JP2021055057A - Production method of polyimide film and production method of metal-clad laminate - Google Patents

Production method of polyimide film and production method of metal-clad laminate Download PDF

Info

Publication number
JP2021055057A
JP2021055057A JP2020153906A JP2020153906A JP2021055057A JP 2021055057 A JP2021055057 A JP 2021055057A JP 2020153906 A JP2020153906 A JP 2020153906A JP 2020153906 A JP2020153906 A JP 2020153906A JP 2021055057 A JP2021055057 A JP 2021055057A
Authority
JP
Japan
Prior art keywords
polyimide film
diamine
polyimide
group
residue derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020153906A
Other languages
Japanese (ja)
Inventor
哲平 西山
Teppei Nishiyama
哲平 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2021055057A publication Critical patent/JP2021055057A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1025Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a production method of a polyimide film by a cast method, in which both reduction of CTE and uniformization of orientation distribution in a film thickness direction are achieved.SOLUTION: A polyimide film of which the resin component is composed of non-thermoplastic polyimide is produced by: laminating a polyamic acid containing a diamine residue derived from a diamine component and an acid anhydride residue derived from an acid anhydride component on a base material; and imidizing the polyamic acid by heat treatment with an infrared heater. Based on 100 pts.mol of the total diamine residue, the non-thermoplastic polyimide has 50 pts.mol or more of the diamine residue derived from a diamine compound represented by a formula (1).SELECTED DRAWING: None

Description

本発明は、ポリイミドフィルムの製造方法及び金属張積層板の製造方法に関する。 The present invention relates to a method for producing a polyimide film and a method for producing a metal-clad laminate.

ポリイミドは、高い絶縁性、寸法安定性、易成形性、軽量等の特徴を有するために、回路基板などの材料として電子、電気機器や電子部品に広く用いられている。ポリイミドは、一般に、フィルム状(ポリイミドフィルム)や、任意の基材に積層された層状(ポリイミド層)などの形態で用いられる。なお、本発明において「ポリイミドフィルム」には、ポリイミド層の状態も含むものとする。ポリイミドフィルムの形成方法として、ポリイミドの前駆体であるポリアミド酸の樹脂溶液を基材上に塗布して塗布膜を形成し、この塗布膜を乾燥、イミド化することによってポリイミドフィルムを得る方法(いわゆるキャスト法)が知られている。 Polyimide is widely used in electronic, electrical equipment, and electronic components as a material for circuit boards and the like because it has features such as high insulation, dimensional stability, easy molding, and light weight. Polyimide is generally used in the form of a film (polyimide film) or a layered layer (polyimide layer) laminated on an arbitrary base material. In the present invention, the "polyimide film" includes the state of the polyimide layer. As a method for forming a polyimide film, a resin solution of polyamic acid, which is a precursor of polyimide, is applied onto a substrate to form a coating film, and the coating film is dried and imidized to obtain a polyimide film (so-called). Cast method) is known.

キャスト法では、ポリアミド酸の溶液を基材に塗布し、乾燥、硬化させるため、溶媒の揮発は基材が存在しない表面側からのみであり、加えて、熱に直接さらされるのも基材が存在しない表面側からのみとなる。その為、熱に直接さらされる表面(表層部)においては、分子の配向やイミド化が進みやすく、形成されるポリイミドフィルムにおいて、厚み方向の配向分布に差が生じやすいという傾向があった。この傾向は特に配向が形成されやすい、すなわち、低熱膨張係数(CTE)化しやすい樹脂組成ほど顕著となる。 In the casting method, a solution of polyamic acid is applied to the base material, dried and cured, so the solvent volatilizes only from the surface side where the base material does not exist, and in addition, the base material is directly exposed to heat. Only from the non-existent surface side. Therefore, on the surface (surface layer portion) directly exposed to heat, the orientation and imidization of the molecules tend to proceed, and the polyimide film formed tends to have a difference in the orientation distribution in the thickness direction. This tendency becomes more remarkable as the resin composition is more likely to form an orientation, that is, to have a low coefficient of thermal expansion (CTE).

特許文献1では、キャスト法によるポリアミド酸の塗布膜に対して短時間で均質なイミド化を行うために、遠赤外線を用いて熱硬化させることが提案されている。 Patent Document 1 proposes thermosetting using far infrared rays in order to perform uniform imidization of a polyamic acid coating film by a casting method in a short time.

ところで、ポリイミドを用いた銅張積層板(CCL)においては、絶縁樹脂層をボトム層/ベース層/トップ層の3層構造とし、ボトム層やトップ層の厚みを意図的に変更することによって、ベース層に配向分布がある場合の反りの発生を抑制していた。その為、一定厚み以上のボトム層、トップ層を設ける必要があり、絶縁樹脂層の薄膜化や、ベース層を構成する樹脂の特性を重視した設計が困難となっていた。 By the way, in a copper-clad laminate (CCL) using polyimide, the insulating resin layer has a three-layer structure of a bottom layer / a base layer / a top layer, and the thickness of the bottom layer and the top layer is intentionally changed. The occurrence of warpage was suppressed when the base layer had an orientation distribution. Therefore, it is necessary to provide a bottom layer and a top layer having a certain thickness or more, and it is difficult to make the insulating resin layer thin and to design with an emphasis on the characteristics of the resin constituting the base layer.

配向分布の評価としては、ポリイミドフィルム単膜での反りの評価が有効である。これは、厚み方向に配向分布が生じる事で、厚み方向のCTEにも分布が生じ、冷却時の熱収縮により反りが生じるためである。特許文献2では、高温加工性に優れ、接着性が良好なフレキシブル金属積層板として、特定の酸無水物成分とジアミン成分を原料に用いて得られる単層のポリイミド層を有するフレキシブル金属積層板が提案されているが、ポリイミド層の厚み方向の配向分布については、何ら考慮されていない。 As an evaluation of the orientation distribution, it is effective to evaluate the warp of the polyimide film single film. This is because the orientation distribution occurs in the thickness direction, so that the CTE in the thickness direction also has a distribution, and warpage occurs due to heat shrinkage during cooling. In Patent Document 2, as a flexible metal laminate having excellent high-temperature processability and good adhesiveness, a flexible metal laminate having a single-layer polyimide layer obtained by using a specific acid anhydride component and a diamine component as raw materials is described. Although it has been proposed, no consideration is given to the orientation distribution of the polyimide layer in the thickness direction.

特開2006−192861号公報Japanese Unexamined Patent Publication No. 2006-192861 特開2010−53322号公報Japanese Unexamined Patent Publication No. 2010-53322

上記のとおり、キャスト法にて作製されるポリイミドフィルムは、低CTE化とフィルムの厚み方向の配向分布の均一化とが、トレード・オフの関係にあった。
従って、本発明の目的は、キャスト法によって、低CTE化とフィルムの厚み方向の配向分布の均一化とを両立させたポリイミドフィルムを製造する方法を提供することである。
As described above, the polyimide film produced by the casting method had a trade-off relationship between low CTE and uniform orientation distribution in the thickness direction of the film.
Therefore, an object of the present invention is to provide a method for producing a polyimide film having both low CTE and uniform orientation distribution in the thickness direction of the film by a casting method.

本発明者らは、鋭意研究の結果、特定の樹脂組成のポリアミド酸に対し、熱処理の手段として赤外線ヒータを用いてイミド化することによって、上記課題を解決できることを見出し、本発明を完成した。 As a result of diligent research, the present inventors have found that the above problems can be solved by imidizing a polyamic acid having a specific resin composition using an infrared heater as a means of heat treatment, and have completed the present invention.

すなわち、本発明のポリイミドフィルムの製造方法は、ジアミン成分から誘導されるジアミン残基と、酸無水物成分から誘導される酸無水物残基と、を含有するポリアミド酸の溶液を基材上に塗布し、赤外線ヒータによる熱処理によってイミド化することによって、樹脂成分が非熱可塑性ポリイミドからなるポリイミドフィルムを形成する工程を含むポリイミドフィルムの製造方法である。そして、本発明のポリイミドフィルムの製造方法は、前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50モル部以上であることを特徴とする。 That is, in the method for producing a polyimide film of the present invention, a polyamic acid solution containing a diamine residue derived from a diamine component and an acid anhydride residue derived from an acid anhydride component is placed on a substrate. This is a method for producing a polyimide film, which comprises a step of forming a polyimide film in which the resin component is made of a non-thermoplastic polyimide by coating and imidizing by heat treatment with an infrared heater. The method for producing a polyimide film of the present invention is a method for producing a diamine residue derived from a diamine compound represented by the following general formula (1) with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. The group is characterized by having 50 mol parts or more.

Figure 2021055057
Figure 2021055057

式(1)において、連結基Zは単結合若しくは−COO−を示し、Yは独立にハロゲン原子若しくはフェニル基で置換されてもよい炭素数1〜3の1価の炭化水素基又は炭素数1〜3のアルコキシ基、又は炭素数1〜3のパーフルオロアルキル基、又はアルケニル基を示し、nは1又は2の整数を示し、p及びqは独立に0〜4の整数を示す。 In the formula (1), the linking group Z represents a single bond or −COO−, and Y is a monovalent hydrocarbon group having 1 to 3 carbon atoms or 1 carbon number which may be independently substituted with a halogen atom or a phenyl group. It represents an alkoxy group of ~ 3 or a perfluoroalkyl group or an alkenyl group having 1 to 3 carbon atoms, n represents an integer of 1 or 2, and p and q independently represent an integer of 0 to 4.

本発明のポリイミドフィルムの製造方法は、前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、前記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50〜99モル部の範囲内であってもよく、下記の一般式(2)で表されるジアミン化合物から誘導されるジアミン残基が1〜50モル部の範囲内であってもよい。 In the method for producing a polyimide film of the present invention, a diamine residue derived from the diamine compound represented by the general formula (1) is added to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. It may be in the range of 50 to 99 mol parts, and the diamine residue derived from the diamine compound represented by the following general formula (2) may be in the range of 1 to 50 mol parts.

