JPH06109842A - Distance detection apparatus - Google Patents

Distance detection apparatus

Info

Publication number
JPH06109842A
JPH06109842A JP4254507A JP25450792A JPH06109842A JP H06109842 A JPH06109842 A JP H06109842A JP 4254507 A JP4254507 A JP 4254507A JP 25450792 A JP25450792 A JP 25450792A JP H06109842 A JPH06109842 A JP H06109842A
Authority
JP
Japan
Prior art keywords
distance
signal
light
received
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4254507A
Other languages
Japanese (ja)
Other versions
JP3193148B2 (en
Inventor
Satoshi Morioka
里志 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP25450792A priority Critical patent/JP3193148B2/en
Publication of JPH06109842A publication Critical patent/JPH06109842A/en
Application granted granted Critical
Publication of JP3193148B2 publication Critical patent/JP3193148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the accurate photodetection timing of various photodetection signals by a method wherein a detection means which detects the photodetection state of a beam of reflected light and a judgment means which judges whether a photodetection signal is suitable for finding a distance up to an object are provided. CONSTITUTION:A signal processing unit 20 sends a signal to a light-transmitting part 24 from a timing control part 23, it emits light and a distance counter 22 starts a time measurement. A laser beam which has been reflected by, and returned from, a target object is converted into an electric signal by a photodetection part 25. The electric signal is amplified by an amplification part 26, and a detection part 27 detects the rise and the fall of the amplified electric signal. When the detection part 27 detects the rise of the received signal, the counter 22 is stopped and a counter 28 starts a time measurement. When the fall time is detected, the counter 28 is stopped. The counter 22 measures the time from transmission of a laser beam to reception of reflected light, and the counter 28 measures the pulse of a received pulse.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、例えば、車両の前方
物体までの距離等を検出する距離検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance detecting device for detecting a distance to an object ahead of a vehicle, for example.

【0002】[0002]

【従来の技術】従来より、距離検出装置として、例えば
特開昭59−60271号のように、パルス光を前方に
送出して、その反射波を受けるまでの時間に基づいて前
方物体までの距離を求めることにより距離検出を行なう
のが一般的である。この場合、上記時間測定は、送出パ
ルスのピーク検出時刻から反射パルス光のピーク検出時
刻までの時間を測定するようにしている。
2. Description of the Related Art Conventionally, as a distance detecting device, for example, as disclosed in Japanese Unexamined Patent Publication No. 59-60271, the distance to a front object is determined based on the time until the pulsed light is sent forward and the reflected wave is received. It is general to detect the distance by obtaining In this case, in the time measurement, the time from the peak detection time of the transmitted pulse to the peak detection time of the reflected pulsed light is measured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、実際の
車両においては、反射光はピークを検出するための理想
的な性質をもってはいないために、次のような問題点を
起こしていた。図1の1〜4の領域で示すように、光ビ
ームの強度は分布をもっており、光を反射する車両上の
リフレクタが図1のどの領域の光を反射するかによっ
て、図2に示すように反射光のパルス波形形状が変動す
る。
However, in an actual vehicle, the reflected light does not have an ideal property for detecting a peak, so that the following problems occur. As shown in the areas 1 to 4 in FIG. 1, the intensity of the light beam has a distribution, and as shown in FIG. 2, depending on which area in FIG. 1 the reflector on the vehicle that reflects the light reflects the light. The pulse waveform shape of the reflected light changes.

【0004】図2において、10は送出光のパルス強度
の時間変化であり、11、12、13は夫々、図1の
5、6、7の領域にリフレクタがあった場合における反
射光の強度変化を示す。図2の11は、受光したパルス
光の強度が強すぎて光電変換信号に飽和が発生している
場合を示し、13は逆に強度が弱すぎて光電変換信号の
レベルがかなり落ちていることを示す。目標物体までの
距離Rは、送信から受信までの時間をT、光速をCで表
すと、R=T・C/2となる。
In FIG. 2, reference numeral 10 is the time variation of the pulse intensity of the transmitted light, and 11, 12 and 13 are the variation in the intensity of the reflected light when there are reflectors in the regions 5, 6 and 7 of FIG. 1, respectively. Indicates. Reference numeral 11 in FIG. 2 shows a case where the intensity of the received pulsed light is too strong and saturation occurs in the photoelectric conversion signal, and 13 indicates that the intensity is too weak and the level of the photoelectric conversion signal is considerably lowered. Indicates. The distance R to the target object is R = T · C / 2, where T is the time from transmission to reception and C is the speed of light.

