporous Silica (BMS) Next, as a step of preparing mesoporous silica, an example of a method for producing mesoporous silica will be described. The method for producing mesoporous silica is not limited to the examples described below. Mesoporous silica can generally be formed by the sol-gel method. First, as a structure-determining agent, a surfactant having a concentration equal to or higher than the critical micelle concentration is dissolved in water to form rod-shaped micelle particles, and when the particles are allowed to stand for a while, they become colloidal particles. Here, when a silica source is added to the solution and a predetermined acid or base is added as a catalyst so as to have a predetermined pH, the sol-gel reaction proceeds in the gaps between the colloidal particles to form a gel having a silica gel skeleton. After that, mesoporous silica can be produced by heat-treating the gel at a temperature of 500 ° C. or higher. Examples of the surfactant include cetyltrimethylammonium chloride (CH 3 (CH 2 ) 15 N (CH 3 ) 3 Cl: CTAC). Examples of the silica source include tetraethoxysilane (Si (OC 2 H 5 ) 4 : TEOS). The obtained mesoporous silica has pores in which the positions where the rod-shaped micelle particles were present are voids. By adjusting the pH value when forming the mesoporous silica, the degree of aggregation of the mesoporous silica is changed, and the first pores derived from the structure-defining agent and the second pores derived from the particle gaps are formed. , Mesoporous silica (BMS) having binary pores can be formed. BMS is preferably adjusted by adding a basic compound so that the pH of the solution containing, for example, a surfactant and tetraethoxysilane is 9 to 10.5. In the method for producing BMS, after obtaining a gel, it may be dried at a temperature of, for example, 50 ° C. or higher to obtain a mesoporous silica precursor, and the mesoporous silica precursor may be heat-treated to obtain BMS. In the present specification, the heat treatment performed on the gel or mesoporous silica precursor may be referred to as the first heat treatment. The temperature at which the obtained gel or mesoporous silica precursor is first heat-treated is preferably 500 ° C. or higher, and may be in the range of 550 ° C. or higher and 800 ° C. or lower, or 700 ° C. or lower. Good. The atmosphere in which the first heat treatment is performed may be an atmospheric atmosphere or an atmosphere of an inert gas such as nitrogen. The atmospheric pressure at which the first heat treatment is performed may be under atmospheric pressure.
貴金属及びアルカリ金属を付着させる工程
メソポーラスシリカに、貴金属又は貴金属を含有する化合物と、アルカリ金属又はアルカリ金属を含有する化合物とを接触させ付着させる方法としては、含浸法、沈殿法、イオン交換法等が挙げられる。含浸法としては、インシピエントウェットネス(incipient wetness)法、蒸発乾固法、ポアフィリング(pore−filling)法、スプレー法、平衡吸着法等が挙げられる。沈殿法としては、混錬法、沈着法等が挙げられる。
Step of Adhering Noble Metal and Alkali Metal As a method of contacting and adhering a compound containing a noble metal or a noble metal and a compound containing an alkali metal or an alkali metal to mesoporous silica, an impregnation method, a precipitation method, an ion exchange method, etc. Can be mentioned. Examples of the impregnation method include an impingient wetness method, an evaporative drying method, a pore-filling method, a spray method, an equilibrium adsorption method, and the like. Examples of the precipitation method include a kneading method and a deposition method.