Figure 2021055057
Figure 2021055057

式(2)において、Rは独立に、ハロゲン原子、又は炭素数1〜6のハロゲン原子で置換されてもよいアルキル基若しくはアルコキシ基、又は炭素数1〜6の1価の炭化水素基若しくはアルコキシ基で置換されてもよいフェニル基若しくはフェノキシ基を示し、Zは独立に単結合、−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示し、nは独立に0〜4の整数、nは0〜2の整数を示す。但し、Zの少なくとも1つは−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示す。 In formula (2), R is independently an alkyl group or an alkoxy group which may be substituted with a halogen atom or a halogen atom having 1 to 6 carbon atoms, or a monovalent hydrocarbon group or alkoxy having 1 to 6 carbon atoms. Indicates a phenyl or phenoxy group that may be substituted with a group, where Z 1 is an independent single bond, -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ). It represents a divalent group selected from 2- , -CO-, -SO 2-, or -NH-, where n 3 independently represents an integer 0-4 and n 4 represents an integer 0-2. However, at least one of Z 1 is -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CO-, -SO 2- , or-. The divalent group selected from NH- is shown.

本発明のポリイミドフィルムの製造方法は、前記一般式(1)で表されるジアミン化合物が、下記一般式(A1)で表されるジアミン化合物であってもよい。 In the method for producing a polyimide film of the present invention, the diamine compound represented by the general formula (1) may be a diamine compound represented by the following general formula (A1).

Figure 2021055057
一般式(A1)において、Xは独立にフッ素原子で置換されてもよい炭素数1〜3のアルキル基を示し、n1及びnは独立に1〜4の整数を示す。
Figure 2021055057
In the general formula (A1), X represents an alkyl group having 1 to 3 carbon atoms which may be independently substituted with a fluorine atom, and n 1 and n 2 independently represent an integer of 1 to 4.

本発明のポリイミドフィルムの製造方法は、前記非熱可塑性ポリイミドに含まれる全酸無水物残基の100モル部に対して、3,3',4,4'‐ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるBPDA残基が20〜70モル部の範囲内であってもよい。 The method for producing a polyimide film of the present invention is a 3,3', 4,4'-biphenyltetracarboxylic dianhydride (3,3', 4,4'-biphenyltetracarboxylic dianhydride, based on 100 mol parts of total acid anhydride residue contained in the non-thermoplastic polyimide. The BPDA residue derived from BPDA) may be in the range of 20 to 70 mol parts.

本発明のポリイミドフィルムの製造方法は、ポリイミドフィルムの熱膨張係数(CTE)が、20ppm/K未満であるとともに、23℃、湿度50%の条件下で、20時間調湿後の50mm角のポリイミドフィルムの中央部の凸面が平らな面上に接するように静置し、4角の浮き上がり量の平均値を平均反り量としたとき、平均反り量が15mm以下であってもよい。 In the method for producing a polyimide film of the present invention, a polyimide film having a coefficient of thermal expansion (CTE) of less than 20 ppm / K and a 50 mm square polyimide after 20 hours of humidity control under the conditions of 23 ° C. and 50% humidity. When the convex surface of the central portion of the film is allowed to stand in contact with a flat surface and the average value of the amount of floating of the four corners is taken as the average amount of warpage, the average amount of warpage may be 15 mm or less.

本発明のポリイミドフィルムの製造方法は、ポリイミドフィルムの厚みが5〜80μmの範囲内であってもよい。 In the method for producing a polyimide film of the present invention, the thickness of the polyimide film may be in the range of 5 to 80 μm.

本発明のポリイミドフィルムの製造方法は、前記熱処理が前記基材上で行われてもよい。 In the method for producing a polyimide film of the present invention, the heat treatment may be performed on the substrate.

本発明の金属張積層板の製造方法は、絶縁樹脂層と、この絶縁樹脂層の片面又は両面に積層された金属層と、を備えた金属張積層板の製造方法である。
本発明の金属張積層板の製造方法において、前記絶縁樹脂層は、樹脂成分が非熱可塑性ポリイミドからなるポリイミド層を有するものである。
また、本発明の金属張積層板の製造方法は、ジアミン成分から誘導されるジアミン残基と、酸無水物成分から誘導される酸無水物残基と、を含有するポリアミド酸を金属箔の上に直接又は間接的に積層し、続く赤外線ヒータによる熱処理によってイミド化することによって前記ポリイミド層を形成する工程を含んでいる。
そして、本発明の金属張積層板の製造方法は、前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50モル部以上であることを特徴とする。
The method for producing a metal-clad laminate of the present invention is a method for producing a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on one side or both sides of the insulating resin layer.
In the method for producing a metal-clad laminate of the present invention, the insulating resin layer has a polyimide layer in which the resin component is a non-thermoplastic polyimide.
Further, in the method for producing a metal-clad laminate of the present invention, a polyamic acid containing a diamine residue derived from a diamine component and an acid anhydride residue derived from an acid anhydride component is placed on a metal foil. It includes a step of forming the polyimide layer by directly or indirectly laminating the polyimide layer and imidizing the polyimide layer by a heat treatment with an infrared heater.
Then, the method for producing a metal-clad laminate of the present invention is derived from a diamine compound represented by the following general formula (1) with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. It is characterized in that the diamine residue is 50 mol parts or more.

Figure 2021055057
式(1)において、連結基Zは単結合若しくは−COO−を示し、Yは独立にハロゲン原子若しくはフェニル基で置換されてもよい炭素数1〜3の1価の炭化水素基又は炭素数1〜3のアルコキシ基、又は炭素数1〜3のパーフルオロアルキル基、又はアルケニル基を示し、nは1又は2の整数を示し、p及びqは独立に0〜4の整数を示す。
Figure 2021055057
In the formula (1), the linking group Z represents a single bond or −COO−, and Y is a monovalent hydrocarbon group having 1 to 3 carbon atoms or 1 carbon number which may be independently substituted with a halogen atom or a phenyl group. It represents an alkoxy group of ~ 3 or a perfluoroalkyl group or an alkenyl group having 1 to 3 carbon atoms, n represents an integer of 1 or 2, and p and q independently represent an integer of 0 to 4.

本発明によれば、特定の樹脂組成のポリアミド酸に対し、熱処理の手段として赤外線ヒータを用いてイミド化することによって、ポリイミドフィルムの低CTE化と、配向分布の均一化とを両立させることが可能となる。また、本発明方法は、例えばCCL用の単層ポリイミドフィルム、POP(パッケージ・オン・パッケージ)用の単層ポリイミドフィルム、セミアディティブ(SAP)用の単層ポリイミドフィルム等の製造にも適用可能である。従って、本発明方法は、特に、工業的規模のポリイミドフィルムの製造プロセスにおいて有用であり、利用価値が高い。 According to the present invention, by imidizing a polyamic acid having a specific resin composition using an infrared heater as a means of heat treatment, it is possible to achieve both low CTE reduction of the polyimide film and uniform orientation distribution. It will be possible. The method of the present invention can also be applied to the production of, for example, a single-layer polyimide film for CCL, a single-layer polyimide film for POP (package on package), a single-layer polyimide film for semi-additive (SAP), and the like. is there. Therefore, the method of the present invention is particularly useful in the manufacturing process of an industrial-scale polyimide film, and has high utility value.

本発明の一実施の形態に係るポリイミドフィルムの製造方法は、
(1)基材にポリアミド酸溶液を塗布することによって塗布膜を形成する塗布膜形成工程、
(2)塗布膜に対し熱処理を行って乾燥させる第1の熱処理工程、
(3)乾燥後の塗布膜に対し赤外線ヒータによる熱処理を行ってポリアミド酸をイミド化してポリイミドフィルムを形成する第2の熱処理工程、
を含むことができる。
The method for producing a polyimide film according to an embodiment of the present invention is
(1) A coating film forming step of forming a coating film by applying a polyamic acid solution to a substrate,
(2) The first heat treatment step of heat-treating the coating film to dry it.
(3) A second heat treatment step of forming a polyimide film by imidizing the polyamic acid by heat-treating the dried coating film with an infrared heater.
Can be included.

複数のポリイミド層を積層する場合は、第2の熱処理工程の前に、塗布膜形成工程と第1の熱処理工程を繰り返し実施することができる。すなわち、基材に、ポリアミド酸の溶液を塗布し、乾燥することを複数回繰り返し、複数の塗布膜を積層した状態としてから、第2の熱処理工程を実施し、複数の塗布膜中のポリアミド酸を一括してイミド化することが好ましい。この場合、複数のポリイミド層の中の1層が、本実施の形態の方法により製造されるポリイミドフィルムであればよい。 When a plurality of polyimide layers are laminated, the coating film forming step and the first heat treatment step can be repeatedly carried out before the second heat treatment step. That is, a solution of polyamic acid is applied to the base material and dried is repeated a plurality of times to obtain a state in which a plurality of coating films are laminated, and then a second heat treatment step is carried out to carry out the second heat treatment step to obtain the polyamic acid in the plurality of coating films. It is preferable to imidize all at once. In this case, one of the plurality of polyimide layers may be a polyimide film produced by the method of the present embodiment.

以下、各工程について、詳細に説明する。 Hereinafter, each step will be described in detail.

[塗布膜形成工程]
塗布膜形成工程では、基材にポリアミド酸溶液を塗布することによって塗布膜を形成する。
[Coating film forming process]
In the coating film forming step, a coating film is formed by applying a polyamic acid solution to the substrate.

基材としては、例えば、銅箔などの金属箔、ガラス板、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルムなどの樹脂シート等を用いることができる。 As the base material, for example, a metal foil such as a copper foil, a glass plate, a polyimide film, a polyamide film, a resin sheet such as a polyester film, or the like can be used.

ポリイミドの前駆体であるポリアミド酸は、例えば、原料モノマーである酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0〜100℃の範囲内の温度で30分〜24時間撹拌し重合反応させることによって得られる。 For polyamic acid, which is a precursor of polyimide, for example, acid dianhydride, which is a raw material monomer, and a diamine compound are dissolved in an organic solvent in approximately equimolar amounts, and the temperature is in the range of 0 to 100 ° C. for 30 minutes to 24. It is obtained by stirring for a time and causing a polymerization reaction.

