JP2021057537A - Magnetization device, magnetization method and magnet-driven pump - Google Patents

Magnetization device, magnetization method and magnet-driven pump Download PDF

Info

Publication number
JP2021057537A
JP2021057537A JP2019181689A JP2019181689A JP2021057537A JP 2021057537 A JP2021057537 A JP 2021057537A JP 2019181689 A JP2019181689 A JP 2019181689A JP 2019181689 A JP2019181689 A JP 2019181689A JP 2021057537 A JP2021057537 A JP 2021057537A
Authority
JP
Japan
Prior art keywords
magnet
magnetizing
magnet material
magnetic field
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019181689A
Other languages
Japanese (ja)
Other versions
JP6664767B1 (en
Inventor
修一 岸
Shuichi Kishi
修一 岸
志民 劉
Shimin Ryu
志民 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lgk Co Ltd
Daito Kogyo Co Ltd
Original Assignee
Lgk Co Ltd
Daito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lgk Co Ltd, Daito Kogyo Co Ltd filed Critical Lgk Co Ltd
Priority to JP2019181689A priority Critical patent/JP6664767B1/en
Application granted granted Critical
Publication of JP6664767B1 publication Critical patent/JP6664767B1/en
Priority to PCT/JP2020/016211 priority patent/WO2021065057A1/en
Priority to KR1020217007404A priority patent/KR102272599B1/en
Priority to TW109117758A priority patent/TWI712056B/en
Priority to CN202010522083.6A priority patent/CN112103025B/en
Publication of JP2021057537A publication Critical patent/JP2021057537A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To also improve a magnetization degree of a magnetized object while suppressing cost without performing a magnetizing operation a plurality of times when magnetizing a relatively small magnet material like a magnet coupling mechanism which drives a magnet-driven pump.SOLUTION: An outer magnet of a magnetization device comprises: an outer yoke in a hollow cylinder shape; an even number of magnet materials 4 each of which is a magnetized object and which are disposed on an inner surface and the same circumference of the outer yoke at equal intervals; a magnetizer which is disposed inside of the magnet materials, has a substantially equal outer peripheral length to a length of the inside of the magnet materials and includes magnetic field generation parts 8 each generating magnetic fields in which adjacent magnetic fields have reverse polarities, toward opposed magnet materials as many as the magnet materials; and a power unit which is connected to the magnetizer and generates a magnetic field required for magnetizing the magnet materials by causing a current to flow to the magnetic field generation parts just once. A center of one magnet material and a center of an opposed magnetic field generation part are displaced just equal to or smaller than an angle obtained by dividing 360 degrees with a double number as large as the number of magnet materials in a circumferential direction inside of the outer yoke.SELECTED DRAWING: Figure 4

Description

マグネット駆動のポンプにおけるマグネットカップリング機構を構成する磁石を着磁する技術に関する。 The present invention relates to a technique for magnetizing a magnet constituting a magnet coupling mechanism in a magnet-driven pump.

磁気作用によってギアなどの駆動体を駆動させる、マグネットカップリング(磁気カップリング)機構を有するポンプの市場ニーズは、近年、さらに高まる傾向にある。このようなマグネットカップリング機構を有したポンプ業界において、ギアポンプは、マグネットカップリングに使用される磁石の高性能化により、様々な流体に採用されている。特に、高粘度流体の定量移送や計量移送や油圧動力伝達装置においては、高圧力発生器として様々な回転速度域において使用されている。 In recent years, the market needs for pumps having a magnetic coupling mechanism that drives a driving body such as a gear by magnetic action have been increasing. In the pump industry having such a magnet coupling mechanism, gear pumps have been adopted for various fluids due to the high performance of magnets used for magnet coupling. In particular, it is used as a high pressure generator in various rotation speed ranges in quantitative transfer, metering transfer, and hydraulic power transmission of high-viscosity fluids.

ところで、モーターや発電機などの回転機の駆動機構において使用される磁石を効率的に着磁させる方法に関しては、従来盛んに研究・開発が行われ、その成果が多数特許出願されている。 By the way, a method for efficiently magnetizing a magnet used in a drive mechanism of a rotating machine such as a motor or a generator has been actively researched and developed, and many patent applications have been filed for the results.

例えば、特許文献1では、「ロータに固定した複数の希土類磁石に対して高い着磁率で着磁を行う方法」が提案され、特許文献2では、「無着磁部分をできるだけ少なくした高性能な磁石を簡単な方法で得、太線の励磁コイルを採用することによりヨークのパンクを防止できる着磁装置」が提案されている。 For example, Patent Document 1 proposes "a method of magnetizing a plurality of rare earth magnets fixed to a rotor with a high magnetic permeability", and Patent Document 2 "high performance with as few non-magnetized parts as possible". A magnetizing device that can prevent puncture of the yoke by obtaining a magnet by a simple method and adopting a thick wire exciting coil has been proposed.

特開2002−124414号公報Japanese Unexamined Patent Publication No. 2002-124414 特開2002−204542号公報JP-A-2002-204542

しかしながら、上記の従来技術は、大規模な回転機の駆動機構における技術であり、比較的小さい磁石材料を着磁させる動作には適用することが難しいという問題点がある。
また、上記の従来技術は何れも、着磁動作が複数回行われることに基づいて、磁石材料を着磁させる作業全体としてコストが高くなるという問題点もある。
However, the above-mentioned conventional technique is a technique in a drive mechanism of a large-scale rotating machine, and has a problem that it is difficult to apply it to an operation of magnetizing a relatively small magnet material.
Further, all of the above-mentioned conventional techniques have a problem that the cost of magnetizing the magnet material as a whole is high based on the fact that the magnetizing operation is performed a plurality of times.

そこで本発明では、上記問題点に鑑み、マグネット駆動ポンプを駆動させるマグネットカップリング機構のように比較的小さい磁石材料を着磁させるとき、着磁動作を複数回行わずコストを抑え、被着磁物の着磁程度も高める着磁装置を提供することを目的とする。 Therefore, in view of the above problems, in the present invention, when a relatively small magnet material such as a magnet coupling mechanism for driving a magnet drive pump is magnetized, the magnetizing operation is not performed a plurality of times to reduce the cost and to be magnetized. It is an object of the present invention to provide a magnetizing device that also enhances the degree of magnetizing an object.