含浸法によりメソポーラスシリカに貴金属及びアルカリ金属を付着させる場合は、貴金属及びアルカリ金属を含む混合液中にメソポーラスシリカを浸漬させて含浸する方法が挙げられる。貴金属を含む溶液中又は貴金属を含む化合物を含有する溶液中に、メソポーラスシリカを浸漬し、貴金属をメソポーラスシリカに付着させた後、貴金属を付着したメソポーラスシリカを乾燥させる。次いで、貴金属を付着させたメソポーラスシリカを、アルカリ金属を含む溶液に浸漬し、貴金属及びアルカリ金属を付着させたメソポーラスシリカを乾燥させて、貴金属及びアルカリ金属を付着させたメソポーラスシリカを得ることができる。メソポーラスシリカを、貴金属又はアルカリ金属を含む溶液に浸漬させる時間は、0.5時間以上5時間以内とすることができ、1時間以上4時間以内が好ましい。浸漬後、貴金属を付着させたメソポーラスシリカ、又は、貴金属及びアルカリ金属を付着させたメソポーラスシリカを乾燥してもよい、乾燥温度は、50℃以上100℃以下とすることができ、50℃以上80℃以下であってもよい。乾燥時間は、0.5時間以上5時間以内とすることができ、1時間以上4時間以内であってもよい。乾燥時の圧力は、特に制限されず、大気圧(0.1MPa)であってもよく0.1MPa以下の減圧下であってもよい。 When the noble metal and the alkali metal are attached to the mesoporous silica by the impregnation method, a method of immersing the mesoporous silica in a mixed solution containing the noble metal and the alkali metal and impregnating the mesoporous silica can be mentioned. The mesoporous silica is immersed in a solution containing a noble metal or a solution containing a compound containing a noble metal, the noble metal is attached to the mesoporous silica, and then the mesoporous silica to which the noble metal is attached is dried. Next, the mesoporous silica to which the noble metal is attached is immersed in a solution containing an alkali metal, and the mesoporous silica to which the noble metal and the alkali metal are attached is dried to obtain the mesoporous silica to which the noble metal and the alkali metal are attached. .. The time for immersing the mesoporous silica in the solution containing the noble metal or alkali metal can be 0.5 hours or more and 5 hours or less, preferably 1 hour or more and 4 hours or less. After the immersion, the mesoporous silica to which the noble metal is attached or the mesoporous silica to which the noble metal and the alkali metal are attached may be dried. The drying temperature can be 50 ° C. or higher and 100 ° C. or lower, and 50 ° C. or higher and 80 ° C. or higher. It may be below ° C. The drying time can be 0.5 hours or more and 5 hours or less, and may be 1 hour or more and 4 hours or less. The pressure at the time of drying is not particularly limited, and may be atmospheric pressure (0.1 MPa) or under reduced pressure of 0.1 MPa or less.
アルカリ金属は、得られる排気ガス浄化用触媒中に、メソポーラスシリカの含有量(Bmol%)に対して、アルカリ金属の含有量(Amol%)の比A/Bが1.0×10−4以上5.0×10−3以下の範囲となるようにメソポーラスシリカに付着させることが好ましい。アルカリ金属は、得られる排気ガス浄化用触媒中に、前記比A/Bが2.0×10−4以上4.5×10−3以下の範囲となるように付着させることがより好ましく、3.0×10−4以上4.0×10−3以下の範囲となるように付着させることがさらに好ましい。前記比A/Bが前記範囲内となるようにアルカリ金属を付着させることによって、触媒活性を向上し、耐熱性を向上することができる。 The ratio A / B of the alkali metal content (Amol%) to the mesoporous silica content (Bmol%) in the obtained exhaust gas purification catalyst is 1.0 × 10 -4 or more. It is preferable to adhere to mesoporous silica so as to have a range of 5.0 × 10 -3 or less. It is more preferable that the alkali metal is attached to the obtained exhaust gas purification catalyst so that the ratio A / B is in the range of 2.0 × 10 -4 or more and 4.5 × 10 -3 or less. It is more preferable to attach the mixture so as to have a range of 0.0 × 10 -4 or more and 4.0 × 10 -3 or less. By adhering the alkali metal so that the ratio A / B is within the above range, the catalytic activity can be improved and the heat resistance can be improved.
アルカリ金属は、得られる排気ガス浄化用触媒中に、貴金属の含有量(Pmol%)に対して、アルカリ金属の含有量(Amol%)の比A/Pが0.03以上2.00以下の範囲となるように付着させることが好ましい。アルカリ金属は、得られる排気ガス浄化用触媒中に、前記比A/Pが0.10以上1.50以下の範囲となるように付着させることがより好ましい。前記比A/Pが前記範囲内となるように、アルカリ金属を付着させることによって、貴金属の分散性を向上し、触媒活性を向上することができる。 The alkali metal has a ratio A / P of the alkali metal content (Amol%) of 0.03 or more and 2.00 or less with respect to the noble metal content (Pmol%) in the obtained exhaust gas purification catalyst. It is preferable to attach it so as to be within the range. It is more preferable that the alkali metal is attached to the obtained exhaust gas purification catalyst so that the ratio A / P is in the range of 0.10 or more and 1.50 or less. By adhering the alkali metal so that the ratio A / P is within the above range, the dispersibility of the noble metal can be improved and the catalytic activity can be improved.