【0005】通常、前方物体までの距離検出は、前述し
たように送出パルスと受信パルスのピーク間の時間を検
出するが、このピークは図2に示すように、所定のスラ
イスレベルを信号レベルが越えたか否かにより判断され
る。図2の例では、スライスレベルは14、15として
示される。ここで、送出パルス10の強度は一定である
ために、そのピーク時刻の測定に誤差は発生しない。と
ころが、前述したように、受信光の強度は、車両上のリ
フレクタがどの領域の光を反射したか、あるいは、ター
ゲットが車両リフレクタとは反射強度の異なる物体であ
る場合などによって異なるから、図2に示すように、受
光ビームの光電変換信号が11の場合と13の場合とで
は、20〜30ナノ秒の差が発生し、これが測定距離の
誤差となって現われてしまう。このような誤差を解消す
るには、受信信号のピーク位置そのものを検出すること
も考えられるが、飽和した信号についてそのピーク位置
を検出することは意味がない。
Normally, in detecting the distance to a front object, the time between the peaks of the transmission pulse and the reception pulse is detected as described above, and this peak has a predetermined slice level as a signal level as shown in FIG. Judgment is made based on whether or not it exceeds. In the example of FIG. 2, the slice levels are shown as 14, 15. Here, since the intensity of the transmission pulse 10 is constant, no error occurs in the measurement of the peak time. However, as described above, the intensity of the received light differs depending on which region the reflector on the vehicle reflects the light, or when the target is an object having a different reflection intensity from the vehicle reflector. As shown in, a difference of 20 to 30 nanoseconds occurs between the case where the photoelectric conversion signal of the received beam is 11 and the case where the photoelectric conversion signal is 13, and this difference appears as an error in the measurement distance. In order to eliminate such an error, it is possible to detect the peak position itself of the received signal, but it is meaningless to detect the peak position of the saturated signal.

【0006】また、信号が飽和しないようにするために
は、光電変換器への入力を制御する必要があるものの、
その制御は機械系を制御する必要があるために、高速な
測定には向いていなかった。そこで、本発明は上記従来
技術の欠点を解消するために提案されたもので、その目
的は、反射光の受信信号に種々の程度のものがあって
も、正確な受光タイミングを簡単に測定することのでき
る距離検出装置を提案する。
Although it is necessary to control the input to the photoelectric converter in order to prevent the signal from being saturated,
The control is not suitable for high-speed measurement because it needs to control the mechanical system. Therefore, the present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art, and the purpose thereof is to easily measure an accurate light reception timing even if there are various levels of received signals of reflected light. We propose a distance detector that can do this.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
の本発明は、光ビームを送出し物体からの反射光を受光
して、その反射光を受けるまでの時間に基づいて前記物
体までの距離を求める距離検出装置において、前記反射
光の受光信号の受光の態様を検出する検出手段と、この
態様に基づいて、受光信号が前記物体までの距離を求め
るのに適切か否かを判断する判定手段とを具備する。
According to the present invention for achieving the above object, a light beam is transmitted, reflected light from an object is received, and the reflected light from the object is received. In a distance detecting device for obtaining a distance, a detecting means for detecting a light receiving mode of a light receiving signal of the reflected light, and based on this mode, it is judged whether or not the light receiving signal is appropriate for obtaining a distance to the object. And a determining means.