開示する着磁装置の一形態は、強磁性体で形成され、中空円筒形のアウターヨークと、異方性磁石の被着磁物であり、前記アウターヨークの内面に、かつ、同一周上に等間隔で偶数個配置される第1磁石材料と、前記第1磁石材料の内側に配置され、前記第1磁石材料の内側の長さと略同じ外周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第1磁石材料の方へ磁界を発生させる第1磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第1磁界発生部を、前記第1磁石材料と同数備える第1着磁器と、前記第1着磁器に接続され、前記コイルに電流を1回だけ流すことによって前記第1磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置であって、一の前記第1磁石材料の中心と前記一の第1磁石材料に対向する前記第1磁界発生部の中心とが、前記アウターヨーク内部の周方向において、360°を前記第1磁石材料の個数の2倍の数で除した角度以下だけずれていることを特徴とする。 One form of the magnetizing device disclosed is a hollow cylindrical outer yoke and a magnetized object of an anisotropic magnet, which are formed of a ferromagnetic material, and are on the inner surface of the outer yoke and on the same circumference. An even number of first magnet materials are arranged at equal intervals, and the first magnet material is arranged inside the first magnet material, has an outer peripheral length substantially the same as the inner length of the first magnet material, and is wound around the iron core and the iron core. It is a first magnetic field generating part that is composed of a coil to be generated and generates a magnetic field toward the first magnet material facing each other when a current flows through the coil, and adjacent ones generate a magnetic field of opposite poles. The first magnetic field generator is connected to the first magnetizer having the same number as the first magnet material and the first magnetizer, and the first magnet material is magnetized by passing a current through the coil only once. A magnetizing device having a magnetizing power supply device for generating a magnetic field required for the above, wherein the center of one of the first magnet materials and the center of the first magnetic field generating portion facing the first magnet material. However, in the circumferential direction inside the outer yoke, the deviation is equal to or less than an angle obtained by dividing 360 ° by a number twice the number of the first magnet materials.

また、開示する着磁装置の一形態は、 強磁性体で形成され、円筒形のインナーヨークと、異方性磁石の被着磁物であり、前記インナーヨークの外面に、かつ、同一周上に等間隔で偶数個配置される第2磁石材料と、前記第2磁石材料の外側に配置され、前記第2磁石材料の外側の長さと略同じ内周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第2磁石材料の方へ磁界を発生させる第2磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第2磁界発生部を、前記第2磁石材料と同数備える第2着磁器と、前記第2着磁器に接続され、前記コイルに電流を1回だけ流すことによって前記第2磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置であって、一の前記第2磁石材料の中心と前記一の第2磁石材料に対向する前記第2磁界発生部の中心とが、前記インナーヨークの周方向において、360°を前記第2磁石材料の個数の2倍の数で除した角度以下だけずれていることを特徴とする。 Further, one form of the magnetizing device disclosed is a cylindrical inner yoke formed of a ferromagnetic material and a magnetized object of an anisotropic magnet, which is on the outer surface of the inner yoke and on the same circumference. The second magnet material is arranged evenly at equal intervals, and the inner circumference is arranged outside the second magnet material and has substantially the same inner circumference as the outer length of the second magnet material, and the iron core and the circumference of the iron core are provided. A second magnetic field generator that is composed of a coil wound around a magnet and generates a magnetic field toward the opposite second magnet material when a current flows through the coil, and adjacent ones generate a magnetic field of opposite poles. The second magnet material to be generated is connected to the second magnetizer having the same number of second magnetic field generators as the second magnet material, and the second magnet material is generated by passing a current through the coil only once. A magnetizing device having a magnetizing power supply device for generating a magnetic field required for magnetizing, wherein the second magnetic field generating unit faces the center of the second magnet material and the second magnet material. The center of the inner yoke is deviated by an angle equal to or less than 360 ° divided by twice the number of the second magnet materials in the circumferential direction of the inner yoke.

開示する着磁装置は、マグネット駆動ポンプを駆動させるマグネットカップリング機構のように比較的小さい磁石材料を着磁させるとき、着磁動作を複数回行わずコストを抑え、被着磁物の着磁程度も高める。 The magnetizing device disclosed discloses that when magnetizing a relatively small magnet material such as a magnet coupling mechanism for driving a magnet driving pump, the magnetizing operation is not performed a plurality of times to reduce the cost, and the magnetized object is magnetized. Also increase the degree.

本実施の形態に係るアウターマグネットの構造例を示す図である。It is a figure which shows the structural example of the outer magnet which concerns on this embodiment. 本実施の形態に係る第1着磁器の構造例を示す図である。It is a figure which shows the structural example of the 1st porcelain which concerns on this embodiment. 本実施の形態に係るインナーマグネットの構造例を示す図である。It is a figure which shows the structural example of the inner magnet which concerns on this embodiment. 本実施の形態に係る第1磁石材料と第1磁界発生部との位置関係を説明する図である。It is a figure explaining the positional relationship between the 1st magnet material and the 1st magnetic field generation part which concerns on this Embodiment. 本実施の形態に係る第2磁石材料と第2磁界発生部との位置関係を説明する図である。It is a figure explaining the positional relationship between the 2nd magnet material and the 2nd magnetic field generation part which concerns on this Embodiment. 本実施の形態に係る着磁装置による着磁性能の計測結果例を示す図である。It is a figure which shows the measurement result example of the magnetizing performance by the magnetizing apparatus which concerns on this embodiment. 本実施の形態に係るマグネット駆動ポンプの一例を示す図である。It is a figure which shows an example of the magnet drive pump which concerns on this embodiment.

図面を参照しながら、本発明を実施するための形態について説明する。
(本実施の形態に係る着磁装置の構造)
A mode for carrying out the present invention will be described with reference to the drawings.
(Structure of magnetizing device according to this embodiment)

図1乃至7を用いて、本実施の形態に係る着磁装置1の構造について説明する。図1は、アウターマグネット24(アウターヨーク2及び第1磁石材料4を含む)を示す断面図であり、図2は、第1着磁器6を示す図である。図3は、インナーマグネット26(インナーヨーク16及び第2磁石材料18を含む)を示す断面図である。図4及び5は、着磁動作時における磁石材料4、18と磁界発生部8、22との位置関係を示す図であり、図6は、着磁装置1による着磁性能の計測結果例を示す図である。図7は、マグネット駆動のポンプ30の断面構造を示す図である。 The structure of the magnetizing device 1 according to the present embodiment will be described with reference to FIGS. 1 to 7. FIG. 1 is a cross-sectional view showing an outer magnet 24 (including an outer yoke 2 and a first magnet material 4), and FIG. 2 is a view showing a first porcelain 6. FIG. 3 is a cross-sectional view showing an inner magnet 26 (including an inner yoke 16 and a second magnet material 18). 4 and 5 are diagrams showing the positional relationship between the magnet materials 4 and 18 and the magnetic field generating portions 8 and 22 during the magnetizing operation, and FIG. 6 is an example of the measurement result of the magnetizing performance by the magnetizing device 1. It is a figure which shows. FIG. 7 is a diagram showing a cross-sectional structure of the magnet-driven pump 30.

着磁装置1は、アウターヨーク2、第1磁石材料4、第1着磁器6、着磁電源装置14、インナーヨーク16、第2磁石材料18、第2着磁器20を有する。図1で示すように、アウターヨーク2は、炭素鋼のような強磁性体で形成され、中空円筒形又はカップ形の形状を成す部位である。 The magnetizing device 1 includes an outer yoke 2, a first magnet material 4, a first magnetizing device 6, a magnetizing power supply device 14, an inner yoke 16, a second magnet material 18, and a second magnetizing device 20. As shown in FIG. 1, the outer yoke 2 is a portion formed of a ferromagnetic material such as carbon steel and having a hollow cylindrical shape or a cup shape.

