JP2021062067A - Fluid replacement device of hemodialysis device - Google Patents

Fluid replacement device of hemodialysis device Download PDF

Info

Publication number
JP2021062067A
JP2021062067A JP2019188731A JP2019188731A JP2021062067A JP 2021062067 A JP2021062067 A JP 2021062067A JP 2019188731 A JP2019188731 A JP 2019188731A JP 2019188731 A JP2019188731 A JP 2019188731A JP 2021062067 A JP2021062067 A JP 2021062067A
Authority
JP
Japan
Prior art keywords
dialysate
passage
flow rate
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019188731A
Other languages
Japanese (ja)
Other versions
JP7328531B2 (en
Inventor
敬章 坂下
Takaaki Sakashita
敬章 坂下
光正 松崎
Mitsumasa Matsuzaki
光正 松崎
涼太 中川
Ryota Nakagawa
涼太 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Kogyo Co Ltd filed Critical Shibuya Kogyo Co Ltd
Priority to JP2019188731A priority Critical patent/JP7328531B2/en
Publication of JP2021062067A publication Critical patent/JP2021062067A/en
Application granted granted Critical
Publication of JP7328531B2 publication Critical patent/JP7328531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

To reliably execute fluid replacement even when pressure of a blood circuit 3 fluctuates.SOLUTION: A fluid replacement passage 5 for supplying a replacement fluid to a blood circuit 3 during dialysis treatment is communicated with a dialysis fluid supply passage 14 and the blood circuit 3. First flow amount throttle means MV1 is provided in the dialysis fluid supply passage 14 in the downstream of a connection part 22 of the dialysis fluid supply passage 14 and the fluid replacement passage 5, and second flow amount throttle means MV2 is provided in the fluid replacement passage 5. Control means executes control to cause the pressure of the connection part 22 to be predetermined pressure or higher by controlling the first flow amount throttle means MV1, and executes control to cause the flow amount of the replacement fluid flowing through the fluid replacement passage 5 to be a target value by controlling the second flow amount throttle means MV2.SELECTED DRAWING: Figure 1

Description

本発明は血液透析装置の補液装置に関し、より詳しくは、補液ポンプの代わりに流量絞り手段を設けた血液透析装置の補液装置に関する。 The present invention relates to a fluid replacement device for a hemodialysis device, and more particularly to a fluid replacement device for a hemodialysis device provided with a flow flow throttle means instead of a fluid replacement pump.

従来、血液透析装置の補液装置として、補液ポンプの代わりに流量絞り手段を設けた血液透析装置の補液装置が知られている(特許文献1)。
すなわち上記血液透析装置の補液装置は、血液透析を行う透析器と、新鮮な透析液を上記透析器に供給する透析液供給通路および透析器を通過した使用済みの透析液を回収する透析液回収通路からなる透析液回路と、上記透析器へ血液を供給する動脈側通路および透析器から血液を排出する静脈側通路からなる血液回路と、上記透析液供給通路と血液回路とを連通する補液通路と、上記透析液供給通路と補液通路との接続部よりも下流側の透析液供給通路に設けられ、上記透析液供給通路の流量を調整する第1流量絞り手段と、上記第1流量絞り手段を制御する制御手段と、を備え、上記透析器に血液を流通させて血液を浄化処理するとともに、上記第1流量絞り手段により当該第1流量絞り手段よりも上流側の圧力を上昇させて上記補液通路を介して血液回路に透析液を補液するようになっている。
Conventionally, as a fluid replacement device for a hemodialysis device, a fluid replacement device for a hemodialysis device provided with a flow throttle means instead of a fluid replacement pump is known (Patent Document 1).
That is, the replacement solution device of the blood dialysis machine is a dialyzer that performs blood dialysis, a dialysate supply passage that supplies fresh dialysate to the dialyzer, and a dialysate that collects used dialysate that has passed through the dialyzer. A dialysate circuit consisting of a passage, a blood circuit consisting of an arterial passage for supplying blood to the dialyzer and a venous passage for discharging blood from the dialyzer, and a supplementary fluid passage connecting the dialysate supply passage and the blood circuit. A first flow throttle means for adjusting the flow rate of the dialysate supply passage, which is provided in the dialysate supply passage on the downstream side of the connection portion between the dialysate supply passage and the supplementary liquid supply passage, and the first flow throttle means. A control means for controlling the above is provided, blood is circulated through the dialyzer to purify the blood, and the pressure on the upstream side of the first flow squeezing means is increased by the first flow squeezing means. The dialysate is supplemented into the blood circuit via the replacement fluid passage.

特開2015−80595号公報Japanese Unexamined Patent Publication No. 2015-80595

上記特許文献1に記載の血液透析装置の補液装置は、補液通路に設ける補液ポンプの代わりに透析液供給通路に流量絞り手段を設けたものであるから、補液ポンプを設けるものに比較して血液透析装置の補液装置を安価に製造することができるという利点があるが、その反面、確実な補液を行えない危険性があった。
例えば、血圧の高い患者の場合には血圧の低い患者に比較して上記血液回路の圧力が高くなるが、血圧回路の圧力が高くなると該血圧回路の圧力と上記接続部の圧力との圧力差が小さくなる。そして両者の圧力差が小さくなると透析液供給通路から血液回路に流れる補液量が少なくなり、仮に両者の圧力が同じになれば全く補液が流れなくなる。また血液回路の圧力が高くなる他の例としては、透析効率を高めるために血液ポンプの給送量を大きく設定した場合などが挙げられる。
このように、患者毎に血圧や血液ポンプの給送量が異なるので患者毎に血液回路の圧力が異なるが、高血圧の患者を治療する際やその他の何らかの原因で血液回路の圧力が高くなった場合には、透析液供給通路から血液回路に流れる補液量が少なくなり過ぎる危険性があった。
本発明はそのような事情に鑑み、従来に比較してより確実に補液を行うことができる血液透析装置の補液装置を提供するものである。
Since the replacement fluid device of the hemodialysis apparatus described in Patent Document 1 is provided with a flow flow limiting means in the dialysate supply passage instead of the replacement fluid pump provided in the replacement fluid passage, blood is compared with the one provided with the replacement fluid pump. There is an advantage that the fluid replacement device for the dialysis machine can be manufactured at low cost, but on the other hand, there is a risk that reliable fluid replacement cannot be performed.
For example, in the case of a patient with high blood pressure, the pressure of the blood circuit is higher than that of a patient with low blood pressure, but when the pressure of the blood pressure circuit is high, the pressure difference between the pressure of the blood pressure circuit and the pressure of the connection portion is high. Becomes smaller. When the pressure difference between the two becomes small, the amount of replacement fluid flowing from the dialysate supply passage to the blood circuit decreases, and if the pressures of the two become the same, the replacement fluid does not flow at all. Another example of high pressure in the blood circuit is when the feed rate of the blood pump is set large in order to improve the dialysis efficiency.
In this way, the blood pressure and the blood pump feed amount are different for each patient, so the pressure of the blood circuit is different for each patient, but the pressure of the blood circuit is high when treating a patient with high blood pressure or for some other reason. In some cases, there was a risk that the amount of replacement fluid flowing from the dialysate supply passage to the blood circuit would be too small.
In view of such circumstances, the present invention provides a fluid replacement device for a hemodialysis device capable of performing fluid replacement more reliably than in the past.