【0008】[0008]

【実施例】以下、添付図面を参照しながら本発明の好適
な実施例を説明する。図3、図4は本発明の実施例の距
離測定の原理を示す図である。この実施例の測定原理
は、反射波を受光してそれを光電変換して得た受信信号
のなかで、適正なレベルのもののみを選択して、選択さ
れた信号から受光タイミングを算出して、測定対象の物
体までの距離を測定するものである。適切か否かは、物
体までの距離に応じたパルス幅を受信信号が持っている
か否かにより判断する。受信信号のパルス幅は物体まで
のおおよその距離に比例するからである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. 3 and 4 are diagrams showing the principle of distance measurement according to the embodiment of the present invention. In the measurement principle of this embodiment, among the received signals obtained by receiving the reflected wave and photoelectrically converting it, only the signal of the proper level is selected, and the light receiving timing is calculated from the selected signal. The distance to the object to be measured is measured. Whether or not it is appropriate is determined by whether or not the received signal has a pulse width corresponding to the distance to the object. This is because the pulse width of the received signal is proportional to the approximate distance to the object.

【0009】物体までの粗い距離は、図3に示すよう
に、受信信号があるレベルに達した時刻により推定でき
る。図3の例では、信号パルスの強度により、パルス幅
が異なり、そのために、物体までの距離が、T'C/2、T''
C/2、T'"C/2と異なってしまうが、物体が近距離にある
かいなかというような粗い判断には絶対的な精度は要求
されないので、問題はない。そこで、レーザ光を送出し
て受信信号の立ち上がりまでの時間をT(このTは物体
までの粗い距離を表す)とすれば、その距離に適切な強
度を有する受信信号のパルス幅が存在する筈である。信
号のパルス幅と信号の強度レベルは比較的よく比例する
からである。そのような予想パルス幅WPは時間Tの関
数となるから、 WP=WP(T) で表されるはずである。T1≒T2であれば、WP(T1
=WP(T2)である。このような関数を予め記憶してお
き、受信信号を検出した時点で、物体までの粗い距離を
算出し、その粗い距離から予想パルス幅WP(T)を推
定する。さらに、受信信号の実際のパルス幅WAを正確
に測定して、このWAとWP(T)とを比較することによ
り、受信された信号が適切か否かを判断する。
The coarse distance to the object can be estimated from the time when the received signal reaches a certain level, as shown in FIG. In the example of FIG. 3, the pulse width varies depending on the intensity of the signal pulse, and therefore the distance to the object is T′C / 2, T ″.
It differs from C / 2 and T '"C / 2, but there is no problem because absolute accuracy is not required for rough judgments such as whether an object is in a short distance. Then, if the time until the rising of the received signal is T (where T represents a coarse distance to the object), there should be a pulse width of the received signal having an appropriate intensity at that distance. Since the width and the intensity level of the signal are relatively well proportional, since such an expected pulse width W P is a function of time T, it should be expressed as W P = W P (T). If 1 ≈ T 2 , then W P (T 1 )
= W P (T 2 ). Such a function is stored in advance, the rough distance to the object is calculated at the time when the received signal is detected, and the expected pulse width W P (T) is estimated from the rough distance. Further, by accurately measuring the actual pulse width W A of the received signal and comparing this W A with W P (T), it is determined whether or not the received signal is appropriate.

【0010】図4に示すように、送信光の強度信号を3
0とした場合に、受光した反射光の強度が31〜37の
波形で観測されたとする。信号31〜33は比較的近距
離に物体がある場合の受信信号の波形の種類を示す。図
3に関連して説明した手法により、これら3つの信号の
うち、信号33は近距離に物体があるにしては強度レベ
ルが低すぎて不適切と判断する。また、信号31につい
てはパルス幅が大き過ぎるので、信号が飽和していると
判断して不適切とする。従って、信号32が適切と判断
される。
As shown in FIG. 4, the intensity signal of the transmitted light is set to 3
When it is set to 0, it is assumed that the intensity of the received reflected light is observed in the waveforms 31 to 37. Signals 31 to 33 indicate types of waveforms of received signals when an object is present at a relatively short distance. According to the method described with reference to FIG. 3, of these three signals, the signal 33 is judged to be inappropriate because the intensity level is too low for an object located at a short distance. Further, since the pulse width of the signal 31 is too large, it is determined that the signal is saturated and is inappropriate. Therefore, the signal 32 is determined to be appropriate.