図1で示すように、第1磁石材料4は、ネオジム磁石、サマリウム・コバルト磁石などの異方性磁石から成る、着磁装置1による着磁対象となる被着磁物である。第1磁石材料4は、アウターヨーク2の内面に、かつ、同一周上に等間隔で偶数個配置される。各第1磁石材料4は、微差はあるものの、略同形状である。第1磁石材料4は、直方体のような形状であっても良く、また、アウターヨーク2の内面に沿う同心円形状を成していても良く、その場合、略同形状の第1磁石材料4は、連接するように配置されることが好適である。 As shown in FIG. 1, the first magnet material 4 is a magnetized object to be magnetized by the magnetizing device 1, which is composed of an anisotropic magnet such as a neodymium magnet and a samarium-cobalt magnet. An even number of the first magnet materials 4 are arranged on the inner surface of the outer yoke 2 and on the same circumference at equal intervals. Each of the first magnet materials 4 has substantially the same shape, although there are slight differences. The first magnet material 4 may have a rectangular parallelepiped shape, or may have a concentric circular shape along the inner surface of the outer yoke 2. In that case, the first magnet material 4 having substantially the same shape may have a shape. , It is preferable that they are arranged so as to be connected.

図2で示すように、第1着磁器6は、第1磁石材料4と同数の第1磁界発生部8を備える。第1磁界発生部8は、鉄心10と鉄心10周囲に巻き付けられるコイル12とで構成され、コイル12に電流が流れることによって対向する第1磁石材料4の方へ磁界を発生させる部位である。第1磁界発生部8は、第1磁石材料4の内側に配置され、第1磁石材料4の内側の長さと略同じ外周長を備える。また、隣接する第1磁界発生部8は、それぞれ逆極の磁界を発生させる。
図3で示すように、インナーヨーク16は、炭素鋼のような強磁性体で形成され、円筒形(円柱形)の形状を成す部位である。但し、インナーヨーク16は、磁石の形状に合わせて多角形状でも良い。
As shown in FIG. 2, the first porcelain 6 includes the same number of first magnetic field generation units 8 as the first magnet material 4. The first magnetic field generating unit 8 is composed of an iron core 10 and a coil 12 wound around the iron core 10, and is a portion that generates a magnetic field toward the opposite first magnet material 4 when a current flows through the coil 12. The first magnetic field generating portion 8 is arranged inside the first magnet material 4, and has an outer peripheral length substantially the same as the inner length of the first magnet material 4. In addition, the adjacent first magnetic field generating units 8 generate magnetic fields of opposite poles, respectively.
As shown in FIG. 3, the inner yoke 16 is a portion formed of a ferromagnetic material such as carbon steel and having a cylindrical shape (cylindrical shape). However, the inner yoke 16 may have a polygonal shape according to the shape of the magnet.

図3で示すように、第2磁石材料18は、ネオジム磁石、サマリウム・コバルト磁石などの異方性磁石から成る、着磁装置1による着磁対象となる被着磁物である。第2磁石材料18は、インナーヨーク16の外面に、かつ、同一周上に等間隔で偶数個配置される。各第2磁石材料18は、微差はあるものの、略同形状である。第2磁石材料18は、直方体のような形状であっても良く、また、インナーヨーク16の外面に沿う同心円形状を成していても良く、その場合、略同形状の第2磁石材料18は、連接するように配置されることが好適である。 As shown in FIG. 3, the second magnet material 18 is an object to be magnetized by the magnetizing device 1 composed of an anisotropic magnet such as a neodymium magnet and a samarium-cobalt magnet. An even number of second magnet materials 18 are arranged on the outer surface of the inner yoke 16 and on the same circumference at equal intervals. Each of the second magnet materials 18 has substantially the same shape, although there are slight differences. The second magnet material 18 may have a rectangular parallelepiped shape, or may have a concentric circular shape along the outer surface of the inner yoke 16. In that case, the second magnet material 18 having substantially the same shape may have a shape. , It is preferable that they are arranged so as to be connected.

第2着磁器20は、第2磁石材料18と同数の第2磁界発生部22を備える。第2磁界発生部22は、鉄心10と鉄心10周囲に巻き付けられるコイル12とで構成され、コイル12に電流が流れることによって対向する被着磁物である第2磁石材料18の方へ磁界を発生させる部位である。第2磁界発生部22は、第2磁石材料18の外側に配置され、第2磁石材料18の外側の長さと略同じ内周長を備える。また、隣接する第2磁界発生部22は、それぞれ逆極の磁界を発生させる。 The second porcelain 20 includes the same number of second magnetic field generators 22 as the second magnet material 18. The second magnetic field generating unit 22 is composed of an iron core 10 and a coil 12 wound around the iron core 10, and when a current flows through the coil 12, a magnetic field is generated toward the second magnet material 18 which is an object to be magnetized. It is the part to generate. The second magnetic field generating unit 22 is arranged outside the second magnet material 18 and has an inner peripheral length substantially the same as the outer length of the second magnet material 18. Further, the adjacent second magnetic field generating units 22 generate magnetic fields of opposite poles, respectively.

着磁電源装置14は、第1着磁器6に接続され、コイル12に大きな電流を1回だけ流すことによって、第1磁石材料4の着磁に必要な大きな磁界を発生させる。また、着磁電源装置14は、第2着磁器20に接続され、コイル12に大きな電流を1回だけ流すことによって、第2磁石材料18の着磁に必要な大きな磁界を発生させる。 The magnetizing power supply device 14 is connected to the first magnetizing device 6 and causes a large magnetic field required for magnetizing the first magnet material 4 by passing a large current through the coil 12 only once. Further, the magnetizing power supply device 14 is connected to the second magnetizing device 20 and causes a large magnetic field required for magnetizing the second magnet material 18 by passing a large current through the coil 12 only once.

着磁電源装置14は、交流電源を充電回路で制御して、トランスで昇圧させ、その後、整流回路で直流に変換し、コンデンサーバンクに電荷を蓄える。そして、着磁電源装置14は、この蓄えられたエネルギーについて、放電回路をONにし、瞬間的にコイル12に大きな電流を流し、着磁に必要な高磁界を発生させる。 The magnetizing power supply device 14 controls an AC power supply with a charging circuit, boosts it with a transformer, converts it to direct current with a rectifier circuit, and stores an electric charge in a capacitor bank. Then, the magnetizing power supply device 14 turns on the discharge circuit for the stored energy, momentarily causes a large current to flow through the coil 12, and generates a high magnetic field required for magnetizing.

図4で示すように、着磁装置1では、第1磁石材料4の中心と第1磁石材料4に対向する第1磁界発生部8の中心とが、アウターヨーク2内部の周方向において、360°を第1磁石材料4の個数の2倍の数で除した角度以下だけずれている。つまり、着磁装置1では、アウターヨーク2内部の周方向において、第1磁界発生部8の端部と個々の第1磁石材料4の端部とが一致せず、ずれており、両端部の周方向のずれ角は、360°÷“第1磁石材料4の個数”÷2以下となっている。 As shown in FIG. 4, in the magnetizing device 1, the center of the first magnet material 4 and the center of the first magnetic field generating portion 8 facing the first magnet material 4 are 360 in the circumferential direction inside the outer yoke 2. The deviation is equal to or less than the angle obtained by dividing ° by twice the number of the first magnet materials 4. That is, in the magnetizing device 1, in the circumferential direction inside the outer yoke 2, the end portion of the first magnetic field generating portion 8 and the end portion of each first magnet material 4 do not match and are displaced, and both ends thereof. The deviation angle in the circumferential direction is 360 ° ÷ "number of first magnet materials 4" ÷ 2 or less.