原料モノマーである酸二無水物とジアミン化合物については、後述する非熱可塑性ポリイミドの説明で挙げるものを使用することができる。原料モノマーの組成比については、非熱可塑性ポリイミドに含まれている酸無水物残基とジアミン残基の組成比と同じである。なお、本発明において、酸無水物残基とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、ジアミン残基とは、ジアミン化合物から誘導された2価の基のことを表す。 As the raw material monomers, the acid dianhydride and the diamine compound, those mentioned in the description of the non-thermoplastic polyimide described later can be used. The composition ratio of the raw material monomer is the same as the composition ratio of the acid anhydride residue and the diamine residue contained in the non-thermoplastic polyimide. In the present invention, the acid anhydride residue represents a tetravalent group derived from a tetracarboxylic dianhydride, and the diamine residue is a divalent group derived from a diamine compound. Represents that.

ポリアミド酸の重合反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。 Examples of the organic solvent used in the polymerization reaction of polyamic acid include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, and N-methyl-2-pyrrolidone (NMP). ), 2-Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglime, triglime, cresol and the like. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can be used in combination. The amount of the organic solvent used is not particularly limited, but it is preferable to adjust the amount used so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight.

合成されたポリアミド酸は、通常、反応溶媒溶液として使用することができるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。これらの中のいずれも、本実施の形態のポリアミド酸の溶液として用いることができる。 The synthesized polyamic acid can usually be used as a reaction solvent solution, but can be concentrated, diluted or replaced with another organic solvent if necessary. Any of these can be used as a solution of the polyamic acid of the present embodiment.

ポリアミド酸の溶液中には、必要に応じてフィラーを含有してもよい。好ましいフィラーとしては、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 If necessary, a filler may be contained in the polyamic acid solution. Preferred fillers include, for example, silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride and the like. These can be used alone or in admixture of two or more.

ポリアミド酸の溶液を基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターを用いることが好ましい。 The method of applying the polyamic acid solution on the substrate is not particularly limited, and it is preferable to use a coater such as a comma, a die, a knife, or a lip.

ポリアミド酸の溶液の粘度は、例えば500cps〜100,000cpsの範囲内とすることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。 The viscosity of the polyamic acid solution is preferably in the range of, for example, 500 cps to 100,000 cps. If it is out of this range, defects such as thickness unevenness and streaks are likely to occur in the film during coating work by a coater or the like.

塗布膜形成工程における塗布膜の厚みは、最終的に得られるポリイミドフィルムの膜厚に応じて適宜設定できるため特に限定されないが、イミド化後の厚み(つまり、ポリイミドフィルムの厚み)として、好ましくは5〜80μmの範囲内、より好ましくは25〜50μmの範囲内となるように塗布することがよい。 The thickness of the coating film in the coating film forming step is not particularly limited because it can be appropriately set according to the film thickness of the polyimide film finally obtained, but it is preferably the thickness after imidization (that is, the thickness of the polyimide film). It is preferable to apply the film so that it is within the range of 5 to 80 μm, more preferably within the range of 25 to 50 μm.

[第1の熱処理工程]
第1の熱処理工程では、塗布膜に対し熱処理を行って溶媒を乾燥させる工程である。
第1の熱処理工程における加熱手段としては、塗布膜を所定温度まで加熱できるものであれば特に制限はなく、例えば、熱風による加熱乾燥(熱風乾燥)、赤外線ヒータによる加熱乾燥などが好ましい。第1の熱処理工程における条件として、加熱温度は、例えば80〜160℃の範囲内が好ましく、加熱時間は30秒間〜6分間の範囲内が好ましい。
なお、本明細書において「熱処理温度」や「加熱温度」は、特に断りのない限り、熱処理容器中の基材温度を意味する。
[First heat treatment step]
The first heat treatment step is a step of heat-treating the coating film to dry the solvent.
The heating means in the first heat treatment step is not particularly limited as long as the coating film can be heated to a predetermined temperature, and for example, heat drying with hot air (hot air drying), heat drying with an infrared heater, and the like are preferable. As a condition in the first heat treatment step, the heating temperature is preferably in the range of 80 to 160 ° C., and the heating time is preferably in the range of 30 seconds to 6 minutes.
In the present specification, the "heat treatment temperature" and the "heating temperature" mean the base material temperature in the heat treatment container unless otherwise specified.

[第2の熱処理工程]
第2の熱処理工程は、乾燥後の塗布膜に対し熱処理を行い、ポリアミド酸をイミド化して樹脂成分がポリイミドからなるポリイミドフィルムを形成する。本工程における熱処理は、赤外線ヒータを用いる。赤外線は、塗布膜の厚さ方向に均一な加熱が可能であることから、塗布膜の厚み方向に均一にイミド化が進行していく。そのため、熱風のように塗布膜の表面側からイミド化が進行し、厚み方向の配向分布に差が生じることがない。従って、赤外線ヒータを用いることによって、ポリイミドフィルムの配向分布の均一化を図ることができる。また、赤外線ヒータは、省スペースであり、短時間で厚み方向にむらなく加熱することが可能である。
[Second heat treatment step]
In the second heat treatment step, the coated film after drying is heat-treated to imidize the polyamic acid to form a polyimide film in which the resin component is polyimide. An infrared heater is used for the heat treatment in this step. Since infrared rays can be heated uniformly in the thickness direction of the coating film, imidization proceeds uniformly in the thickness direction of the coating film. Therefore, unlike hot air, imidization proceeds from the surface side of the coating film, and there is no difference in the orientation distribution in the thickness direction. Therefore, by using the infrared heater, the orientation distribution of the polyimide film can be made uniform. In addition, the infrared heater saves space and can heat evenly in the thickness direction in a short time.

赤外線の波長は、塗布膜のエネルギー吸収を効率的に行う観点から、最大放射エネルギー波長として、例えば1〜8μmの範囲内が好ましく、4〜6μmの範囲内がより好ましい。最大放射エネルギー波長が上記範囲外ではイミド化の効率が低下することがある。 The wavelength of infrared rays is preferably in the range of, for example, 1 to 8 μm, and more preferably in the range of 4 to 6 μm, as the maximum radiant energy wavelength from the viewpoint of efficiently absorbing energy of the coating film. If the maximum radiant energy wavelength is out of the above range, the imidization efficiency may decrease.

第2の熱処理工程における条件として、加熱温度は、例えば100〜450℃の範囲内が好ましく、120〜400℃の範囲内がより好ましい。また、熱処理の時間は、塗布膜の厚みにより適宜設定すればよく、上記の加熱温度で、例えば3時間以内で完結することが好ましく、60分間以内で完結させることがより好ましい。また、熱処理は、上記温度範囲内で段階的に昇温させて行うことが好ましい。 As a condition in the second heat treatment step, the heating temperature is preferably in the range of, for example, 100 to 450 ° C, more preferably in the range of 120 to 400 ° C. The heat treatment time may be appropriately set depending on the thickness of the coating film, and is preferably completed within 3 hours, more preferably within 60 minutes, at the above heating temperature. Further, it is preferable that the heat treatment is carried out by gradually raising the temperature within the above temperature range.

なお、本工程では、基材上でポリアミド酸のイミド化を行うことが好ましい。ポリアミド酸の塗布膜が基材に固定された状態でイミド化されるので、形成されるポリイミドフィルムの伸縮変化を抑制して、ポリイミドフィルムの厚みや寸法精度を維持することができる。 In this step, it is preferable to imidize the polyamic acid on the substrate. Since the polyamic acid coating film is imidized in a state of being fixed to the base material, it is possible to suppress the expansion and contraction change of the formed polyimide film and maintain the thickness and dimensional accuracy of the polyimide film.

以上の工程により得られるポリイミドフィルムは、樹脂成分が以下に説明する非熱可塑性ポリイミドからなり、低CTEであり、かつ、反りが抑制されたものである。なお、本実施の形態の方法により製造されるポリイミドフィルムは単層であり、複数のポリイミド層が積層された構造とする場合は、複数のポリイミド層の中の1層が、本実施の形態の方法により製造されるポリイミドフィルムであればよい。 The polyimide film obtained by the above steps has a resin component made of the non-thermoplastic polyimide described below, has a low CTE, and has suppressed warpage. The polyimide film produced by the method of the present embodiment is a single layer, and when a structure in which a plurality of polyimide layers are laminated is used, one layer among the plurality of polyimide layers is the same as that of the present embodiment. Any polyimide film produced by the method may be used.

<非熱可塑性ポリイミド>
ポリイミドフィルムを構成する非熱可塑性ポリイミドは、そこに含まれる全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基を50モル部以上含有する。
<Non-thermoplastic polyimide>
The non-thermoplastic polyimide constituting the polyimide film contains 50 mol parts of diamine residues derived from the diamine compound represented by the following general formula (1) with respect to 100 mol parts of all diamine residues contained therein. Contains the above.

Figure 2021055057
Figure 2021055057

式(1)において、連結基Zは単結合若しくは−COO−を示し、Yは独立にハロゲン原子若しくはフェニル基で置換されてもよい炭素数1〜3の1価の炭化水素基又は炭素数1〜3のアルコキシ基、又は炭素数1〜3のパーフルオロアルキル基、又はアルケニル基を示し、nは1又は2の整数を示し、p及びqは独立に0〜4の整数を示す。なお、「ジアミン化合物」は、末端の二つのアミノ基における水素原子が置換されていてもよく、例えば−NR(ここで、R,Rは、独立にアルキル基などの任意の置換基を意味する)であってもよい。 In the formula (1), the linking group Z represents a single bond or −COO−, and Y is a monovalent hydrocarbon group having 1 to 3 carbon atoms or 1 carbon number which may be independently substituted with a halogen atom or a phenyl group. It represents an alkoxy group of ~ 3 or a perfluoroalkyl group or an alkenyl group having 1 to 3 carbon atoms, n represents an integer of 1 or 2, and p and q independently represent an integer of 0 to 4. In the "diamine compound", the hydrogen atom in the two terminal amino groups may be substituted, for example, -NR 1 R 2 (where R 1 and R 2 are independently arbitrary alkyl groups and the like. It may mean a substituent).