【0011】一方、比較的遠距離に物体があると推定さ
れる場合において信号36、37を受け取った場合に
は、信号36は遠距離にしてはパルス幅が大き過ぎるの
で信号が強すぎると判断して無視し、信号37を採用す
る。図5を用いて実施例の距離測定システムの構成を説
明する。同図において、送光系は距離カウンタ22とタ
イミング制御部23と送光部24とからなる。また、受
光系は受光部25と増幅部26と検波部27と距離カウ
ンタ28とからなる。クロック部21は距離カウンタ2
2、28の計数パルスを生成する。信号処理ユニット2
0はCPU等を含み、タイミング制御や信号処理などを
行なう。
On the other hand, when the signals 36 and 37 are received when the object is estimated to be at a relatively long distance, it is determined that the signal 36 is too strong because the pulse width of the signal 36 is too large for a long distance. Then, the signal 37 is adopted. The configuration of the distance measuring system according to the embodiment will be described with reference to FIG. In the figure, the light transmitting system includes a distance counter 22, a timing control unit 23, and a light transmitting unit 24. The light receiving system includes a light receiving unit 25, an amplification unit 26, a detection unit 27, and a distance counter 28. The clock unit 21 is the distance counter 2
Generate 2, 28 counting pulses. Signal processing unit 2
Reference numeral 0 includes a CPU and the like, and performs timing control and signal processing.

【0012】信号処理ユニット20はタイミング制御部
23に送光部24にレーザ光を発光せしめると共に距離
カウンタ22に時間計測を開始せしめる。目標物体に反
射して戻ってきたレーザ光は受光部25で受けられ電気
信号に変換される。この電気信号は増幅部26で増幅さ
れ、検波部27がその増幅された電気信号の立ち上がり
と立ち下がりとを検出する。この検波は、図4に示した
ように、スライスレベルを越えた時点を検出することに
より行なわれる。
The signal processing unit 20 causes the timing control section 23 to cause the light transmitting section 24 to emit laser light and causes the distance counter 22 to start time measurement. The laser light reflected and returned to the target object is received by the light receiving unit 25 and converted into an electric signal. This electric signal is amplified by the amplification unit 26, and the detection unit 27 detects rising and falling of the amplified electric signal. This detection is performed by detecting the time point when the slice level is exceeded, as shown in FIG.

【0013】検波部27は受信信号の立ち上がりを検出
すると、カウンタ22を停止すると共に、カウンタ28
による時間計測を開始せしめる。さらに、検波部27
は、立ち下がり時刻を検出するとカウンタ28を停止さ
せる。これらの動作により、図6に示すように、カウン
タ22は、レーザ光を送信してから反射光を受信するま
での時間を計測し、カウンタ28は受信パルスのパルス
幅を計測することができる。
When the detection unit 27 detects the rising edge of the received signal, the detection unit 27 stops the counter 22 and also stops the counter 28.
Start the time measurement by. Furthermore, the detection unit 27
Stops the counter 28 when it detects the falling time. With these operations, as shown in FIG. 6, the counter 22 can measure the time from transmitting the laser light to receiving the reflected light, and the counter 28 can measure the pulse width of the received pulse.

