JP2021056115A - Distance measuring device - Google Patents
Distance measuring device Download PDFInfo
- Publication number
- JP2021056115A JP2021056115A JP2019179968A JP2019179968A JP2021056115A JP 2021056115 A JP2021056115 A JP 2021056115A JP 2019179968 A JP2019179968 A JP 2019179968A JP 2019179968 A JP2019179968 A JP 2019179968A JP 2021056115 A JP2021056115 A JP 2021056115A
- Authority
- JP
- Japan
- Prior art keywords
- light
- detection
- circuit
- unit
- timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 182
- 238000005259 measurement Methods 0.000 abstract description 32
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 230000010354 integration Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本発明は、レーザ光を利用して対象までの距離を測定する測距装置に関する。 The present invention relates to a distance measuring device that measures a distance to an object using a laser beam.
光を利用する測距装置では、例えば光を照射した対象からの反射光を検出することによって、対象までの距離その他の計測値を生成する。この種の測距装置の一例として、パルスレーザ光の送信から反射光の受信までの時間を求めて対象距離を決定するレーザ測距装置が存在する(特許文献1及び2)。具体的には、特許文献1の装置では、受信パルスレーザ光を電気信号に変換した電気パルス信号を微分し、微分波形のピーク値を用い、予め調べてある関数に基づいて距離を補正している。また、特許文献2の装置では、発光に対応する第1時点から受光に対応する第2時点よりも後の第3時点までの積分結果と、受光に対応する第2時点から上記第3時点までの積分結果との差から距離を決定している。
In a distance measuring device that uses light, for example, the distance to the target and other measured values are generated by detecting the reflected light from the object irradiated with the light. As an example of this type of ranging device, there is a laser ranging device that determines a target distance by obtaining the time from the transmission of pulsed laser light to the reception of reflected light (
しかし、特許文献1及び2の装置では、パルスレーザ光の送信から反射光の受信までの時間差に基づいて対象距離を求めるのみであり、同一方向にある複数の対象について、例えば霧や窓の汚れからの反射といった監視対象外の物体を識別することが難しいという問題がある。
However, in the devices of
本発明は、上記背景技術に鑑みてなされたものであり、対象物の距離測定において、霧や窓の汚れからの反射といった監視対象外の物体を識別して除外可能な測距装置を提供することを目的とする。 The present invention has been made in view of the above background technology, and provides a distance measuring device capable of identifying and excluding an object not to be monitored such as reflection from fog or window dirt in distance measurement of an object. The purpose is.
上記目的を達成するため、本発明に係る測距装置は、レーザ光を照射してその反射光を計測し、レーザ光の照射から反射光の受光までの経過時間から距離を決定する距離計測部と、反射光の光量を検出する光量検出部とを備え、光量検出部は、スイッチ回路の切り替えにより複数のタイミングで反射光の光量を検出する。 In order to achieve the above object, the distance measuring device according to the present invention is a distance measuring unit that irradiates laser light, measures the reflected light, and determines the distance from the elapsed time from the irradiation of the laser light to the reception of the reflected light. And a light amount detecting unit for detecting the amount of reflected light, and the light amount detecting unit detects the amount of reflected light at a plurality of timings by switching the switch circuit.
上記測距装置によれば、光量検出部が、スイッチ回路の切り替えにより複数のタイミングで反射光の光量を検出することにより、同一方向において異なる距離に複数の物体がある場合にも、かかる複数の物体について、反射光の強度情報を距離情報に付随する補助データとして取得することができる。これにより、例えば霧や窓の汚れからの反射といった監視対象外の物体を識別して除外するといった動作が可能になる。 According to the above-mentioned ranging device, the light amount detection unit detects the amount of reflected light at a plurality of timings by switching the switch circuit, so that even when there are a plurality of objects at different distances in the same direction, the plurality of such objects For an object, the intensity information of the reflected light can be acquired as auxiliary data accompanying the distance information. This makes it possible to identify and exclude non-monitoring objects such as reflections from fog and window dirt.
本発明の具体的な側面によれば、上記測距装置において、光量検出部は、反射光の計測用の受光回路に接続される積分回路と、複数のピークホールド回路と、積分回路に接続されるピークホールド回路を複数のピークホールド回路から選択するスイッチ回路とを有する。積分回路、ピークホールド回路、及びスイッチ回路により、つまり、単一の積分回路によって、反射光の光量を複数のタイミングで精度を一致させて決定することができる。 According to a specific aspect of the present invention, in the distance measuring device, the light amount detection unit is connected to an integrating circuit connected to a light receiving circuit for measuring reflected light, a plurality of peak hold circuits, and an integrating circuit. It has a switch circuit for selecting a peak hold circuit from a plurality of peak hold circuits. The amount of reflected light can be determined by an integrator circuit, a peak hold circuit, and a switch circuit, that is, by a single integrator circuit, with matching accuracy at a plurality of timings.
本発明の別の側面によれば、光量検出部は、トリガ信号によって始動するクロックカウンタ回路の出力に基づいて、複数のタイミングの切り替えを行う。この場合、外乱によって検出結果が変動しにくい安定したものとなる。 According to another aspect of the present invention, the photodetector switches a plurality of timings based on the output of the clock counter circuit started by the trigger signal. In this case, the detection result is stable and does not easily fluctuate due to disturbance.
本発明のさらに別の側面によれば、光量検出部は、トリガ信号によって始動するアナログ時計回路の出力に基づいて、複数のタイミングの切り替えを行う。この場合、簡単で安価な回路構成で比較的信頼性の高い結果を得ることができる。 According to yet another aspect of the present invention, the photodetector switches between a plurality of timings based on the output of an analog clock circuit initiated by a trigger signal. In this case, a relatively reliable result can be obtained with a simple and inexpensive circuit configuration.
本発明のさらに別の側面によれば、光量検出部は、反射光用の受光素子が出力する検出パルスに対して、立ち上がり検出、ピーク検出、立ち下がり検出、及び共振ゼロクロス検出のいずれか1つを行ってトリガ信号を生成する。反射光の受光をトリガ信号の生成に利用することにより、現実の物体についての距離検出結果を利用して、その奥にある次の物体についての距離検出及び光量検出が可能になる。 According to still another aspect of the present invention, the light amount detection unit is one of rise detection, peak detection, fall detection, and resonance zero cross detection for the detection pulse output by the light receiving element for reflected light. To generate a trigger signal. By using the received light of the reflected light to generate a trigger signal, it is possible to detect the distance and the amount of light of the next object behind the object by using the distance detection result of the actual object.
本発明のさらに別の側面によれば、測距装置は、反射光から得た対象までの距離と光量とに基づいて、所定の条件に該当する対象を検出結果から除外する。ここで、所定の条件とは、例えば着目する距離に対して想定される基準光量に達しない低レベルの反射光であるか否かといったものである。この場合、霧や窓の汚れからの反射といった監視対象外の物体を識別し、検出結果から除外することができる。 According to yet another aspect of the present invention, the ranging device excludes an object that meets a predetermined condition from the detection result based on the distance to the object obtained from the reflected light and the amount of light. Here, the predetermined condition is, for example, whether or not the reflected light is a low level reflected light that does not reach the assumed reference light amount with respect to the distance of interest. In this case, non-monitoring objects such as fog and reflections from window dirt can be identified and excluded from the detection results.