請求項1の発明は、血液透析を行う透析器と、新鮮な透析液を上記透析器に供給する透析液供給通路および透析器を通過した使用済みの透析液を回収する透析液回収通路からなる透析液回路と、上記透析器へ血液を供給する動脈側通路および透析器から血液を排出する静脈側通路からなる血液回路と、上記透析液供給通路と血液回路とを連通する補液通路と、上記透析液供給通路と補液通路との接続部よりも下流側の透析液供給通路に設けられ、上記透析液供給通路の流量を調整する第1流量絞り手段と、上記第1流量絞り手段を制御する制御手段と、を備え、
上記透析器に血液を流通させて血液を浄化処理するとともに、上記第1流量絞り手段により当該第1流量絞り手段よりも上流側の圧力を上昇させて上記補液通路を介して血液回路に透析液を補液するようにした血液透析装置の補液装置において、
上記補液通路に当該補液通路の流量を調整する第2流量絞り手段を設けるとともに、上記制御手段に上記補液通路を流れる補液の流量の目標値を入力する補液流量設定手段を設け、
上記制御手段は、上記接続部の圧力が所定値以上となるように上記第1流量絞り手段を制御するとともに、上記補液の流量が目標値となるように上記第2流量絞り手段を制御することを特徴とするものである。
The invention of claim 1 comprises a dialyzer for performing blood dialysis, a dialysate supply passage for supplying fresh dialysate to the dialyzer, and a dialysate recovery passage for collecting used dialysate that has passed through the dialyzer. A blood circuit including a dialysate circuit, an arterial passage for supplying blood to the dialyzer, and a venous passage for discharging blood from the dialyzer, a replacement fluid circuit connecting the dialysate supply passage and the blood circuit, and the above. A first flow squeezing means for adjusting the flow rate of the dialysate supply passage and the first flow squeezing means, which are provided in the dialysate supply passage on the downstream side of the connection portion between the dialysate supply passage and the supplementary liquid supply passage, are controlled. With control means,
Blood is circulated through the dialyzer to purify the blood, and the pressure on the upstream side of the first flow drawing means is increased by the first flow drawing means to enter the dialysate into the blood circuit through the replacement fluid passage. In the fluid replacement device of the hemodialysis device that is designed to replenish the fluid
The replenishment passage is provided with a second flow rate throttle means for adjusting the flow rate of the replenishment passage, and the control means is provided with a replenishment flow rate setting means for inputting a target value of the flow rate of the replenisher flowing through the replenishment passage.
The control means controls the first flow rate throttle means so that the pressure at the connection portion becomes equal to or higher than a predetermined value, and controls the second flow rate throttle means so that the flow rate of the replacement fluid becomes a target value. It is characterized by.

請求項1の発明によれば、第1流量絞り手段は上記接続部の圧力が所定値以上となるように制御され、また第2流量絞り手段は補液の流量が目標値となるように制御されるので、血液回路の圧力が変動しても従来に比較してより確実な補液を行うことができるという効果が得られる。 According to the invention of claim 1, the first flow rate throttle means is controlled so that the pressure at the connection portion is equal to or higher than a predetermined value, and the second flow rate throttle means is controlled so that the flow rate of the replacement fluid becomes a target value. Therefore, even if the pressure of the blood circuit fluctuates, it is possible to obtain the effect that more reliable replacement fluid can be performed as compared with the conventional case.

本発明の一実施例を示す回路図。The circuit diagram which shows one Example of this invention. 第1流量絞り手段MV1と第2流量絞り手段MV2の調整を説明するための回路図。The circuit diagram for demonstrating the adjustment of the 1st flow rate throttle means MV1 and the 2nd flow rate throttle means MV2.

以下、図示実施例について本発明を説明すると、図1において、血液透析装置1は、透析器2に接続されて血液が流通する血液回路3と、透析器2に接続されて透析液が流通する透析液回路4と、血液回路3と透析液回路4とを接続する補液通路5とを備えている。
上記血液回路3は、患者の血管に接続されて上記透析器2に血液を供給する動脈側通路7と、透析器2から患者に血液を戻す静脈側通路8とから構成されている。
上記動脈側通路7には、その一端に患者の血管に穿刺される穿刺針7Aが設けられるとともに他端が透析器2の入口に接続され、上記穿刺針7Aから順に、動脈側通路7を開閉するクランプ9、圧力センサPA、および血液を送液する血液ポンプ10が設けられている。
上記静脈側通路8は、その一端が上記透析器2の出口に接続されるとともに他端に患者の血管に穿刺される穿刺針8Aが設けられており、上記透析器2の下流側にドリップチャンバD1が配置され、このドリップチャンバD1に圧力センサPVが設けられている。
Hereinafter, the present invention will be described with reference to the illustrated examples. In FIG. 1, the hemodialysis apparatus 1 is connected to a dialyzer 2 to flow blood, and a blood circuit 3 connected to the dialyzer 2 to flow dialysate. The dialysate circuit 4 is provided with a replenishment passage 5 for connecting the blood circuit 3 and the dialysate circuit 4.
The blood circuit 3 is composed of an arterial passage 7 connected to a patient's blood vessel to supply blood to the dialyzer 2 and a venous passage 8 for returning blood from the dialyzer 2 to the patient.
The arterial side passage 7 is provided with a puncture needle 7A that punctures the patient's blood vessel at one end thereof, and the other end is connected to the entrance of the dialyzer 2, and the arterial side passage 7 is opened and closed in order from the puncture needle 7A. A clamp 9, a pressure sensor PA, and a blood pump 10 for delivering blood are provided.
One end of the venous passage 8 is connected to the outlet of the dialyzer 2, and a puncture needle 8A for puncturing a patient's blood vessel is provided at the other end, and a drip chamber is provided on the downstream side of the dialyzer 2. D1 is arranged, and a pressure sensor PV is provided in the drip chamber D1.

上記透析液回路4には、透析液を収容する第1透析液チャンバ11および第2透析液チャンバ12が設けられており、これら第1透析液チャンバ11および第2透析液チャンバ12は、給液通路13を介して供給される新鮮透析液を収容し、該新鮮透析液を透析液供給通路14を介して透析器2に供給するとともに、透析器2から排出される使用済み透析液を透析液回収通路15を介して回収し、排液通路16を介して装置外に排出するようになっている。
上記第1透析液チャンバ11および第2透析液チャンバ12は同形であり、それぞれ可撓性のダイアフラムにより内部が2室に区画され、一方が新鮮透析液を収容するための供給室11A、12A、他方が使用済み透析液を回収するための回収室11B、12Bとなっている。
The dialysate circuit 4 is provided with a first dialysate chamber 11 and a second dialysate chamber 12 for accommodating dialysate, and the first dialysate chamber 11 and the second dialysate chamber 12 are supplied with liquid. The fresh dialysate supplied through the passage 13 is stored, the fresh dialysate is supplied to the dialyzer 2 through the dialysate supply passage 14, and the used dialysate discharged from the dialyzer 2 is dialysate. It is designed to be collected through the collection passage 15 and discharged to the outside of the device through the drainage passage 16.
The first dialysate chamber 11 and the second dialysate chamber 12 have the same shape, and the inside is divided into two chambers by a flexible diaphragm, and one of them is a supply chamber 11A, 12A for accommodating fresh dialysate. The other is a collection chamber 11B and 12B for collecting the used dialysate.