図5で示すように、着磁装置1では、第2磁石材料18の中心と第2磁石材料18に対向する第2磁界発生部22の中心とが、インナーヨーク16の周方向において、360°を第2磁石材料18の個数の2倍の数で除した角度以下だけずれている。つまり、着磁装置1では、インナーヨーク16の周方向において、第2磁界発生部22の端部と個々の第2磁石材料18の端部とが一致せず、ずれており、両端部の半径方向のずれ角は、360°÷“第2磁石材料18の個数”÷2以下となっている。 As shown in FIG. 5, in the magnetizing device 1, the center of the second magnet material 18 and the center of the second magnetic field generating portion 22 facing the second magnet material 18 are 360 ° in the circumferential direction of the inner yoke 16. Is deviated by an angle or less divided by twice the number of the second magnet materials 18. That is, in the magnetizing device 1, in the circumferential direction of the inner yoke 16, the end portion of the second magnetic field generating portion 22 and the end portion of each second magnet material 18 do not match and are displaced, and the radii of both end portions are offset. The deviation angle in the direction is 360 ° ÷ "number of second magnet materials 18" ÷ 2 or less.

上記のように、磁石材料4、18の中心と磁界発生部8、22の中心とが周方向においてずれていることによって、着磁装置1が着磁動作を複数回行わずコストを抑え、被着磁物4、18の着磁程度も高めることができる理由について説明する。 As described above, since the centers of the magnet materials 4 and 18 and the centers of the magnetic field generating portions 8 and 22 are deviated in the circumferential direction, the magnetizing device 1 does not perform the magnetizing operation a plurality of times, and the cost is suppressed. The reason why the degree of magnetization of the magnetized objects 4 and 18 can be increased will be described.

従来の着磁装置のように、周方向において、磁界発生部の端部と個々の磁石材料の端部とを一致させ、着磁電源装置によって着磁動作を行う場合、隣接する磁石材料間(隙間)が未着磁領域となる。この未着磁領域が存在する場合、隣接する磁石材料間に反磁場領域が形成され、また、そこには逆極が出現し易くなり、損失となる。 When the end of the magnetic field generating part and the end of each magnet material are aligned in the circumferential direction and the magnetizing operation is performed by the magnetizing power supply device as in the conventional magnetizing device, the space between adjacent magnet materials ( The gap) is the unmagnetized region. When this unmagnetized region exists, a demagnetic field region is formed between adjacent magnet materials, and a reverse pole is likely to appear there, resulting in a loss.

一方、着磁装置1のように、周方向において、磁界発生部8、22の端部と個々の磁石材料4、18の端部とを一致させず、ずらして配置する場合、1個の磁石材料4、18の中にN極の領域とS極の領域とが出現する。そしてこの場合、隣接する磁石材料4、18の繋ぎ目部位が同極となり、従来方法において反磁場領域外へ磁界が漏れ出し難い状態から、繋ぎ目部位で発生する反発磁場がより強い磁場を発生させるものである。 On the other hand, when the ends of the magnetic field generating portions 8 and 22 and the ends of the individual magnet materials 4 and 18 are not aligned with each other and are arranged in a staggered manner as in the magnetizing device 1, one magnet is used. An N-pole region and an S-pole region appear in the materials 4 and 18. In this case, the joints of the adjacent magnet materials 4 and 18 have the same pole, and the repulsive magnetic field generated at the joints generates a stronger magnetic field from the state where the magnetic field is difficult to leak out of the demagnetizing field region in the conventional method. It is something that makes you.

図6は、上記ずれの角度を変化させた場合、フル着磁(図中の100%基準線)に比べて、着磁装置1による磁石材料4、18の着磁の程度がどのように変化するかを計測した結果を示すものである。なお、図6では、第1磁石材料4の個数を8個としている。 FIG. 6 shows how the degree of magnetization of the magnet materials 4 and 18 by the magnetizing device 1 changes when the angle of the deviation is changed as compared with the full magnetization (100% reference line in the figure). It shows the result of measuring whether or not to do. In FIG. 6, the number of the first magnet materials 4 is eight.

図6で示す計測結果では、上記ずれの角度が大きくなるにつれ、着磁の程度が改善し、ずれの角度が22.5°(=360°÷“第1磁石材料4の個数=8個”÷2)のとき、着磁の程度はピークとなり、フル着磁の状態を超える結果となっている。なお、フル着磁は、空心コイル内で磁石単体に十分に強い磁界を印加することによって行っており、このときの磁石はほぼ飽和磁化に達していると考えられる。 In the measurement results shown in FIG. 6, as the deviation angle increases, the degree of magnetism improves, and the deviation angle is 22.5 ° (= 360 ° ÷ “number of first magnet materials 4 = 8””. When ÷ 2), the degree of magnetism peaks, which exceeds the state of full magnetism. Full magnetization is performed by applying a sufficiently strong magnetic field to the magnet itself in the air-core coil, and it is considered that the magnet at this time has almost reached saturation magnetization.

図7で示すように、着磁器1によって着磁された第1磁石材料4及びアウターヨーク2、並びに、第2磁石材料18及びインナーヨーク16は、ポンプ30の駆動体として使用される。アウターヨーク2及び第1磁石材料4の組み合わせは、アウターマグネット24と呼ばれ、インナーヨーク16及び第2磁石材料18の組み合わせは、インナーマグネット26と呼ばれる。 As shown in FIG. 7, the first magnet material 4 and the outer yoke 2 magnetized by the magnetizer 1, and the second magnet material 18 and the inner yoke 16 are used as a driving body of the pump 30. The combination of the outer yoke 2 and the first magnet material 4 is called an outer magnet 24, and the combination of the inner yoke 16 and the second magnet material 18 is called an inner magnet 26.

図7で示すように、ポンプ30は、アウターマグネット24とインナーマグネット26との磁気結合によって形成されるマグネットカップリング機構28によって、駆動体が駆動される構成である。 As shown in FIG. 7, the pump 30 has a configuration in which a driving body is driven by a magnet coupling mechanism 28 formed by magnetic coupling between the outer magnet 24 and the inner magnet 26.