熱処理工程
例えば含浸法によりメソポーラスシリカに貴金属及びアルカリ金属を付着させた後、熱処理し、貴金属と、アルカリ金属と、メソポーラスシリカとを含む排気ガス浄化用触媒を得る。本明細書において、貴金属及びアルカリ金属を付着させたメソポーラスシリカに行う熱処理を第二熱処理という場合がある。第二熱処理温度は、メソポーラスシリカのシリカゲル骨格を維持して、貴金属を担持し、アルカリ金属を付着させるために、好ましくは200℃以上800℃以下の範囲内であり、より好ましくは400℃以上700℃以下の範囲内である。第二熱処理を行う雰囲気は、大気雰囲気であってもよく、窒素等の不活性ガス雰囲気であってもよい。第二熱処理を行う雰囲気圧力は、大気圧下であってもよい。
Heat treatment step For example, a noble metal and an alkali metal are attached to mesoporous silica by an impregnation method, and then heat treatment is performed to obtain an exhaust gas purification catalyst containing the noble metal, the alkali metal, and the mesoporous silica. In the present specification, the heat treatment performed on the mesoporous silica to which the noble metal and the alkali metal are attached may be referred to as a second heat treatment. The second heat treatment temperature is preferably in the range of 200 ° C. or higher and 800 ° C. or lower, more preferably 400 ° C. or higher and 700, in order to maintain the silica gel skeleton of mesoporous silica, support the noble metal, and attach the alkali metal. It is within the range of ° C or lower. The atmosphere in which the second heat treatment is performed may be an atmospheric atmosphere or an inert gas atmosphere such as nitrogen. The atmospheric pressure at which the second heat treatment is performed may be under atmospheric pressure.
以上のようにして得られた貴金属とアルカリ金属とメソポーラスシリカとを含む排気ガス浄化用触媒は、窒素吸着等温線の吸着側の等温線をDH法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有し、メソポーラスシリカの含有量(Bmol%)に対するアルカリ金属の含有量(Amol%)の比A/Bが、1.0×10−4以上5.0×10−3以下の範囲内である。 The exhaust gas purification catalyst containing the noble metal, alkali metal and mesoporous silica obtained as described above is an exhaust gas purification catalyst obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method. In the pore size distribution curve, the pore size has one or more peaks in the range of 1 nm or more and 5 nm or less and the range of 10 nm or more and 50 nm or less, respectively, and the content of alkali metal (Amol) with respect to the content of mesoporous silica (Bmol%). %) Ratio A / B is in the range of 1.0 × 10 -4 or more and 5.0 × 10 -3 or less.
以上のようにして得られた排気ガス浄化用触媒は、800℃以上1100℃以下の温度範囲、例えば800℃以上1000℃以下の温度範囲の高温に晒された場合であっても、触媒活性を維持し、炭化水素(HC)の安定した高い浄化性能を示す。このような排気ガス浄化用触媒は、ガソリンエンジンやディーゼルエンジン等の化石燃料を動力源とする内燃機関の排気ガス浄化用触媒として、安定した高い排気ガス浄化性能を発揮することができる。特に、本実施形態の排気ガス浄化用触媒は、その高い耐熱性から、自動四輪車や自動二輪車などの内燃機関から排出される排気ガスを浄化するために好適に用いることができる。本実施形態の排気ガス浄化用組成物は、排気ガス中の特に炭化水素(HC)の浄化に有効に用いられる。 The exhaust gas purification catalyst obtained as described above exhibits catalytic activity even when exposed to a high temperature in a temperature range of 800 ° C. or higher and 1100 ° C. or lower, for example, a temperature range of 800 ° C. or higher and 1000 ° C. or lower. It maintains and exhibits stable and high purification performance of hydrocarbons (HC). Such an exhaust gas purification catalyst can exhibit stable and high exhaust gas purification performance as an exhaust gas purification catalyst for an internal combustion engine powered by fossil fuels such as a gasoline engine and a diesel engine. In particular, the exhaust gas purification catalyst of the present embodiment can be suitably used for purifying exhaust gas discharged from an internal combustion engine such as a motorcycle or a motorcycle because of its high heat resistance. The exhaust gas purification composition of the present embodiment is effectively used for purifying hydrocarbons (HC) in the exhaust gas.
以下、本発明を実施例及び比較例に基づいてさらに詳述する。本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. The present invention is not limited to these examples.
