JP2021051053A - Fluorescent x-ray analyzing device - Google Patents

Fluorescent x-ray analyzing device Download PDF

Info

Publication number
JP2021051053A
JP2021051053A JP2019175938A JP2019175938A JP2021051053A JP 2021051053 A JP2021051053 A JP 2021051053A JP 2019175938 A JP2019175938 A JP 2019175938A JP 2019175938 A JP2019175938 A JP 2019175938A JP 2021051053 A JP2021051053 A JP 2021051053A
Authority
JP
Japan
Prior art keywords
component
standard
value
quantitative
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019175938A
Other languages
Japanese (ja)
Other versions
JP6838754B1 (en
Inventor
片岡 由行
Yoshiyuki Kataoka
由行 片岡
直人 後藤
Naoto Goto
直人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2019175938A priority Critical patent/JP6838754B1/en
Priority to CN202080031348.0A priority patent/CN113748333B/en
Priority to PCT/JP2020/022146 priority patent/WO2021059597A1/en
Application granted granted Critical
Publication of JP6838754B1 publication Critical patent/JP6838754B1/en
Publication of JP2021051053A publication Critical patent/JP2021051053A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To facilitate evaluation of whether or not a device sensitivity curve is properly prepared in a fluorescent X-ray analyzer according to a fundamental parameter method.SOLUTION: A fluorescent X-ray analyzer includes quantification means using a fundamental parameter method. About each standard sample, the quantification means calculates a quantitative value of the content ratio of a component corresponding to a measurement element, using the measurement intensity, a device sensitivity constant, and a proportional coefficient multiplied by a mass fraction of the measurement element for calculating the theoretical intensity in a theoretical intensity expression. Further, about each component, the quantification means outputs the accuracy about the entire quantitative value owing to a graph showing a correlation between a standard value and the quantitative value and/or the standard value, the quantitative value, a quantitative error for each standard sample, and a set of used standard samples.SELECTED DRAWING: Figure 4

Description

本発明は、ファンダメンタルパラメータ法による蛍光X線分析装置に関する。 The present invention relates to a fluorescent X-ray analyzer based on the fundamental parameter method.

従来、定量分析を行う蛍光X線分析装置は、検量線法によるものと、ファンダメンタルパラメータ法(FP法ともいう)によるものに大別される。検量線法による定量分析では、未知試料の分析のために、成分の含有率が標準値として既知である一組の標準試料を用いて、成分の含有率と成分に対応する測定元素の蛍光X線の測定強度との相関として、次式(1)のように表される検量線式が求められる。なお、成分とは元素または化合物であり、成分の含有率は、含有率の標準値、定量値等を含め、一般に質量百分率(mass%)で表される。また、成分が元素である場合には、その元素そのものが成分に対応する測定元素であり、成分が化合物である場合には、その化合物を代表する元素が成分に対応する測定元素となる。 Conventionally, a fluorescent X-ray analyzer that performs quantitative analysis is roughly classified into a calibration curve method and a fundamental parameter method (also referred to as an FP method). In the quantitative analysis by the calibration curve method, for the analysis of an unknown sample, a set of standard samples in which the content of the component is known as a standard value is used, and the content of the component and the fluorescence X of the measurement element corresponding to the component are used. As a correlation with the measured intensity of the line, a calibration curve formula represented by the following formula (1) is obtained. The component is an element or a compound, and the content of the component is generally represented by a mass percentage (mass%) including a standard value and a quantitative value of the content. When the component is an element, the element itself is the measuring element corresponding to the component, and when the component is a compound, the element representing the compound is the measuring element corresponding to the component.

=(AI +BI+C)(1+Σα) …(1)
:成分iの含有率
:成分iに対応する測定元素の蛍光X線の測定強度
A,B,C:検量線定数
:加補正成分jの含有率
α:加補正成分jのマトリックス補正係数
Wi = (AI i 2 + BI i + C) (1 + Σα j W j )… (1)
Wi : Content of component i I i : Measurement intensity of fluorescent X-rays of the measurement element corresponding to component i A, B, C: Calibration curve constant W j : Content of correction component j α j : Correction component Matrix correction coefficient of j

そして、作成した検量線式(1)の評価のために、次式(2)のように表される検量線のグラフが、例えば成分Crについて図2のように出力される。具体的には、検量線のグラフが、ディスプレイやプリンタにより表示される。ここで、成分iの推定基準値Xとは、加補正成分jの含有率Wをゼロと仮定した場合の、つまり、成分iに対する共存成分による吸収・励起のマトリックス効果がないと仮定した場合の、測定強度Iにおける成分iの含有率である。なお、図2では、検量線を一次式(A=0)としており、矩形の点の横軸座標が標準試料の推定基準値を、白丸の点の横軸座標が標準試料の標準値(化学分析値)を示している。 Then, for the evaluation of the created calibration curve equation (1), a graph of the calibration curve represented by the following equation (2) is output as shown in FIG. 2 for, for example, the component Cr. Specifically, a graph of the calibration curve is displayed by a display or a printer. Here, the estimated reference value X i of the component i is assumed that the content W j of the correction component j is zero, that is, there is no matrix effect of absorption / excitation by the coexisting components on the component i. In this case, it is the content rate of the component i in the measured intensity I i. In FIG. 2, the calibration curve is a linear equation (A = 0), the horizontal axis coordinates of the rectangular points are the estimated reference values of the standard sample, and the horizontal axis coordinates of the white circle points are the standard values of the standard sample (chemistry). Analytical value) is shown.