〔第1実施形態〕
図1(A)を参照して、本発明の第1実施形態である測距装置100の概要について説明する。測距装置100は、走査型の距離検出装置であり、レーザ光L1を投光する投光部10と、レーザ光L2を受光する受光部20と、レーザ光L1,L2を投受光に際して走査する2次元走査デバイス30と、レーザ光L1の照射又は射出を検出するタイミング検出部40と、レーザ光L1の照射又は射出から反射光(レーザ光L2)の受光又は入射までの経過時間を計測する時間計測部51と、反射光(レーザ光L2)の光量を測定する光量測定部160と、各部の動作状態を制御する制御部70と、全体を収納するケース80とを備える。測距装置100は、時間計測すなわち距離計測に際してレーザ光L1の照射方向を監視しており、距離画像センサとして動作する。測距装置100において、光量測定部160を用いて対象OBの反射光強度(以下、光量と呼ぶ)を取得し、距離計測の補助データとして利用する。
[First Embodiment]
The outline of the distance measuring
測距装置100のうち、投光部10、受光部20、2次元走査デバイス30、タイミング検出部40、時間計測部51、及び制御部70は、距離計測部50を構成する。また、測距装置100のうち、タイミング検出部40、光量測定部160、及び制御部70(特に、データ処理部72及び健全性判定部73)は、光量検出部60を構成する。つまり、タイミング検出部40は、距離計測部50の一部としても、光量検出部60の一部としても機能する。
Of the distance measuring
上位システム200は、測距装置100の制御部70等と通信可能であり、測距装置100に電力を供給する。上位システム200は、測距装置100の動作状態を監視しており、距離計測部50から距離値を受け取る。この際、上位システム200は、検出結果から除外された反射光について、距離計測部50から健全性の判定結果を含めた追加情報を受け取ることもできる。
The
距離計測部50は、レーザ光L1の射出又は投光から反射光(レーザ光L2)の入射又は受光までの経過時間を計測し距離を決定する。つまり、距離計測部50は、投光部10からのレーザ光L1の射出タイミングと、受光部20へのレーザ光L2の入射タイミングとの時間差を求め、この半値をレーザ光の伝播速度で除算することにより対象OBまでの距離を算出する。
The
距離計測部50のうち投光部10は、赤外その他の波長域に設定された所定波長を有するレーザ光L1を発光する発光素子11とこれを動作させる駆動回路12とを有しており、レーザ光L1を所望のタイミングで射出させることができる。なお、駆動回路12は、制御部70のうち光走査制御部71の制御下で動作し、レーザ出力のタイミングや強度を調整する。
The
受光部20は、測距装置100の前方に存在する物体である対象OBで反射された戻り光であるレーザ光L2が入射する受光素子21とこれを動作させる駆動回路22とを有しており、レーザ光L2の入射に対応するタイミングでレーザ光L2の強度に対応する検出信号TS又は受信信号を出力する。ここで、検出信号TS又は受信信号は、具体的には、フォトダイオード等のセンサの電流出力を電圧信号に変換したトランスインピーダンス信号(以下、TIA信号とも呼ぶ)である。なお、駆動回路22は、受光素子21による検出信号TSを増幅する受信アンプを有し、必要に応じて制御部70の制御下で動作し検出ゲインの調整を行う。
The
2次元走査デバイス30は、スキャナ本体部31とスキャナ駆動回路32とを有する。スキャナ本体部31は、2次元走査ミラーであり、可動部に設けられたミラーを2軸のまわりに揺動させることで、ミラーでの反射光を2次元領域に走査させる。スキャナ本体部31は、制御部70の制御下で動作するスキャナ駆動回路32により、2次元走査を可能にする揺動動作を行う。
The two-
投光部10から射出されたレーザ光L1は、2次元走査デバイス30で反射される際に、例えば走査角±30°の範囲で2次元的に走査される。2次元走査デバイス30で反射されたレーザ光L1は、ケース80の投光窓80a越しに対象OBを照明し、対象OBで反射され逆行してきたレーザ光L2は、2次元走査デバイス30で再度反射されて受光部20に入射する。なお、照明用のレーザ光L1と戻り光であるレーザ光L2とは、2次元走査デバイス30に付随して設けられたビームスプリッタ(不図示)によって分岐される。2次元走査デバイス30により、レーザ光L1の照射方向を変化させつつ対応する方向からの反射光(レーザ光L2)を計測する。
When the laser beam L1 emitted from the
タイミング検出部40は、投光部10から射出されるレーザ光L1の射出又は投光タイミングを検出する。具体的には、タイミング検出部40では、投光部10に設けた発光モニタ(不図示)によるレーザ光L1の検出によって得た投光トリガ信号LRとして投光タイミングが検出される。または、タイミング検出部40では、投光部10に入力される投光トリガ信号LR0を用いてレーザ光L1の投光タイミングを検出してもよい。タイミング検出部40は、光量測定部160に光量測定の計時開始信号となるトリガ信号TRを出力し、時間計測部51に計時スタートトリガSRを出力する。本実施形態において、トリガ信号TRと計時スタートトリガSRとは、同じものとなっている。
The
時間計測部51は、タイミング検出部40によってレーザ光L1の投光タイミングと受光部20から出力される受信信号又は検出信号TSによるレーザ光L2の受光タイミングとの差分から、投光から受光までの時間差である検出時間を計測する。時間計測部51は、レーザ光L2を受けた受光部20からの検出信号TSに基づいて計時ストップトリガを生成するストップタイミング検出部51aと、タイミング検出部40から計時スタートトリガSRを受けて計時を開始し、ストップタイミング検出部51aから計時ストップトリガを受けて計時を終了する計時回路51bと、計時回路51bの出力をAD変換するADコンバータ51cとを有する。時間計測部51において得られた上記検出時間を用いて、後述する制御部70のデータ処理部72においてレーザ光L1,L2の検出タイミングに基づく対象OBまでの距離が算出される。時間計測部51は、1つの回路で1回の投光パルスによって生じる複数の反射光に対応して複数の時間計測を行うことができる。つまり、投光部10の動作に起因して生じる一連の動作又はイベントに際して、時間計測部51は、距離換算に必要な複数の時間計測を行うことができる。
The
光量検出部60は、後述する光量測定部160内の切替部60mによる受光部20からの検出信号TSの切り替えにより、複数のタイミングで反射光(レーザ光L2)の光量を検出する。
The light
光量検出部60において、タイミング検出部40と、光量測定部160のうち切替部60mとは、受光部20で受けた反射光の光量を検出する複数のタイミングを設定する部分すなわち反射光の積分期間を設定する部分となっている。本実施形態では、タイミング検出部40で得たレーザ光L1に対応するトリガ信号TRを計時開始時となる投光タイミングとし、これに基づいて反射光の光量検出の複数のタイミングに対応する積分期間を設定する。詳細は後述するが、このように計時開始時となる投光タイミングを光量検出のタイミングの基準とする場合、光量検出のタイミングは、対象OBが存在しうる領域に関して奥行方向の複数の距離ゾーンに対応して設定されている。距離ゾーンは、同一方向において、例えば、図1(B)に示すように、0〜0.5mの第1距離ゾーンZ1、0.5m〜3mの第2距離ゾーンZ2、3m以上の第3距離ゾーンZ3に区分される。
In the light
図2に示すように、光量測定部160は、タイミング検出部40からのトリガ信号TRによって始動するアナログ時計回路61と、反射光の計測用の受光回路である受光部20に接続される1つの積分回路62と、ピークホールド回路群63と、ピークホールド回路群63から必要なピークホールド回路を選択し積分回路62に接続するスイッチ回路64と、スイッチ回路64の動作を制御するスイッチ制御部65と、ピークホールド回路群63の出力をAD変換するADコンバータ群66とを有する。ここで、ピークホールド回路群63は、3つのピークホールド回路63a〜63cを含み、ADコンバータ群66は、3つのADコンバータ66aを含む。また、アナログ時計回路61と、スイッチ制御部65と、スイッチ回路64とは、切替部60mを構成する。切替部60mは、アナログ時計回路61の出力に基づいてスイッチ回路64等を動作させ、反射光の光量計測の区切りに対応する複数のタイミング又は時間ゾーンの切り替えを行う。これにより、受光部20からの検出信号TSが所期の時間ゾーンで蓄積された結果が保持される。アナログ時計回路61により、簡単で安価な回路構成で比較的信頼性の高い結果を得ることができる。また、積分回路62、ピークホールド回路群63、及びスイッチ回路64により、つまり、単一の積分回路62によって、反射光の光量を複数のタイミングで精度を一致させて決定することができる。