上記第1透析液チャンバ11および第2透析液チャンバ12の各供給室11A、12Aには、給液通路13および透析液供給通路14をそれぞれ分岐させて接続してあり、給液通路13の分岐された通路には給液弁V1、V2を設け、透析液供給通路14の分岐された通路には供給弁V3、V4を設けている。また、各回収室11B、12Bには、透析液回収通路15および排液通路16をそれぞれ分岐させて接続してあり、透析液回収通路15の分岐された通路には回収弁V5、V6を設け、排液通路16の分岐された通路には排液弁V7、V8を設けている。 A liquid supply passage 13 and a dialysate supply passage 14 are branched and connected to the supply chambers 11A and 12A of the first dialysate chamber 11 and the second dialysate chamber 12, respectively, and the liquid supply passage 13 is branched. Liquid supply valves V1 and V2 are provided in the provided passage, and supply valves V3 and V4 are provided in the branched passage of the dialysate supply passage 14. Further, the dialysate recovery passage 15 and the drainage passage 16 are branched and connected to the recovery chambers 11B and 12B, respectively, and recovery valves V5 and V6 are provided in the branched passages of the dialysate recovery passage 15. , Drainage valves V7 and V8 are provided in the branched passages of the drainage passage 16.

上記給液通路13には、その上流側に図示しない新鮮透析液を供給する新鮮透析液供給装置を設けてあり、該新鮮透析液供給装置から供給される新鮮透析液の供給圧力は圧力センサPG1によって計測できるようにしてある。
上記透析液供給通路14には、それぞれ透析液を清浄化するエンドトキシンカットフィルタからなる第1透析液フィルタF1と第2透析液フィルタF2とを設けてあり、第2透析液フィルタF2の下流側には透析液の濃度を検出する濃度センサなどを含む各種構成部品21を設けてある。
The liquid supply passage 13 is provided with a fresh dialysate supply device (not shown) on the upstream side thereof, and the supply pressure of the fresh dialysate supplied from the fresh dialysate supply device is the pressure sensor PG1. It is made possible to measure by.
The dialysate supply passage 14 is provided with a first dialysate filter F1 and a second dialysate filter F2, each of which is an endotoxin cut filter for purifying the dialysate, on the downstream side of the second dialysate filter F2. Is provided with various components 21 including a concentration sensor for detecting the concentration of dialysate.

上記補液通路5は上記各種構成部品21の下流側で透析液供給通路14から分岐させてあり、両通路5、14の接続部22より下流側の透析液供給通路14に第1流量絞り手段MV1と、流量計23と、開閉弁V9bとを順次設けてある。
上記透析液回収通路15には、上流側から、開閉弁V19と、圧力センサPDと、濃度センサなどを含む各種構成部品24と、透析液中の気泡を除去する除気槽25と、使用済み透析液を第1透析液チャンバ11および第2透析液チャンバ12の各回収室11B、12Bに送る送液ポンプ26と、圧力センサPG3とを設けてある。
The replacement fluid passage 5 is branched from the dialysate supply passage 14 on the downstream side of the various component 21, and the first flow rate throttle means MV1 is connected to the dialysate supply passage 14 on the downstream side of the connection portion 22 of both passages 5 and 14. And the flow meter 23 and the on-off valve V9b are sequentially provided.
From the upstream side, the dialysate recovery passage 15 includes an on-off valve V19, a pressure sensor PD, various components 24 including a concentration sensor, an air degassing tank 25 for removing air bubbles in the dialysate, and used ones. A liquid feed pump 26 for sending dialysate to the collection chambers 11B and 12B of the first dialysate chamber 11 and the second dialysate chamber 12 and a pressure sensor PG3 are provided.

上記透析液供給通路14と透析液回収通路15とはバイパス通路31で接続してあり、このバイパス通路31に開閉弁V9aを設けてある。上記バイパス通路31は、透析液供給通路14に設けた流量計23と開閉弁V9bとの間の透析液供給通路14と、透析液回収通路15に設けた圧力センサPDと各種構成部品24との間の透析液回収通路15とを連通させている。
また上記送液ポンプ26の下流側には除水通路32が接続され、この除水通路32に設けた除水ポンプ33を介して所要量の使用済み透析液が排液通路16に排出されるようになっている。さらに上記除気槽25で除去された気体は、除気弁V9を備えた除気通路35により、排液通路16に排出されるようになっている。
The dialysate supply passage 14 and the dialysate recovery passage 15 are connected by a bypass passage 31, and an on-off valve V9a is provided in the bypass passage 31. The bypass passage 31 includes a dialysate supply passage 14 between the flow meter 23 provided in the dialysate supply passage 14 and the on-off valve V9b, a pressure sensor PD provided in the dialysate recovery passage 15, and various components 24. It communicates with the dialysate recovery passage 15 between them.
A water removal passage 32 is connected to the downstream side of the liquid feed pump 26, and a required amount of used dialysate is discharged to the drain passage 16 via the water removal pump 33 provided in the water removal passage 32. It has become like. Further, the gas removed by the degassing tank 25 is discharged to the drainage passage 16 by the degassing passage 35 provided with the degassing valve V9.

上記補液通路5には、上流側から、第2流量絞り手段MV2と、開閉弁V36bと、補液通路接続ポート36とを設けてあり、図1の実線で示す場合には、該補液通路5は、透析器2の出口とドリップチャンバD1との間の静脈側通路8に接続してある。
しかしながら、上記補液通路5は、図1の点線で示すように、血液ポンプ10と透析器2の入口との間の動脈側通路7に接続してもよい。
また、上記流量絞り手段MV1、MV2としてはダイアフラム弁を用いたものが好ましい。ダイアフラム弁を用いた流量絞り手段においては、弁座に対してダイアフラム弁のリフト量を増減することで流路面積を増減するようにしているので接液する摺動部がなく、透析液に異物が混入する恐れがないからである。
The replacement fluid passage 5 is provided with a second flow throttle means MV2, an on-off valve V36b, and a replacement fluid passage connection port 36 from the upstream side. When shown by the solid line in FIG. 1, the replacement fluid passage 5 is provided. , Connected to the venous passage 8 between the outlet of the dialyzer 2 and the drip chamber D1.
However, the replacement fluid passage 5 may be connected to the arterial passage 7 between the blood pump 10 and the inlet of the dialyzer 2, as shown by the dotted line in FIG.
Further, as the flow rate limiting means MV1 and MV2, those using a diaphragm valve are preferable. In the flow rate throttle means using a diaphragm valve, the flow path area is increased or decreased by increasing or decreasing the lift amount of the diaphragm valve with respect to the valve seat, so that there is no sliding part that comes into contact with the liquid and foreign matter is contained in the dialysate. This is because there is no risk of contamination.

ところで、上記血液透析装置1は図示しない制御手段によって制御されるようになっており、また当該制御手段には上記補液通路5を流れる補液の流量の目標値を入力する図示しない補液流量設定手段が設けられている。
この補液流量設定手段としては、いくつかの構成のものを採用することができる。
第1に、制御手段に設けたタッチスクリーン又は物理ボタンにより補液流量設定手段が構成されており、操作者が手動操作により上記タッチスクリーン又は物理ボタンを介して目標値を入力するものであってもよい。
第2に、上記補液流量設定手段はカード読込手段を備えており、該カード読込手段によりICカード(RFID)、SDカード、コンパクトフラッシュ(登録商標)等の各種外部記憶手段に予め記録されている目標値を読み込むものであってもよい。
第3に、上記補液流量設定手段は通信手段を備えており、該通信手段によりローカルネットワーク(LAN)等の通信手段を介して接続される中央監視装置(好ましくはPC)から送信される目標値を読み込むものであってもよく、さらに上記第1ないし第3の構成を合わせ持っているものであってもよい。
要するに、上記補液流量設定手段は、上記制御手段に補液通路5を流れる補液の流量の目標値を入力することができれば、如何なる構成のものであってもよい。
By the way, the hemodialysis apparatus 1 is controlled by a control means (not shown), and the control means is provided with a replacement fluid flow rate setting means (not shown) for inputting a target value of the flow rate of the replacement fluid flowing through the replacement fluid passage 5. It is provided.
As the replacement fluid flow rate setting means, several configurations can be adopted.
First, even if the replacement fluid flow rate setting means is configured by the touch screen or the physical button provided on the control means and the operator manually inputs the target value via the touch screen or the physical button. Good.
Secondly, the replacement fluid flow rate setting means includes a card reading means, which is pre-recorded in various external storage means such as an IC card (RFID), an SD card, and a compact flash (registered trademark) by the card reading means. It may read the target value.
Thirdly, the replacement fluid flow rate setting means includes a communication means, and a target value transmitted from a central monitoring device (preferably a PC) connected by the communication means via a communication means such as a local network (LAN). May be read, and may also have the above-mentioned first to third configurations.
In short, the replacement fluid flow rate setting means may have any configuration as long as the target value of the flow rate of the replacement fluid flowing through the replacement fluid passage 5 can be input to the control means.