メソポーラスシリカ(BMS)の製造
ゾルゲル法により二元細孔を有するメソポーラスシリカ(BMS)を製造した。原料となる界面活性剤としてセチルトリメチルアンモニウムクロライド(CH3(CH2)15N(CH3)3Cl:CTAC)を用い、シリカ源としてはテトラエトキシシラン(Si(OC2H5)4:TEOS)を用いた。モル比でCTAC:TEOS:水(H2O)が0.19:1.0:75となるように秤量した。具体的には、CTAC:3.88gを蒸留水80mLに加えて、スターラーを用いて撹拌してCTACを完全に溶解させた。この溶液にTEOS:14mLを加えて、1時間、スターラーを用いて撹拌した。CTAC及びTEOSを含む溶液に、pHが10となるように、撹拌を続けた状態で2mol/Lのアンモニア(NH3)水溶液を一度に加えた。溶液のゲル化を確認した後、撹拌を停止し、室温(20℃から25℃)で5時間静置して、ろ過した。得られたゲルを、蒸留水を用いて洗浄し、その後60℃で12時間、ゲルを乾燥させて、メソポーラスシリカ前駆体を得た。このメソポーラスシリカ前駆体を大気中、550℃で3時間、電気炉で第一熱処理を行い、メソポーラスシリカを得た。得られたメソポーラスシリカは、後述する方法で測定した窒素吸着等温線の吸着側の等温線をDH法で解析して得られるメソポーラスシリカの細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有し、二元細孔を有するメソポーラスシリカ(BMS)であることを確認した。
Production of Mesoporous Silica (BMS) Mesoporous silica (BMS) having binary pores was produced by the sol-gel method. Cetyltrimethylammonium chloride (CH 3 (CH 2 ) 15 N (CH 3 ) 3 Cl: CTAC) is used as the raw material surfactant, and tetraethoxysilane (Si (OC 2 H 5 ) 4 : TEOS) is used as the silica source. ) Was used. Weighed so that the molar ratio of CTAC: TEOS: water (H 2 O) was 0.19: 1.0: 75. Specifically, 3.88 g of CTAC was added to 80 mL of distilled water and stirred with a stirrer to completely dissolve CTAC. 14 mL of TEOS was added to this solution, and the mixture was stirred with a stirrer for 1 hour. A 2 mol / L aqueous ammonia (NH 3 ) solution was added to the solution containing CTAC and TEOS at once with continuous stirring so that the pH became 10. After confirming the gelation of the solution, stirring was stopped, the solution was allowed to stand at room temperature (20 ° C. to 25 ° C.) for 5 hours, and the solution was filtered. The obtained gel was washed with distilled water, and then the gel was dried at 60 ° C. for 12 hours to obtain a mesoporous silica precursor. This mesoporous silica precursor was first heat-treated in an electric furnace at 550 ° C. for 3 hours in the air to obtain mesoporous silica. The obtained mesoporous silica has a pore diameter in the range of 1 nm or more and 5 nm or less in the pore size distribution curve of the mesoporous silica obtained by analyzing the adsorption side isotherm of the nitrogen adsorption isotherm measured by the method described later by the DH method. It was confirmed that the mesoporous silica (BMS) had one or more peaks in the range of 10 nm or more and 50 nm or less and had binary pores.
実施例1から3
製造したBMSを担体として、白金(Pt)の担持量が1質量%となるように、含浸法により白金(Pt)を担持させた。具体的には、ジアミンジニトロ白金(II)(Pt(NH3)2(NO2)2)水溶液にBMSを浸漬して、BMSに白金を1質量%となるように付着させ、水溶液から白金を付着させたBMSを取り出し、60℃で3時間乾燥させた。乾燥後、硝酸カリウム(KNO3)水溶液に、各実施例の表1に示すカリウムの量(質量%)となるように、白金を付着させたBMSを浸漬して、白金及びカリウムをBMSに付着させ、水溶液から白金及びカリウムを付着させたBMSを取り出し、60℃で3時間乾燥させた。乾燥後、大気中、600℃で3時間、電気炉で第二熱処理を行い、白金(Pt)とカリウム(K)と、BMSを含む排気ガス浄化用触媒を得た。
Examples 1 to 3
Using the produced BMS as a carrier, platinum (Pt) was supported by an impregnation method so that the amount of platinum (Pt) supported was 1% by mass. Specifically, BMS is immersed in an aqueous solution of diaminedinitroplatinum (II) (Pt (NH 3 ) 2 (NO 2 ) 2 ), platinum is attached to BMS so as to be 1% by mass, and platinum is removed from the aqueous solution. The attached BMS was taken out and dried at 60 ° C. for 3 hours. After drying, BMS to which platinum is attached is immersed in an aqueous solution of potassium nitrate (KNO 3 ) so that the amount of potassium (% by mass) shown in Table 1 of each example is obtained, and platinum and potassium are attached to BMS. , BMS to which platinum and potassium were attached was taken out from the aqueous solution and dried at 60 ° C. for 3 hours. After drying, a second heat treatment was performed in an electric furnace at 600 ° C. for 3 hours in the air to obtain an exhaust gas purification catalyst containing platinum (Pt), potassium (K), and BMS.