=AI +BI+C …(2)
:成分iの推定基準値
X i = AI i 2 + BI i + C ... (2)
X i : Estimated reference value of component i

また、標準試料について、成分iに対応する測定強度Iと、加補正成分jの含有率Wとしての成分jの標準値とを検量線式(1)に代入することにより、成分iの含有率Wとして成分iの定量値W^を求め、さらに、次式(3)により、成分iの定量値W^と真の成分iの含有率Wとしての成分iの標準値との差である定量誤差(W^−W)の標準偏差として、用いた一組の標準試料による成分iの定量値全体についての正確度Sを求める。 Further, for the standard sample, the measurement intensity I i corresponding to the component i and the standard value of the component j as the content rate W j of the correction component j are substituted into the calibration curve equation (1) to obtain the component i. obtains a quantitative value W ^ i of component i as a content W i, further by the following equation (3), the standard value of the component i as a content W i of quantitative values W ^ i and the true component i of component i the standard deviation of the quantitative error (W ^ i -W i) which is a difference between the obtained accuracy S a for the entire quantitative value of the component i by a set of standard sample used.

=(Σ(W^−W/(n−m))1/2 …(3)
n:用いた標準試料の数
m:用いた検量線定数の数
S A = (Σ (W ^ i -W i) 2 / (n-m)) 1/2 ... (3)
n: Number of standard samples used m: Number of calibration curve constants used

これらの、標準試料ごとの標準値W、定量値W^および定量誤差(W^−W)、定量値全体についての正確度Sも、作成した検量線式(1)の評価のために表示される。このように、検量線法による定量分析では、検量線のグラフにおける推定基準値X、標準試料ごとの定量値W^および定量誤差(W^−W)、定量値全体についての正確度Sが、すべて標準値Wと同じ単位で表示されるので、検量線式(1)が適切に作成されたか否かの評価が容易である。 These evaluation standard values W i for each standard sample, quantitative values W ^ i and quantification error (W ^ i -W i), also accuracy S A for the entire quantitative value, a calibration curve formula created (1) Is displayed for. Thus, in the quantitative analysis by calibration curve method, the estimated reference value X i in the graph of the calibration curve, quantitative values W ^ i and quantification error of each standard sample (W ^ i -W i), exactly for the entire quantitative values degrees S a is, all displayed in the same units as the standard value W i, calibration equation (1) can be easily properly whether created evaluated.

一方、ファンダメンタルパラメータ法による定量分析では、未知試料の分析のために、成分の含有率が標準値として既知である一組の標準試料を用いて、成分に対応する測定元素の蛍光X線ごとに、標準値に対応する測定元素の質量分率(質量百分率の1/100)および標準値から得られる試料構成元素の質量分率を用いて理論強度式により計算した理論強度と測定強度との相関として、次式(4)のように表される装置感度曲線が求められ、装置感度定数が決定される(例えば特許文献1の段落0003および図4におけるステップS1〜S3参照)。 On the other hand, in the quantitative analysis by the fundamental parameter method, for the analysis of an unknown sample, a set of standard samples whose component contents are known as standard values is used, and each fluorescent X-ray of the measurement element corresponding to the component is used. , Correlation between the theoretical strength and the measured strength calculated by the theoretical strength formula using the mass fraction (1/100 of the mass fraction) of the measurement element corresponding to the standard value and the mass fraction of the sample constituent element obtained from the standard value. The device sensitivity curve represented by the following equation (4) is obtained, and the device sensitivity constant is determined (see, for example, paragraph 0003 of Patent Document 1 and steps S1 to S3 in FIG. 4).

Ti=aIMi +bIMi+c …(4)
Ti:成分iに対応する測定元素の蛍光X線の理論強度
Mi:成分iに対応する測定元素の蛍光X線の測定強度
a,b,c:装置感度定数
I Ti = aI Mi 2 + bI Mi + c ... (4)
I Ti : The theoretical intensity of the fluorescent X-ray of the measurement element corresponding to the component i I Mi : The measurement intensity of the fluorescent X-ray of the measurement element corresponding to the component i a, b, c: Device sensitivity constant

そして、作成した装置感度曲線の評価のために、前式(4)で表された装置感度曲線のグラフが、例えば成分Crについて図3のように表示される。図3では、黒丸の点の横軸座標が標準試料についての理論強度を示している。 Then, for the evaluation of the created device sensitivity curve, the graph of the device sensitivity curve represented by the above equation (4) is displayed as shown in FIG. 3 for, for example, the component Cr. In FIG. 3, the horizontal axis coordinates of the black circle points indicate the theoretical intensity for the standard sample.

また、標準試料について、成分iに対応する測定強度IMiを装置感度曲線の式(4)に代入することにより、理論強度スケールに換算した測定強度である換算測定強度I^Tiを求め、さらに、次式(5)により、換算測定強度I^Tiと理論強度ITiとの差である誤差(I^Ti−ITi)の標準偏差として、用いた一組の標準試料による成分iの換算測定強度全体についての正確度Sを求める。 Further, for the standard sample, by substituting the measurement intensity I Mi corresponding to the component i into the equation (4) of the device sensitivity curve, the conversion measurement intensity I ^ Ti , which is the measurement intensity converted to the theoretical intensity scale, is obtained, and further. , Conversion of component i by a set of standard samples used as the standard deviation of the error (I ^ Ti −I Ti ), which is the difference between the converted measured strength I ^ Ti and the theoretical strength I Ti , according to the following equation (5). determining the accuracy of S B for the entire measured intensities.

=(Σ(I^Ti−ITi/(n−m))1/2 …(5)
n:用いた標準試料の数
m:用いた装置感度定数の数
S B = (Σ (I ^ Ti -I Ti) 2 / (n-m)) 1/2 ... (5)
n: Number of standard samples used m: Number of device sensitivity constants used

これらの、標準試料ごとの理論強度ITi、換算測定強度I^Tiおよび誤差(I^Ti−ITi)、換算測定強度全体についての正確度Sも、作成した装置感度曲線の評価のために表示される。 These theoretical intensity I Ti per standard sample, in terms of the measured intensity I ^ Ti and error (I ^ Ti -I Ti), also accuracy S B for the entire conversion measured intensities for evaluation of the apparatus sensitivity curve prepared Is displayed in.