As shown in FIG. 2, the light
光量測定部160のうちアナログ時計回路61は、具体的には、図3に示すようなRC積分回路61a及びコンパレータ61b,61cを含む回路によって時間計測を行うとともに所定タイミングで第1及び第2スイッチ制御信号SW1,SW2を発生させる。つまり、アナログ時計回路61は、計時開始時から所定時間を計測し、スイッチ回路64に第1及び第2スイッチ制御信号SW1,SW2を出力する。なお、図3に示す例では、アナログ時計回路61がスイッチ制御部65としても機能する回路となっているが、スイッチ制御部65を独立した回路とすることもできる。
Specifically, the
図2に戻って、アナログ時計回路61又はスイッチ制御部65の出力に基づいて動作するスイッチ回路64には、上述の第1〜第3ピークホールド回路63a〜63cへの信号入力を切り替えるため、第1及び第2スイッチ64a,64bが設けられている。第1及び第2スイッチ64a,64bは、例えばFET等で構成され、それらのゲート電極に第1及び第2スイッチ制御信号SW1,SW2を入力する。第1及び第2スイッチ64a,64bは、数百psから数nsで応答するものが望ましい。
Returning to FIG. 2, the
本実施形態では、アナログ時計回路61において、図1(A)に示すタイミング検出部40から出力されるトリガ信号TRによる投光タイミング情報(具体的には、デジタル出力のHからLへの切り替わり)に基づいて光量検出のタイミングを設定している。つまり、投光タイミング情報に基づく計時開始時点から電圧が予め設定された所定の閾値(図3に示す閾値電圧Vref2,Vref3参照)に達した時点までを光量検出のタイミングに関する所定時間としている。
In the present embodiment, in the
図4(A)〜図4(F)は、投光タイミングを光量検出のタイミングの基準とする動作を説明するタイミングチャートである。図4(A)は、投光タイミングで投光部10から射出されるレーザ光L1を示す。図4(B)は、受光部20から出力されるTIA出力を示す。図4(C)は、タイミング検出部40から出力される計時開始のトリガ信号TR又は計時開始信号を示す。図4(D)は、アナログ時計回路61における積算電圧値を示す。図4(E)は、スイッチ回路64のうち第1スイッチ64aに対する第1スイッチ制御信号SW1を示す。図4(F)は、スイッチ回路64のうち第2スイッチ64bに対する第2スイッチ制御信号SW2を示す。図4(F)に示す横軸tは、図4(A)〜図4(F)に共通する時間軸を示す。図4(F)の最下段に示す第1〜第3時間ゾーンTZ1〜TZ3は、図1(B)に示す第1〜第3距離ゾーンZ1〜Z3に対応する。光量検出のタイミング(つまり図4(B)に示すTIA出力から検出信号s1,s2を抽出する期間)を規定するため、図2に示すアナログ時計回路61で設定される上記所定の閾値は、図4(D)に示すように、時間ゾーンTZ1,TZ2の積算値を想定した第1段階のみの第1閾値TL1、及び第2段階までの積算値を想定した第2閾値TL2に対応する。また、図4(E)及び図4(F)に示すように、光量検出のタイミングに関する上記所定時間は、時間ゾーンTZ1,TZ2の第1段階のみの第1遅延時間DT1、及び第2段階までの第2遅延時間DT2に対応する。すなわち、図2に示すアナログ時計回路61等で光量検出のタイミングに関して設定される複数の閾値又は当該閾値に達するまでの時間は、図1(A)に示す受光部20で受けた反射光に関する光量検出の一連の動作又はイベントにおいて、複数の距離ゾーンを構成する個々の距離ゾーン、具体的には図1(B)に示す第1〜第3距離ゾーンZ1〜Z3に対応するものとなっている。
4 (A) to 4 (F) are timing charts illustrating an operation in which the light projection timing is used as a reference for the light amount detection timing. FIG. 4A shows the laser beam L1 emitted from the
図2に示すスイッチ制御部65は、アナログ時計回路61の計測信号Saの電圧が図4(D)に示す所定の第1閾値TL1に達した時点で、スイッチ回路64の第1スイッチ64aをオフとし、積分回路62から第1ピークホールド回路63aを切り離す。その後、スイッチ制御部65は、アナログ時計回路61の計測信号Saの電圧が図4(D)に示す所定の第2閾値TL2に達した時点で、スイッチ回路64の第2スイッチ64bをオフとし、積分回路62から第2ピークホールド回路63bを切り離す。
The
図3に示すアナログ時計回路61において、図1(A)に示すタイミング検出部40からのトリガ信号TR(図4(C)参照)がL(つまり計時開始後)の間にRC積分回路61aを一定速度で充電し、アナログ時計回路61のRC積分回路61aの出力(計測信号Sa)がある閾値電圧Vref2に達した時点でコンパレータCM2からの出力によりスイッチ制御部65が動作してスイッチ回路64の第1スイッチ64aがオフとなることで、図4(E)に示す第1遅延時間DT1を制御する。つまり、図3に示すアナログ時計回路61により、高速なデジタルICやクロック源等を使用せずに抵抗R及びコンデンサCの値の調整で遅延時間を制御することができる。なお、抵抗Rの部分をデジタルポテンショメーターにしたり、コンパレータCM2の閾値電圧Vref2をDAコンバータ等で可変にしたりすることにより、遅延時間をCPU等の外部から変更することもできる。スイッチ回路64の第2スイッチ64bについても同様に、アナログ時計回路61の積分回路61aの出力(計測信号Sa)がある閾値電圧Vref3に達した時点でコンパレータCM3からの出力によりスイッチ制御部65が動作して第2スイッチ64bがオフとなることで、図4(F)に示す第2遅延時間DT2を制御する。
In the
以上のように、投光タイミングを光量検出のタイミングの基準とする場合、図4(C)に示すように、トリガ信号TRは、レーザ光L1の投光タイミングに応じて生成される。レーザ光L1の投光をトリガ信号TRの生成に利用することにより、安定したトリガ信号TRが得られる。これにより、投光からの絶対的な時間を設定することができ、設定を容易にすることができる。例えば窓ガラス越しに観測する場合や、霧が発生している場合において、投光直後に1つ目の受信信号又は第1検出信号s1が戻ってくるため、確実に窓や霧からの反射光をそれらに相当する光量として取得することができる。 As described above, when the light projection timing is used as the reference for the light amount detection timing, the trigger signal TR is generated according to the light projection timing of the laser beam L1 as shown in FIG. 4C. A stable trigger signal TR can be obtained by using the projection of the laser beam L1 to generate the trigger signal TR. Thereby, the absolute time from the flood can be set, and the setting can be facilitated. For example, when observing through a window glass or when fog is generated, the first received signal or the first detection signal s1 is returned immediately after the light is projected, so that the reflected light from the window or fog is surely returned. Can be obtained as the amount of light corresponding to them.