比較例1
白金を付着させたBMSを、硝酸カリウム(KNO3)溶液に浸漬させないこと以外は、実施例1と同様にして、カリウムを含まない排気ガス浄化用触媒を得た。
Comparative Example 1
An exhaust gas purification catalyst containing no potassium was obtained in the same manner as in Example 1 except that the BMS to which platinum was attached was not immersed in a potassium nitrate (KNO 3) solution.
比較例2:排気ガス浄化用触媒の製造
表1に示すように、0.500質量%となるようにカリウムを付着させたこと以外は、実施例1から3と同様にして、排気ガス浄化用触媒を得た。
Comparative Example 2: Production of catalyst for purifying exhaust gas As shown in Table 1, for purifying exhaust gas in the same manner as in Examples 1 to 3 except that potassium was attached so as to be 0.500% by mass. Obtained a catalyst.
比A/B及び比A/P
実施例及び比較例の各排気ガス浄化用触媒について、原料の貴金属(Pt)の量(Pmol%)、アルカリ金属(K)の量(Amol%)、メソポーラスシリカ(BMS)の量(Bmol%)から、メソポーラスシリカの含有量(Bmol%)に対するアルカリ金属の含有量(Amol%)の比A/Bと、貴金属の含有量(Pmol%)に対するアルカリ金属の含有量(Amol%)の比A/Pを求めた。
Ratio A / B and ratio A / P
For each of the exhaust gas purification catalysts of Examples and Comparative Examples, the amount of the raw material noble metal (Pt) (Pmol%), the amount of the alkali metal (K) (Amol%), and the amount of mesoporous silica (BMS) (Bmol%). Therefore, the ratio A / B of the alkali metal content (Amol%) to the mesoporous silica content (Bmol%) and the ratio A / B of the alkali metal content (Amol%) to the noble metal content (Pmol%). I asked for P.
窒素吸着等温線の測定
実施例及び比較例の耐熱試験前の各排気ガス浄化用触媒について、窒素吸着等温線を測定した。測定には、高精度ガス吸着装置(品名:BELSORP mini、マイクロトラック・ベル株式会社製)を使用した。測定条件は、以下のとおりである。試料は、前処理として、10Pa、300℃で2時間の加熱を行ってから測定した。窒素吸着等温線から1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つずつピークを有するか否かどうかを確認した。また、1nm以上5nm以下の範囲に存在するピークトップの孔径を代表細孔径D1とし、10nm以上50nm以下の範囲に存在するピークトップの孔径を代表細孔径D2とした。また、窒素吸着等温線の吸着側の等温線をDH法で解析して得られた細孔径分布曲線において、1nm以上100nmの範囲を積分して得られる総積算細孔容積Va(mL/g)、1nm以上5nm以下の範囲を積算して得られる積算細孔容積V1(mL/g)、及び、10nm以上50nm以下の範囲を積算して得られる積算細孔容積V2(mL/g)を測定した。
測定方式:定容量型ガス吸着法
吸着ガス:窒素
装置の前処理条件:圧力10Pa以下で、300℃、2時間の真空排気
解析プログラム:吸脱着等温測定
:DH法による細孔径分布曲線の測定
測定相対圧範囲:P/P0=0.13〜0.99
測定量:0.05g
Measurement of Nitrogen Adsorption Isotherm The nitrogen adsorption isotherm was measured for each exhaust gas purification catalyst before the heat resistance test of Examples and Comparative Examples. A high-precision gas adsorption device (product name: BELSORP mini, manufactured by Microtrack Bell Co., Ltd.) was used for the measurement. The measurement conditions are as follows. The sample was measured after being heated at 10 Pa and 300 ° C. for 2 hours as a pretreatment. It was confirmed whether or not each of the nitrogen adsorption isotherms had one peak in the range of 1 nm or more and 5 nm or less and the range of 10 nm or more and 50 nm or less. Further, the pore diameter of the peak top existing in the range of 1 nm or more and 5 nm or less was defined as the representative pore diameter D1, and the pore diameter of the peak top existing in the range of 10 nm or more and 50 nm or less was defined as the representative pore diameter D2. Further, in the pore diameter distribution curve obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method, the total integrated pore volume Va (mL / g) obtained by integrating the range of 1 nm or more and 100 nm. Measure the integrated pore volume V1 (mL / g) obtained by integrating the range of 1 nm or more and 5 nm or less, and the integrated pore volume V2 (mL / g) obtained by integrating the range of 10 nm or more and 50 nm or less. did.