国際公開第2018/168939号International Publication No. 2018/168939

ファンダメンタルパラメータ法による定量分析では、装置感度曲線のグラフにおける理論強度ITi、標準試料ごとの理論強度ITi、換算測定強度I^Tiおよび誤差(I^Ti−ITi)、換算測定強度全体についての正確度Sが、すべて標準値Wとは異なる次元の単位つまり理論強度スケールで表示されるので、装置感度曲線が適切に作成されたか否かの評価が容易でない。 In quantitative analysis by the fundamental parameter method, the theoretical intensity I Ti in the graph of device sensitivity curve, the theoretical intensity of each standard sample I Ti, in terms of the measured intensity I ^ Ti and error (I ^ Ti -I Ti), for the entire conversion measured intensity accuracy S B of all because the standard value W i is expressed in units i.e. the theoretical intensity scale of different dimensions, device sensitivity curve is not easy to properly whether created evaluated.

本発明は前記従来の問題に鑑みてなされたもので、ファンダメンタルパラメータ法による蛍光X線分析装置において、装置感度曲線が適切に作成されたか否かの評価を容易にすることを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to facilitate evaluation of whether or not an apparatus sensitivity curve is appropriately created in a fluorescence X-ray analyzer by a fundamental parameter method.

前記目的を達成するために、本発明は、まず、試料に1次X線を照射し、発生する蛍光X線の測定強度に基づいてファンダメンタルパラメータ法を用いる定量手段により前記試料中の成分の含有率の定量値を求める蛍光X線分析装置である。前記定量手段は、成分の含有率が標準値として既知である一組の標準試料について、成分に対応する測定元素の蛍光X線ごとに、標準値に対応する測定元素の質量分率および標準値から得られる試料構成元素の質量分率を用いて理論強度式により計算した理論強度と測定強度との相関である装置感度曲線を求めて、装置感度定数を決定する。 In order to achieve the above object, the present invention first irradiates a sample with primary X-rays, and based on the measured intensity of the generated fluorescent X-rays, contains components in the sample by a quantitative means using a fundamental parameter method. This is a fluorescent X-ray analyzer for obtaining a quantitative value of the rate. The quantification means is used for a set of standard samples in which the content of the component is known as a standard value, and the mass fraction and the standard value of the measurement element corresponding to the standard value for each fluorescent X-ray of the measurement element corresponding to the component. The device sensitivity constant is determined by obtaining the device sensitivity curve which is the correlation between the theoretical strength calculated by the theoretical strength formula and the measured strength using the mass fraction of the sample constituent elements obtained from.

そして、前記定量手段は、各標準試料について、前記測定強度と、前記装置感度定数と、前記理論強度式において前記理論強度を計算するために前記測定元素の質量分率に乗ぜられる比例係数とを用いて、測定元素に対応する成分の含有率の定量値を計算する。さらに、前記定量手段は、各成分について、標準値と定量値との相関を示すグラフ、および/または、標準試料ごとの標準値、定量値、定量誤差と前記一組の標準試料による定量値全体についての正確度を出力する。 Then, for each standard sample, the quantification means obtains the measurement intensity, the device sensitivity constant, and a proportional coefficient multiplied by the mass fraction of the measurement element in order to calculate the theoretical intensity in the theoretical intensity formula. It is used to calculate the quantitative value of the content of the component corresponding to the measurement element. Further, the quantification means is a graph showing the correlation between the standard value and the quantification value for each component, and / or the standard value, the quantification value, the quantification error for each standard sample and the entire quantification value by the set of standard samples. Outputs the accuracy of.

本発明の蛍光X線分析装置においては、定量手段により、各成分について、標準値と定量値との相関を示すグラフ、および/または、標準試料ごとの標準値、定量値、定量誤差と用いた一組の標準試料による定量値全体についての正確度が出力される。ここで、グラフにおける定量値、標準試料ごとの定量値および定量誤差、定量値全体についての正確度が、すべて標準値と同じ単位で表示されるので、検量線法による定量分析において検量線式が適切に作成されたか否かの評価が容易であるのと同様に、装置感度曲線が適切に作成されたか否かの評価が容易である。 In the fluorescent X-ray analyzer of the present invention, a graph showing the correlation between the standard value and the quantitative value and / or the standard value, the quantitative value, and the quantitative error for each standard sample were used for each component by the quantitative means. The accuracy of the entire quantification value from a set of standard samples is output. Here, since the quantitative value in the graph, the quantitative value and the quantitative error for each standard sample, and the accuracy of the entire quantitative value are all displayed in the same unit as the standard value, the calibration curve formula is used in the quantitative analysis by the calibration curve method. Just as it is easy to evaluate whether or not the device sensitivity curve is properly created, it is easy to evaluate whether or not the device sensitivity curve is properly created.

本発明の一実施形態の蛍光X線分析装置を示す概略図である。It is the schematic which shows the fluorescence X-ray analyzer of one Embodiment of this invention. 従来の検量線法による蛍光X線分析装置において出力される検量線のグラフの一例である。This is an example of a graph of a calibration curve output by a fluorescent X-ray analyzer using a conventional calibration curve method. 従来のファンダメンタルパラメータ法による蛍光X線分析装置において出力される装置感度曲線のグラフの一例である。This is an example of a graph of the device sensitivity curve output in the fluorescent X-ray analyzer by the conventional fundamental parameter method. 本発明の一実施形態の蛍光X線分析装置が備える定量手段の動作を示すフローチャートである。It is a flowchart which shows the operation of the quantification means provided in the fluorescence X-ray analyzer of one Embodiment of this invention. 同定量手段により出力される標準値と定量値との相関を示すグラフの一例である。This is an example of a graph showing the correlation between the standard value and the quantitative value output by the quantitative means.