図2に戻って、積分回路62は、入力電圧を時間で積分して出力する。積分回路62において、受光素子21で順次検出される複数の検出信号(受信信号又はTIA信号)TSを積分する。本実施形態では、受光素子21において、第1検出信号s1と、第2検出信号s2と、第3検出信号s3とが順に出力される。第1〜第3検出信号s1〜s3を受けた積分回路62の積分出力は、スイッチ制御部65の動作によってスイッチ回路64の第1及び第2スイッチ64a,64bを適宜オンオフすることで、第1〜第3検出信号s1〜s3の強度に対応する電圧として、ピークホールド回路群63を経て所定のタイミングで順次出力される。
Returning to FIG. 2, the
ピークホールド回路群63は、反射光の光量を投光タイミングを基準として設定された複数のタイミングで計測する。ピークホールド回路群(P/H回路群)63は、積分回路62の積分出力を保持することで入力信号のピーク値を保持する。ピークホールド回路群63は、複数の同一回路を含み、スイッチ回路64を介して積分回路62の積分出力すなわち反射光の光量を切替部60mによって設定される複数のタイミングで計測する。本実施形態では、ピークホールド回路群63には、第1〜第3ピークホールド回路63a〜63cの3回路が設けられている。各ピークホールド回路63a〜63cを使い分けることにより、略同一方向について異なるタイミングにおける反射光毎の光量を把握することができる。なお、同一方向の異なる反射光に対応する複数の検出信号TSの受光タイミングは、既述の光量検出のタイミングに対応しており、複数の距離ゾーンの各距離ゾーンでそれぞれ検出されることを想定して設定されている。
The peak
第1ピークホールド回路63aは、図4(F)に示す時間ゾーンTZ1〜TZ3又は図1(B)に示す距離ゾーンZ1〜Z3の第1段階のみで積分回路62に接続され1つ目の反射光に対応する第1検出信号s1の出力を積分した光量値をホールドする。第2ピークホールド回路63bは、時間ゾーン又は距離ゾーンの第2段階まで積分回路62に接続され1つ目及び2つ目の反射光に対応する第1及び第2検出信号s1,s2の出力を積分した光量値をホールドする。第3ピークホールド回路63cは、単に積分回路62に接続され全ての反射光に対応する第1〜第3検出信号s1〜s3の出力を積分した光量値をホールドする。ピークホールド回路群63において、各ピークホールド回路63a〜63cの入力は、スイッチ回路64の第1及び第2スイッチ64a,64bのオンオフの組み合わせによって切り替わる。
The first peak hold circuit 63a is connected to the integrating
ピークホールド回路群63からの出力信号PHは、ADコンバータ群66を介して図1(A)に示す制御部70のデータ処理部72、健全性判定部73等に入力される。
The output signal PH from the peak
図1(A)に戻って、制御部70は、例えばCPU、メモリ等を備えるマイクロプロセッサであり、予め組み込まれたプログラムに従って動作する。制御部70は、機能面で光走査制御部71と、データ処理部72と、健全性判定部73とを有する。
Returning to FIG. 1A, the
制御部70のうち光走査制御部71は、投光部10の駆動回路12に対して制御信号を出力することで、レーザ光L1の射出タイミングを制御するだけでなく、レーザ光L1の出力を増減調整できる。なお、光走査制御部71は、受光部20の駆動回路22に対して制御信号を出力することで、レーザ光L2の検出信号TSに対する増幅率を増減調整することもできる。また、光走査制御部71は、2次元走査デバイス30のスキャナ駆動回路32を介してスキャナ本体部31の揺動動作を制御する。
The optical
データ処理部72は、投光部10、光量測定部160、時間計測部51等から情報を取り込む。また、データ処理部72は、時間計測部51で得られた投光から受光までの時間差からレーザ光L1の射出及びレーザ光L2の入射の検出タイミングに基づく対象OBまでの距離を算出する。また、データ処理部72は、健全性判定部73に判定に関連する情報を出力するとともに、判定結果をモニタリングすることができる。
The
ピークホールド回路群63から出力された光量データは、データ処理部72に入力され、データ処理部72は、図2に示す各ピークホールド回路63a〜63cの出力値を演算して第1〜第3検出信号s1〜s3に対応する光量値を算出する。つまり、光量検出部60としてのデータ処理部72において、第1〜第3ピークホールド回路63a〜63cから得られる光量値を演算することで反射光毎の光量を把握することができる。
The light amount data output from the peak
図1に示す健全性判定部73は、データ処理部72で得られた対象OBまでの距離に関して、当該距離情報の有用性を判定する。健全性判定部73において、各反射光から得た対象OBまでの距離と光量とに基づいて、所定の条件に該当する対象OBを検出結果から除外する。ここで、所定の条件とは、例えば着目する距離に対して想定される基準光量に達しない低レベルの反射光であるか否かといったものである。これにより、霧や窓の汚れからの反射といった監視対象外の物体を識別し、検出結果から除外することができる。
The
より具体的には、健全性判定部73では、対象OBに対応する光量に関して、例えば距離ゾーン毎に決めた基準値である光量の所定閾値よりも低い場合、霧、窓の汚れ、埃、水滴等であると判断し、対象OBが物体ではないと判断する。なお、対象OBに対応する光量が所定閾値よりも高い場合、例えば対象OBの範囲がピンポイントであれば、対象OBが物体ではないと判断してもよい。
More specifically, in the
以下、図5(A)〜図5(J)を参照しつつ、図1(A)に示す測距装置100の各部の動作について説明する。なお、以下の動作説明において、測距装置100の各部を示す図1(A)及び図2については引用を省略する。図5(A)〜図5(J)に示す横軸は時間を示す。図5(A)は、投光タイミングで投光部10から射出されるレーザ光L1を示す。図5(B)は、受光部20から出力されるTIA出力を示す。図5(C)は、タイミング検出部40から出力される計時開始のトリガ信号TR又は計時開始信号を示す。図5(D)は、アナログ時計回路61における積算電圧値を示す。図5(E)は、スイッチ回路64のうち第1スイッチ64aに対する第1スイッチ制御信号SW1を示す。図5(F)は、スイッチ回路64のうち第2スイッチ64bに対する第2スイッチ制御信号SW2を示す。図5(G)は、積分回路62の積分出力を示す。図5(H)は、第1ピークホールド回路63aが出力する第1P/H出力(P/H1)を示し、図5(I)は、第2ピークホールド回路63bが出力する第2P/H出力(P/H2)を示し、図5(J)は、第3ピークホールド回路63cが出力する第3P/H出力(P/H3)を示す。図5(A)〜図5(J)において、光量検出のタイミングに対応する図1(B)に示す第1〜第3距離ゾーンZ1〜Z3は、図5(J)の最下段に示す第1〜第3時間ゾーンTZ1〜TZ3にそれぞれ対応する。なお、図示の例では、説明の都合上、第1時間ゾーンTZ1の間隔と第2時間ゾーンTZ2の間隔とが略等しくなっているが、適宜変更することができる。