また上記補液流量設定手段による補液流量の目標値は、例えば、次のようにして設定される。
一例として4時間の補液時間と2.4(〜72)Lの総補液量とが与えられた場合、補液流量設定手段は、それら数値に基づいて100(〜300)ml/minの流量となるように補液流量を設定する。
またこの際、補液流量設定手段に対する指令に応じて、補液流量設定手段は補液時間を所定時間毎に、一例として20分毎に区切り、各区間における補液量をそれぞれに設定した補液プロファイルを作成することができる。例えば前半と後半は補液量を少なく、中盤は多めにするなどの補液プロファイルを作成することができる。
この場合には、補液流量設定手段は各区間の補液量の合計値が総補液量となるようにし、かつ各区間の補液量と上記区間毎の時間から各区間毎の補液流量を算出するようになる。そして制御手段は、各区間で設定される目標値に基づいて制御を行うようになる。
Further, the target value of the replacement fluid flow rate by the replacement fluid flow rate setting means is set as follows, for example.
As an example, when a replacement fluid time of 4 hours and a total fluid replacement volume of 2.4 (~ 72) L are given, the replacement fluid flow rate setting means becomes a flow rate of 100 (~ 300) ml / min based on these values. Set the replacement fluid flow rate so as to.
At this time, in response to a command to the replacement fluid flow rate setting means, the replacement fluid flow rate setting means divides the replacement fluid time into predetermined time intervals, for example, every 20 minutes, and creates a replacement fluid profile in which the replacement fluid volume in each section is set. be able to. For example, it is possible to create a replacement fluid profile such that the amount of replacement fluid is small in the first half and the second half and is large in the middle stage.
In this case, the replacement fluid flow rate setting means shall make the total value of the replacement fluid amount in each section the total replacement fluid amount, and calculate the replacement fluid flow rate for each section from the replacement fluid amount in each section and the time for each section. become. Then, the control means will perform control based on the target value set in each section.

以上の構成において、血液透析を行う場合には、上記給液通路13から第1透析液チャンバ11の供給室11Aに新鮮透析液が供給されるとともに、回収室11Bに収容されていた使用済み透析液は排液通路16に排出される。これと同時に、送液ポンプ26によって透析器2から使用済み透析液が排出されて第2透析液チャンバ12の回収室12Bに回収されると、これに伴い第2透析液チャンバ12の供給室12Aから新鮮透析液が透析器2に供給されるようになる。
引き続き、上記給液弁V1、V2と排液弁V7、V8および供給弁V3、V4と回収弁V5、V6の開閉状態を切り換えることで、第2透析液チャンバ12の供給室12Aに新鮮透析液が供給されるとともに、使用済み透析液が回収室12Bから排液され、第1透析液チャンバ11の供給室11Aから透析器2に新鮮透析液が供給されるとともに、使用済み透析液が回収室11Bに回収される。これを交互に繰り返すことで、連続的に透析器2に新鮮透析液を供給するとともに、透析器2から使用済み透析液を回収するようになっている。
そして上記透析器2から回収室11B、12Bに使用済み透析液を回収する際に、除水ポンプ33により使用済み透析液の一部を透析液回収通路15から排液通路16に排出することにより、透析器2に流通させる新鮮透析液の供給量より使用済み透析液の回収量を多くして、血液中から余分な水分を除去することができる。
In the above configuration, when hemodialysis is performed, fresh dialysate is supplied from the liquid supply passage 13 to the supply chamber 11A of the first dialysate chamber 11, and used dialysis stored in the recovery chamber 11B. The liquid is discharged into the drainage passage 16. At the same time, when the used dialysate is discharged from the dialyzer 2 by the liquid feed pump 26 and collected in the recovery chamber 12B of the second dialysate chamber 12, the supply chamber 12A of the second dialysate chamber 12 is accompanied by this. The fresh dialysate is supplied to the dialyzer 2.
Subsequently, by switching the open / closed states of the liquid supply valves V1 and V2 and the drainage valves V7 and V8 and the supply valves V3 and V4 and the recovery valves V5 and V6, fresh dialysate is supplied to the supply chamber 12A of the second dialysate chamber 12. Is supplied, the used dialysate is drained from the collection chamber 12B, fresh dialysate is supplied from the supply chamber 11A of the first dialysate chamber 11 to the dialyzer 2, and the used dialysate is collected in the collection chamber. It is collected in 11B. By repeating this alternately, the fresh dialysate is continuously supplied to the dialyzer 2, and the used dialysate is collected from the dialyzer 2.
Then, when the used dialysate is collected from the dialyzer 2 into the collection chambers 11B and 12B, a part of the used dialysate is discharged from the dialysate collection passage 15 to the drainage passage 16 by the water removal pump 33. , The amount of used dialysate collected can be made larger than the amount of fresh dialysate supplied to the dialyzer 2, and excess water can be removed from the blood.

上記血液透析を行っている最中に補液を行う場合には、開閉弁V36bが開放されて透析液供給通路14から透析器2へ供給されていた透析液の一部が補液通路5を介して血液回路3に供給されるようになる。
この際には、血液透析装置1を制御する図示しない制御手段により、第1流量絞り手段MV1と第2流量絞り手段MV2の開度が適正となるように調整され、所要量の補液が確実に血液回路3に供給されるようになっている。
以下、制御手段による第1流量絞り手段MV1と第2流量絞り手段MV2の制御に関する透析開始前の準備調整について説明する。
When fluid replacement is performed during the above hemodialysis, the on-off valve V36b is opened and a part of the dialysate supplied from the dialysate supply passage 14 to the dialyzer 2 is passed through the fluid replacement passage 5. It comes to be supplied to the blood circuit 3.
At this time, a control means (not shown) for controlling the hemodialysis apparatus 1 adjusts the opening degree of the first flow rate squeezing means MV1 and the second flow squeezing means MV2 so that the opening degree is appropriate, and the required amount of replacement fluid is surely supplied. It is designed to be supplied to the blood circuit 3.
Hereinafter, preparatory adjustment before the start of dialysis regarding control of the first flow rate throttle means MV1 and the second flow rate throttle means MV2 by the control means will be described.