一般式(1)で表されるジアミン化合物から誘導されるジアミン残基は、秩序構造を形成しやすく、低CTE化することから寸法安定性を高めることができる。また、ベンゼン環を2つ以上含むことから、イミド基濃度を下げ、低吸湿化に寄与する事も寸法安定性を高める上で有利な点である。このような観点から、一般式(1)で表されるジアミン化合物から誘導されるジアミン残基は、非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、60〜100モル部の範囲内で含有することが好ましい。一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50モル部未満ではCTEが増大し、寸法安定性が悪化する。 The diamine residue derived from the diamine compound represented by the general formula (1) easily forms an ordered structure and lowers the CTE, so that dimensional stability can be improved. In addition, since it contains two or more benzene rings, it is also advantageous in improving dimensional stability to reduce the imide group concentration and contribute to low hygroscopicity. From this point of view, the diamine residue derived from the diamine compound represented by the general formula (1) is 60 to 100 mol parts with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. It is preferable that the content is within the range of. If the amount of diamine residue derived from the diamine compound represented by the general formula (1) is less than 50 mol, CTE increases and dimensional stability deteriorates.

一般式(1)で表されるジアミン化合物から誘導されるジアミン残基の好ましい具体例としては、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、2,2’−ジエチル−4,4’−ジアミノビフェニル(m−EB)、2,2’−ジエトキシ−4,4’−ジアミノビフェニル(m−EOB)、2,2’−ジプロポキシ−4,4’−ジアミノビフェニル(m−POB)、2,2’−n−プロピル−4,4’−ジアミノビフェニル(m−NPB)、2,2’−ジビニル−4,4’−ジアミノビフェニル(VAB)、4,4’−ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)、4、4''―ジアミノ−p−テルフェニル(DATP)等のジアミン化合物から誘導されるジアミン残基が挙げられる。これらの中でも、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、2,2’−ジエチル−4,4’−ジアミノビフェニル(m−EB)、4,4’‐ジアミノ‐2,2’‐ビス(トリフルオロメチル)ビフェニル(TFMB)、4、4''−ジアミノ−p−テルフェニル(DATP)が好適なものとして挙げられ、特に、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)は、秩序構造を形成しやすく、かつイミド基濃度を下げ、吸湿率を下げることから最も好ましい。 Preferred specific examples of the diamine residue derived from the diamine compound represented by the general formula (1) are 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), 2,2'-. Diethyl-4,4'-diaminobiphenyl (m-EB), 2,2'-diethoxy-4,4'-diaminobiphenyl (m-EOB), 2,2'-dipropoxy-4,4'-diaminobiphenyl ( m-POB), 2,2'-n-propyl-4,4'-diaminobiphenyl (m-NPB), 2,2'-divinyl-4,4'-diaminobiphenyl (VAB), 4,4'- Diamines derived from diamine compounds such as diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl (TFMB), 4,4''-diamino-p-terphenyl (DATP) Residues are mentioned. Among these, 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), 2,2'-diethyl-4,4'-diaminobiphenyl (m-EB), 4,4'-diamino -2,2'-bis (trifluoromethyl) biphenyl (TFMB), 4,4''-diamino-p-terphenyl (DATP) are mentioned as suitable, in particular 2,2'-dimethyl-4. , 4'-Diaminobiphenyl (m-TB) is most preferable because it easily forms an ordered structure, lowers the imide group concentration, and lowers the moisture absorption rate.

また、一般式(1)で表されるジアミン化合物が、下記一般式(A1)で表されるジアミン化合物であることがより好ましい。 Further, it is more preferable that the diamine compound represented by the general formula (1) is a diamine compound represented by the following general formula (A1).

Figure 2021055057
Figure 2021055057

一般式(A1)において、Xは独立にフッ素原子で置換されてもよい炭素数1〜3のアルキル基を示し、n1及びnは独立に1〜4の整数を示す。 In the general formula (A1), X represents an alkyl group having 1 to 3 carbon atoms which may be independently substituted with a fluorine atom, and n 1 and n 2 independently represent an integer of 1 to 4.

一般式(A1)で表されるジアミン化合物は、ビフェニル骨格を有し、かつ側鎖に分子の運動抑制に効果的な置換基を有するため、ポリイミドフィルムの低CTE化に寄与する。また、全ジアミン残基の100モル部に対して、一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基の含有量を50モル部以上含有する樹脂組成によって、分子の配向が進み過ぎることがないため、赤外線ヒータによる熱処理によって、低CTE化と配向分布の低減による反りの抑制を両立することができる。 Since the diamine compound represented by the general formula (A1) has a biphenyl skeleton and a substituent effective in suppressing the movement of molecules in the side chain, it contributes to lowering the CTE of the polyimide film. Further, the molecular orientation is determined by the resin composition containing 50 mol parts or more of the diamine residue derived from the diamine compound represented by the general formula (A1) with respect to 100 mol parts of all diamine residues. Since it does not go too far, it is possible to achieve both low CTE and suppression of warpage by reducing the orientation distribution by heat treatment with an infrared heater.

また、非熱可塑性ポリイミドは、下記の一般式(2)で表されるジアミン化合物から誘導されるジアミン残基を含有することが好ましい。 Further, the non-thermoplastic polyimide preferably contains a diamine residue derived from a diamine compound represented by the following general formula (2).

Figure 2021055057
Figure 2021055057

式(2)において、Rは独立に、ハロゲン原子、又は炭素数1〜6のハロゲン原子で置換されてもよいアルキル基若しくはアルコキシ基、又は炭素数1〜6の1価の炭化水素基若しくはアルコキシ基で置換されてもよいフェニル基若しくはフェノキシ基を示し、Zは独立に単結合、−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示し、nは独立に0〜4の整数、nは0〜2の整数を示す。但し、Zの少なくとも1つは−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示す。 In formula (2), R is independently an alkyl group or an alkoxy group which may be substituted with a halogen atom or a halogen atom having 1 to 6 carbon atoms, or a monovalent hydrocarbon group or alkoxy having 1 to 6 carbon atoms. Indicates a phenyl or phenoxy group that may be substituted with a group, where Z 1 is an independent single bond, -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ). It represents a divalent group selected from 2- , -CO-, -SO 2-, or -NH-, where n 3 independently represents an integer 0-4 and n 4 represents an integer 0-2. However, at least one of Z 1 is -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CO-, -SO 2- , or-. The divalent group selected from NH- is shown.

一般式(2)で表されるジアミン化合物から誘導されるジアミン残基は、屈曲性の部位を有するので、ポリイミドフィルムに柔軟性を付与することができる。このような観点から、一般式(2)で表されるジアミン化合物から誘導されるジアミン残基は、非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、1〜50モル部の範囲内で含有することが好ましく、1〜40モル部の範囲内で含有することがより好ましい。一般式(2)で表されるジアミン化合物から誘導されるジアミン残基を、50モル部を超えて含有するとCTEが増大し、寸法安定性が悪化する。また、含有量が1モル部未満の場合は柔軟性が悪化することから、屈曲特性が悪化する。また、非熱可塑性ポリイミドが、上記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基と、一般式(2)で表されるジアミン化合物から誘導されるジアミン残基の両方を含有する場合は、非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、一般式(1)で表されるジアミン化合物から誘導されるジアミン残基の含有量を50〜99モル部の範囲内とすることがより好ましく、60〜99モル部の範囲内とすることが最も好ましい。 Since the diamine residue derived from the diamine compound represented by the general formula (2) has a flexible portion, flexibility can be imparted to the polyimide film. From this point of view, the diamine residue derived from the diamine compound represented by the general formula (2) is 1 to 50 mol parts with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. It is preferable to contain it in the range of 1 to 40 parts, and more preferably it is contained in the range of 1 to 40 parts. If the diamine residue derived from the diamine compound represented by the general formula (2) is contained in an amount of more than 50 mol, the CTE increases and the dimensional stability deteriorates. Further, when the content is less than 1 mol, the flexibility is deteriorated, so that the bending characteristic is deteriorated. Further, the non-thermoplastic polyimide has both a diamine residue derived from the diamine compound represented by the general formula (1) and a diamine residue derived from the diamine compound represented by the general formula (2). When it is contained, the content of the diamine residue derived from the diamine compound represented by the general formula (1) is 50 to 99 mol with respect to 100 mol parts of the total diamine residue contained in the non-thermoplastic polyimide. It is more preferably within the range of parts, and most preferably within the range of 60 to 99 mol parts.

一般式(2)で表されるジアミン化合物の好ましい具体例としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル(4,4’−DAPE)、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,4-ビス(4‐アミノフェノキシ)ベンゼン(TPE−Q)、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)等が挙げられる。これらの中でも,一般式(2)中のnが0であるものが好ましく、例えば4,4’−ジアミノジフェニルエーテル(4,4’−DAPE)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4‐アミノフェノキシ)ベンゼン(TPE−Q)、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)が好ましい。 Preferred specific examples of the diamine compound represented by the general formula (2) include, for example, 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylsulfide, 3,3'. -Diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether (4,5'-DAPE), 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diamino Diphenylpropane, 3,4'-diaminodiphenylsulfide, 3,4'-diaminobenzophenone, (3,3'-bisamino) diphenylamine, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4) -Aminophenoxy) Benzene (TPE-R), 1,4-bis (4-Aminophenoxy) Benzene (TPE-Q), 3- [4- (4-Aminophenoxy) Phenoxy] Benzeneamine, 3- [3- (4-Aminophenoxy) Phenoxy] Benzeneamine, 1,3-bis (3-aminophenoxy) Benzene (APB), 4,4'-[2-methyl- (1,3-phenylene) bisoxy] bisaniline, 4, 4'-[4-Methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4'-[5-methyl- (1,3-phenylene) bisoxy] bisaniline, bis [4- (3-aminophenoxy) Phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-Aminophenoxy)] Benzenephenone, Bis [4,4'-(3-Aminophenoxy)] Benzenelide, 4- [3- [4- (4-Aminophenoxy) Phenoxy] Phenoxy] Aniline, 4,4'- [Oxybis (3,1-phenyleneoxy)] bisaniline, bis [4- (4-aminophenoxy) phenyl] ether (BAPE), bis [4- (4-aminophenoxy) phenyl] ketone (BACK), bis [4 -(3-Aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy)] biphenyl, 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) and the like can be mentioned. Among these, those in which n 3 in the general formula (2) is 0 are preferable, and for example, 4,4'-diaminodiphenyl ether (4,4'-DAPE) and 1,3-bis (4-aminophenoxy) benzene are preferable. (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 2,2-bis (4-aminophenoxy) Phenyl) propane (BAPP) is preferred.