【0014】信号処理ユニット20は、パルスの立ち上
がり時刻とパルス幅等を取り込み、図3に関連して説明
した手法により、不適切なパルスと適切なパルスとを区
別して、適切なパルスに基づいて正確な物体までの距離
を計算する。前述の予想パルス幅WPデータはRAM2
9内に格納されている。以上のようにして、この実施例
によれば、 :適性レベルの信号のみを選択するので、精度の良い
計測が可能となる。 :車両のリフレクタ以外の物体(例えば、道路標識、
看板等)からの不適正な信号を除去できるという効果を
得る。
The signal processing unit 20 takes in the rise time of the pulse, the pulse width, etc., distinguishes an inappropriate pulse from an appropriate pulse by the method described with reference to FIG. 3, and based on the appropriate pulse. Calculate the distance to an exact object. The above-mentioned expected pulse width W P data is RAM2
9 are stored. As described above, according to this embodiment: Since only signals of the appropriate level are selected, accurate measurement can be performed. : Objects other than vehicle reflectors (eg road signs,
An effect that an improper signal from a signboard, etc.) can be removed is obtained.

【0015】本発明はその主旨を逸脱しない範囲で種々
変形ができる。第1変形例 :上記実施例は、固定式のレーザに本発明を
適用したものであった。本発明はスキャン式のレーザに
も適用が可能である。しかし、スキャン式のレーザ方式
では、レーザビームをスキャンさせると、目標物体に対
するビームの位置が変化して、ビームの強度の高い部分
で物体を捉えたり、低い部分で捉えたり安定しない。つ
まり、スキャン式は固定式に比して、レベル変動の頻度
が高いという問題がある。そこで、スキャンの周期と1
スキャン周期内に発するパルスの数とを調整し、リフレ
クタから複数個の反射光を受光するようにする。このよ
うな調整を行なえば、図7に示すように、1つのリフレ
クタから、1周期内に複数個の反射光パルスを受光で
き、それらの中から、前述の手法により最適なパルスを
選択するようにする。第2変形例 :上述の実施例では、不適切だと判定された
受信信号は無視するようにしていた。この変形例では、
不適切な受信信号に対しては補正を行なって距離測定に
利用しようというものである。
The present invention can be variously modified without departing from the spirit thereof. First Modification : In the above embodiment, the present invention was applied to a fixed laser. The present invention can be applied to a scan type laser. However, in the scan type laser system, when the laser beam is scanned, the position of the beam with respect to the target object changes, and it is not stable that the object is captured at a portion having a high beam intensity or captured at a portion having a low beam intensity. That is, the scan type has a problem that the level changes more frequently than the fixed type. Therefore, the scan cycle and 1
The number of pulses emitted within the scan cycle is adjusted so that a plurality of reflected lights are received from the reflector. If such adjustment is performed, as shown in FIG. 7, a plurality of reflected light pulses can be received from one reflector within one period, and the optimum pulse can be selected from them by the above-mentioned method. To Second Modification : In the above-mentioned embodiment, the received signal determined to be inappropriate is ignored. In this variation,
It is intended to correct improper received signals and use them for distance measurement.

【0016】図8はその原理を示す。即ち、パルス幅が
小さすぎて不適切だと判定された場合は、所定距離αを
減算するように補正し、パルス幅が大きすぎて不適切だ
と判定された場合には、アルファを加算するように補正
する。しかしながら、常に補正すると誤差を生む可能性
が高いので、明らかに車両リフレクタからの反射光でな
いと思われるもの(例えば、遠距離と推定される物体か
らの反射光レベルが強すぎるような場合)は補正の対象
から外す。
FIG. 8 shows the principle. That is, when it is determined that the pulse width is too small and inappropriate, the correction is performed so as to subtract the predetermined distance α, and when it is determined that the pulse width is too large and inappropriate, alpha is added. To correct. However, there is a high possibility that an error will always occur if always corrected, and therefore, what is apparently not reflected light from the vehicle reflector (for example, when the reflected light level from an object estimated to be a long distance is too strong) Remove from correction target.