最初に、補液通路5の開閉弁V36bを閉じて、送液ポンプ26により、透析液チャンバ11又は12からの透析液の全量を透析液供給通路14から透析器2を介して透析液回収通路15に流した際の流量が所定の流量となるように設定する。
このとき、上記第1透析液チャンバ11と第2透析液チャンバ12の容積は同一で既知あり、一例としてそれぞれを100mlとする。
また、一方の透析液チャンバ11又は12からの透析液の送液時間は、圧力センサPG3を用いて検出することができる。すなわち、一方のチャンバからの送液が完了した時点は、チャンバ内のダイアフラムが図1示右側に行き着いた時点で発生する圧力波(ウォーターハンマー)を圧力センサPG3で検出することによって検出することができる。したがって、他方のチャンバの送液が完了した時点で各回収弁および排液弁V5〜V8を切り替えて一方のチャンバの送液開始時点とし、この一方のチャンバの送液完了を圧力センサPG3で検出した時点までの時間を送液時間として検出することができる。
したがって、上記100mlと送液時間とから流量を算出することができ、ここでは流量を700ml/minとする。
このようにして流量を700ml/minに設定した場合、制御手段は流量が700ml/minとなるように、より詳細には、流量が700ml/minとなる送液時間が得られるように、送液ポンプ26をフィードバック制御する。
First, the on-off valve V36b of the replenishment passage 5 is closed, and the total amount of dialysate from the dialysate chamber 11 or 12 is collected from the dialysate supply passage 14 via the dialyzer 2 by the liquid feed pump 26. Set so that the flow rate when flowing into is a predetermined flow rate.
At this time, the volumes of the first dialysate chamber 11 and the second dialysate chamber 12 are the same and known, and each is 100 ml as an example.
Further, the delivery time of the dialysate from one of the dialysate chambers 11 or 12 can be detected by using the pressure sensor PG3. That is, the time when the liquid transfer from one chamber is completed can be detected by detecting the pressure wave (water hammer) generated when the diaphragm in the chamber reaches the right side shown in FIG. 1 by detecting with the pressure sensor PG3. it can. Therefore, when the liquid feeding in the other chamber is completed, each recovery valve and the drain valve V5 to V8 are switched to set the liquid feeding start time in one chamber, and the completion of the liquid feeding in the one chamber is detected by the pressure sensor PG3. The time up to the time when the liquid is sent can be detected as the liquid feeding time.
Therefore, the flow rate can be calculated from the above 100 ml and the liquid feeding time, and here, the flow rate is set to 700 ml / min.
When the flow rate is set to 700 ml / min in this way, the control means sends the liquid so that the flow rate becomes 700 ml / min, and more specifically, the liquid feeding time at which the flow rate becomes 700 ml / min can be obtained. The pump 26 is feedback controlled.

次に、上記700ml/minの全流量を第1流量絞り手段MV1に流した際に、制御手段は、一例として上記接続部22の圧力すなわち第1流量絞り手段MV1の入口圧力Pinが50kPa(≒375mmHg)となるように、第1流量絞り手段MV1の圧力損失係数ζmv1を設定する。
上記上流側圧力Pinを50kPaとしたのは、一般に透析治療中における血液回路3の圧力上限値が300mmHgに設定されていて、血液回路3に設けた圧力センサPAまたはPVによって圧力上限値が検出された際には、異常発生として制御手段により警報が発せられるように設定されているからである。つまり接続部22の上流側圧力Pinを50kPaに維持すれば、補液通路5を開いた際に確実に血液回路3の圧力よりも接続部22の圧力を高く維持することができ、それによって補液を確実に実行することができる。
Next, when the total flow rate of 700 ml / min is passed through the first flow rate throttle means MV1, the control means has, for example, the pressure of the connection portion 22, that is, the inlet pressure Pin of the first flow rate throttle means MV1 is 50 kPa (≈). The pressure loss coefficient ζmv1 of the first flow rate throttle means MV1 is set so as to be 375 mmHg).
The reason why the upstream pressure Pin is set to 50 kPa is that the upper limit of the pressure of the blood circuit 3 is generally set to 300 mmHg during dialysis treatment, and the upper limit of the pressure is detected by the pressure sensor PA or PV provided in the blood circuit 3. This is because the control means is set to issue an alarm as an abnormality occurs. That is, if the upstream pressure Pin of the connection portion 22 is maintained at 50 kPa, the pressure of the connection portion 22 can be reliably maintained higher than the pressure of the blood circuit 3 when the fluid replacement passage 5 is opened, whereby the fluid replacement fluid can be maintained. It can be executed reliably.

上記第1流量絞り手段MV1の圧力損失係数ζmv1は、次のようにして設定される。
図2において、Pinは第1流量絞り手段MV1の入口圧力(接続部22の圧力)、Poutは第1流量絞り手段MV1の出口圧力である。第1流量絞り手段MV1の下流側の圧力は圧力センサPDによって検出することができ、第1流量絞り手段MV1の出口圧力は、圧力センサPDの検出値に、開閉弁V19による圧力損失と、透析器2による圧力損失と、開閉弁V9bによる圧力損失と、流量計23による圧力損失とを足したものとなる。なお、より厳密には第1流量絞り手段MV1の出口から圧力センサPDまでの管路長やベンドに基づく圧力損失などがあるが、その損失は小さいのでここでは省略する。さらに高精度に圧力を算出したい場合には、これらの損失を加味するようにしても良い。
そして第1流量絞り手段MV1の入口圧力Pinは、第1流量絞り手段MV1の出口圧力Poutに、該第1流量絞り手段MV1の圧力損失を加えたものとなる。
The pressure loss coefficient ζmv1 of the first flow rate throttle means MV1 is set as follows.
In FIG. 2, Pin is the inlet pressure of the first flow rate throttle means MV1 (pressure of the connection portion 22), and Pout is the outlet pressure of the first flow rate throttle means MV1. The pressure on the downstream side of the first flow throttle means MV1 can be detected by the pressure sensor PD, and the outlet pressure of the first flow throttle means MV1 is the detected value of the pressure sensor PD, the pressure loss due to the on-off valve V19, and the dialysis. It is the sum of the pressure loss due to the vessel 2, the pressure loss due to the on-off valve V9b, and the pressure loss due to the flow meter 23. Strictly speaking, there is a pressure loss based on the length of the pipeline from the outlet of the first flow rate throttle means MV1 to the pressure sensor PD and the bend, but the loss is small and is omitted here. If it is desired to calculate the pressure with higher accuracy, these losses may be taken into consideration.
The inlet pressure Pin of the first flow rate throttle means MV1 is obtained by adding the pressure loss of the first flow rate throttle means MV1 to the outlet pressure Pout of the first flow rate throttle means MV1.