Measurement method: Constant-capacity gas adsorption method Adsorption gas: Pretreatment condition of nitrogen device: 300 ° C for 2 hours at
: Measurement of pore size distribution curve by DH method Measurement relative pressure range: P / P0 = 0.13 to 0.99
Measured amount: 0.05 g
耐熱試験
実施例及び比較例の各排気ガス浄化用触媒を、大気中、800℃、3時間の熱処理し、耐熱試験を行った。
Heat resistance test Each exhaust gas purification catalyst of Examples and Comparative Examples was heat-treated in the air at 800 ° C. for 3 hours to perform a heat resistance test.
触媒活性の評価
実施例及び比較例の耐熱試験後の各排気ガス浄化用触媒について、以下のようにして、触媒活性を測定した。触媒活性の測定試験は、常圧固定床流通式反応装置を用い、粒径355μmから600μmに整粒した触媒試料0.1gを石英ガラス製反応管に充填して石英ウールで固定した。前処理として1.5体積%の酸素(O2)を含むヘリウム(He)ガスを反応管に流通し、600℃まで10℃/分で昇温し、600℃で10分間保持した。次いで、C3H6を1500ppm、O2を9000ppm、残部がHeである試験ガスを総流量500cm3/分で流通させ、100℃から600℃までの各温度での触媒性能を評価した。反応管に試験ガスの導入を開始した時点から、試験ガスが排気ガス浄化用触媒に接触した後(触媒通過後)の出ガス中のCO2濃度の測定を開始し、試験ガス中の全てのC3H6がCO2とH2Oに転化した場合の1/2の量となるまでにかかる時間(T50)を測定した。T50が、220℃未満は優(Excellent:E)、220℃以上250℃未満は良(Good:G)、250℃以上260℃未満は可(Average:A)、260℃以上は不可(Poor:P)と評価した。反応後の出ガス中のC3H6、CO及びCO2の分析には、ガスクロマトグラフ(品番GC−14B(FID検出器)、株式会社島津製作所製)及びメタン還元装置(品番:MTN−1、株式会社島津製作所製)を用いた。
ガスクロマトグラフの測定条件
カラム種類:カラム1:Active carbon
カラム2:Unibeads 1S
キャリアガス:
He:カラム1 75kPa
カラム2 120kPa
H2:カラム1 80kPa
カラム2 70kPa
Air:カラム1 55kPa
カラム2 47.5kPa
注入口温度:200℃
検出器温度:250℃
カラム温度:100℃
Evaluation of catalytic activity The catalytic activity of each exhaust gas purification catalyst after the heat resistance test of Examples and Comparative Examples was measured as follows. In the measurement test of the catalyst activity, 0.1 g of a catalyst sample having a particle size of 355 μm to 600 μm was filled in a quartz glass reaction tube and fixed with quartz wool using a pressure-fixed bed flow reactor. As a pretreatment, a helium (He) gas containing 1.5% by volume of oxygen (O 2 ) was circulated through the reaction tube, the temperature was raised to 600 ° C. at 10 ° C./min, and the temperature was maintained at 600 ° C. for 10 minutes. Next, a test gas having C 3 H 6 at 1500 ppm, O 2 at 9000 ppm, and the balance of He was circulated at a total flow rate of 500 cm 3 / min, and the catalytic performance at each temperature from 100 ° C. to 600 ° C. was evaluated. From the time when the introduction of the test gas into the reaction tube was started, the measurement of the CO 2 concentration in the exhaust gas after the test gas came into contact with the exhaust gas purification catalyst (after passing through the catalyst) was started, and all the
Measurement conditions for gas chromatograph Column type: Column 1: Activated carbon
Column 2: Unibeds 1S
Carrier gas:
He: Column 1 75 kPa
H2: Column 1 80 kPa
Air: Column 1 55 kPa
Injection port temperature: 200 ° C
Detector temperature: 250 ° C
Column temperature: 100 ° C
表1に示すように、実施例1から3の耐熱試験後の排気ガス浄化用触媒は、いずれもT50が250℃以下であり、800℃以上の厳しい熱環境下においても細孔構造を維持し、耐熱性を向上していることが確認できた。 As shown in Table 1, all of the exhaust gas purification catalysts after the heat resistance test of Examples 1 to 3 have a T50 of 250 ° C. or lower and maintain the pore structure even in a harsh thermal environment of 800 ° C. or higher. It was confirmed that the heat resistance was improved.