【0017】[0017]

【発明の効果】以上説明したように、本発明の距離検出
装置によれば、時半車高の受光態様に基づいて適切な信
号だけが距離検出に利用されるので、精度の高い距離測
定が可能となる。ここで、受光態様とは、物体までのお
およその距離と受信パルスの幅である。
As described above, according to the distance detecting apparatus of the present invention, only an appropriate signal is used for distance detection based on the light reception mode of the vehicle height at half an hour, so that highly accurate distance measurement can be performed. It will be possible. Here, the light receiving mode is an approximate distance to an object and a width of a received pulse.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例及び従来の装置に用いられている光ビ
ームの強度分布を示す図。
FIG. 1 is a diagram showing an intensity distribution of a light beam used in Examples and conventional devices.

【図2】 従来技術の欠点を説明する図。FIG. 2 is a diagram illustrating a defect of the conventional technique.

【図3】 本発明の実施例の原理を説明する図。FIG. 3 is a diagram illustrating the principle of an embodiment of the present invention.

【図4】 この実施例の原理を説明する図。FIG. 4 is a diagram illustrating the principle of this embodiment.

【図5】 この実施例の構成を説明する図。FIG. 5 is a diagram illustrating the configuration of this embodiment.

【図6】 実施例の動作を説明する図。FIG. 6 is a diagram for explaining the operation of the embodiment.

【図7】 第1変形例の動作を説明する図。FIG. 7 is a diagram for explaining the operation of the first modified example.

【図8】 第2変形例の動作を説明する図。FIG. 8 is a view for explaining the operation of the second modified example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを送出し物体からの反射光を受
光して、その反射光を受けるまでの時間に基づいて前記
物体までの距離を求める距離検出装置において、 前記反射光の受光信号の受光の態様を検出する検出手段
と、 この態様に基づいて、受光信号が前記物体までの距離を
求めるのに適切か否かを判断する判定手段とを具備する
距離検出装置。
1. A distance detection device that transmits a light beam, receives reflected light from an object, and obtains the distance to the object based on the time until the reflected light is received. A distance detection device comprising: a detection unit that detects a light reception mode; and a determination unit that determines whether or not a light reception signal is appropriate for obtaining the distance to the object based on this mode.
【請求項2】 請求項1の距離検出装置において、さら
に、受光した反射光を電気信号に変換する手段を有し、
前記態様は、前記電気信号を検出した時間とその電気信
号のパルス幅とであることを特徴とする距離検出装置。
2. The distance detecting device according to claim 1, further comprising means for converting the received reflected light into an electric signal,
The said aspect is the time which detected the said electric signal, and the pulse width of the electric signal, The distance detection apparatus characterized by the above-mentioned.
【請求項3】 請求項2の距離検出装置において、前記
判定手段は、光ビームの送出時刻から前記電気信号を受
信した時刻までの時間に基づいて前記物体までのおおよ
その距離を推定する手段と、物体までの距離と前記電気
信号の予想パルス幅との関係を前もって記憶する記憶手
段とを具備し、実際の電気信号のパルス幅と前記予想パ
ルス幅とに基づいて、適切か否かを判断することを特徴
とする距離検出装置。
3. The distance detecting device according to claim 2, wherein the determining means estimates the approximate distance to the object based on a time from a light beam transmission time to a time when the electric signal is received. And a storage means for storing in advance the relationship between the distance to the object and the expected pulse width of the electric signal, and determines whether or not it is appropriate based on the actual pulse width of the electric signal and the expected pulse width. A distance detection device characterized by:
【請求項4】 請求項1の距離検出装置において、前記
レーザビームは水平面上にスキャンされながら照射さ
れ、1つの目標物体から、1スキャンサイクル内に複数
個の反射光パルスを受光することを特徴とする距離検出
装置。
4. The distance detecting device according to claim 1, wherein the laser beam is emitted while being scanned on a horizontal plane, and a plurality of reflected light pulses are received from one target object within one scan cycle. Distance detection device.
JP25450792A 1992-09-24 1992-09-24 Distance detection device Expired - Fee Related JP3193148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25450792A JP3193148B2 (en) 1992-09-24 1992-09-24 Distance detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25450792A JP3193148B2 (en) 1992-09-24 1992-09-24 Distance detection device

Publications (2)