以下、本発明の一実施形態の蛍光X線分析装置について説明する。図1に示すように、この装置は、試料1,14(未知試料1と標準試料14の双方を含む)に1次X線3を照射して発生する2次X線5の強度を測定する走査型の蛍光X線分析装置であって、試料1,14が載置される試料台2と、試料1,14に1次X線3を照射するX線管などのX線源4と、試料1,14から発生する蛍光X線などの2次X線5を分光する分光素子6と、その分光素子6で分光された2次X線7が入射され、その強度を検出する検出器8とを備えている。検出器8の出力は、図示しない増幅器、波高分析器、計数手段などを経て、装置全体を制御するコンピュータなどの制御手段11に入力される。 Hereinafter, the fluorescent X-ray analyzer according to the embodiment of the present invention will be described. As shown in FIG. 1, this apparatus measures the intensity of secondary X-rays 5 generated by irradiating samples 1 and 14 (including both unknown sample 1 and standard sample 14) with primary X-rays 3. A scanning type fluorescent X-ray analyzer, the sample table 2 on which the samples 1 and 14 are placed, the X-ray source 4 such as an X-ray tube that irradiates the samples 1 and 14 with the primary X-ray 3, and the X-ray source 4. A spectroscopic element 6 that disperses secondary X-rays 5 such as fluorescent X-rays generated from samples 1 and 14, and a detector 8 that detects the intensity of the incident secondary X-rays 7 dissociated by the spectroscopic element 6. And have. The output of the detector 8 is input to a control means 11 such as a computer that controls the entire apparatus via an amplifier (not shown), a pulse height analyzer, a counting means, and the like.

この装置は、波長分散型でかつ走査型の蛍光X線分析装置であり、検出器8に入射する2次X線7の波長が変化するように、分光素子6と検出器8を連動させる連動手段10、すなわちいわゆるゴニオメータを備えている。2次X線5がある入射角θで分光素子6へ入射すると、その2次X線5の延長線9と分光素子6で分光(回折)された2次X線7は入射角θの2倍の分光角2θをなすが、連動手段10は、分光角2θを変化させて分光される2次X線7の波長を変化させつつ、その分光された2次X線7が検出器8に入射するように、分光素子6を、その表面の中心を通る紙面に垂直な軸Oを中心に回転させ、その回転角の2倍だけ、検出器8を、軸Oを中心に円12に沿って回転させる。分光角2θの値(2θ角度)は、連動手段10から制御手段11に入力される。 This device is a wavelength dispersive and scanning type fluorescent X-ray analyzer, and interlocks the spectroscopic element 6 and the detector 8 so that the wavelength of the secondary X-ray 7 incident on the detector 8 changes. The means 10, that is, a so-called goniometer is provided. When the secondary X-ray 5 is incident on the spectroscopic element 6 at a certain incident angle θ, the extension line 9 of the secondary X-ray 5 and the secondary X-ray 7 spectroscopically (diffused) by the spectroscopic element 6 are 2 at the incident angle θ. Although the spectral angle 2θ is doubled, the interlocking means 10 changes the spectral angle 2θ to change the wavelength of the second-order X-ray 7 dispersed, and the dispersed second-order X-ray 7 is sent to the detector 8. The spectroscopic element 6 is rotated about an axis O perpendicular to the paper surface passing through the center of the surface so as to be incident, and the detector 8 is rotated along the circle 12 about the axis O by twice the rotation angle. And rotate. The value of the spectral angle 2θ (2θ angle) is input from the interlocking means 10 to the control means 11.

この装置は、制御手段11に搭載されるプログラムとして定量手段13を備えており、蛍光X線5の測定強度に基づいて、ファンダメンタルパラメータ法を用いる定量手段13により、試料1,14中の成分の含有率の定量値を求める。なお、本発明においては、蛍光X線分析装置は、波長分散型でかつ多元素同時分析型の蛍光X線分析装置でもよいし、エネルギー分散型の蛍光X線分析装置でもよい。 This device includes a quantification means 13 as a program mounted on the control means 11, and the quantification means 13 using the fundamental parameter method based on the measurement intensity of the fluorescent X-ray 5 is used to display the components in the samples 1 and 14. Obtain a quantitative value of the content rate. In the present invention, the fluorescent X-ray analyzer may be a wavelength dispersive and multi-element simultaneous analysis type fluorescent X-ray analyzer, or an energy dispersive fluorescent X-ray analyzer.

次に、定量手段13の動作について、図4のフローチャートにしたがって説明する。まず、前述した従来のファンダメンタルパラメータ法による定量分析と同様に、未知試料1の分析のために、ステップS1で、成分i,jの含有率W,Wが標準値として既知である一組の標準試料14を用いて、成分iに対応する測定元素の蛍光X線5ごとに、標準値Wに対応する測定元素の質量分率w(質量百分率の1/100)および標準値W,Wから得られる試料構成元素kの質量分率wを用いて理論強度式により計算した理論強度ITiと、測定強度IMiとの相関として、前式(4)のように表される装置感度曲線を求めて、装置感度定数a,b,cを決定する。なお、試料構成元素kは、試料1、14を構成するすべての元素であり、成分iに対応する測定元素を含む。また、成分i,jが化合物の場合、試料構成元素kは、1対1で成分i,jと対応しないため、異なる記号kを用いている。 Next, the operation of the quantification means 13 will be described with reference to the flowchart of FIG. First, as in the quantitative analysis by the conventional fundamental parameter method described above, for analysis of an unknown sample 1, in step S1, components i, the set content of the j W i, W j are known as the standard value using a standard sample 14, for each X-ray fluorescence 5 measurement element corresponding to component i, (1/100 of mass percentage) mass fraction w i of the measuring element corresponding to the standard values W i and standard values W i, the theoretical intensity I Ti calculated by theoretical strength equation using the mass fraction w k of the sample constituent element k obtained from W j, as a function of the measured intensity I Mi, tables as equation (4) The device sensitivity curves to be obtained are obtained to determine the device sensitivity constants a, b, and c. The sample constituent element k is all the elements constituting the samples 1 and 14, and includes the measurement element corresponding to the component i. Further, when the components i and j are compounds, the sample constituent element k has a one-to-one correspondence with the components i and j, so different symbols k are used.

ここで、理論強度を計算するための理論強度式としては、単一波長の1次X線による励起で一次励起のみ生じるとした場合には、次式(6)が用いられる。 Here, as the theoretical intensity equation for calculating the theoretical intensity, the following equation (6) is used when it is assumed that only the primary excitation is generated by the excitation by the primary X-ray of a single wavelength.