比較例1の排気ガス浄化用触媒は、耐熱試験前の積算細孔容積径V1及び積算細孔容積径V2ともに、実施例1から3の耐熱試験前の排気ガス浄化用触媒よりも大きくなっているが、アルカリ金属を含んでいないため、耐熱試験後のT50が不可であり、触媒活性が低下した。 The exhaust gas purification catalyst of Comparative Example 1 has a larger integrated pore volume diameter V1 and integrated pore volume diameter V2 before the heat resistance test than the exhaust gas purification catalyst before the heat resistance test of Examples 1 to 3. However, since it does not contain an alkali metal, T50 after the heat resistance test is not possible, and the catalytic activity is lowered.
比較例2の排気ガス浄化用触媒は、耐熱試験前の積算細孔容積径V1及び積算細孔容積径V2ともに、実施例1から3の耐熱試験前の排気ガス浄化用触媒よりも小さく、アルカリ金属を多く含むため、耐熱試験後のT50が不可であり、メソポーラスシリカの細孔が壊れて、触媒活性が低下した。 The exhaust gas purification catalyst of Comparative Example 2 is smaller than the exhaust gas purification catalysts of Examples 1 to 3 before the heat resistance test in both the integrated pore volume diameter V1 and the integrated pore volume diameter V2 before the heat resistance test, and is alkaline. Since it contains a large amount of metal, T50 after the heat resistance test is not possible, the pores of the mesoporous silica are broken, and the catalytic activity is lowered.
図1に示すように、実施例2、比較例1及び2の排気ガス浄化用触媒は、いずれも窒素吸着等温線の吸着側の等温線をDH法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つのピークを有していた。 As shown in FIG. 1, the exhaust gas purification catalysts of Example 2 and Comparative Examples 1 and 2 are all exhaust gas purification catalysts obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method. In the pore size distribution curve of No. 1, the pore size had one peak in the range of 1 nm or more and 5 nm or less and the range of 10 nm or more and 50 nm or less.
本開示に係る排気ガス浄化用触媒は、厳しい熱環境下に置かれた場合であっても、細孔構造を維持して触媒活性を向上し、耐熱性をより向上することができる。よって、本開示に係る排気ガス浄化用触媒は、自動四輪車や自動二輪車などの内燃機関から排出される排気ガスを浄化するために好適に用いることができる。 The exhaust gas purification catalyst according to the present disclosure can maintain the pore structure, improve the catalytic activity, and further improve the heat resistance even when placed in a harsh thermal environment. Therefore, the exhaust gas purification catalyst according to the present disclosure can be suitably used for purifying the exhaust gas discharged from an internal combustion engine such as a motorcycle or a motorcycle.
Claims (4)
アルカリ金属と、
メソポーラスシリカと、を含む排気ガス浄化用触媒であって、
窒素吸着等温線の吸着側の等温線をDH法で解析して得られる排気ガス浄化用触媒の細孔径分布曲線において、細孔径が1nm以上5nm以下の範囲及び10nm以上50nm以下の範囲にそれぞれ1つ以上のピークを有し、
前記メソポーラスシリカの含有量(Bmol%)に対する前記アルカリ金属の含有量(Amol%)の比A/Bが、1.0×10−4以上5.0×10−3以下の範囲内である、排気ガス浄化用触媒。 With precious metals
Alkali metal and
An exhaust gas purification catalyst containing mesoporous silica.