上記した構成に基づいて、着磁装置1は、マグネット駆動ポンプ30を駆動させるマグネットカップリング機構28のように比較的小さい磁石材料4、18を着磁させるとき、着磁動作を複数回行わずコストを抑え、被着磁物4、18の着磁程度も高める。
(本実施の形態に係る着磁装置の使用方法)
Based on the above configuration, the magnetizing device 1 does not perform the magnetizing operation a plurality of times when magnetizing the relatively small magnet materials 4 and 18 such as the magnet coupling mechanism 28 for driving the magnet driving pump 30. The cost is suppressed, and the degree of magnetization of the magnetized objects 4 and 18 is also increased.
(How to use the magnetizing device according to this embodiment)

図4、5及び6を用いて、着磁装置1による着磁方法について説明する。図4で示すように、着磁装置1において、第1磁石材料4の中心と第1磁石材料4に対向する第1磁界発生部8の中心とが、アウターヨーク2内部の周方向において、360°を第1磁石材料4の個数の2倍の数で除した角度以下だけずらして、第1着磁器6にアウターヨーク2及び第1磁石材料4を設置する。つまり、着磁装置1では、アウターヨーク2内部の周方向において、第1磁界発生部8の端部と個々の第1磁石材料4の端部とが一致せず、ずれており、両端部の周方向のずれ角は、360°÷“第1磁石材料4の個数”÷2以下となっている。 The magnetizing method by the magnetizing device 1 will be described with reference to FIGS. 4, 5 and 6. As shown in FIG. 4, in the magnetizing device 1, the center of the first magnet material 4 and the center of the first magnetic field generating portion 8 facing the first magnet material 4 are 360 in the circumferential direction inside the outer yoke 2. The outer yoke 2 and the first magnet material 4 are installed in the first magnetizer 6 with a shift of ° by an angle equal to or less than the number obtained by dividing ° by twice the number of the first magnet materials 4. That is, in the magnetizing device 1, in the circumferential direction inside the outer yoke 2, the end portion of the first magnetic field generating portion 8 and the end portion of each first magnet material 4 do not match and are displaced, and both ends thereof. The deviation angle in the circumferential direction is 360 ° ÷ "number of first magnet materials 4" ÷ 2 or less.

着磁電源装置14において、交流電源を充電回路で制御して、トランスで昇圧させ、その後、整流回路で直流に変換し、コンデンサーバンクに電荷を蓄える。そして、着磁電源装置14において、この蓄えられたエネルギーについて、放電回路をONにし、瞬間的にコイル12に通電、コイル12に大きな電流を流し、着磁に必要な高磁界を発生させる。この着磁動作は、アウターヨーク2及び複数の第1磁石材料4で形成される1組のアウターマグネット24につき、1回だけ行われる。 In the magnetized power supply device 14, the AC power supply is controlled by a charging circuit, boosted by a transformer, then converted to direct current by a rectifier circuit, and the electric charge is stored in the capacitor bank. Then, in the magnetizing power supply device 14, the discharge circuit is turned on for the stored energy, the coil 12 is momentarily energized, a large current is passed through the coil 12, and a high magnetic field required for magnetizing is generated. This magnetizing operation is performed only once for each set of outer magnets 24 formed of the outer yoke 2 and the plurality of first magnet materials 4.

また、図5で示すように、着磁装置1において、第2磁石材料18の中心と第2磁石材料18に対向する第2磁界発生部22の中心とが、インナーヨーク16の周方向において、360°を第2磁石材料18の個数の2倍の数で除した角度以下だけずらして、第2着磁器20にインナーヨーク16及び第2磁石材料18を設置するつまり、着磁装置1では、インナーヨーク16の周方向において、第2磁界発生部20の端部と個々の第2磁石材料18の端部とが一致せず、ずれており、両端部の半径方向のずれ角は、360°÷“第2磁石材料18の個数”÷2以下となっている。 Further, as shown in FIG. 5, in the magnetizing device 1, the center of the second magnet material 18 and the center of the second magnetic field generating portion 22 facing the second magnet material 18 are located in the circumferential direction of the inner yoke 16. The inner yoke 16 and the second magnet material 18 are installed in the second magnetizer 20 by shifting 360 ° by an angle equal to or less than the number obtained by dividing 360 ° by twice the number of the second magnet materials 18. That is, in the magnetizing device 1, In the circumferential direction of the inner yoke 16, the end of the second magnetic field generating portion 20 and the end of each second magnet material 18 do not match and are misaligned, and the radial misalignment angle of both ends is 360 °. ÷ "Number of second magnet materials 18" ÷ 2 or less.

着磁電源装置14において、交流電源を充電回路で制御して、トランスで昇圧させ、その後、整流回路で直流に変換し、コンデンサーバンクに電荷を蓄える。そして、着磁電源装置14において、この蓄えられたエネルギーについて、放電回路をONにし、瞬間的にコイル12に通電、コイル12に大きな電流を流し、着磁に必要な高磁界を発生させる。この着磁動作は、インナーヨーク16及び複数の第2磁石材料18で形成される1組のインナーマグネット26につき、1回だけ行われる。 In the magnetized power supply device 14, the AC power supply is controlled by a charging circuit, boosted by a transformer, then converted to direct current by a rectifier circuit, and the electric charge is stored in the capacitor bank. Then, in the magnetizing power supply device 14, the discharge circuit is turned on for the stored energy, the coil 12 is momentarily energized, a large current is passed through the coil 12, and a high magnetic field required for magnetizing is generated. This magnetizing operation is performed only once for each set of inner magnets 26 formed of the inner yoke 16 and the plurality of second magnet materials 18.

図6で示すように、上記のような着磁装置1による着磁方法によって、少なくとも、磁石材料4、18と磁界発生部8、22とがずれなく設置される場合に比し、磁石材料4、18の着磁の程度を向上させることができる。また、上記のような着磁装置1による着磁方法では、磁石材料4、18と磁界発生部8、22とのずれの大きさが特定の範囲である場合、磁石材料4、18の着磁の程度を、フル着磁の状態よりも高めることができる。 As shown in FIG. 6, the magnet material 4 is at least compared to the case where the magnet materials 4 and 18 and the magnetic field generating parts 8 and 22 are installed without any deviation by the magnetizing method by the magnetizing device 1 as described above. , 18 can be improved in degree of magnetization. Further, in the magnetizing method by the magnetizing device 1 as described above, when the magnitude of the deviation between the magnet materials 4 and 18 and the magnetic field generating portions 8 and 22 is within a specific range, the magnet materials 4 and 18 are magnetized. The degree of can be increased more than in the fully magnetized state.

従って、着磁装置1による着磁方法は、マグネット駆動ポンプ30を駆動させるマグネットカップリング機構28のように比較的小さい磁石材料4、18を着磁させるとき、着磁動作を複数回行わずコストを抑え、被着磁物4、18の着磁程度も高めることができる。 Therefore, the magnetizing method using the magnetizing device 1 costs less when magnetizing relatively small magnet materials 4 and 18 such as the magnet coupling mechanism 28 that drives the magnet driving pump 30 without performing the magnetizing operation a plurality of times. It is possible to increase the degree of magnetization of the magnetized objects 4 and 18 by suppressing the above.

以上、本発明の実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications are made within the scope of the gist of the present invention described in the claims.・ Can be changed.