上記各圧力損失は、それぞれ従来公知の計算方法によって算出することができるので、圧力センサPDの検出値が分かれば、第1流量絞り手段MV1の出口圧力Poutを計算によって算出することができる。これらの圧力損失は、流量が700ml/minで一定の場合には、一定の値となる。
上記第1流量絞り手段MV1の出口圧力Poutが算出できれば、該出口圧力Poutと上記必要となる入口圧力Pin(50kPa)との差から、該第1流量絞り手段MV1に要求される圧力損失の大きさを算出することができる。
この計算は、次のようにして求められる。
Q=U×A・・・(1)
ΔP=Pin−Pout=ζ×ρ×U/2・・・(2)
ここで、Qは流量、Uは平均流速、Aは断面積、ΔPは圧力差、ζは圧力損失係数、ρは流体密度である。
補液前に透析器2側に流れる流量Qdは全流量Qt(700ml/min)と同じであり、また第1流量絞り手段MV1の下流側の断面積をAd(既知の値)とすると、式(1)より透析器2側に流れる平均流速Udを算出することができる。流体密度ρは既知であるので、これらを式(2)に代入すれば、要求される第1流量絞り手段MV1の圧力損失ΔPから、必要な第1流量絞り手段MV1の圧力損失係数ζmv1の大きさが算出される。
上記制御手段は、上記第1流量絞り手段MV1の圧力損失係数ζmv1の大きさが得られたら、該圧力損失係数ζmv1をパラメータとして第1流量絞り手段MV1の開度を制御し、それによって第1流量絞り手段MV1の入口圧力Pinを上述した所定の値50kPaに制御する。
Since each of the above pressure losses can be calculated by a conventionally known calculation method, the outlet pressure Pout of the first flow rate throttle means MV1 can be calculated by calculation if the detected value of the pressure sensor PD is known. These pressure losses are constant values when the flow rate is constant at 700 ml / min.
If the outlet pressure Pout of the first flow rate throttle means MV1 can be calculated, the pressure loss required for the first flow rate throttle means MV1 is large from the difference between the outlet pressure Pout and the required inlet pressure Pin (50 kPa). Can be calculated.
This calculation is calculated as follows.
Q = U × A ... (1)
ΔP = Pin-Pout = ζ × ρ × U 2/2 ··· (2)
Here, Q is the flow rate, U is the average flow velocity, A is the cross-sectional area, ΔP is the pressure difference, ζ is the pressure loss coefficient, and ρ is the fluid density.
Assuming that the flow rate Qd flowing to the dialyzer 2 side before replenishment is the same as the total flow rate Qt (700 ml / min) and the cross-sectional area on the downstream side of the first flow rate throttle means MV1 is Ad (known value), the formula ( From 1), the average flow velocity Ud flowing to the dialyzer 2 side can be calculated. Since the fluid density ρ is known, if these are substituted into the equation (2), the required pressure loss coefficient ζmv1 of the first flow rate throttle means MV1 can be obtained from the required pressure loss ΔP of the first flow rate throttle means MV1. Is calculated.
When the magnitude of the pressure loss coefficient ζmv1 of the first flow rate throttle means MV1 is obtained, the control means controls the opening degree of the first flow rate throttle means MV1 using the pressure loss coefficient ζmv1 as a parameter, thereby controlling the opening degree of the first flow rate throttle means MV1. The inlet pressure Pin of the flow rate throttle means MV1 is controlled to the predetermined value of 50 kPa described above.

その後、上記制御手段は、第1流量絞り手段MV1の入口圧力Pinが50kPaにセットされていることを、圧力センサPG3を利用して確認する。
すなわち第1流量絞り手段MV1の入口圧力Pinは、圧力センサPG3の検出値から、第2透析チャンバ12側について言えば、回収弁V6による圧力損失、第2透析チャンバ12内のダイアフラムによる圧力損失、供給弁V4による圧力損失、第1透析液フィルタF1による圧力損失、第2透析液フィルタF2による圧力損失、および各種構成部品21による圧力損失を差し引いた値となる。
上記各圧力損失は、上述したようにそれぞれ従来公知の計算方法によって算出することができるので、圧力センサPG3の検出値が分かれば、第1流量絞り手段MV1の入口圧力Pinを計算によって算出することができる。換言すれば、圧力センサPG3の検出値が、第1流量絞り手段MV1の入口圧力Pinが50kPaとなるような値であれば、第1流量絞り手段MV1の圧力損失係数ζmv1は最適な大きさにセットされていることになる。
After that, the control means confirms by using the pressure sensor PG3 that the inlet pressure Pin of the first flow rate throttle means MV1 is set to 50 kPa.
That is, the inlet pressure Pin of the first flow throttle means MV1 is, from the detected value of the pressure sensor PG3, the pressure loss due to the recovery valve V6 and the pressure loss due to the diaphragm in the second dialysis chamber 12 on the second dialysis chamber 12 side. The value is obtained by subtracting the pressure loss due to the supply valve V4, the pressure loss due to the first dialysate filter F1, the pressure loss due to the second dialysate filter F2, and the pressure loss due to the various components 21.
Since each of the above pressure losses can be calculated by a conventionally known calculation method as described above, if the detected value of the pressure sensor PG3 is known, the inlet pressure Pin of the first flow rate throttle means MV1 can be calculated by calculation. Can be done. In other words, if the detected value of the pressure sensor PG3 is a value such that the inlet pressure Pin of the first flow rate throttle means MV1 is 50 kPa, the pressure loss coefficient ζmv1 of the first flow rate throttle means MV1 has an optimum magnitude. It will be set.

このようにして第1流量絞り手段MV1によって上記接続部22の圧力が所定値以上となるように調整したら、次に、補液通路5の開閉弁V36bを開いて、透析液チャンバ11又は12からの透析液の一部を、一例として100ml/minを補液通路5を介して血液回路3に流通させる。
この場合においても、第1流量絞り手段MV1および第2流量絞り手段MV2の入口圧力Pinは50kPaに制御されることになる。すなわち上記補液通路5が開かれてここに100ml/minの流量が流れると、透析液供給通路14側の流量Qdは600ml/minとなる。これにより式(1)、(2)から理解されるように、第1流量絞り手段MV1を含めて流量計23や開閉弁V9bなどのそれぞれの圧力損失が小さくなるので、第1流量絞り手段MV1の入口圧力Pinが50kPaよりも小さくなる。
すると制御手段は、流量絞り手段MV1の圧力損失係数ζmv1が最適な圧力損失係数となるように第1流量絞り手段MV1を制御して、第1流量絞り手段MV1の入口圧力Pinを50kPaに維持する。
この際、流量Qdが600ml/minの場合の圧力損失係数ζmv1の求め方は、上述の流量Qdが700ml/minの場合と同様である。
After adjusting the pressure of the connection portion 22 to be equal to or higher than a predetermined value by the first flow flow throttle means MV1 in this way, the on-off valve V36b of the replacement fluid passage 5 is then opened to allow the dialysate chamber 11 or 12 to be opened. A part of the dialysate is circulated to the blood circuit 3 through the replacement fluid passage 5 at 100 ml / min as an example.
Even in this case, the inlet pressure Pin of the first flow rate throttle means MV1 and the second flow rate throttle means MV2 is controlled to 50 kPa. That is, when the replacement fluid passage 5 is opened and a flow rate of 100 ml / min flows there, the flow rate Qd on the dialysate supply passage 14 side becomes 600 ml / min. As a result, as can be understood from the equations (1) and (2), the pressure loss of each of the flow meter 23, the on-off valve V9b, etc. including the first flow rate throttle means MV1 is reduced, so that the first flow rate throttle means MV1 The inlet pressure Pin is smaller than 50 kPa.
Then, the control means controls the first flow rate throttle means MV1 so that the pressure loss coefficient ζmv1 of the flow rate throttle means MV1 becomes the optimum pressure loss coefficient, and maintains the inlet pressure Pin of the first flow rate throttle means MV1 at 50 kPa. ..
At this time, the method of obtaining the pressure loss coefficient ζmv1 when the flow rate Qd is 600 ml / min is the same as that when the flow rate Qd is 700 ml / min.