In the pore diameter distribution curve of the exhaust gas purification catalyst obtained by analyzing the isotherm on the adsorption side of the nitrogen adsorption isotherm by the DH method, the pore diameter is 1 nm or more and 5 nm or less and 10 nm or more and 50 nm or less, respectively. Has one or more peaks
The ratio A / B of the alkali metal content (Amol%) to the mesoporous silica content (Bmol%) is in the range of 1.0 × 10 -4 or more and 5.0 × 10 -3 or less. Exhaust gas purification catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019192705A JP2021065837A (en) | 2019-10-23 | 2019-10-23 | Catalyst for cleaning exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019192705A JP2021065837A (en) | 2019-10-23 | 2019-10-23 | Catalyst for cleaning exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021065837A true JP2021065837A (en) | 2021-04-30 |
Family
ID=75636236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019192705A Pending JP2021065837A (en) | 2019-10-23 | 2019-10-23 | Catalyst for cleaning exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021065837A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149341A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of silica-carrier catalyst containing rhodium |
JPS62149340A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of catalyst containing rhodium |
JPS62149342A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of high dispersion type rhodium-containing catalyst |
JPH08266865A (en) * | 1995-03-30 | 1996-10-15 | Toyota Motor Corp | Exhaust gas purification catalyst for diesel engine |
JP2002153733A (en) * | 2000-09-08 | 2002-05-28 | Nissan Motor Co Ltd | Exhaust gas cleaning system and exhaust emission control method |
JP2008012382A (en) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JP2012245438A (en) * | 2011-05-25 | 2012-12-13 | Toyota Motor Corp | Catalyst for decomposition of sulfur trioxide and method of generating hydrogen |
JP2016503376A (en) * | 2012-11-01 | 2016-02-04 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Encapsulated nanoparticles |
-
2019
- 2019-10-23 JP JP2019192705A patent/JP2021065837A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149341A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of silica-carrier catalyst containing rhodium |
JPS62149340A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of catalyst containing rhodium |
JPS62149342A (en) * | 1985-12-24 | 1987-07-03 | Agency Of Ind Science & Technol | Production of high dispersion type rhodium-containing catalyst |
JPH08266865A (en) * | 1995-03-30 | 1996-10-15 | Toyota Motor Corp | Exhaust gas purification catalyst for diesel engine |
JP2002153733A (en) * | 2000-09-08 | 2002-05-28 | Nissan Motor Co Ltd | Exhaust gas cleaning system and exhaust emission control method |
JP2008012382A (en) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JP2012245438A (en) * | 2011-05-25 | 2012-12-13 | Toyota Motor Corp | Catalyst for decomposition of sulfur trioxide and method of generating hydrogen |
JP2016503376A (en) * | 2012-11-01 | 2016-02-04 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Encapsulated nanoparticles |
Non-Patent Citations (3)
Title |
---|
加藤純雄: ""二元細孔を有するメソポーラスシリカを担体としたPt触媒の調製とC3H6酸化活性"", 2018年年会講演予稿集, JPN6023032814, 1 March 2018 (2018-03-01), pages 3 - 06, ISSN: 0005128319 * |
加藤純雄: ""二元細孔を有するメソポーラスシリカ担持Pt触媒のC3H6燃焼活性に対するK添加の影響"", 2019年年会講演予稿集, JPN6023032812, 1 March 2019 (2019-03-01), pages 1 - 24, ISSN: 0005128317 * |
小笠原正剛: ""二元細孔を有するメソポーラスシリカを担体としたPt触媒のプロピレン燃焼特性"", 第35回ゼオライト研究発表会講演予稿集, JPN6023032813, 5 December 2019 (2019-12-05), pages 14, ISSN: 0005128318 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5882607A (en) | Exhaust gas cleaner and method for cleaning exhaust gas | |
US7678734B2 (en) | Oxidation catalysts | |
JP6482986B2 (en) | Method for producing exhaust gas purifying catalyst | |
CN104437640A (en) | Pd/MIL-53(Al) catalyst, and preparation and application thereof | |
JPH01210032A (en) | Exhaust gas purifying catalyst and its preparation | |
JP2024501748A (en) | Three-way catalyst supporting noble metal in single atomic state, preparation method and use thereof | |
KR100965738B1 (en) | Exhaust gas purification catalyst and method for production thereof | |
JP5598859B2 (en) | Porous alumina and catalyst using the same | |
JPS63205141A (en) | Catalyst for purifying exhaust gas | |
JPH05220403A (en) | Exhaust gas purifying catalyst | |
EP2823887B1 (en) | Oxidation catalyst and exhaust gas purification method using same | |
JP6107487B2 (en) | N2O decomposition catalyst and N2O-containing gas decomposition method using the same | |
JP2021065837A (en) | Catalyst for cleaning exhaust gas | |
JP6296412B2 (en) | Exhaust gas purification system and exhaust gas purification method | |
JP2007038155A (en) | Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method | |
CN115555013A (en) | Pt/silicon modified alumina-based catalyst and preparation method and application thereof | |
US20230076536A1 (en) | Exhaust gas purification catalyst device | |
JP5112966B2 (en) | Lean burn exhaust gas purification catalyst | |
JP2598817B2 (en) | Exhaust gas purification catalyst | |
JP4697506B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3387417B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
CN111921540B (en) | Preparation method of three-way catalyst for automobile exhaust, product and application thereof | |
JP3766984B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH04267950A (en) | Catalyst for purifying exhaust gas | |
JP2018075550A (en) | Three-dimensional catalyst for exhaust gas purification and manufacturing method therefor, and catalyst converter for exhaust gas solidification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20191118 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230815 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240220 |