1 着磁装置
2 アウターヨーク
4 第1磁石材料
6 第1着磁器
8 第1磁界発生部
10 鉄心
12 コイル
14 着磁電源装置
16 インナーヨーク
18 第2磁石材料
20 第2着磁器
22 第2磁界発生部
24 アウターマグネット
26 インナーマグネット
28 マグネットカップリング機構
30 マグネット駆動のポンプ

1 Magnetizing device 2 Outer yoke 4 1st magnet material 6 1st magnetizing machine 8 1st magnetic field generating part 10 Iron core 12 Coil 14 Magnetizing power supply device 16 Inner yoke 18 2nd magnet material 20 2nd magnetizing machine 22 2nd magnetic field generation Part 24 Outer magnet 26 Inner magnet 28 Magnet coupling mechanism 30 Magnet-driven pump

開示する着磁装置の一形態は、強磁性体で形成され、中空円筒形のアウターヨークと、異方性磁石の被着磁物であり、前記アウターヨークの内面に、かつ、同一周上に等間隔で偶数個配置される第1磁石材料と、前記第1磁石材料の内側に配置され、前記第1磁石材料の内側の長さと略同じ外周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第1磁石材料の方へ磁界を発生させる第1磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第1磁界発生部を、前記第1磁石材料と同数備える第1着磁器と、前記第1着磁器に接続され、前記コイルに電流を1回だけ流すことによって前記第1磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置であって、一の前記第1磁石材料の中心と前記一の第1磁石材料に対向する前記第1磁界発生部の中心とが、前記アウターヨーク内部の周方向において、360°を前記第1磁石材料の個数の2倍の数で除した角度以下だけずれており、前記第1磁石材料及び前記アウターヨークで構成されるアウターマグネットが、インナーマグネットとの磁気結合によって、ポンプの駆動体を駆動させるマグネットカップリング機構を形成するためのものであることを特徴とする。
One form of the magnetizing device disclosed is a hollow cylindrical outer yoke and a magnetized object of an anisotropic magnet, which are formed of a ferromagnetic material, and are on the inner surface of the outer yoke and on the same circumference. An even number of first magnet materials are arranged at equal intervals, and the first magnet material is arranged inside the first magnet material, has an outer peripheral length substantially the same as the inner length of the first magnet material, and is wound around the iron core and the iron core. It is a first magnetic field generating part that is composed of a coil to be generated and generates a magnetic field toward the first magnet material facing each other when a current flows through the coil, and adjacent ones generate a magnetic field of opposite poles. The first magnetic field generator is connected to the first magnetizer having the same number as the first magnet material and the first magnetizer, and the first magnet material is magnetized by passing a current through the coil only once. A magnetizing device having a magnetizing power supply device for generating a magnetic field required for the above, wherein the center of one of the first magnet materials and the center of the first magnetic field generating portion facing the first magnet material. Is deviated by an angle equal to or less than 360 ° divided by twice the number of the first magnet materials in the circumferential direction inside the outer yoke, and is composed of the first magnet material and the outer yoke. The outer magnet is characterized in that it forms a magnet coupling mechanism that drives a driving body of a pump by magnetic coupling with an inner magnet.

Claims (15)