Tpi=K/Σμ …(6)
Tpi:成分iに対応する測定元素の蛍光X線の理論強度(一次励起)
:定数
:成分iに対応する測定元素の質量分率
μ:成分iに対応する蛍光X線に対する試料構成元素kの総合吸収計数
:試料構成元素kの質量分率
ITpi = K i w i / Σμ k w k … (6)
I Tpi : Theoretical intensity of fluorescent X-rays of the measurement element corresponding to component i (primary excitation)
K i : Constant w i : Mass fraction of the measurement element corresponding to the component i μ k : Total absorption count of the sample constituent element k with respect to the fluorescent X-ray corresponding to the component i w k : Mass fraction of the sample constituent element k

式(6)から理解されるように、K/Σμ=ITpi’は、理論強度式(6)において、成分iに対応する測定元素の蛍光X線の理論強度ITpiを計算するために、成分iに対応する測定元素の質量分率wに乗ぜられる比例係数となっている。この比例係数ITpi’は、成分iに対応する測定元素の蛍光X線の理論強度ITpiを計算するための理論強度式(6)を、成分iに対応する測定元素の質量分率wで除した式K/Σμで計算される数値ともいえる。二次励起の成分iに対応する理論強度ITsiも、同様に成分iに対応する測定元素の質量分率wに比例しており、その比例係数をITsi’とすると、一次励起と二次励起を合わせての成分iに対応する理論強度ITiも、成分iに対応する測定元素の質量分率wに比例し、その比例係数は、次式(7)のようにITi’となる。 As can be understood from formula (6), K i / Σμ k w k = I Tpi ' , in theoretical strength formula (6), calculates the theoretical intensity I Tpi of the fluorescent X-ray measurement element corresponding to component i to have a proportional coefficient to be multiplied to the mass fraction w i of the measuring element corresponding to the component i. This proportional coefficient I Tpi'is a theoretical intensity formula (6) for calculating the theoretical intensity I Tpi of the fluorescent X-ray of the measurement element corresponding to the component i, and the mass fraction wi of the measurement element corresponding to the component i. in it can be said that the numerical value which is calculated by dividing the formula K i / Σμ k w k. Theoretical strength I Tsi corresponding to component i of the secondary excitation is similarly proportional to the mass fraction w i of the measuring element corresponding to component i, when the proportionality coefficient I Tsi ', the primary excitation and a secondary even theoretical strength I Ti corresponding to component i of the combined following excitation is proportional to the mass fraction w i of the measuring element corresponding to the component i, the proportionality factor, I Ti by the following equation (7) ' It becomes.

Ti=ITpi+ITsi=(ITpi’+ITsi’)w=ITi’w …(7) I Ti = I Tpi + I Tsi = (I Tpi '+ I Tsi') w i = I Ti 'w i ... (7)

なお、試料1、14が単層の薄膜試料である場合には、理論強度式に試料1、14の厚さに依存する項が加わるが、式(7)と同様に、成分iに対応する理論強度ITiは、成分iに対応する測定元素の質量分率wに比例する。さらに、試料1、14が基板を含む多層の薄膜試料である場合にも、基板を含む複数の層に同一の測定元素が含まれない限り、成分iに対応する理論強度ITiは、成分iに対応する測定元素の質量分率wに比例する。 When the samples 1 and 14 are single-layer thin film samples, a term depending on the thickness of the samples 1 and 14 is added to the theoretical strength equation, but it corresponds to the component i as in the equation (7). theoretical strength I Ti is proportional to the mass fraction w i of the measuring element corresponding to the component i. Further, even when the samples 1 and 14 are multi-layer thin film samples including a substrate, the theoretical strength I Ti corresponding to the component i is the component i unless the same measurement element is contained in the plurality of layers including the substrate. It is proportional to the mass fraction w i of the measurement element corresponding to.

以上に説明した理論強度式において、成分iに対応する測定元素の質量分率wとして成分iの標準値Wから換算される当該測定元素の質量分率を、試料構成元素kの質量分率wとして標準値W,Wから換算される各試料構成元素kの質量分率wを用い、理論強度ITiを計算する。そして、その理論強度ITiと、標準試料14についての成分iに対応する測定元素の蛍光X線5の測定強度IMiとの相関として、前式(4)のように表される装置感度曲線を求めて、装置感度定数a,b,cを決定する。 In theoretical strength formula described above, the mass fraction of the measurement element is calculated from the standard value W i of component i as a mass fraction w i of the measuring element corresponding to the component i, the mass fraction of the sample constituent element k using mass fraction w k of each sample constituent element k to the rate w k is calculated from the standard values W i, W j, calculating the theoretical intensity I Ti. Then, the device sensitivity curve represented by the above equation (4) as the correlation between the theoretical intensity I Ti and the measurement intensity I Mi of the fluorescent X-ray 5 of the measurement element corresponding to the component i of the standard sample 14. To determine the device sensitivity constants a, b, and c.