Publication Number Publication Date
JPH06109842A true JPH06109842A (en) 1994-04-22
JP3193148B2 JP3193148B2 (en) 2001-07-30

Family

ID=17266017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25450792A Expired - Fee Related JP3193148B2 (en) 1992-09-24 1992-09-24 Distance detection device

Country Status (1)

Country Link
JP (1) JP3193148B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184130A (en) * 2002-11-29 2004-07-02 Denso Corp Obstacle recognition apparatus for motor vehicle
US7136753B2 (en) 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP2011164082A (en) * 2010-01-15 2011-08-25 Denso Wave Inc Laser radar device
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device
JP2016146286A (en) * 2015-02-09 2016-08-12 株式会社島津製作所 Counter of photon or charged particle
WO2016208318A1 (en) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 Distance image processing device, distance image processing method, distance image processing program, and recording medium
KR20180130381A (en) * 2017-05-29 2018-12-07 광주과학기술원 Lidar system
JP2019039715A (en) * 2017-08-23 2019-03-14 株式会社リコー Time measuring device, distance measuring device, mobile entity, time measurement method, and distance measurement method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184130A (en) * 2002-11-29 2004-07-02 Denso Corp Obstacle recognition apparatus for motor vehicle
DE10355958B4 (en) * 2002-11-29 2014-01-09 Denso Corporation Obstacle detection device for vehicles
US7271762B2 (en) 2002-11-29 2007-09-18 Denso Corporation Method for detecting an obstacle around a vehicle
US7496449B2 (en) 2002-12-05 2009-02-24 Denso Corporation Inter-vehicle control apparatus and distance measurement apparatus
US7761236B2 (en) 2002-12-05 2010-07-20 Denso Corporation Object recognition apparatus for vehicle and distance measurement apparatus
US7136753B2 (en) 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP2011164082A (en) * 2010-01-15 2011-08-25 Denso Wave Inc Laser radar device
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device
JP2016142534A (en) * 2015-01-29 2016-08-08 シャープ株式会社 Distance measurement device
JP2016146286A (en) * 2015-02-09 2016-08-12 株式会社島津製作所 Counter of photon or charged particle
WO2016208318A1 (en) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 Distance image processing device, distance image processing method, distance image processing program, and recording medium
KR20180130381A (en) * 2017-05-29 2018-12-07 광주과학기술원 Lidar system
JP2019039715A (en) * 2017-08-23 2019-03-14 株式会社リコー Time measuring device, distance measuring device, mobile entity, time measurement method, and distance measurement method

Also Published As

Publication number Publication date
JP3193148B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
EP3457177B1 (en) Distance measurement apparatus
US20210116572A1 (en) Light ranging apparatus
US6650403B2 (en) Distance measuring device for a vehicle
US6665056B2 (en) Method and apparatus for measuring distance to a detection object
US7408628B2 (en) Radar apparatus
US10514447B2 (en) Method for propagation time calibration of a LIDAR sensor
JP2941593B2 (en) Distance measuring device
US20200041651A1 (en) System and method for improving range resolution in a lidar system
US6587185B1 (en) Distance measuring apparatus
JPH07140247A (en) On-vehicle distance measuring system using laser beam
EP2796894A1 (en) Optical wave distance measurement device
JP3193148B2 (en) Distance detection device
JP3146838B2 (en) Distance sensor head
JP4334678B2 (en) Distance measuring device
JP3249592B2 (en) Distance detection method
JPH11352226A (en) Highly accurate distance-measuring apparatus
JPH07198846A (en) Distance measuring apparatus
JPH10239432A (en) Distance measuring device
JPH05264719A (en) Laser rader apparatus
JP2743038B2 (en) Underwater distance measuring device using laser light
JPH10153660A (en) Distance-measuring device
JP2545311B2 (en) Underwater distance measuring device with laser light
JPH06201828A (en) Laser range finder
JPH05231818A (en) Laser distance measuring device
JPS6355409A (en) Laser distance measuring instrument for vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010420

LAPS Cancellation because of no payment of annual fees