Hereinafter, the operation of each part of the
まず、図5(A)に示すように、制御部70の光走査制御部71の制御下で投光部10の駆動回路12が周期的に投光パルスを発生し、発光素子11から間欠的にレーザ光L1が出射される。投光タイミングは、例えば、投光部10からのレーザ光L1のピーク時であり、トリガ信号TRとしてタイミング検出部40に出力される。
First, as shown in FIG. 5A, the
次に、図5(B)に示すように、1回のレーザ光L1の出射により複数の反射光が戻る場合、受光部20によって複数の受信信号又は検出信号TSが検出される。図示の例では、複数の検出信号TSは、第1〜第3検出信号s1〜s3となる。
Next, as shown in FIG. 5B, when a plurality of reflected lights are returned by one emission of the laser beam L1, a plurality of received signals or detection signal TSs are detected by the
時間計測部51は、図5(A)及び図5(B)に示すように、投光部10からのレーザ光L1のピーク時を投光タイミングとし、受光部20からのレーザ光L2のピーク時を受光タイミングとして、投光から受光までの時間差である検出時間を計測する。具体的には、投光タイミングと1回目の受光タイミングとの時間差は検出時間T1であり、投光タイミングと2回目の受光タイミングとの時間差は検出時間T2であり、投光タイミングと3回目の受光タイミングとの時間差は検出時間T3である。
As shown in FIGS. 5A and 5B, the
図5(C)に示すように、アナログ時計回路61は、タイミング検出部40で検出された投光タイミング、具体的には、レーザ光L1のピーク時において、タイミング検出部40から出力されたトリガ信号TR又は計時開始信号を受けて、計時を開始する。
As shown in FIG. 5C, the
図5(G)に示すように、積分回路62では、第1〜第3検出信号s1〜s3が順次積分され結果が出力される。
As shown in FIG. 5 (G), in the integrating
図5(E)及び図5(F)に示すように、スイッチ回路64の第1及び第2スイッチ64a,64bがいずれもオンの状態、すなわちトリガ信号TRの出力から所定の第1遅延時間DT1までの間において、積分回路62の出力は、第1〜第3ピークホールド回路63a〜63cの全てに入力され、第1検出信号s1の積分結果が保持される。図5(D)に示すように、アナログ時計回路61において、出力値が第1遅延時間DT1後に対応する第1閾値TL1に達した時点で、図5(E)に示すように、スイッチ制御部65は、第1スイッチ64aをオフにする第1スイッチ制御信号SW1を出力する。第1スイッチ64aがオフになることにより、第1ピークホールド回路63aでは、図5(H)に示すように、積分回路62の出力のうち第1検出信号s1の積分結果のみが保持される。次に、図5(D)に示すように、アナログ時計回路61において、出力値が第2遅延時間DT2後に対応する第2閾値TL2に達した時点で、図5(F)に示すように、スイッチ制御部65は、第2スイッチ64bをオフにする第2スイッチ制御信号SW2を出力する。第2スイッチ64bがオフになることにより、第2ピークホールド回路63bでは、図5(I)に示すように、積分回路62の出力のうち第1及び第2検出信号s1,s2の和としての積分結果が保持される。その後、第3ピークホールド回路63cでは、図5(J)に示すように、積分回路62の出力の第1〜第3検出信号s1〜s3の和としての積分結果が保持される。
As shown in FIGS. 5 (E) and 5 (F), both the first and
以上のように、受光部20で検出される複数の受信信号又は検出信号TSは積分回路62及びピークホールド回路群63を経て順次積分され、各ピークホールド回路63a〜63cに対応する第1〜第3P/H出力(P/H1〜P/H3)はADコンバータ群66の各ADコンバータ66aで変換されて各受信信号に対応する光量データが得られる。光量データとなる積分結果のピーク値は、例えば投光タイミングの所定時間後にサンプリングされる。サンプリング時又はその後において、図5(G)に示すように、積分回路62の積分出力はゼロとなる。
As described above, the plurality of received signals or detection signal TSs detected by the
ピークホールド回路群63から出力された光量データは、データ処理部72に入力され、データ処理部72は、第1ピークホールド回路63aにおける第1P/H出力(P/H1)によって、第1検出信号s1に対応する光量値を算出する。また、データ処理部72は、第2ピークホールド回路63bにおける第2P/H出力(P/H2)から第1ピークホールド回路63aにおける第1P/H出力(P/H1)を減算することで、第2検出信号s2に対応する光量値を算出する。また、データ処理部72は、第3ピークホールド回路63cにおける第3P/H出力(P/H3)から第2ピークホールド回路63bにおける第2P/H出力(P/H2)を減算することで、第3検出信号s3に対応する光量値を算出する。なお、受信する受信信号又は検出信号TSの数が増えることに対応してピークホールド回路群63の数を増やすことにより、その増加分の数の反射光の光量値を取得することができる。
The light amount data output from the peak
以上説明した測距装置によれば、光量検出部60が、スイッチ回路64の切り替えにより複数のタイミングで反射光の光量を検出することにより、同一方向において異なる距離に複数の物体である対象OBがある場合にも、かかる複数の物体である対象OBについて、反射光の強度情報を距離情報に付随する補助データとして取得することができる。これにより、例えば霧や窓の汚れからの反射といった監視対象外の物体を識別して除外するといった動作が可能になる。
According to the distance measuring device described above, the light
〔第2実施形態〕
以下、第2実施形態の測距装置について説明する。第2実施形態の測距装置は、第1実施形態の測距装置を部分的に変更したものであり、特に説明しない事項は、第1実施形態の測距装置と同様である。
[Second Embodiment]
Hereinafter, the distance measuring device of the second embodiment will be described. The distance measuring device of the second embodiment is a partial modification of the distance measuring device of the first embodiment, and the matters not particularly described are the same as those of the distance measuring device of the first embodiment.