なお、成分iが元素である場合には、その元素そのものが成分iに対応する測定元素であるから、成分iの含有率W(含有率の標準値、定量値等を含め、一般に質量百分率(mass%)で表される)から、成分iに対応する測定元素の質量分率wへの換算は、単に1/100を乗ずるだけである。成分iが化合物である場合の、成分iの含有率Wから、成分iに対応する測定元素の質量分率wへの換算は、化合物の分子量および対応する測定元素(当該化合物を代表する元素)の原子量に基づいて、周知技術によりなされる。また、酸化物などである試料をガラスビードとして調製し、そのガラスビードを検体として蛍光X線分析に処する場合や、粉末である試料をバインダと混合し、その混合物を検体として蛍光X線分析に処する場合においては、試料中の成分iの含有率Wから、検体中の成分iに対応する測定元素の質量分率wへの換算は、試料についての希釈率、ガラスビード調製により揮散するイグロス成分の含有率などに基づいて、周知技術によりなされる。 When the component i is an element, the element itself is a measurement element corresponding to the component i. Therefore, the content rate Wi of the component i (including the standard value and the quantitative value of the content rate, etc., is generally a mass fraction. conversion from represented) by (mass%), the mass fraction w i of the measuring element corresponding to component i is merely multiplied by 1/100. If component i is a compound, the content of W i of component i, is converted to the mass fraction w i of the measuring element corresponding to component i, representing the measurement element (the compound of molecular weight and the corresponding compounds It is done by a well-known technique based on the atomic weight of the element). In addition, when a sample such as an oxide is prepared as a glass bead and the glass bead is used as a sample for fluorescent X-ray analysis, or when a powder sample is mixed with a binder and the mixture is used as a sample for fluorescent X-ray analysis. in the case of processing the conversion from content W i of component i in the sample, the mass fraction w i of the measuring element corresponding to the component in the sample i is dilution of the sample is vaporized by a glass bead prepared It is done by a well-known technique based on the content of the igros component and the like.

ステップS1の具体例を挙げると、試料1、14がステンレス鋼で、表1に示すような標準値を有する5つの標準試料14を用い、成分Crに対応する測定元素Crの蛍光X線であるCr−Kα線について、表2に示すような理論強度と測定強度の相関として、最小二乗法で一次式の装置感度曲線(装置感度定数a=0)を求めて、前式(4)における装置感度定数を、b=1.10238,c=6.91666と決定する。 To give a specific example of step S1, samples 1 and 14 are stainless steel, and five standard samples 14 having standard values as shown in Table 1 are used, and fluorescent X-rays of the measurement element Cr corresponding to the component Cr are used. For Cr-Kα rays, as the correlation between the theoretical intensity and the measured intensity as shown in Table 2, the device sensitivity curve (device sensitivity constant a = 0) of the linear equation was obtained by the minimum square method, and the device in the previous equation (4). The sensitivity constant is determined to be b = 1.10238 and c = 6.91666.

Figure 2021051053
Figure 2021051053

Figure 2021051053
Figure 2021051053

次に、定量手段13は、ステップS2で、各標準試料14について、前記測定強度IMiと、前記装置感度定数a,b,cと、前記理論強度式において前記理論強度ITiを計算するために前記測定元素の質量分率wに乗ぜられる比例係数ITi’とを用いて、測定元素に対応する成分iの含有率の定量値W^を以下のように計算する。 Next, in step S2, the quantification means 13 calculates the measured intensity I Mi , the device sensitivity constants a, b, and c, and the theoretical intensity I Ti in the theoretical intensity formula for each standard sample 14. It said measuring element by using the mass fraction w i to be multiplied proportionality factor I Ti 'of the calculated as follows quantitative value W ^ i of the content of components i corresponding to the measurement element.

まず、前式(4)および(7)から導かれる次式(8)により、成分iに対応する測定元素の質量分率wの定量値w^を計算する。なお、比例係数ITi’は、ステップS1で用いた理論強度式、例えば式(6)を、成分iに対応する測定元素の質量分率wで除した式、例えばK/Σμで計算する。 First, Equation (4) and the formula derived from (7) (8) to calculate the quantitative value w ^ i mass fraction w i of the measuring element corresponding to the component i. Incidentally, the proportional factor I Ti 'is the theoretical intensity formula used in step S1, for example, the formula Equation (6), divided by the mass fraction w i of the measuring element corresponding to the component i, for example, K i / Σμ k w Calculate with k.

w^=(aIMi +bIMi+c)/ITi’ …(8) w ^ i = (aI Mi 2 + bI Mi + c) / I Ti '… (8)

そして、ステップS1で述べた成分iの含有率Wから成分iに対応する測定元素の質量分率wへの換算とは逆の換算を、成分iに対応する測定元素の質量分率wの定量値w^に対して行うことにより、測定元素に対応する成分iの含有率の定量値W^を計算する。 Then, the inverse conversion to the conversion from the content W i of component i mentioned in step S1 to the mass fraction w i of the measuring element corresponding to the component i, the mass fraction w of the measuring element corresponding to component i by performing relative quantitative value w ^ i of i, to calculate the quantitative value W ^ i of the content of components i corresponding to the measurement element.

ステップS1で述べた具体例では、表3のように、各標準試料14について、(aIMi +bIMi+c)(この具体例ではa=0で、表3では換算測定強度と表記)、比例係数ITi’、成分Crに対応する測定元素Crの質量分率wの定量値w^(表3ではCr質量分率と表記)、測定元素Crに対応する成分Crの含有率の定量値W^(表3ではCr定量値と表記)が計算される。 In the specific example described in step S1, as shown in Table 3, for each standard sample 14, (aI Mi 2 + bI Mi + c) (a = 0 in this specific example, expressed as converted measurement intensity in Table 3) is proportional. Quantitative value w ^ i (denoted as Cr mass fraction in Table 3) of the mass fraction w i of the measurement element Cr corresponding to the coefficient I Ti ', the component Cr, and the quantitative value of the content Cr of the component Cr corresponding to the measurement element Cr. The value W ^ i (denoted as Cr quantitative value in Table 3) is calculated.

Figure 2021051053
Figure 2021051053

次に、定量手段13は、ステップS3で、各成分iについて、標準値Wと定量値W^との相関を示すグラフ、および/または、標準試料14ごとの標準値W、定量値W^、定量誤差(W^−W)と用いた一組の標準試料14による定量値全体についての正確度Sを出力する。具体的には、グラフおよび/または各数値を、ディスプレイやプリンタ(図示せず)で表示する。なお、標準値Wと定量値W^との相関を示すグラフに重ねて正確度Sを表示してもよい。ここで、正確度Sは、次式(9)により、定量誤差(W^−W)の標準偏差として求める。 Next, in step S3, the quantification means 13 is a graph showing the correlation between the standard value Wi and the quantification value W ^ i for each component i, and / or the standard value Wi and the quantification value for each standard sample 14. W ^ i, and outputs the accuracy S C for the entire quantitative values by quantitative error (W ^ i -W i) a set of standard sample 14 used. Specifically, the graph and / or each numerical value is displayed on a display or a printer (not shown). It is also possible to display the accuracy S C superimposed on a graph showing the correlation between the standard value W i and quantitative values W ^ i. Here, accuracy S C is the following equation (9), determined as the standard deviation of quantitative error (W ^ i -W i).