ただし、本発明の目的を阻害しない限り、ポリイミドの原料として通常用いられる他のジアミンを併用することも可能である。他のジアミンとしては、例えば、p‐フェニレンジアミン(p−PDA)、m‐フェニレンジアミン(m−PDA)等が挙げられる。 However, other diamines usually used as a raw material for polyimide can be used in combination as long as the object of the present invention is not impaired. Examples of other diamines include p-phenylenediamine (p-PDA) and m-phenylenediamine (m-PDA).

非熱可塑性ポリイミドに含まれる酸無水物残基としては、特に制限はないが、例えば、ピロメリット酸二無水物(PMDA)から誘導される酸無水物残基(以下、PMDA残基ともいう)が好ましく挙げられる。PMDA残基は酸無水物残基の中でもベンゼン環数が一つである事からイミド基濃度を高くする事ができ、低CTE化する上で有利な酸無水物残基である。また、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)から誘導される酸無水物残基(以下、BPDA残基ともいう。)も好ましく挙げられる。BPDA残基は、ビフェニル構造を有し秩序構造を形成しやすく、低CTE化する事ができ、かつPMDA残基と比較し、イミド基濃度を下げ、低吸湿化に寄与する事から寸法安定性を高める上で有利な酸無水物となる。また、ベンゼン環を2つ以上含むことから、イミド基濃度を下げ、低吸湿化に寄与する事も寸法安定性を高める上で有利な点である。
特に、非熱可塑性ポリイミドに含まれる全酸無水物残基の100モル部に対して、BPDA残基を好ましくは20〜70モル部の範囲内、より好ましくは20〜50モル部の範囲内で含有することがよい。BPDA残基の含有量が20モル部未満では、吸湿率が悪化し、寸法安定性が悪化する傾向となる。BPDA残基の含有量が70モル部を超えると、CTEが増大し、寸法安定性が悪化する傾向となる。
The acid anhydride residue contained in the non-thermoplastic polyimide is not particularly limited, but for example, an acid anhydride residue derived from pyromellitic dianhydride (PMDA) (hereinafter, also referred to as PMDA residue). Is preferably mentioned. Since the PMDA residue has one benzene ring number among the acid anhydride residues, the imide group concentration can be increased, which is an advantageous acid anhydride residue for lowering the CTE. Further, an acid anhydride residue derived from 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) (hereinafter, also referred to as BPDA residue) is also preferably mentioned. The BPDA residue has a biphenyl structure, easily forms an ordered structure, can be reduced in CTE, and has a lower imide group concentration than the PMDA residue and contributes to lower hygroscopicity, and thus is dimensionally stable. It becomes an acid anhydride which is advantageous in enhancing. In addition, since it contains two or more benzene rings, it is also advantageous in improving dimensional stability to reduce the imide group concentration and contribute to low hygroscopicity.
In particular, the BPDA residue is preferably in the range of 20 to 70 mol, more preferably in the range of 20 to 50 mol, with respect to 100 mol of the total acid anhydride residue contained in the non-thermoplastic polyimide. May contain. If the content of the BPDA residue is less than 20 mol, the hygroscopicity tends to deteriorate and the dimensional stability tends to deteriorate. When the content of BPDA residue exceeds 70 mol parts, CTE tends to increase and dimensional stability tends to deteriorate.

非熱可塑性ポリイミドに含まれる他の酸無水物残基としては、例えば、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物等の芳香族テトラカルボン酸二無水物から誘導される酸無水物残基が挙げられる。 Other acid anhydride residues contained in the non-thermoplastic polyimide include, for example, 2,3', 3,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic. Acid dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic acid dianhydride, 4,4'-oxydiphthalic anhydride, 2,3', 3,4'-biphenyltetracarboxylic dianhydride 2,2', 3,3'-, 2,3,3', 4'-or 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3', 3,4 '-Diphenyl ether tetracarboxylic acid dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 3,3'', 4,4''-, 2,3,3'', 4''- Or 2,2'',3,3''-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxyphenyl) methane dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfonate dianhydride, 1,1-bis (2,3- or 3,4-Dicarboxyphenyl) ethane dianhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic acid dianhydride, 2, 3,6,7-Anthracene tetracarboxylic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1, 2,5,6-naphthalenetetracarboxylic acid dianhydride 1,4,5,8-naphthalenetetracarboxylic acid dianhydride 2,3,6,7-naphthalenetetracarboxylic acid dianhydride 4,8- Dimethyl-1,2,3,5,6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride 2,6- or 2,7-dichloronaphthalene-1,4,5 , 8-Tetracarboxylic Acid Dianhydride 2,3,6,7-(or 1,4,5,8-) Tetrachloronaphthalene-1,4,5,8-(or 2,3,6,7-) -) Tetracarboxylic hydride, 2,3,8,9-,3,4,9,10-,4,5,10,11-or 5,6,11,12-perylene-tetracarboxylic acid dianhydride Anhydride, cyclopentane-1,2,3,4-tetracarboxylic acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic Acid dianhydride, thiophene-2,3,4 , 5-Tetracarboxylic dianhydride, 4,4'-bis (2,3-dicarboxyphenoxy) Diphenylmethane dianhydride and other aromatic tetracarboxylic dianhydride residues. Be done.

上記酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合、それぞれのモル比を選定することにより、非熱可塑性ポリイミドの熱膨張性、配向性等の物性を制御することができる。 When the above types of acid anhydride and diamine, and two or more types of acid anhydride or diamine are used, the physical properties such as thermal expansion and orientation of the non-thermoplastic polyimide can be controlled by selecting the respective molar ratios. can do.

また、非熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。 Further, in the non-thermoplastic polyimide, when a plurality of structural units of polyimide are present, it may exist as a block or randomly, but it is preferable that it exists randomly.

非熱可塑性ポリイミドのイミド基濃度は、35重量%以下であることが好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(−(CO)−N−)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が35重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。上記酸無水物とジアミン化合物の組み合わせを選択することによって、非熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。 The imide group concentration of the non-thermoplastic polyimide is preferably 35% by weight or less. Here, the "imide group concentration" means a value obtained by dividing the molecular weight of the imide base portion (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide. When the imide group concentration exceeds 35% by weight, the molecular weight of the resin itself becomes small, and the decrease in hygroscopicity deteriorates due to the increase in polar groups. By selecting the combination of the acid anhydride and the diamine compound, the orientation of the molecules in the non-thermoplastic polyimide is controlled, thereby suppressing the increase in CTE due to the decrease in the imide group concentration and ensuring low hygroscopicity. ing.

非熱可塑性ポリイミドの重量平均分子量は、例えば10,000〜400,000の範囲内が好ましく、50,000〜350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、ポリイミドフィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際に厚みムラ、スジ等の不良が発生しやすい傾向になる。 The weight average molecular weight of the non-thermoplastic polyimide is preferably in the range of, for example, 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. If the weight average molecular weight is less than 10,000, the strength of the polyimide film is lowered and the polyimide film tends to be brittle. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity is excessively increased, and defects such as thickness unevenness and streaks tend to occur easily during the coating work.

<CTE>
本実施の形態の方法により製造されるポリイミドフィルムは、上記樹脂組成のポリアミド酸に対して赤外線ヒータによる加熱を行うことによって、低CTE化が実現されている。ポリイミドフィルムのCTEは、20ppm/K未満であることが好ましく、18ppm/K以下であることがより好ましい。CTEが20ppm/K以上であると、例えば、ポリイミドフィルムを金属層と複合化して金属張積層板としたときに反りが発生しやすくなったり、金属層をエッチングしてパターニングしたときの寸法安定性が低下したりする。
<CTE>
The polyimide film produced by the method of the present embodiment has realized low CTE by heating the polyamic acid having the above resin composition with an infrared heater. The CTE of the polyimide film is preferably less than 20 ppm / K, more preferably 18 ppm / K or less. When the CTE is 20 ppm / K or more, for example, warpage is likely to occur when a polyimide film is composited with a metal layer to form a metal-clad laminate, or dimensional stability when the metal layer is etched and patterned. Decreases.

<反り>
本実施の形態の方法により製造されるポリイミドフィルムは、上記樹脂組成のポリアミド酸に対して赤外線ヒータによる加熱を行うことによって、配向分布が均一化されており、反りが効果的に低減されている。ポリイミドフィルムの反りは、例えば、23℃、湿度50%の条件下で、20時間調湿後の50mm角のポリイミドフィルムの中央部の凸面が平らな面上に接するように静置し、4角の浮き上がり量の平均値を平均反り量としたとき、平均反り量が15mm以下であり、好ましくは10mm以下である。
<Warp>
In the polyimide film produced by the method of the present embodiment, the orientation distribution is made uniform by heating the polyamic acid having the above resin composition with an infrared heater, and the warpage is effectively reduced. .. The warp of the polyimide film is, for example, under the conditions of 23 ° C. and 50% humidity, and after controlling the humidity for 20 hours, the polyimide film is allowed to stand so that the convex surface at the center of the 50 mm square polyimide film is in contact with a flat surface, and the four corners are formed. When the average value of the floating amount is taken as the average warp amount, the average warp amount is 15 mm or less, preferably 10 mm or less.