次に、第2流量絞り手段MV2の入口圧力Pin=50kPa、第2流量絞り手段MV2の流量Qs=100ml/minという条件下で、上記式(1)、(2)を用いて第2流量絞り手段MV2の圧力損失係数ζmv2が算出される。この場合には静脈側通路8に設けた圧力センサPVを利用することができ、上述した第1流量絞り手段MV1の場合と同様にして、開閉弁V36bによる圧力損失と第2流量絞り手段MV2による圧力損失とを加えた圧力が上記入口圧力Pinである50kPaとなるように、圧力損失係数ζmv2の大きさが算出される。
そして圧力損失係数ζmv2の大きさが算出されれば、制御手段は該圧力損失係数ζmv2をパラメータとして第2流量絞り手段MV2を制御し、それによって第2流量絞り手段MV2による流量が100ml/minとなるように制御する。この際、患者毎に圧力センサPVによって検出される圧力が異なっても、上記圧力損失係数ζmv2の大きさが最適となるように選定されるので、上記入口圧力Pinは50kPaとなるように制御される。
なお、補液通路5は、血液回路3の透析器2の上流側に接続される場合(前希釈)と、透析器2の下流側に接続される場合(後希釈)とがあり、医師によって適宜選択されるが、いずれの場合も共通の算出方法を用いることができる。
Next, under the conditions of the inlet pressure Pin = 50 kPa of the second flow rate throttle means MV2 and the flow rate Qs = 100 ml / min of the second flow rate throttle means MV2, the second flow rate throttle using the above equations (1) and (2). The pressure loss coefficient ζmv2 of the means MV2 is calculated. In this case, the pressure sensor PV provided in the vein side passage 8 can be used, and the pressure loss due to the on-off valve V36b and the second flow throttle means MV2 are used in the same manner as in the case of the first flow throttle means MV1 described above. The magnitude of the pressure loss coefficient ζmv2 is calculated so that the pressure including the pressure loss becomes 50 kPa, which is the inlet pressure Pin.
Then, when the magnitude of the pressure loss coefficient ζmv2 is calculated, the control means controls the second flow rate throttle means MV2 using the pressure loss coefficient ζmv2 as a parameter, whereby the flow rate by the second flow rate throttle means MV2 becomes 100 ml / min. Control to be. At this time, even if the pressure detected by the pressure sensor PV is different for each patient, the size of the pressure loss coefficient ζmv2 is selected to be optimum, so that the inlet pressure Pin is controlled to be 50 kPa. To.
The replacement fluid passage 5 may be connected to the upstream side of the dialyzer 2 of the blood circuit 3 (pre-dilution) or connected to the downstream side of the dialyzer 2 (post-dilution). Although selected, a common calculation method can be used in either case.

さらに上記制御手段は、流量絞り手段MV1の圧力損失係数ζmv1を最適な圧力損失係数に再設定した後に、補液通路5に所定の流量Qs=100ml/minの透析液が流れているかを確認する。
この際には、流量計23によって透析液供給通路14側の流量Qdが600ml/minであるか否かを確認する。全流量Qtが700ml/minであることは既知であるので、透析液供給通路14側の流量Qdが600ml/minであれば、補液通路5側の流量Qsが100ml/minであることが確認できる。
仮に補液通路5側の流量Qsが目標値ではないことが検出されたら、制御手段は検出値と目標値との差から第2流量絞り手段MV2を制御して、該第2流量絞り手段MV2による流量が目標値となるようにフィードバック制御する。この後、制御手段は適宜のタイミングで補液通路5側の流量Qsを監視し、該流量Qsが目標値となるように第2流量絞り手段MV2をフィードバック制御するようになる。
このように制御手段は第2流量絞り手段MV2を制御して、上記接続部22の圧力が50kPaとなるように制御するとともに、補液通路5側の流量Qsが100ml/minとなるように制御する。
Further, the control means resets the pressure loss coefficient ζmv1 of the flow rate throttle means MV1 to the optimum pressure loss coefficient, and then confirms whether the dialysate having a predetermined flow rate Qs = 100 ml / min is flowing in the replenishment passage 5.
At this time, it is confirmed by the flow meter 23 whether or not the flow rate Qd on the dialysate supply passage 14 side is 600 ml / min. Since it is known that the total flow rate Qt is 700 ml / min, it can be confirmed that if the flow rate Qd on the dialysate supply passage 14 side is 600 ml / min, the flow rate Qs on the replacement fluid supply passage 5 side is 100 ml / min. ..
If it is detected that the flow rate Qs on the replacement fluid passage 5 side is not the target value, the control means controls the second flow rate throttle means MV2 from the difference between the detected value and the target value, and the second flow rate throttle means MV2 is used. Feedback control is performed so that the flow rate becomes the target value. After that, the control means monitors the flow rate Qs on the replacement fluid passage 5 side at an appropriate timing, and feedback-controls the second flow rate throttle means MV2 so that the flow rate Qs becomes a target value.
In this way, the control means controls the second flow rate throttle means MV2 to control the pressure of the connection portion 22 to be 50 kPa and to control the flow rate Qs on the replacement fluid passage 5 side to 100 ml / min. ..

以上の説明から理解されるように、本実施例においては透析液供給通路14における接続部22の圧力が血液回路3の圧力を上回る状態を維持するように圧力損失係数ζmv1、ζmv2を設定しているので、接続部22と血液回路3との圧力差が小さい、あるいは、血液回路3側の圧力が大きくなる等の要因で補液が行われないということがなく、確実に補液を行なわせることができる。 As can be understood from the above description, in this embodiment, the pressure loss coefficients ζmv1 and ζmv2 are set so that the pressure of the connecting portion 22 in the dialysate supply passage 14 is maintained above the pressure of the blood circuit 3. Therefore, there is no possibility that the replenishment is not performed due to factors such as a small pressure difference between the connection portion 22 and the blood circuit 3 or an increase in the pressure on the blood circuit 3 side, so that the replenishment can be reliably performed. it can.

なお、上記実施例では補液通路5側の流量Qsを100ml/minとした場合について説明したが、この流量Qsの値は任意の値とすることができ、制御手段は流量Qsの値の大小に応じて適切な圧力損失係数ζmv1、ζmv2を選定して流量絞り手段MV1、MV2を制御して、上記接続部22の圧力を適切な圧力に制御することができる。
また上記実施例において、圧力センサPG3は透析液チャンバ11、12内のダイアフラムの移動完了を検出するために設けており、本実施例ではこれを接続部22の圧力検出にも使用することで製造コストの低減を図っているが、接続部22の圧力検出用に専用の圧力センサを設けてもよい。
さらに補液通路5に流量計を追加してもよい。
In the above embodiment, the case where the flow rate Qs on the replenishment passage 5 side is set to 100 ml / min has been described, but the value of this flow rate Qs can be any value, and the control means can be set to a large or small value of the flow rate Qs. Appropriate pressure loss coefficients ζmv1 and ζmv2 can be selected accordingly to control the flow rate limiting means MV1 and MV2, and the pressure of the connection portion 22 can be controlled to an appropriate pressure.
Further, in the above embodiment, the pressure sensor PG3 is provided to detect the completion of movement of the diaphragm in the dialysate chambers 11 and 12, and in this embodiment, it is manufactured by using this for pressure detection of the connection portion 22 as well. Although the cost is reduced, a dedicated pressure sensor may be provided for detecting the pressure of the connection portion 22.
Further, a flow meter may be added to the replacement fluid passage 5.