=(Σ(W^−W/(n−m))1/2 …(9)
n:用いた標準試料の数
m:用いた装置感度定数の数
S C = (Σ (W ^ i -W i) 2 / (n-m)) 1/2 ... (9)
n: Number of standard samples used m: Number of device sensitivity constants used

ステップS1、S2で述べた具体例では、図5のグラフ、および/または、表4と正確度が0.11mass%である旨が、出力され、ディスプレイに表示される。 In the specific example described in steps S1 and S2, the graph of FIG. 5 and / or Table 4 and the fact that the accuracy is 0.11 mass% are output and displayed on the display.

Figure 2021051053
Figure 2021051053

この後、作成した装置感度曲線を用いて未知試料1中の成分iの含有率の定量値W^を求める工程については、従来のファンダメンタルパラメータ法による定量分析と同様に行う。 After that, the step of obtaining the quantitative value W ^ i of the content of the component i in the unknown sample 1 using the prepared device sensitivity curve is performed in the same manner as the quantitative analysis by the conventional fundamental parameter method.

以上のように、本実施形態の蛍光X線分析装置においては、定量手段13により、各成分iについて、標準値Wと定量値W^との相関を示すグラフ、および/または、標準試料14ごとの標準値W、定量値W^、定量誤差(W^−W)と用いた一組の標準試料14による定量値全体についての正確度Sが出力される。ここで、グラフにおける定量値W^、標準試料14ごとの定量値W^および定量誤差(W^−W)、定量値全体についての正確度Sが、すべて標準値Wと同じ単位で表示されるので、検量線法による定量分析において検量線式が適切に作成されたか否かの評価が容易であるのと同様に、装置感度曲線が適切に作成されたか否かの評価が容易である。 As described above, in the fluorescent X-ray analyzer of the present embodiment, the quantification means 13 is used to show the correlation between the standard value Wi and the quantification value W ^ i for each component i, and / or the standard sample. standard values W i for each 14, quantitative values W ^ i, accuracy S C for the entire quantitative values by quantitative error (W ^ i -W i) a set of standard sample 14 used is output. Here, the quantitative value W ^ i in the graph, quantitative values W ^ i and quantification error of each standard sample 14 (W ^ i -W i) , the accuracy of S C for the entire quantitative value, all the standard values W i Since it is displayed in the same unit, it is easy to evaluate whether or not the calibration curve formula is properly prepared in the quantitative analysis by the calibration curve method, and just as it is easy to evaluate whether or not the device sensitivity curve is properly prepared. Is easy.

なお、本実施形態でのステップS2においては、ステップS1で用いた理論強度式を成分iに対応する測定元素の質量分率wで除した式で、比例係数ITi’を計算している。これに対し、ステップS1において計算される、成分iに対応する測定元素の蛍光X線の理論強度ITiを、やはりステップS1において計算される、成分iに対応する測定元素の質量分率wで単純に除して、比例係数ITi’を求めることも考えられる。しかし、この求め方では、成分iに対応する測定元素の質量分率wが0の場合に、除数が0となり、対処できない。そこで、改善案として、ステップS1において、成分iに対応する測定元素の質量分率wが0の場合には、その質量分率wを例えば10−8の極微量に置き換えた組成を仮定して、各成分の理論強度を計算することが考えられる。そうすれば、成分iに対応する測定元素の質量分率wが0でなくなる。したがって、成分iに対応する測定元素の蛍光X線の理論強度ITiを、成分iに対応する測定元素の質量分率wで単純に除して、比例係数ITi’を求めることができる。 Note that, in step S2 of the present embodiment, the theoretical intensity type using in step S1 by the formula divided by the mass fraction w i of the measuring element corresponding to component i, and computes the proportionality factor I Ti ' .. In contrast, calculated in step S1, the theoretical intensity I Ti of the fluorescent X-ray measurement element corresponding to component i, also calculated in step S1, the mass fraction w i of the measuring element corresponding to component i It is also conceivable to simply divide by and obtain the proportionality coefficient I Ti'. However, in this method, when the mass fraction wi of the measurement element corresponding to the component i is 0, the divisor becomes 0 and it cannot be dealt with. Therefore, assuming as an improvement proposal, in step S1, the composition mass fraction w i of the measuring element corresponding to component i is 0, the by replacing the mass fraction w i in trace amounts, for example, 10 -8 Then, it is conceivable to calculate the theoretical intensity of each component. That way, the mass fraction w i of the measuring element corresponding to component i is no longer zero. Thus, the theoretical intensity I Ti of the fluorescent X-ray measurement element corresponding to components i, then simply divided by the mass fraction w i of the measuring element corresponding to component i, can be determined proportionality factor I Ti ' ..