<厚み>
本実施の形態の方法により製造されるポリイミドフィルムの厚みは、回路基板の絶縁層として使用する際の絶縁性の観点から、好ましくは5〜80μmの範囲内、より好ましくは25〜50μmの範囲内である。なお、本実施の形態の方法により製造されるポリイミドフィルムは、必要に応じて他の樹脂層との積層構造にすることができる。
<Thickness>
The thickness of the polyimide film produced by the method of the present embodiment is preferably in the range of 5 to 80 μm, more preferably in the range of 25 to 50 μm from the viewpoint of insulating properties when used as an insulating layer of a circuit board. Is. The polyimide film produced by the method of the present embodiment can have a laminated structure with another resin layer, if necessary.

本実施の形態の方法によって製造されるポリイミドフィルムは、低CTEであり、かつ、反りが抑制されていることから、例えばCCL用の単層ポリイミドフィルム、POP(パッケージ・オン・パッケージ)用の単層ポリイミドフィルム、セミアディティブ(SAP)用の単層ポリイミドフィルム等の用途に好ましく利用できる。
従って、本実施の形態の方法は、特に、工業的規模のポリイミドフィルムの製造プロセスにおいて有用であり、利用価値が高いものである。
Since the polyimide film produced by the method of the present embodiment has low CTE and suppression of warpage, for example, a single-layer polyimide film for CCL and a single layer for POP (package on package). It can be preferably used for layered polyimide films, single-layer polyimide films for semi-additives (SAP), and the like.
Therefore, the method of the present embodiment is particularly useful in the manufacturing process of an industrial-scale polyimide film, and has high utility value.

[金属張積層板]
本実施の形態の金属張積層板は、絶縁樹脂層と、該絶縁樹脂層の少なくとも一方の面に設けられている金属層と、を備えており、絶縁樹脂層の一部分又は全部をなすポリイミド層が、上記実施の形態の製造方法によって得られるポリイミドフィルムによって形成されていればよい。
[Metal-clad laminate]
The metal-clad laminate of the present embodiment includes an insulating resin layer and a metal layer provided on at least one surface of the insulating resin layer, and is a polyimide layer forming a part or all of the insulating resin layer. However, it may be formed of the polyimide film obtained by the production method of the above embodiment.

金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。なお、後述する回路基板における配線層の材質も金属層と同様である。 The material of the metal layer is not particularly limited, but for example, copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese and these. Examples include the alloy of. Of these, copper or copper alloys are particularly preferable. The material of the wiring layer in the circuit board described later is the same as that of the metal layer.

金属層の厚みは特に限定されるものではないが、例えば銅箔に代表される金属箔を用いる場合、好ましくは35μm以下であり、より好ましくは5〜25μmの範囲内がよい。生産安定性及びハンドリング性の観点から金属箔の厚みの下限値は5μmとすることが好ましい。なお、銅箔を用いる場合は、圧延銅箔でも電解銅箔でもよい。また、銅箔としては、市販されている銅箔を用いることができる。 The thickness of the metal layer is not particularly limited, but when a metal foil typified by copper foil is used, for example, it is preferably 35 μm or less, and more preferably 5 to 25 μm. From the viewpoint of production stability and handleability, the lower limit of the thickness of the metal foil is preferably 5 μm. When copper foil is used, it may be rolled copper foil or electrolytic copper foil. Further, as the copper foil, a commercially available copper foil can be used.

また、金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施しておいてもよい。 Further, the metal foil may be surface-treated with, for example, siding, aluminum alcoholate, aluminum chelate, silane coupling agent, etc. for the purpose of rust prevention treatment and improvement of adhesive strength.

[回路基板]
上記実施の形態の金属張積層板は、主にFPCなどの回路基板材料として有用である。すなわち、金属張積層板の金属層を常法によってパターン状に加工して配線層を形成することによって、回路基板を製造できる。
[Circuit board]
The metal-clad laminate of the above embodiment is mainly useful as a circuit board material for FPC and the like. That is, a circuit board can be manufactured by processing the metal layer of the metal-clad laminate into a pattern by a conventional method to form a wiring layer.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Examples will be shown below, and the features of the present invention will be described in more detail. However, the scope of the present invention is not limited to the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[熱膨張係数(CTE)の測定]
熱膨張係数は、3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から250℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
The coefficient of thermal expansion is 30 ° C to 250 ° C at a constant temperature rise rate while applying a load of 5.0 g to a polyimide film with a size of 3 mm x 20 mm using a thermomechanical analyzer (manufactured by Bruker, trade name; 4000SA). The temperature was raised to 100 ° C., and the temperature was further maintained at that temperature for 10 minutes, and then cooled at a rate of 5 ° C./min to obtain an average coefficient of thermal expansion (coefficient of thermal expansion) from 250 ° C. to 100 ° C.

[貯蔵弾性率の測定]
貯蔵弾性率は、5mm×20mmサイズのポリイミドフィルムを、120℃のオーブンで2時間、170℃で3時間加熱し、動的粘弾性装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、昇温速度4℃/分で30℃から400℃まで段階的に加熱し、周波数11Hzで測定を行った。30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドを非熱可塑性とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドを熱可塑性とする。
[Measurement of storage elastic modulus]
For the storage elastic modulus, a polyimide film having a size of 5 mm × 20 mm is heated in an oven at 120 ° C. for 2 hours and at 170 ° C. for 3 hours, and a dynamic viscoelastic device (DMA: manufactured by UBM, trade name; E4000F). ) Was stepwise heated from 30 ° C. to 400 ° C. at a heating rate of 4 ° C./min, and measurement was performed at a frequency of 11 Hz. A polyimide having a storage elastic modulus of 1.0 × 10 9 Pa or more at 30 ° C. and a storage elastic modulus of 1.0 × 10 8 Pa or more at 350 ° C. is made non-thermoplastic, and the storage elastic modulus at 30 ° C. is 1. A thermoplastic having a storage elastic modulus of 1.0 × 10 9 Pa or more and a storage elastic modulus at 350 ° C. of less than 1.0 × 10 8 Pa is defined as thermoplastic.

[反りの測定]
ポリイミドフィルムの反りは、50mm×50mmのサイズのポリイミドフィルムを23℃、湿度50%の条件下で20時間調湿後、サンプルの中央部の凸面が平らな面上に接するよう静置し、サンプルの4角について静置面からの距離を計測し、その平均値を平均反り量とした。
[Measurement of warpage]
To warp the polyimide film, a polyimide film having a size of 50 mm × 50 mm is adjusted for 20 hours under the conditions of 23 ° C. and 50% humidity, and then the sample is allowed to stand so that the convex surface at the center of the sample is in contact with a flat surface. The distances from the stationary surface were measured for the four corners of the above, and the average value was taken as the average warpage amount.

[銅箔の表面粗度の測定]
銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名:Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名:TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m )を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲について測定し、十点平均粗さ(Rzjis)を求めた。
[Measurement of surface roughness of copper foil]
The surface roughness of the copper foil is AFM (manufactured by Bruker AXS Co., Ltd., trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS Co., Ltd., trade name: TESSA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N / m), the copper foil surface was measured in a tapping mode in a range of 80 μm × 80 μm, and a ten-point average roughness (Rzjis) was determined.

実施例及び参考例に用いた略号は、以下の化合物を示す。
m−TB:2,2’−ジメチル−4,4’−ジアミノビフェニル
DAPE:4,4’−ジアミノジフェニルエーテル
PMDA:ピロメリット酸二無水物
BPDA:3,3’、4,4’−ビフェニルテトラカルボン酸二無水物
TFMB:2,2’ビス(トリフルオロメチル)ベンジジン
TPE−R:1,3-ビス(4-アミノフェノキシ)ベンゼン
p−PDA:p‐フェニレンジアミン
BAPP:2,2-ビス(4-アミノフェノキシフェニル)プロパン
DMAc:N,N−ジメチルアセトアミド
The abbreviations used in Examples and Reference Examples indicate the following compounds.
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl DAPE: 4,4'-diaminodiphenyl ether PMDA: pyromellitic acid benzene BPDA: 3,3', 4,4'-biphenyltetracarboxylic Acid dianhydride TFMB: 2,2'bis (trifluoromethyl) benzidine TPE-R: 1,3-bis (4-aminophenoxy) benzene p-PDA: p-phenylenediamine BAPP: 2,2-bis (4) -Aminophenoxyphenyl) Propane DMAc: N, N-dimethylacetamide

(合成例1)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、14.472gのDAPE(0.0723モル)、及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、15.528gのPMDA(0.0712モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液1を調製した。
(Synthesis Example 1)
14.472 g of DAPE (0.0723 mol) and 170 g of DMAc were added to a 300 ml separable flask under a nitrogen stream so that the solid content concentration was 15% by weight, and the mixture was stirred and dissolved at room temperature. I let you. Next, after adding 15.528 g of PMDA (0.0712 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 1.

(合成例2)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、8.139gのDAPE(0.0407モル)、4.296gのp‐PDA(0.0407モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、17.466gのPMDA(0.0801モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液2を調製した。
(Synthesis Example 2)
8.139 g of DAPE (0.0407 mol) and 4.296 g of p-PDA (0.0407 mol) and so that the solid content concentration is 15% by weight in a 300 ml separable flask under a nitrogen stream. 170 g of DMAc was added and stirred at room temperature to dissolve. Next, after adding 17.466 g of PMDA (0.0801 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 2.

(合成例3)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、8.995gのp‐PDA(0.0832モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、12.07gのBPDA(0.041モル)と8.935gのPMDA(0.041モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液3を調製した。
(Synthesis Example 3)
8.995 g of p-PDA (0.0832 mol) and 170 g of DMAc were added to a 300 ml separable flask under a nitrogen stream so that the solid content concentration was 15% by weight, and the mixture was stirred at room temperature. Dissolved. Next, 12.07 g of BPDA (0.041 mol) and 8.935 g of PMDA (0.041 mol) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 3. did.