強磁性体で形成され、中空円筒形のアウターヨークと、
異方性磁石の被着磁物であり、前記アウターヨークの内面に、かつ、同一周上に等間隔で偶数個配置される第1磁石材料と、
前記第1磁石材料の内側に配置され、前記第1磁石材料の内側の長さと略同じ外周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第1磁石材料の方へ磁界を発生させる第1磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第1磁界発生部を、前記第1磁石材料と同数備える第1着磁器と、
前記第1着磁器に接続され、前記コイルに電流を1回だけ流すことによって前記第1磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置であって、
一の前記第1磁石材料の中心と前記一の第1磁石材料に対向する前記第1磁界発生部の中心とが、前記アウターヨーク内部の周方向において、360°を前記第1磁石材料の個数の2倍の数で除した角度以下だけずれていることを特徴とする着磁装置。
A hollow cylindrical outer yoke made of ferromagnet,
The first magnet material, which is a magnetized material of an anisotropic magnet and is arranged on the inner surface of the outer yoke and on the same circumference at equal intervals, and the first magnet material.
It is arranged inside the first magnet material, has an outer peripheral length substantially the same as the inner length of the first magnet material, and is composed of an iron core and a coil wound around the iron core, and a current flows through the coil. The first magnetic field generating portion that generates a magnetic field toward the first magnet material facing each other, and the adjacent ones generate a magnetic field having opposite poles, is referred to as the first magnet material. The first magnetizer with the same number and
A magnetizing device that is connected to the first magnetizing device and has a magnetizing power supply device that generates a magnetic field required for magnetizing the first magnet material by passing an electric current through the coil only once.
The number of the first magnet materials is 360 ° in the circumferential direction inside the outer yoke, with the center of the first magnet material and the center of the first magnetic field generating portion facing the first magnet material. A magnetizing device characterized in that the deviation is equal to or less than the angle divided by twice the number of.
前記第1磁石材料どうしが、同形状であることを特徴とする請求項1に記載の着磁装置。 The magnetizing device according to claim 1, wherein the first magnet materials have the same shape. 前記第1磁石材料が、前記アウターヨークの内面に沿う同心円形状を成し、
略同形状の前記第1磁石材料が、連接するように配置されることを特徴とする請求項1又は2に記載の着磁装置。
The first magnet material forms a concentric circle along the inner surface of the outer yoke.
The magnetizing device according to claim 1 or 2, wherein the first magnet materials having substantially the same shape are arranged so as to be connected to each other.
強磁性体で形成され、円筒形のインナーヨークと、
異方性磁石の被着磁物であり、前記インナーヨークの外面に、かつ、同一周上に等間隔で偶数個配置される第2磁石材料と、
前記第2磁石材料の外側に配置され、前記第2磁石材料の外側の長さと略同じ内周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第2磁石材料の方へ磁界を発生させる第2磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第2磁界発生部を、前記第2磁石材料と同数備える第2着磁器と、
前記第2着磁器に接続され、前記コイルに電流を1回だけ流すことによって前記第2磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置であって、
一の前記第2磁石材料の中心と前記一の第2磁石材料に対向する前記第2磁界発生部の中心とが、前記インナーヨークの周方向において、360°を前記第2磁石材料の個数の2倍の数で除した角度以下だけずれていることを特徴とする着磁装置。
A cylindrical inner yoke made of ferromagnet,
A second magnet material, which is a magnetized material of an anisotropic magnet and is arranged on the outer surface of the inner yoke and on the same circumference at equal intervals, and a second magnet material.
It is arranged outside the second magnet material, has an inner peripheral length substantially the same as the outer length of the second magnet material, and is composed of an iron core and a coil wound around the iron core, and a current flows through the coil. The second magnet material is a second magnetic field generating portion that generates a magnetic field toward the second magnet material that opposes each other, and the second magnetic field generating portion that generates a magnetic field of opposite poles between adjacent ones. The second magnetizer with the same number as
A magnetizing device that is connected to the second magnetizing device and has a magnetizing power supply device that generates a magnetic field required for magnetizing the second magnet material by passing an electric current through the coil only once.
The center of the second magnet material and the center of the second magnetic field generating portion facing the first second magnet material are 360 ° in the circumferential direction of the inner yoke, and the number of the second magnet materials is 360 °. A magnetizing device characterized in that it is deviated by an angle or less divided by a double number.
前記第2磁石材料どうしが、同形状であることを特徴とする請求項4に記載の着磁装置。 The magnetizing device according to claim 4, wherein the second magnet materials have the same shape. 前記第2磁石材料が、前記インナーヨークの外面に沿う同心円形状を成し、
略同形状の前記第2磁石材料が、連接するように配置されることを特徴とする請求項4又は5に記載の着磁装置。
The second magnet material forms a concentric circle along the outer surface of the inner yoke.
The magnetizing device according to claim 4 or 5, wherein the second magnet materials having substantially the same shape are arranged so as to be connected to each other.
強磁性体で形成され、中空円筒形のアウターヨークと、
異方性磁石の被着磁物であり、前記アウターヨークの内面に、かつ、同一周上に等間隔で偶数個配置される第1磁石材料と、
前記第1磁石材料の内側に配置され、前記第1磁石材料の内側の長さと略同じ外周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第1磁石材料の方へ磁界を発生させる第1磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第1磁界発生部を、前記第1磁石材料と同数備える第1着磁器と、
前記第1着磁器に接続され、前記コイルに電流を流すことによって前記第1磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置を使用する着磁方法であって、
一の前記第1磁石材料の中心と前記一の第1磁石材料に対向する前記第1磁界発生部の中心とを、前記アウターヨーク内部の周方向において、360°を前記第1磁石材料の個数の2倍の数で除した角度以下となるようにずらし、
隣接するものどうしが逆極となるように前記第1磁石材料を着磁させるために必要な磁界を発生させる電流を前記着磁電源装置から前記コイルに1回だけ流すことによって、前記第1磁石材料の着磁を行うことを特徴とする着磁方法。
A hollow cylindrical outer yoke made of ferromagnet,
The first magnet material, which is a magnetized material of an anisotropic magnet and is arranged on the inner surface of the outer yoke and on the same circumference at equal intervals, and the first magnet material.
It is arranged inside the first magnet material, has an outer peripheral length substantially the same as the inner length of the first magnet material, and is composed of an iron core and a coil wound around the iron core, and a current flows through the coil. The first magnetic field generating portion that generates a magnetic field toward the first magnet material facing each other, and the adjacent ones generate a magnetic field having opposite poles, is referred to as the first magnet material. The first magnetizer with the same number and
A magnetizing method using a magnetizing device which is connected to the first magnetizing device and generates a magnetic field required for magnetizing the first magnet material by passing an electric current through the coil. There,
The number of the first magnet materials is 360 ° in the circumferential direction inside the outer yoke with the center of the first magnet material and the center of the first magnetic field generating portion facing the first magnet material. Shift it so that it is less than or equal to the angle divided by twice the number of
The first magnet is generated by passing a current that generates a magnetic field required for magnetizing the first magnet material from the magnetizing power supply device to the coil only once so that adjacent objects have opposite poles. A magnetizing method characterized by magnetizing a material.
前記第1磁石材料どうしが、同形状であることを特徴とする請求項7に記載の着磁方法。 The magnetizing method according to claim 7, wherein the first magnet materials have the same shape. 前記第1磁石材料が、前記アウターヨークの内面に沿う同心円形状を成し、
略同形状の前記第1磁石材料が、連接するように配置されることを特徴とする請求項7又は8に記載の着磁方法。
The first magnet material forms a concentric circle along the inner surface of the outer yoke.
The magnetizing method according to claim 7, wherein the first magnet materials having substantially the same shape are arranged so as to be connected to each other.
強磁性体で形成され、円筒形のインナーヨークと、
異方性磁石の被着磁物であり、前記インナーヨークの外面に、かつ、同一周上に等間隔で偶数個配置される第2磁石材料と、
前記第2磁石材料の外側に配置され、前記第2磁石材料の外側の長さと略同じ内周長を備えると共に、鉄心と該鉄心周囲に巻き付けられるコイルとで構成され、該コイルに電流が流れることによって対向する前記第2磁石材料の方へ磁界を発生させる第2磁界発生部であって、隣接するものどうしが逆極の磁界を発生させる前記第2磁界発生部を、前記第2磁石材料と同数備える第2着磁器と、
前記第2着磁器に接続され、前記コイルに電流を流すことによって前記第2磁石材料の着磁に必要な磁界を発生させる着磁電源装置と、を有する着磁装置を使用する着磁方法であって、
一の前記第2磁石材料の中心と前記一の第2磁石材料に対向する前記第2磁界発生部の中心とを、前記インナーヨークの周方向において、360°を前記第2磁石材料の個数の2倍の数で除した角度以下となるようにずらし、
隣接するものどうしが逆極となるように前記第2磁石材料を着磁させるために必要な磁界を発生させる電流を前記着磁電源装置から前記コイルに1回だけ流すことによって、前記第2磁石材料の着磁を行うことを特徴とする着磁方法。
A cylindrical inner yoke made of ferromagnet,
A second magnet material, which is a magnetized material of an anisotropic magnet and is arranged on the outer surface of the inner yoke and on the same circumference at equal intervals, and a second magnet material.
It is arranged outside the second magnet material, has an inner peripheral length substantially the same as the outer length of the second magnet material, and is composed of an iron core and a coil wound around the iron core, and a current flows through the coil. The second magnet material is a second magnetic field generating portion that generates a magnetic field toward the second magnet material that opposes each other, and the second magnetic field generating portion that generates a magnetic field of opposite poles between adjacent ones. The second magnetizer with the same number as
A magnetizing method using a magnetizing device which is connected to the second magnetizer and generates a magnetic field required for magnetizing the second magnet material by passing an electric current through the coil. There,
The center of the second magnet material and the center of the second magnetic field generating portion facing the first second magnet material are 360 ° in the circumferential direction of the inner yoke, and the number of the second magnet materials is 360 °. Shift it so that it is less than or equal to the angle divided by twice.
The second magnet is generated by passing a current that generates a magnetic field required for magnetizing the second magnet material from the magnetizing power supply device to the coil only once so that adjacent objects have opposite poles. A magnetizing method characterized by magnetizing a material.
前記第2磁石材料どうしが、同形状であることを特徴とする請求項10に記載の着磁方法。 The magnetizing method according to claim 10, wherein the second magnet materials have the same shape. 前記第2磁石材料が、前記インナーヨークの外面に沿う同心円形状を成し、
略同形状の前記第2磁石材料が、連接するように配置されることを特徴とする請求項10又は11に記載の着磁方法。
The second magnet material forms a concentric circle along the outer surface of the inner yoke.
The magnetizing method according to claim 10 or 11, wherein the second magnet materials having substantially the same shape are arranged so as to be connected to each other.
請求項7乃至9の何れか一に記載の前記着磁方法よって着磁させる前記第1磁石材料及び前記アウターヨークで構成されるアウターマグネットとインナーマグネットとの磁気結合によって、ポンプの駆動体を駆動させるマグネットカップリング機構を有するマグネット駆動のポンプ。 The driving body of the pump is driven by the magnetic coupling between the outer magnet and the inner magnet composed of the first magnet material to be magnetized by the magnetizing method according to any one of claims 7 to 9 and the outer yoke. A magnet-driven pump with a magnet-coupling mechanism. アウターマグネットと請求項10乃至12の何れか一に記載の前記着磁方法よって着磁させる前記第2磁石材料及び前記インナーヨークで構成されるインナーマグネットとの磁気結合によって、ポンプの駆動体を駆動させるマグネットカップリング機構を有するマグネット駆動のポンプ。 The drive body of the pump is driven by magnetic coupling between the outer magnet and the second magnet material to be magnetized by the magnetizing method according to any one of claims 10 to 12 and the inner magnet composed of the inner yoke. A magnet-driven pump with a magnet-coupling mechanism. 請求項7乃至9の何れか一に記載の前記着磁方法よって着磁させる前記第1磁石材料及び前記アウターヨークで構成されるアウターマグネットと、請求項10乃至12の何れか一に記載の前記着磁方法よって着磁させる前記第2磁石材料及び前記インナーヨークで構成されるインナーマグネットとの磁気結合によって、ポンプの駆動体を駆動させるマグネットカップリング機構を有するマグネット駆動のポンプ。 The outer magnet composed of the first magnet material and the outer yoke to be magnetized by the magnetizing method according to any one of claims 7 to 9, and the said item according to any one of claims 10 to 12. A magnet-driven pump having a magnet coupling mechanism that drives a driving body of the pump by magnetic coupling between the second magnet material to be magnetized by a magnetizing method and an inner magnet composed of the inner yoke.
JP2019181689A 2019-10-01 2019-10-01 Magnetizing apparatus, magnetizing method, and magnet-driven pump Active JP6664767B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019181689A JP6664767B1 (en) 2019-10-01 2019-10-01 Magnetizing apparatus, magnetizing method, and magnet-driven pump
PCT/JP2020/016211 WO2021065057A1 (en) 2019-10-01 2020-04-10 Magnetization device and magnetization method
KR1020217007404A KR102272599B1 (en) 2019-10-01 2020-04-10 Magnetizing device and magnetizing method
TW109117758A TWI712056B (en) 2019-10-01 2020-05-28 Magnetization device and magnetization method
CN202010522083.6A CN112103025B (en) 2019-10-01 2020-06-10 Magnetizing device and magnetizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181689A JP6664767B1 (en) 2019-10-01 2019-10-01 Magnetizing apparatus, magnetizing method, and magnet-driven pump