1 未知試料
3 1次X線
5 蛍光X線
13 定量手段
14 標準試料
1 Unknown sample 3 Primary X-ray 5 Fluorescent X-ray 13 Quantitative means 14 Standard sample

Claims (1)

試料に1次X線を照射し、発生する蛍光X線の測定強度に基づいてファンダメンタルパラメータ法を用いる定量手段により前記試料中の成分の含有率の定量値を求める蛍光X線分析装置であって、
前記定量手段が、
成分の含有率が標準値として既知である一組の標準試料について、成分に対応する測定元素の蛍光X線ごとに、標準値に対応する測定元素の質量分率および標準値から得られる試料構成元素の質量分率を用いて理論強度式により計算した理論強度と測定強度との相関である装置感度曲線を求めて、装置感度定数を決定し、
各標準試料について、前記測定強度と、前記装置感度定数と、前記理論強度式において前記理論強度を計算するために前記測定元素の質量分率に乗ぜられる比例係数とを用いて、測定元素に対応する成分の含有率の定量値を計算し、
各成分について、標準値と定量値との相関を示すグラフ、および/または、標準試料ごとの標準値、定量値、定量誤差と前記一組の標準試料による定量値全体についての正確度を出力する、蛍光X線分析装置。
A fluorescent X-ray analyzer that irradiates a sample with primary X-rays and obtains a quantitative value of the content of the components in the sample by a quantitative means using a fundamental parameter method based on the measured intensity of the generated fluorescent X-rays. ,
The quantification means
For a set of standard samples whose component content is known as a standard value, the mass fraction of the measurement element corresponding to the standard value and the sample composition obtained from the standard value for each fluorescent X-ray of the measurement element corresponding to the component. The device sensitivity constant is determined by obtaining the device sensitivity curve, which is the correlation between the theoretical strength calculated by the theoretical strength formula using the mass fraction of the element and the measured strength.
For each standard sample, the measured element is supported by using the measured intensity, the device sensitivity constant, and a proportional coefficient multiplied by the mass fraction of the measured element in order to calculate the theoretical intensity in the theoretical strength formula. Calculate the quantitative value of the content of the component to be
For each component, a graph showing the correlation between the standard value and the quantitative value, and / or the standard value, the quantitative value, the quantitative error for each standard sample, and the accuracy of the entire quantitative value of the set of standard samples are output. , Fluorescent X-ray analyzer.
JP2019175938A 2019-09-26 2019-09-26 X-ray fluorescence analyzer Active JP6838754B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019175938A JP6838754B1 (en) 2019-09-26 2019-09-26 X-ray fluorescence analyzer
CN202080031348.0A CN113748333B (en) 2019-09-26 2020-06-04 Fluorescent X-ray analyzer
PCT/JP2020/022146 WO2021059597A1 (en) 2019-09-26 2020-06-04 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019175938A JP6838754B1 (en) 2019-09-26 2019-09-26 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP6838754B1 JP6838754B1 (en) 2021-03-03
JP2021051053A true JP2021051053A (en) 2021-04-01

Family

ID=74673576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019175938A Active JP6838754B1 (en) 2019-09-26 2019-09-26 X-ray fluorescence analyzer

Country Status (3)

Country Link
JP (1) JP6838754B1 (en)
CN (1) CN113748333B (en)
WO (1) WO2021059597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259667A1 (en) * 2021-06-08 2022-12-15 株式会社リガク X-ray fluorescence analysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118148A1 (en) * 2001-12-06 2003-06-26 Rigaku Industrial Corporation X-ray fluorescense spectrometer
WO2017038701A1 (en) * 2015-08-28 2017-03-09 株式会社リガク X-ray fluorescence analyzer
WO2018168939A1 (en) * 2017-03-15 2018-09-20 株式会社リガク Fluorescent x-ray analysis method, fluorescent x-ray analysis program, and fluorescent x-ray analysis device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908119B2 (en) * 2005-10-19 2012-04-04 株式会社リガク X-ray fluorescence analyzer
EP3336527B1 (en) * 2015-08-10 2020-04-22 Rigaku Corporation X-ray fluorescence spectrometer
CN106770407A (en) * 2016-11-25 2017-05-31 成都中光电科技有限公司 A kind of fuse piece X-fluorescence assay method of the glass batch entirety uniformity
CN108827993A (en) * 2018-06-28 2018-11-16 北矿科技股份有限公司 Realize quickly measurement high performance magnetic material BMS-12 in lanthanum, calcium, cobalt each element content method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118148A1 (en) * 2001-12-06 2003-06-26 Rigaku Industrial Corporation X-ray fluorescense spectrometer
WO2017038701A1 (en) * 2015-08-28 2017-03-09 株式会社リガク X-ray fluorescence analyzer
WO2018168939A1 (en) * 2017-03-15 2018-09-20 株式会社リガク Fluorescent x-ray analysis method, fluorescent x-ray analysis program, and fluorescent x-ray analysis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259667A1 (en) * 2021-06-08 2022-12-15 株式会社リガク X-ray fluorescence analysis device
JP2022187637A (en) * 2021-06-08 2022-12-20 株式会社リガク Fluorescent light x-ray analyzer
JP7233756B2 (en) 2021-06-08 2023-03-07 株式会社リガク X-ray fluorescence analyzer
CN117460950A (en) * 2021-06-08 2024-01-26 株式会社理学 Fluorescent X-ray analysis device

Also Published As

Publication number Publication date
JP6838754B1 (en) 2021-03-03
WO2021059597A1 (en) 2021-04-01
CN113748333A (en) 2021-12-03
CN113748333B (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
Sitko et al. Quantification in X-ray fluorescence spectrometry
US7450685B2 (en) X-ray fluorescence spectrometer and program for use therewith
US10082475B2 (en) X-ray fluorescence spectrometer
JP2011099749A (en) Concentration measuring method and x-ray fluorescence spectrometer
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP6838754B1 (en) X-ray fluorescence analyzer
De Vries et al. Quantification of infinitely thick specimens by XRF analysis
CN105938112B (en) Quantitative X-ray analysis-ratio correction
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
JP5874108B2 (en) X-ray fluorescence analyzer
JP3291251B2 (en) X-ray fluorescence analyzer
JP6713110B2 (en) Background removal method and X-ray fluorescence analyzer
JP6779531B2 (en) X-ray fluorescence analyzer
JP3569734B2 (en) X-ray fluorescence analyzer
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP2004004102A (en) Fluorescent x-ray analysis device
JP2645227B2 (en) X-ray fluorescence analysis method
Morgenstern et al. Validation of an X-ray methodology with environmental concern
JP2022073175A (en) X-ray fluorescence analyzer
JPH0682049B2 (en) Thin film thickness measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201126

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R150 Certificate of patent or registration of utility model

Ref document number: 6838754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250