(合成例4)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、7.385gのDAPE(0.0369モル)、3.988gのp‐PDA(0.03688モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、10.704gのBPDA(0.0363モル)と7.923gのPMDA(0.0363モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液4を調製した。
(Synthesis Example 4)
7.385 g of DAPE (0.0369 mol) and 3.988 g of p-PDA (0.03688 mol) and so on so that the solid content concentration is 15% by weight in a 300 ml separable flask under a nitrogen stream. 170 g of DMAc was added and stirred at room temperature to dissolve. Next, 10.704 g of BPDA (0.0363 mol) and 7.923 g of PMDA (0.0363 mol) were added, and then stirring was continued for 3 hours at room temperature to carry out a polymerization reaction to prepare a polyamic acid solution 4. did.

(合成例5)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、2.883gのDAPE(0.0144モル)、6.227gのp‐PDA(0.0576モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、20.891gのBPDA(0.0709モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液5を調製した。
(Synthesis Example 5)
2.883 g DAPE (0.0144 mol), 6.227 g p-PDA (0.0576 mol) and so that the solid content concentration is 15% by weight in a 300 ml separable flask under a nitrogen stream. 170 g of DMAc was added and stirred at room temperature to dissolve. Next, after adding 20.891 g of BPDA (0.0709 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 5.

(合成例6)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、7.13gのDAPE(0.0356モル)、7.571gのm‐TB(0.0356モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、15.3gのPMDA(0.0701モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液6を調製した。
(Synthesis Example 6)
In a 300 ml separable flask under a nitrogen stream, 7.13 g DAPE (0.0356 mol), 7.571 g m-TB (0.0356 mol) and so that the solid content concentration is 15% by weight. 170 g of DMAc was added and stirred at room temperature to dissolve. Next, after adding 15.3 g of PMDA (0.0701 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 6.

(合成例7)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、1.947gのTPE−R(0.0066モル)、12.745gのm‐TB(0.0599モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、3.86gのBPDA(0.0131モル)と11.447gのPMDA(0.0525モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液7を調製した。
(Synthesis Example 7)
In a 300 ml separable flask under a nitrogen stream, 1.947 g of TPE-R (0.0066 mol) and 12.745 g of m-TB (0.0599 mol) so that the solid content concentration is 15% by weight. ) And 170 g of DMAc were added and stirred at room temperature to dissolve. Next, after adding 3.86 g of BPDA (0.0131 mol) and 11.447 g of PMDA (0.0525 mol), stirring was continued for 3 hours at room temperature to carry out a polymerization reaction to prepare a polyamic acid solution 7. did.

(合成例8)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、13.707gのm‐TB(0.0646モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、9.356gのBPDA(0.0318モル)と6.936gのPMDA(0.0318モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液8を調製した。
(Synthesis Example 8)
Under a nitrogen stream, 13.707 g of m-TB (0.0646 mol) and 170 g of DMAc were added to a 300 ml separable flask so that the solid content concentration was 15% by weight, and the mixture was stirred at room temperature. It was dissolved. Next, 9.356 g of BPDA (0.0318 mol) and 6.936 g of PMDA (0.0318 mol) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 8. did.

(合成例9)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、6.299gのDAPE(0.0315モル)、10.087gのTFMB(0.0315モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、13.613gのPMDA(0.0624モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液9を調製した。
(Synthesis Example 9)
In a 300 ml separable flask under a nitrogen stream, 6.299 g of DAPE (0.0315 mol), 10.087 g of TFMB (0.0315 mol) and 170 g so that the solid content concentration is 15% by weight. DMAc was added and stirred at room temperature to dissolve. Next, after adding 13.613 g of PMDA (0.0624 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 9.

(合成例10)
窒素気流下で、300mlのセパラブルフラスコに、固形分濃度が15重量%となるように、26.44gのBAPP(0.0636モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、18.56gのBPDA(0.063モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液10を調製した。
(Synthesis Example 10)
26.44 g of BAPP (0.0636 mol) and 170 g of DMAc were added to a 300 ml separable flask under a nitrogen stream so that the solid content concentration was 15% by weight, and the mixture was stirred and dissolved at room temperature. It was. Next, after adding 18.56 g of BPDA (0.063 mol), the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to prepare a polyamic acid solution 10.

(参考例1)
銅箔1(電解銅箔、厚さ;12μm、Rzjis;0.6μm)にポリアミド酸溶液1を硬化後の厚みが約25μmとなるように均一に塗布した後、130℃で加熱乾燥し、ポリアミド酸の塗布膜を形成した。その後、塗布膜を130℃から360℃まで赤外線ヒータを用いて、最大放射エネルギー波長;3〜7μmの条件で段階的な熱処理を行い、15分以内にイミド化を完結した。塩化第二鉄水溶液を用いて、銅箔をエッチング除去して、ポリイミドフィルム1(非熱可塑性、CTE;40.4ppm/K)を調製した。ポリイミドフィルム1の反りの評価では、反りが大きく筒状になり反りの測定が不可能であった。結果を表1に示す。
(Reference example 1)
A polyamic acid solution 1 was uniformly applied to a copper foil 1 (electrolytic copper foil, thickness; 12 μm, Rzjis; 0.6 μm) so that the cured thickness would be about 25 μm, and then heated and dried at 130 ° C. to obtain a polyamide. An acid coating film was formed. Then, the coating film was subjected to a stepwise heat treatment from 130 ° C. to 360 ° C. using an infrared heater under the condition of a maximum radiant energy wavelength of 3 to 7 μm, and imidization was completed within 15 minutes. The copper foil was etched and removed using an aqueous ferric chloride solution to prepare a polyimide film 1 (non-thermoplastic, CTE; 40.4 ppm / K). In the evaluation of the warp of the polyimide film 1, the warp was large and became tubular, and it was impossible to measure the warp. The results are shown in Table 1.

(参考例2〜5、実施例1〜4)
表1に示すポリアミド酸溶液を用いた以外は、参考例1と同様にして、ポリイミドフィルム2〜9を調製した。ポリイミドフィルム2〜9についてCTE及び反りの測定を行い、これらの結果を表1に示す。
(Reference Examples 2 to 5, Examples 1 to 4)
Polyimide films 2 to 9 were prepared in the same manner as in Reference Example 1 except that the polyamic acid solution shown in Table 1 was used. CTE and warpage were measured for the polyimide films 2 to 9, and the results are shown in Table 1.

以上の結果をまとめて表1に示す。なお、表1中の「反り」において、筒状になり測定できないサンプルは「大」と表示した。 The above results are summarized in Table 1. In addition, in the "warp" in Table 1, the sample which became tubular and could not be measured was indicated as "Large".

Figure 2021055057
Figure 2021055057

表1の結果より、ジアミン成分として、全ジアミン残基の100モル部に対してm−TBを50モル部以上含む実施例1〜3のポリイミドフィルム6〜8及びTFMBを50モル部以上含む実施例4のポリイミドフィルム9は、いずれもCTEが20ppm/Kを下回り、反りも15mmを下回っていることが判る。従って、これらのジアミン化合物を使用したポリアミド酸を赤外線ヒータにより硬化することで、銅箔上に積層したポリイミド層の厚み方向におけるポリイミドの配向状態の勾配が小さくなり、ポリイミド層の低CTE化と反りの抑制を実現することが確認された。 From the results in Table 1, as a diamine component, the polyimide films 6 to 8 of Examples 1 to 3 containing 50 parts or more of m-TB and 50 parts or more of TFMB were contained with respect to 100 parts of all diamine residues. It can be seen that the polyimide film 9 of Example 4 has a CTE of less than 20 ppm / K and a warp of less than 15 mm. Therefore, by curing the polyamic acid using these diamine compounds with an infrared heater, the gradient of the orientation state of the polyimide in the thickness direction of the polyimide layer laminated on the copper foil becomes small, and the CTE of the polyimide layer is lowered and the warp is reduced. It was confirmed that the suppression of

(参考例6)
ポリアミド酸溶液7を使用し、参考例1と同様にして、ポリアミド酸の塗布膜を形成した。その後、塗布膜を130℃から360℃まで熱風硬化炉を用いて熱処理を行い、15分以内にイミド化を完結した。参考例1と同様にして、銅箔をエッチング除去して、ポリイミドフィルム10(非熱可塑性、CTE;16.8ppm/K)を調製した。ポリイミドフィルム10の反りは16mmであった。
(Reference example 6)
Using the polyamic acid solution 7, a polyamic acid coating film was formed in the same manner as in Reference Example 1. Then, the coating film was heat-treated from 130 ° C. to 360 ° C. using a hot air curing furnace to complete imidization within 15 minutes. The copper foil was removed by etching in the same manner as in Reference Example 1 to prepare a polyimide film 10 (non-thermoplastic, CTE; 16.8 ppm / K). The warp of the polyimide film 10 was 16 mm.

(実施例5)
銅箔1にポリアミド酸溶液10を硬化後の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥した。その上にポリアミド酸溶液7を硬化後の厚みが約25μmとなるように均一に塗布した後、130℃で加熱乾燥した。更に、その上にポリアミド酸溶液10を硬化後の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥し、ポリアミド酸の塗布膜を形成した。その後、塗布膜を130℃から360℃まで赤外線ヒータを用いて、最大放射エネルギー波長;3〜7μmの条件で段階的な熱処理を行い、15分以内にイミド化を完結し、金属張積層板10を調製した。
(Example 5)
The polyamic acid solution 10 was uniformly applied to the copper foil 1 so as to have a thickness of 2.5 μm after curing, and then heated and dried at 130 ° C. A polyamic acid solution 7 was uniformly applied onto the polyamic acid solution 7 so as to have a thickness of about 25 μm after curing, and then heat-dried at 130 ° C. Further, the polyamic acid solution 10 was uniformly applied onto the polyamic acid solution 10 so as to have a thickness of 2.5 μm after curing, and then heat-dried at 130 ° C. to form a polyamic acid coating film. Then, the coating film is subjected to stepwise heat treatment from 130 ° C. to 360 ° C. using an infrared heater under the conditions of maximum radiant energy wavelength; 3 to 7 μm, imidization is completed within 15 minutes, and the metal-clad laminate 10 is used. Was prepared.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。

Although the embodiments of the present invention have been described in detail for the purpose of exemplification, the present invention is not limited to the above embodiments and can be modified in various ways.