図6に示す測距装置100において、受光部20から出力される受信信号又は検出信号TSがタイミング検出部140に出力される。この場合、受光タイミングを光量検出のタイミングの基準とすることができる。
In the
本実施形態のタイミング検出部140は、光量測定部160のアナログ時計回路61にトリガ信号TR又は計時開始信号を出力するため、受光部20に入射するレーザ光L2の入射又は受光タイミングを検出する。タイミング検出部140は、レーザ光L2を受けた受光部20からの検出信号TSに基づいてアナログ時計回路61用のトリガ信号TRを生成する信号処理回路140aを有する。信号処理回路140aには、不図示のコンパレータや微分回路等が設けられている。
Since the
また、本実施形態の距離計測部50において、時間計測部51は、投光タイミングとしての計時スタートトリガSRを投光部10から直接受ける構成となっている。本実施形態において、計時スタートトリガSRは、例えば投光部10に設けた発光モニタ(不図示)によるレーザ光L1の検出によって得た投光トリガ信号LRに対応する。
Further, in the
図7(A)〜図7(F)は、受光タイミングを光量検出のタイミングの基準とする動作を説明する図である。図7(A)は、発光タイミングで投光部10から射出されるレーザ光L1を示し、図7(B)は、受光部20から出力される受光タイミングに対応するTIA出力を示す。図7(A)及び図7(B)に示す波形は、図4(A)及び図4(B)に示すものと一致している。図7(C)は、タイミング検出部140から出力される計時開始のトリガ信号TR又は計時開始信号を示す。図7(D)は、アナログ時計回路61における積算電圧値を示す。図7(E)は、スイッチ回路64のうち第1スイッチ64aに対する第1スイッチ制御信号SW1を示す。図7(F)は、スイッチ回路64のうち第2スイッチ64bに対する第2スイッチ制御信号SW2を示す。受光タイミングを光量検出のタイミングの基準とする場合、図7(B)及び図7(C)に示すように、トリガ信号TRは、反射光(レーザ光L2)用の受光素子21の光検出に応じて生成される。図7(E)及び図7(F)に示す第1及び第2スイッチ制御信号SW1,SW2は、図4(A)及び図4(B)に示す第1及び第2スイッチ制御信号SW1,SW2に対して若干のズレが生じたものとなっている。反射光の受光をトリガ信号TRの生成に利用することにより、現実の物体である対象OBについての距離検出結果を利用して、その奥にある次の物体である対象OBについての距離検出及び光量検出が可能になる。これにより、1つ目の受信信号である第1検出信号s1からの相対的な時間を設定することになり、汎用性が高くなる。
7 (A) to 7 (F) are diagrams for explaining an operation in which the light receiving timing is used as a reference for the light amount detection timing. FIG. 7 (A) shows the laser beam L1 emitted from the
なお、1つ目の受信信号である第1検出信号s1に対応する反射光が再帰反射等の強力な反射光である場合に、受光部20の電気的な影響により、図7(G)に示すように、本来対象OBが存在しないはずの位置に受信信号としてゴースト信号Nが発生してしまうことがある。このような場合に本実施形態のような受光タイミングを光量検出のタイミングの基準とする方式を用いることで、1つ目の受信信号である第1検出信号s1に対応する反射光量が一定値以上の場合に、再帰反射性の対象OBからの反射光と判定することができ、2つ目の受信信号としてゴースト信号Nを無視するような処理を行うことで、より正確な距離計測を行うことができる。その結果、正確な障害物検知等を行うことができる。再帰反射としては、例えば、道路標識等での反射が挙げられる。
In addition, when the reflected light corresponding to the first detection signal s1 which is the first received signal is a strong reflected light such as retroreflection, it is shown in FIG. 7 (G) due to the electrical influence of the
本実施形態の光量検出部60のうちタイミング検出部140は、受光部20が出力する検出信号TS又は検出パルスに対して、(1)立ち上がり検出、(2)ピーク検出、(3)立ち下がり検出、及び(4)共振ゼロクロス検出の少なくともいずれか1つを行ってトリガ信号TRを生成する。なお、(1)〜(4)の検出方法を組み合わせることもできる。以下、各検出方法について説明する。
Of the light
(1)立ち上がり検出又は立ち上がり閾値検出
図8(A)に示すように、第1検出信号s1の立ち上がり時において、閾値TL3に達したときを受光タイミングとして検出する。立ち上がり閾値検出の場合、検出回路がシンプルで装置を低コストに作成することができる。一方、パルス幅が変わるとタイミングが変わってしまう可能性があり、スイッチ制御の精度が悪くなる。
(1) Rise detection or rise threshold detection As shown in FIG. 8A, when the first detection signal s1 rises and the threshold TL3 is reached, it is detected as the light receiving timing. In the case of rising threshold detection, the detection circuit is simple and the device can be manufactured at low cost. On the other hand, if the pulse width changes, the timing may change, and the accuracy of switch control deteriorates.
(2)ピーク検出
図8(B)に示すように、第1検出信号s1のピークPを受光タイミングとして検出する。ピーク検出の場合、波形振幅によらず同一タイミングを取得できるため、スイッチ制御の精度が高くなる。一方、ピーク値が小さい信号の場合にはピークの精度が悪くなり、スイッチ制御の精度が悪くなる。
(2) Peak detection As shown in FIG. 8B, the peak P of the first detection signal s1 is detected as the light receiving timing. In the case of peak detection, the same timing can be acquired regardless of the waveform amplitude, so that the accuracy of switch control is improved. On the other hand, in the case of a signal having a small peak value, the accuracy of the peak deteriorates and the accuracy of switch control deteriorates.
(3)立ち下がり検出又は立ち下がり閾値検出
図8(C)に示すように、第1検出信号s1の立ち下がり時において、閾値TL4に達したときを受光タイミングとして検出する。立ち下がり閾値検出の場合のメリット及びデメリットは立ち上がり閾値検出の場合と同様である。
(3) Fall detection or fall threshold detection As shown in FIG. 8C, when the first detection signal s1 falls and the threshold TL4 is reached, it is detected as the light receiving timing. The advantages and disadvantages of the falling threshold detection are the same as those of the rising threshold detection.
(4)共振ゼロクロス検出
図8(D)に示すように、第1検出信号s1に含まれる特定周波数成分で共振する共振回路を用いて特性周波成分を抽出し、抽出した信号波形z1のゼロクロス点Zを受光タイミングとして検出する。共振ゼロクロス検出の場合、振幅が小さい信号でも感度よくタイミングを検出でき、スイッチ制御の精度を上げることができる。一方、振幅が大きい信号が入力されると、波形歪みによってタイミング精度が悪化するため、スイッチ制御の精度が悪くなる。
(4) Resonant Zero Cross Detection As shown in FIG. 8D, a characteristic frequency component is extracted using a resonance circuit that resonates with a specific frequency component included in the first detection signal s1, and the zero cross point of the extracted signal waveform z1. Z is detected as the light receiving timing. In the case of resonance zero cross detection, the timing can be detected with high sensitivity even for a signal having a small amplitude, and the accuracy of switch control can be improved. On the other hand, when a signal having a large amplitude is input, the timing accuracy deteriorates due to the waveform distortion, so that the accuracy of the switch control deteriorates.
〔第3実施形態〕
以下、第3実施形態の測距装置について説明する。第3実施形態の測距装置は、第1実施形態の測距装置を部分的に変更したものであり、特に説明しない事項は、第1実施形態の測距装置と同様である。
[Third Embodiment]
Hereinafter, the distance measuring device of the third embodiment will be described. The distance measuring device of the third embodiment is a partial modification of the distance measuring device of the first embodiment, and the matters not particularly described are the same as those of the distance measuring device of the first embodiment.