Publications (2)

Publication Number Publication Date
JP6664767B1 JP6664767B1 (en) 2020-03-13
JP2021057537A true JP2021057537A (en) 2021-04-08

Family

ID=70000417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181689A Active JP6664767B1 (en) 2019-10-01 2019-10-01 Magnetizing apparatus, magnetizing method, and magnet-driven pump

Country Status (5)

Country Link
JP (1) JP6664767B1 (en)
KR (1) KR102272599B1 (en)
CN (1) CN112103025B (en)
TW (1) TWI712056B (en)
WO (1) WO2021065057A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625851A (en) * 2021-02-04 2021-04-09 沈阳农业大学 Magnetization aging accelerating equipment and aging accelerating method
KR20230001591A (en) 2021-06-28 2023-01-05 김주용 Method for manufacturing anisotropic 3d permanent magnet and thereof apparatus
KR102622640B1 (en) 2021-12-22 2024-01-11 가천대학교 산학협력단 Magnetic device of double spoke type rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203536A (en) * 1986-03-03 1987-09-08 Yaskawa Electric Mfg Co Ltd Magnetizing method for magnet of servo motor
JPH0475449A (en) * 1990-07-12 1992-03-10 Shin Etsu Chem Co Ltd Method and device for magnetizing permanent magnet piece for pole of electric rotating machine
JP2003037006A (en) * 2001-07-26 2003-02-07 Bridgestone Corp Method of manufacturing magnet piece and molding die
JP2007142083A (en) * 2005-11-17 2007-06-07 Kaneka Corp Magnet roller
JP2012163206A (en) * 2011-01-21 2012-08-30 Hitachi Metals Ltd Magnetic coupling device
WO2017130309A1 (en) * 2016-01-27 2017-08-03 三菱電機株式会社 Magnetizing method, rotor, electric motor, and scroll compressor
JP2018162681A (en) * 2017-03-24 2018-10-18 大東工業株式会社 Magnet gear pump and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591118U (en) * 1978-12-20 1980-06-24
JP2002124414A (en) 2000-08-11 2002-04-26 Sumitomo Special Metals Co Ltd Method of magnetizing rare-earth magnet and method of manufacturing rotating machine
JP3685716B2 (en) 2000-12-28 2005-08-24 東京パーツ工業株式会社 A magnetizing method for a permanent magnet for an axial gap motor, a permanent magnet created by the magnetizing method, a magnetizing device for creating the magnet, and an axial gap motor provided with the magnet.
ATE513616T1 (en) * 2007-12-14 2011-07-15 Basf Se METHOD FOR PRODUCING WATER-ABSORBING POLYMER PARTICLES

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203536A (en) * 1986-03-03 1987-09-08 Yaskawa Electric Mfg Co Ltd Magnetizing method for magnet of servo motor
JPH0475449A (en) * 1990-07-12 1992-03-10 Shin Etsu Chem Co Ltd Method and device for magnetizing permanent magnet piece for pole of electric rotating machine
JP2003037006A (en) * 2001-07-26 2003-02-07 Bridgestone Corp Method of manufacturing magnet piece and molding die
JP2007142083A (en) * 2005-11-17 2007-06-07 Kaneka Corp Magnet roller
JP2012163206A (en) * 2011-01-21 2012-08-30 Hitachi Metals Ltd Magnetic coupling device
WO2017130309A1 (en) * 2016-01-27 2017-08-03 三菱電機株式会社 Magnetizing method, rotor, electric motor, and scroll compressor
JP2018162681A (en) * 2017-03-24 2018-10-18 大東工業株式会社 Magnet gear pump and its manufacturing method

Also Published As

Publication number Publication date
TWI712056B (en) 2020-12-01
WO2021065057A1 (en) 2021-04-08
KR20210041067A (en) 2021-04-14
JP6664767B1 (en) 2020-03-13
KR102272599B1 (en) 2021-07-02
CN112103025B (en) 2022-03-04
TW202115750A (en) 2021-04-16
CN112103025A (en) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2021065057A1 (en) Magnetization device and magnetization method
US20190312497A1 (en) Ferromagnetic core toroid motor and generator
US6323572B1 (en) Magnet type electric motor and generator
US10965174B2 (en) Power generator
CN103250330A (en) Magnetic motor
KR101011201B1 (en) Electromagnetic motor
KR101603667B1 (en) Bldc motor
EP2493055A2 (en) Permanent-magnet type electric rotating machine
US20160087494A1 (en) Permanent-field armature with guided magnetic field
JP2016151245A (en) Electric water pump
JP2010148257A (en) Motor
CN109417319B (en) Rotor for rotating electrical machine
EP4050761A1 (en) Wound stator core, stator comprising such a core and its manufacturing method
JP2005130689A (en) Rotating electric machine
JP2018182118A (en) Magnetizing device and magnetizing method
JP6485073B2 (en) Rotating electric machine
RU2715935C1 (en) Magnetoelectric generator
JP2017212872A (en) Rotor assembly for power generation system
RU2609524C1 (en) Multiphase motor-generator with magnetic rotor
JP2008017578A (en) Rotary electric machine
JP6476920B2 (en) Rotating electric machine
WO2021054472A1 (en) Magnetic field generating device, and rotating electrical machine
US10523070B2 (en) Rotor for rotary electric machine
RU194277U1 (en) MAGNETO-ELECTRIC GENERATOR
KR20200122528A (en) Non-magnetic core generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191001

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6664767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250