Claims (8)

ジアミン成分から誘導されるジアミン残基と、酸無水物成分から誘導される酸無水物残基と、を含有するポリアミド酸の溶液を基材上に塗布し、赤外線ヒータによる熱処理によってイミド化することによって、樹脂成分が非熱可塑性ポリイミドからなるポリイミドフィルムを形成する工程を含むポリイミドフィルムの製造方法であって、
前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50モル部以上であることを特徴とするポリイミドフィルムの製造方法。
Figure 2021055057
[式(1)において、連結基Zは単結合若しくは−COO−を示し、Yは独立にハロゲン原子若しくはフェニル基で置換されてもよい炭素数1〜3の1価の炭化水素基又は炭素数1〜3のアルコキシ基、又は炭素数1〜3のパーフルオロアルキル基、又はアルケニル基を示し、nは1又は2の整数を示し、p及びqは独立に0〜4の整数を示す。]
A solution of a polyamic acid containing a diamine residue derived from a diamine component and an acid anhydride residue derived from an acid anhydride component is applied onto a substrate and imidized by heat treatment with an infrared heater. A method for producing a polyimide film, which comprises a step of forming a polyimide film in which the resin component is made of a non-thermoplastic polyimide.
The diamine residue derived from the diamine compound represented by the following general formula (1) is 50 mol parts or more with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. A method for producing a polyimide film.
Figure 2021055057
[In the formula (1), the linking group Z represents a single bond or −COO−, and Y is a monovalent hydrocarbon group or carbon number having 1 to 3 carbon atoms which may be independently substituted with a halogen atom or a phenyl group. It represents an alkoxy group of 1 to 3 or a perfluoroalkyl group or an alkenyl group having 1 to 3 carbon atoms, n represents an integer of 1 or 2, and p and q independently represent an integer of 0 to 4. ]
前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、前記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50〜99モル部の範囲内であり、下記の一般式(2)で表されるジアミン化合物から誘導されるジアミン残基が1〜50モル部の範囲内であることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。
Figure 2021055057
[式(2)において、Rは独立に、ハロゲン原子、又は炭素数1〜6のハロゲン原子で置換されてもよいアルキル基若しくはアルコキシ基、又は炭素数1〜6の1価の炭化水素基若しくはアルコキシ基で置換されてもよいフェニル基若しくはフェノキシ基を示し、Zは独立に単結合、−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示し、nは独立に0〜4の整数、nは0〜2の整数を示す。但し、Zの少なくとも1つは−O−、−S−、−CH−、−CH(CH)−、−C(CH)−、−CO−、−SO−、又は−NH−から選ばれる2価の基を示す。]
The diamine residue derived from the diamine compound represented by the general formula (1) is in the range of 50 to 99 mol parts with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. The method for producing a polyimide film according to claim 1, wherein the diamine residue derived from the diamine compound represented by the following general formula (2) is in the range of 1 to 50 mol parts.
Figure 2021055057
[In the formula (2), R is an alkyl group or an alkoxy group which may be independently substituted with a halogen atom or a halogen atom having 1 to 6 carbon atoms, or a monovalent hydrocarbon group having 1 to 6 carbon atoms. Indicates a phenyl or phenoxy group that may be substituted with an alkoxy group, where Z 1 is independently single-bonded, -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3). ) 2- , -CO-, -SO 2- , or -NH- indicates a divalent group, n 3 independently represents an integer of 0 to 4, and n 4 represents an integer of 0 to 2. However, at least one of Z 1 is -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CO-, -SO 2- , or-. The divalent group selected from NH- is shown. ]
前記一般式(1)で表されるジアミン化合物が、下記一般式(A1)で表されるジアミン化合物であることを特徴とする請求項1又は2に記載のポリイミドフィルムの製造方法。
Figure 2021055057
[一般式(A1)において、Xは独立にフッ素原子で置換されてもよい炭素数1〜3のアルキル基を示し、n1及びnは独立に1〜4の整数を示す。]
The method for producing a polyimide film according to claim 1 or 2, wherein the diamine compound represented by the general formula (1) is a diamine compound represented by the following general formula (A1).
Figure 2021055057
[In the general formula (A1), X represents an alkyl group having 1 to 3 carbon atoms which may be independently substituted with a fluorine atom, and n 1 and n 2 independently represent an integer of 1 to 4. ]
前記非熱可塑性ポリイミドに含まれる全酸無水物残基の100モル部に対して、3,3',4,4'‐ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるBPDA残基が20〜70モル部の範囲内であることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。 For 100 mol parts of the total acid anhydride residue contained in the non-thermoplastic polyimide, the BPDA residue derived from 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) is contained. The method for producing a polyimide film according to claim 1, wherein the amount is within the range of 20 to 70 mol parts. 前記ポリイミドフィルムは、熱膨張係数(CTE)が、20ppm/K未満であるとともに、23℃、湿度50%の条件下で、20時間調湿後の50mm角のポリイミドフィルムの中央部の凸面が平らな面上に接するように静置し、4角の浮き上がり量の平均値を平均反り量としたとき、平均反り量が15mm以下であることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。 The polyimide film has a coefficient of thermal expansion (CTE) of less than 20 ppm / K, and under the conditions of 23 ° C. and 50% humidity, the convex surface of the central portion of the 50 mm square polyimide film after humidity control for 20 hours is flat. The production of the polyimide film according to claim 1, wherein the polyimide film is allowed to stand in contact with a surface surface, and the average warpage amount is 15 mm or less when the average value of the lifted amounts of the four corners is taken as the average warp amount. Method. 前記ポリイミドフィルムの厚みが5〜80μmの範囲内であることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 1, wherein the thickness of the polyimide film is within the range of 5 to 80 μm. 前記熱処理が前記基材上で行われることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 1, wherein the heat treatment is performed on the substrate. 絶縁樹脂層と、この絶縁樹脂層の片面又は両面に積層された金属層と、を備えた金属張積層板の製造方法であって、
前記絶縁樹脂層は、樹脂成分が非熱可塑性ポリイミドからなるポリイミド層を有するものであり、
ジアミン成分から誘導されるジアミン残基と、酸無水物成分から誘導される酸無水物残基と、を含有するポリアミド酸を金属箔の上に直接又は間接的に積層し、続く赤外線ヒータによる熱処理によってイミド化することによって前記ポリイミド層を形成する工程を含み、
前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が50モル部以上であることを特徴とする金属張積層板の製造方法。
Figure 2021055057
[式(1)において、連結基Zは単結合若しくは−COO−を示し、Yは独立にハロゲン原子若しくはフェニル基で置換されてもよい炭素数1〜3の1価の炭化水素基又は炭素数1〜3のアルコキシ基、又は炭素数1〜3のパーフルオロアルキル基、又はアルケニル基を示し、nは1又は2の整数を示し、p及びqは独立に0〜4の整数を示す。]
A method for manufacturing a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on one side or both sides of the insulating resin layer.
The insulating resin layer has a polyimide layer in which the resin component is a non-thermoplastic polyimide.
A polyamic acid containing a diamine residue derived from a diamine component and an acid anhydride residue derived from an acid anhydride component is directly or indirectly laminated on a metal foil, followed by heat treatment with an infrared heater. Including the step of forming the polyimide layer by imidization with
The diamine residue derived from the diamine compound represented by the following general formula (1) is 50 mol parts or more with respect to 100 mol parts of all diamine residues contained in the non-thermoplastic polyimide. A method for manufacturing a metal-clad laminate.
Figure 2021055057
[In the formula (1), the linking group Z represents a single bond or −COO−, and Y is a monovalent hydrocarbon group or carbon number having 1 to 3 carbon atoms which may be independently substituted with a halogen atom or a phenyl group. It represents an alkoxy group of 1 to 3 or a perfluoroalkyl group or an alkenyl group having 1 to 3 carbon atoms, n represents an integer of 1 or 2, and p and q independently represent an integer of 0 to 4. ]
JP2020153906A 2019-09-28 2020-09-14 Production method of polyimide film and production method of metal-clad laminate Pending JP2021055057A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178132 2019-09-28
JP2019178132 2019-09-28

Publications (1)

Publication Number Publication Date
JP2021055057A true JP2021055057A (en) 2021-04-08

Family

ID=75269918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020153906A Pending JP2021055057A (en) 2019-09-28 2020-09-14 Production method of polyimide film and production method of metal-clad laminate

Country Status (2)

Country Link
JP (1) JP2021055057A (en)
KR (1) KR20210038332A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550594B2 (en) 2005-01-17 2010-09-22 株式会社ノリタケカンパニーリミテド Method and apparatus for manufacturing flexible polyimide metal laminate
JP5162379B2 (en) 2008-08-29 2013-03-13 株式会社有沢製作所 Polyamic acid and non-thermoplastic polyimide resin

Also Published As

Publication number Publication date
KR20210038332A (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP7453432B2 (en) Metal-clad laminates and circuit boards
CN113043690A (en) Metal-clad laminate and circuit board
JP7230148B2 (en) Metal-clad laminates and circuit boards
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
JP2006269558A (en) Method of producing flexible laminate substrate
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
JP7093282B2 (en) Metal-clad laminate and circuit board
JP7101352B2 (en) Polyimide, polyimide film, polyimide metal laminate, and polyamic acid
JP2021055057A (en) Production method of polyimide film and production method of metal-clad laminate
JP2020163841A (en) Metal-clad laminate and circuit board
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
JP7465059B2 (en) Metal-clad laminates and circuit boards
JP2019119113A (en) Metal-clad laminate and circuit board
JP7465060B2 (en) Metal-clad laminates and circuit boards
JP2021053567A (en) Method for producing polyimide film and production method for metal-clad laminate
KR102543928B1 (en) Metal-clad laminate and circuit board
JP2022047880A (en) Manufacturing method of polyimide film and manufacturing method of metal-clad laminate board
JP2010186874A (en) Method of manufacturing flexible printed wiring board material
WO2023100951A1 (en) Polyimide film, high-frequency circuit substate, and flexible electronic device substrate
JP2022154637A (en) Polyimide, metal clad laminate sheet and circuit board
JP2024046788A (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240415