図9に示す測距装置100の光量測定部160において、アナログ時計回路の代わりにデジタルのクロックカウンタ回路161が設けられている。すなわち、光量検出部60は、クロックカウンタ回路161の出力に基づいてスイッチ回路64等を動作させ、複数のタイミングの切り替えを行う。これにより、外乱によって検出結果が変動しにくい安定したものとなる。
In the light
クロックカウンタ回路161は、クロックパルスの数を数えることで、所定の時間をカウントする。クロックカウンタ回路161は、タイミング検出部40から出力されるトリガ信号TRによる投光タイミング情報の入力でクロックパルスの計数動作を開始し、所定のパルス数に対応する所定時間又は所定回数経過後に計数動作を停止する。スイッチ制御部165は、規定のパルス数に達した場合、第1及び第2スイッチ64a,64bを2段階に順次オフにする。
The
以下、図10(A)〜図10(J)を参照しつつ、図9に示す測距装置100の各部の動作について説明する。図10(A)は、投光タイミングで投光部10から射出されるレーザ光L1を示す。図10(B)は、受光部20から出力されるTIA出力を示す。図10(C)は、タイミング検出部40から出力されるカウント開始のトリガ信号TR又はカウント開始信号を示す。図10(D)は、クロックカウンタ回路161におけるクロックパルスを示す。図10(E)は、スイッチ回路64のうち第1スイッチ64aに対する第1スイッチ制御信号SW1を示す。図10(F)は、スイッチ回路64のうち第2スイッチ64bに対する第2スイッチ制御信号SW2を示す。図10(G)は、積分回路62の積分出力を示す。図10(H)は、第1ピークホールド回路63aが出力する第1P/H出力(P/H1)を示し、図10(I)は、第2ピークホールド回路63bが出力する第2P/H出力(P/H2)を示し、図10(J)は、第3ピークホールド回路63cが出力する第3P/H出力(P/H3)を示す。
Hereinafter, the operation of each part of the
まず、図10(A)に示すように、制御部70の光走査制御部71の制御下で投光部10の駆動回路12が周期的に投光パルスを発生し、発光素子11から間欠的にレーザ光L1が出射される。投光タイミングは、例えば、投光部10からのレーザ光L1のピーク時であり、トリガ信号TRとしてタイミング検出部40に出力される。
First, as shown in FIG. 10A, the
次に、図10(B)に示すように、1回のレーザ光L1の出射により複数の反射光が戻る場合、受光部20によって複数の受信信号又は検出信号TSが検出される。図示の例では、複数の検出信号TSは、第1〜第3検出信号s1〜s3となる。
Next, as shown in FIG. 10B, when a plurality of reflected lights are returned by one emission of the laser beam L1, a plurality of received signals or detection signal TSs are detected by the
時間計測部51は、図10(A)及び図10(B)に示すように、投光部10からのレーザ光L1のピーク時を投光タイミングとし、受光部20からのレーザ光L2のピーク時を受光タイミングとして、投光から受光までの時間差である検出時間が計測される。
As shown in FIGS. 10A and 10B, the
図10(C)に示すように、クロックカウンタ回路161は、タイミング検出部40で検出された投光タイミング、具体的には、レーザ光L1のピーク時において、タイミング検出部40から出力されたトリガ信号TR又はカウント開始信号を受けて、カウントを開始する。
As shown in FIG. 10C, the
図10(G)に示すように、積分回路62では、第1〜第3検出信号s1〜s3が順次積分出力される。
As shown in FIG. 10 (G), in the integrating
図10(E)及び図10(F)に示すように、スイッチ回路64の第1及び第2スイッチ64a,64bがいずれもオンの状態、すなわちトリガ信号TRの出力から所定の第1遅延時間DT1までの間において、積分回路62の出力は、第1〜第3ピークホールド回路63a〜63cの全てに入力され、第1検出信号s1の積分結果が保持される。図10(D)に示すように、クロックカウンタ回路161において、第1遅延時間DT1後に対応するパルス数に達した時点で、図10(E)に示すように、スイッチ制御部165は、第1スイッチ64aをオフにする第1スイッチ制御信号SW1を出力する。第1スイッチ64aがオフになることにより、第1ピークホールド回路63aでは、図10(H)に示すように、積分回路62の出力のうち第1検出信号s1の積分結果のみが保持される。次に、図10(D)に示すように、クロックカウンタ回路161において、第2遅延時間DT2後に対応するパルス数に達した時点で、図10(F)に示すように、スイッチ制御部165は、第2スイッチ64bをオフにする第2スイッチ制御信号SW2を出力する。第2スイッチ64bがオフになることにより、第2ピークホールド回路63bでは、図10(I)に示すように、積分回路62の出力のうち第1及び第2検出信号s1,s2の和としての積分結果が保持される。その後、第3ピークホールド回路63cでは、図10(J)に示すように、積分回路62の出力の第1〜第3検出信号s1〜s3の和としての積分結果が保持される。
As shown in FIGS. 10 (E) and 10 (F), both the first and
以上のように、受光部20で検出される複数の受信信号又は検出信号TSは積分回路62及びピークホールド回路群63を経て順次積分され、各ピークホールド回路63a〜63cに対応する第1〜第3P/H出力(P/H1〜P/H3)はADコンバータ群66の各ADコンバータ66aで変換されて各受信信号に対応する光量データが得られる。光量データとなる積分結果のピーク値は、例えば投光タイミングの所定時間後にサンプリングされる。サンプリング時又はその後において、図10(G)に示すように、積分回路62の積分出力はゼロとなる。
As described above, the plurality of received signals or detection signal TSs detected by the
なお、本実施形態において、第2実施形態のように、受光タイミングを光量検出のタイミングの基準とする構成にすることもできる。 In this embodiment, as in the second embodiment, the light receiving timing may be used as a reference for the light amount detection timing.
以上の実施形態で説明された構造、形状、大きさ及び配置関係については、本発明を理解及び実施できる程度に概略的に示したものに過ぎない。したがって、本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。 The structure, shape, size, and arrangement relationship described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented. Therefore, the present invention is not limited to the described embodiment, and can be changed to various forms as long as it does not deviate from the scope of the technical idea shown in the claims.