1 血液透析装置 2 透析器
3 血液回路 4 透析液回路
5 補液通路 7 動脈側通路
8 静脈側通路 14 透析液供給通路
15 透析液回収通路 22 接続部
23 流量計 MV1 第1流量絞り手段
MV2 第2流量絞り手段
1 Hemodialysis device 2 Dialysis machine 3 Blood circuit 4 Dialysate circuit 5 Supplementary fluid passage 7 Arterial side passage 8 Venous side passage 14 Dialysate supply passage 15 Dialysate collection passage 22 Connection part 23 Flow meter MV1 1st flow throttle means MV2 2nd Flow throttle means

Claims (3)

血液透析を行う透析器と、新鮮な透析液を上記透析器に供給する透析液供給通路および透析器を通過した使用済みの透析液を回収する透析液回収通路からなる透析液回路と、上記透析器へ血液を供給する動脈側通路および透析器から血液を排出する静脈側通路からなる血液回路と、上記透析液供給通路と血液回路とを連通する補液通路と、上記透析液供給通路と補液通路との接続部よりも下流側の透析液供給通路に設けられ、上記透析液供給通路の流量を調整する第1流量絞り手段と、上記第1流量絞り手段を制御する制御手段と、を備え、
上記透析器に血液を流通させて血液を浄化処理するとともに、上記第1流量絞り手段により当該第1流量絞り手段よりも上流側の圧力を上昇させて上記補液通路を介して血液回路に透析液を補液するようにした血液透析装置の補液装置において、
上記補液通路に当該補液通路の流量を調整する第2流量絞り手段を設けるとともに、上記制御手段に上記補液通路を流れる補液の流量の目標値を入力する補液流量設定手段を設け、
上記制御手段は、上記接続部の圧力が所定値以上となるように上記第1流量絞り手段を制御するとともに、上記補液の流量が目標値となるように上記第2流量絞り手段を制御することを特徴とする血液透析装置の補液装置。
A dialysate circuit consisting of a dialyzer for performing hemodialysis, a dialysate supply passage for supplying fresh dialysate to the dialyzer, and a dialysate recovery passage for collecting used dialysate that has passed through the dialyzer, and the dialysate. A blood circuit consisting of an arterial passage for supplying blood to the vessel and a venous passage for discharging blood from the dialyzer, a replenisher passage connecting the dialysate supply passage and the blood circuit, and the dialysate supply passage and the replenisher passage. A first flow throttle means for adjusting the flow rate of the dialysate supply passage and a control means for controlling the first flow throttle means, which are provided in the dialysate supply passage on the downstream side of the connection portion with the dialysate, are provided.
Blood is circulated through the dialyzer to purify the blood, and the pressure on the upstream side of the first flow drawing means is increased by the first flow drawing means to enter the dialysate into the blood circuit through the replacement fluid passage. In the fluid replacement device of the hemodialysis device that is designed to replenish the fluid
The replenishment passage is provided with a second flow rate throttle means for adjusting the flow rate of the replenishment passage, and the control means is provided with a replenishment flow rate setting means for inputting a target value of the flow rate of the replenisher flowing through the replenishment passage.
The control means controls the first flow rate throttle means so that the pressure at the connection portion becomes equal to or higher than a predetermined value, and controls the second flow rate throttle means so that the flow rate of the replacement fluid becomes a target value. A fluid replacement device for a hemodialysis machine.
上記接続部よりも下流側の透析液供給通路に、該透析液供給通路を流れる透析液量を計測する流量計を設けたことを特徴とする請求項1に記載の血液透析装置の補液装置。 The replacement fluid device for a hemodialysis apparatus according to claim 1, wherein a flow meter for measuring the amount of dialysate flowing through the dialysate supply passage is provided in the dialysate supply passage on the downstream side of the connection portion. 上記制御手段は上記血液回路の圧力上限値が検出された際には異常発生として警報を発するように設定されており、上記所定値は圧力上限値よりも大きな値に設定されていることを特徴とする請求項1または請求項2に記載の血液透析装置の補液装置。 The control means is set to issue an alarm as an abnormality occurrence when the pressure upper limit value of the blood circuit is detected, and the predetermined value is set to a value larger than the pressure upper limit value. The fluid replacement device for the hemodialysis device according to claim 1 or 2.
JP2019188731A 2019-10-15 2019-10-15 Fluid replacement device for hemodialysis machine Active JP7328531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019188731A JP7328531B2 (en) 2019-10-15 2019-10-15 Fluid replacement device for hemodialysis machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188731A JP7328531B2 (en) 2019-10-15 2019-10-15 Fluid replacement device for hemodialysis machine

Publications (2)

Publication Number Publication Date
JP2021062067A true JP2021062067A (en) 2021-04-22
JP7328531B2 JP7328531B2 (en) 2023-08-17

Family

ID=75486843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188731A Active JP7328531B2 (en) 2019-10-15 2019-10-15 Fluid replacement device for hemodialysis machine

Country Status (1)

Country Link
JP (1) JP7328531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331640A1 (en) 2022-09-02 2024-03-06 Shibuya Corporation Dialysis apparatus and method for checking connection of replenisher passage
WO2024089724A1 (en) * 2022-10-24 2024-05-02 澁谷工業株式会社 Hemodialysis device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151294A (en) * 1997-09-22 1999-06-08 Gambro Lundia Ab Method and device for monitoring fluid supplementation pump
JP2001507609A (en) * 1997-01-09 2001-06-12 ガンブロ ルンデイア アクチーボラグ Apparatus and method for preparing displacement solution
JP2007185377A (en) * 2006-01-13 2007-07-26 Jms Co Ltd Blood purification circuit
JP2011200407A (en) * 2010-03-25 2011-10-13 Nikkiso Co Ltd Blood purification device
WO2016208705A1 (en) * 2015-06-24 2016-12-29 日機装株式会社 Blood purifying device
JP2017113286A (en) * 2015-12-24 2017-06-29 ニプロ株式会社 Hemodialyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507609A (en) * 1997-01-09 2001-06-12 ガンブロ ルンデイア アクチーボラグ Apparatus and method for preparing displacement solution
JPH11151294A (en) * 1997-09-22 1999-06-08 Gambro Lundia Ab Method and device for monitoring fluid supplementation pump
JP2007185377A (en) * 2006-01-13 2007-07-26 Jms Co Ltd Blood purification circuit
JP2011200407A (en) * 2010-03-25 2011-10-13 Nikkiso Co Ltd Blood purification device
WO2016208705A1 (en) * 2015-06-24 2016-12-29 日機装株式会社 Blood purifying device
JP2017113286A (en) * 2015-12-24 2017-06-29 ニプロ株式会社 Hemodialyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331640A1 (en) 2022-09-02 2024-03-06 Shibuya Corporation Dialysis apparatus and method for checking connection of replenisher passage
WO2024089724A1 (en) * 2022-10-24 2024-05-02 澁谷工業株式会社 Hemodialysis device

Also Published As

Publication number Publication date
JP7328531B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP2550984B1 (en) Blood purification device
KR101148716B1 (en) Method and apparatus for priming an extracorporeal blood circuit
KR102001142B1 (en) Dialysis machine including ultrafiltration and backfiltration means
US11123463B2 (en) Blood purification apparatus
US20130150768A1 (en) Blood Purification Apparatus And Method For Inspecting Liquid Leakage Thereof
CN101842124A (en) Method and apparatus for monitoring the supply of replacement fluid during an extracorporeal treatment of blood
US9119922B2 (en) Apparatus and method for identifying a tubing system for an extracorporeal blood treatment device
US20130292313A1 (en) Apparatus for extracorporeal blood treatment
JP7009385B2 (en) Medical processing devices and methods for monitoring medical processing devices
JP2021062067A (en) Fluid replacement device of hemodialysis device
US20240269365A1 (en) Extracorporeal blood treatment apparatus and method for monitoring pressures in an extracorporeal blood treatment apparatus
JP6998112B2 (en) Blood purification device
US20130062283A1 (en) Device for regulating at least one filtration value, haemodialysis machine and corresponding method and use
JP2021049061A (en) Blood purification device
KR20230175224A (en) Control method and device for blood processing device
CN111202879A (en) Blocking detection device for fluid infusion path in hemodialysis device
WO2024150754A1 (en) Blood purification device
CN112312940A (en) Blood purification device and method for obtaining plasma flow rate of blood purification device
WO2024089724A1 (en) Hemodialysis device
JP2024075976A (en) Blood Purification Device
US20240131241A1 (en) Blood purification apparatus
JP2023141985A (en) blood purification device
JP2024024324A (en) blood purification device
JP2023141986A (en) blood purification device
JP2021073030A (en) Blood purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7328531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150