上記実施形態において、スイッチ回路の構成は、積分回路62からピークホールド回路群63への接続を必要なタイミングで切り替え可能なものに適宜変更できる。
In the above embodiment, the configuration of the switch circuit can be appropriately changed so that the connection from the
上記実施形態において、光量検出のタイミングの基準は、測距装置100の用途に応じて適宜変更することができ、投光タイミングを基準とする場合と受光タイミングを基準とする場合とを併用することもできる。例えば、最初の受信信号である第1検出信号s1の検出において、投光部10の投光動作に基づいてトリガ信号TRを生成して反射光(レーザ光L2)の光量を検出し、2回目の受信信号である第2検出信号s2の検出において、受光部20の受光動作に基づいてトリガ信号TRを生成して反射光(レーザ光L2)の光量を検出する。つまり、受光タイミングを用いたトリガ信号TRによる動作の場合、それ以前に計測動作を始めている必要があり、初回の受信信号の検出において投光タイミングをトリガ信号TRの生成に利用し、2回目の受信信号の検出において受光タイミングをトリガ信号TRの生成に利用する。なお、受信信号毎にトリガ信号TRを生成することもできる。測距装置100では受信信号が戻ってくるタイミングは状況によって常に変化するため、受信信号毎にトリガ信号TRを生成することにより、確実に1つ目と2つ目の受信信号である第1及び第2検出信号s1,s2を切り分けることができる。
In the above embodiment, the reference of the timing of light amount detection can be appropriately changed according to the application of the
10…投光部、 11…発光素子、 12…駆動回路、 20…受光部、 21…受光素子、 22…駆動回路、 30…2次元走査デバイス、 31…スキャナ本体部、 32…スキャナ駆動回路、 40…タイミング検出部、 50…距離計測部、 51…時間計測部、 60…光量検出部、 61…アナログ時計回路、 62…積分回路、 63…ピークホールド回路群、 63a〜63c…ピークホールド回路、 64…スイッチ回路、 64a,64b…スイッチ、 65,165…スイッチ制御部、 66…ADコンバータ群、 70…制御部、 71…光走査制御部、 72…データ処理部、 73…健全性判定部、 80…ケース、 100…測距装置、 160…光量測定部、 161…クロックカウンタ回路、 200…上位システム、 L1,L2…レーザ光、 OB…対象、 TR…トリガ信号、 TS,s1〜s3…検出信号 10 ... Light projecting unit, 11 ... Light emitting element, 12 ... Drive circuit, 20 ... Light receiving unit, 21 ... Light receiving element, 22 ... Drive circuit, 30 ... Two-dimensional scanning device, 31 ... Scanner body, 32 ... Scanner drive circuit, 40 ... Timing detection unit, 50 ... Distance measurement unit, 51 ... Time measurement unit, 60 ... Light intensity detection unit, 61 ... Analog clock circuit, 62 ... Integrator circuit, 63 ... Peak hold circuit group, 63a to 63c ... Peak hold circuit, 64 ... Switch circuit, 64a, 64b ... Switch, 65,165 ... Switch control unit, 66 ... AD converter group, 70 ... Control unit, 71 ... Optical scanning control unit, 72 ... Data processing unit, 73 ... Soundness judgment unit, 80 ... Case, 100 ... Distance measuring device, 160 ... Light quantity measuring unit, 161 ... Clock counter circuit, 200 ... Higher system, L1, L2 ... Laser light, OB ... Target, TR ... Trigger signal, TS, s1 to s3 ... Detection signal
Claims (6)
反射光の光量を検出する光量検出部とを備え、
前記光量検出部は、スイッチ回路の切り替えにより複数のタイミングで反射光の光量を検出する、測距装置。 A distance measuring unit that irradiates a laser beam, measures the reflected light, and determines the distance from the elapsed time from the irradiation of the laser beam to the reception of the reflected light.
It is equipped with a light amount detection unit that detects the amount of reflected light.
The light amount detection unit is a distance measuring device that detects the amount of reflected light at a plurality of timings by switching a switch circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019179968A JP7316175B2 (en) | 2019-09-30 | 2019-09-30 | rangefinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019179968A JP7316175B2 (en) | 2019-09-30 | 2019-09-30 | rangefinder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021056115A true JP2021056115A (en) | 2021-04-08 |
JP7316175B2 JP7316175B2 (en) | 2023-07-27 |
Family
ID=75270526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019179968A Active JP7316175B2 (en) | 2019-09-30 | 2019-09-30 | rangefinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7316175B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022210308A1 (en) | 2021-03-29 | 2022-10-06 | 株式会社カネカ | Cyclic lipopeptide-producing microbial strain and method for producing cyclic lipopeptide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105689A (en) * | 2004-10-01 | 2006-04-20 | Denso Corp | Radar apparatus for car |
JP2008537116A (en) * | 2005-04-18 | 2008-09-11 | レイセオン・カンパニー | SAMPLE AND HOLD CIRCUIT FOR LASER DETECTION AND RANGING (LASERDETECTIONANDRANGING) SYSTEM |
JP2008275379A (en) * | 2007-04-26 | 2008-11-13 | Ihi Corp | Laser range finder and laser range finding method |
JP2011021980A (en) * | 2009-07-15 | 2011-02-03 | Nippon Signal Co Ltd:The | Optical range finding device |
JP2011122840A (en) * | 2009-12-08 | 2011-06-23 | Mitsubishi Electric Corp | Analog signal processing circuit, and distance and strength measurement system using the same |
JP2011215005A (en) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | Signal processor and scan type range finder |
JP2017032431A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Laser radar device |
-
2019
- 2019-09-30 JP JP2019179968A patent/JP7316175B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105689A (en) * | 2004-10-01 | 2006-04-20 | Denso Corp | Radar apparatus for car |
JP2008537116A (en) * | 2005-04-18 | 2008-09-11 | レイセオン・カンパニー | SAMPLE AND HOLD CIRCUIT FOR LASER DETECTION AND RANGING (LASERDETECTIONANDRANGING) SYSTEM |
JP2008275379A (en) * | 2007-04-26 | 2008-11-13 | Ihi Corp | Laser range finder and laser range finding method |
JP2011021980A (en) * | 2009-07-15 | 2011-02-03 | Nippon Signal Co Ltd:The | Optical range finding device |
JP2011122840A (en) * | 2009-12-08 | 2011-06-23 | Mitsubishi Electric Corp | Analog signal processing circuit, and distance and strength measurement system using the same |
JP2011215005A (en) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | Signal processor and scan type range finder |
JP2017032431A (en) * | 2015-08-03 | 2017-02-09 | 三菱電機株式会社 | Laser radar device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022210308A1 (en) | 2021-03-29 | 2022-10-06 | 株式会社カネカ | Cyclic lipopeptide-producing microbial strain and method for producing cyclic lipopeptide |
Also Published As
Publication number | Publication date |
---|---|
JP7316175B2 (en) | 2023-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3457177B1 (en) | Distance measurement apparatus | |
CN109791195B (en) | Adaptive transmit power control for optical access | |
US9971024B2 (en) | Lidar scanner calibration | |
JP4488170B2 (en) | Method and apparatus for recording a three-dimensional distance image | |
US9696425B2 (en) | Optical distance measuring apparatus | |
JP5411430B2 (en) | Ranging device | |
US7554652B1 (en) | Light-integrating rangefinding device and method | |
JP4837413B2 (en) | Ranging method and ranging device | |
EP4016124A1 (en) | Time of flight calculation with inter-bin delta estimation | |
WO2009105857A1 (en) | Light-integrating rangefinding device and method | |
JP7316175B2 (en) | rangefinder | |
CN111538026B (en) | Laser ranging method and system | |
JPWO2019004144A1 (en) | Receiver, control method, program and storage medium | |
JPH06109842A (en) | Distance detection apparatus | |
EP1245927B1 (en) | Position detection device | |
US7502064B2 (en) | Using light pulses to implement auto-focus in a digital camera | |
JP7005722B2 (en) | Distance measuring device | |
JPH07198846A (en) | Distance measuring apparatus | |
JPH03293581A (en) | Range finder | |
JPS5970359A (en) | Beam position detector of laser beam scanning system | |
JPS5844997B2 (en) | Automatic target distance detection method | |
JPH0712935A (en) | Range finder | |
JPH0160803B2 (en) | ||
JPH05281355A (en) | Vehicle-to-vehicle distance detecting device | |
JPH03293580A (en) | Range finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7316175 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |