JPH0682049B2 - Thin film thickness measurement method - Google Patents

Thin film thickness measurement method

Info

Publication number
JPH0682049B2
JPH0682049B2 JP2071516A JP7151690A JPH0682049B2 JP H0682049 B2 JPH0682049 B2 JP H0682049B2 JP 2071516 A JP2071516 A JP 2071516A JP 7151690 A JP7151690 A JP 7151690A JP H0682049 B2 JPH0682049 B2 JP H0682049B2
Authority
JP
Japan
Prior art keywords
measured
sample
compton scattering
ray
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2071516A
Other languages
Japanese (ja)
Other versions
JPH03272411A (en
Inventor
寛友 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2071516A priority Critical patent/JPH0682049B2/en
Publication of JPH03272411A publication Critical patent/JPH03272411A/en
Publication of JPH0682049B2 publication Critical patent/JPH0682049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線のコンプトン散乱を利用した薄膜の膜厚測
定装置に関する。
The present invention relates to a thin film thickness measuring apparatus using Compton scattering of X-rays.

(従来の技術) 薄膜の膜厚測定にX線のコンプトン散乱を利用する方法
がある。この方法はX線吸収による膜厚測定と異り、X
線吸収の少い有機材質のようなものにも適用できる利点
がある。試料を或る波長のX線で照射すると、散乱角度
に応じて試料照射X線と異る波長のX線が観測される。
これがコンプトン散乱で、コンプトン散乱はX線と電子
との間の相互作用に基くものなので、コンプトン散乱線
の強度は試料を構成している原子の種類に関係せず、試
料の面積密度で決まる。同じ物質であれば、試料の面積
密度は厚さに比例するので被測定試料と同種の物質の厚
さ既知の薄膜と被測定試料のコンプトン散乱線の強度比
から、被測定試料の膜厚が求められる。これが従来行わ
れて来たコンプトン散乱法による膜厚測定法である。
(Prior Art) There is a method of utilizing Compton scattering of X-rays to measure the thickness of a thin film. This method is different from the film thickness measurement by X-ray absorption.
It has an advantage that it can be applied to organic materials such as those having a small line absorption. When the sample is irradiated with X-rays of a certain wavelength, X-rays of different wavelengths from the sample-irradiated X-rays are observed depending on the scattering angle.
This is Compton scattering, and since Compton scattering is based on the interaction between X-rays and electrons, the intensity of Compton scattered rays is determined by the area density of the sample, regardless of the type of atoms constituting the sample. If the materials are the same, the area density of the sample is proportional to the thickness. Desired. This is the conventional method for measuring the film thickness by the Compton scattering method.

(発明が解決しようとする課題) 上述した従来方法では、被測定試料と同じ物質の既知厚
さの薄膜標準試料を準備しなくてはならないが、一般に
任意試料に対してそのような薄膜標準試料を入手するこ
とは困難な場合が多い。そこで本発明は標準試料として
薄膜であることを要せず、塊状試料でもよく、更に被測
定試料と同種でない物質の塊状試料でもよいようなコン
プトン散乱を利用した膜厚測定方法を提供しようとする
ものである。
(Problems to be Solved by the Invention) In the above-mentioned conventional method, it is necessary to prepare a thin-film standard sample of the same substance as the sample to be measured and having a known thickness. Is often difficult to obtain. Therefore, the present invention does not need to be a thin film as a standard sample, and may provide a lump sample or a lump sample of a substance which is not the same as the sample to be measured, and provides a film thickness measuring method using Compton scattering. It is a thing.

(課題を解決するための手段) 任意物質の任意厚さ(塊状でも可、この場合厚さは∞)
の標準試料についてコンプトン散乱強度を計算し、上記
標準試料と被測定試料についてコンプトン散乱強度を実
測し、標準試料のコンプトン散乱強度の計算値と実測値
との比を被測定試料のコンプトン散乱強度の実測値に掛
算して、その値と上記標準試料のコンプトン散乱強度と
の比から被測定試料の面積密度を算出し、この算出され
た面積密度を被測定試料の体積密度で割って被測定試料
の厚さを算出する。
(Means for solving the problem) Arbitrary thickness of arbitrary substance (bulk is acceptable, in this case the thickness is ∞)
Calculate the Compton scattering intensity for the standard sample, measure the Compton scattering intensity for the above standard sample and the sample to be measured, and calculate the ratio of the Compton scattering intensity of the standard sample to the measured value for the Compton scattering intensity of the sample to be measured. Multiply the measured value, calculate the area density of the sample to be measured from the ratio of the value and the Compton scattering intensity of the standard sample, and divide the calculated area density by the volume density of the sample to be measured Calculate the thickness of.

(作用) コンプトン散乱はX線と電子との相互作用で原子構造と
は直接関係せず、従って散乱線と入射X線との波長差は
散乱角だけで決まり観測されるコンプトン散乱線の強さ
は試料の面積密度が同じであれば物質の種類によらず同
じである。本発明はコンプトン散乱のこの性質を利用す
るものである。このようなコンプトン散乱強度は理論計
算が可能で、その方法は例えば「Internal Tables fo
r X ray Christallography」等に記載されている。
この計算は第2図に示すように、試料Sに照射する照射
X線Xoの線束断面積をA、試料の厚さをT、試料の体積
密度をρとして、試料の面積密度σ=ATρ/Aの関数とし
てコンプトン散乱強度を算出するものである。
(Action) Compton scattering is an interaction between an X-ray and an electron and is not directly related to the atomic structure. Therefore, the wavelength difference between the scattered ray and the incident X-ray is determined only by the scattering angle, and the intensity of the observed Compton scattered ray. Is the same regardless of the type of substance if the area density of the sample is the same. The present invention takes advantage of this property of Compton scattering. Such Compton scattering intensity can be theoretically calculated, and the method is, for example, “Internal Tables fo
r X ray Christallography ”and the like.
In this calculation, as shown in FIG. 2, the area density σ of the sample is σ = ATρ / Compton scattering intensity is calculated as a function of A.

上述した標準試料についてのコンプトン散乱強度の計算
値と実測値との比は計算上の照射X線強度と実測時のX
線強度の違い、即ちX線検出器の感度等によって決まる
もので、計算値と実測値との間の換算係数であり、試料
物質とかその厚さ等には関係しない一種の測定装置の構
造因子である。従って被測定試料の実測コンプトン散乱
強度にこの比を掛算することにより、被測定試料の計算
上のコンプトン散乱強度が求められる。計算上のコンプ
トン散乱強度は面積密度の関数なので、上に求められた
被測定試料の計算上のコンプトン散乱強度から逆にその
面積密度が求められ、被測定試料の体積密度は被測定試
料の物質自体が分っておれば各種ハンドブックにより既
知であるから、面積密度から厚さが算出される。
The ratio between the calculated value of Compton scattering intensity and the actual measured value for the above-mentioned standard sample is calculated by the irradiation X-ray intensity and the measured X-ray intensity.
It is determined by the difference in the line intensity, that is, the sensitivity of the X-ray detector, etc., and it is a conversion factor between the calculated value and the measured value. Is. Therefore, the calculated Compton scattering intensity of the sample to be measured can be obtained by multiplying the measured Compton scattering intensity of the sample to be measured by this ratio. Since the calculated Compton scattering intensity is a function of the area density, the area density is obtained from the calculated Compton scattering intensity of the measured sample obtained above, and the volume density of the measured sample is the material of the measured sample. If it is known, it is known from various handbooks, so the thickness is calculated from the area density.

(実施例) 第1図は本発明方法の概要を求すフローチャートであ
る。まず任意物質の標準試料のコンプトン散乱強度を計
算する。このコンプトン散乱強度は試料の面積密度の関
数として求められる(イ)。次に厚さ既知の標準試料に
ついてコンプトン散乱強度を実測する(ロ)。同じく被
測定試料についてもコンプトン散乱強度を実測する
(ハ)。(ロ)のステップにおける標準試料の実測コン
プトン散乱強度を分母として、実測標準試料と同じ厚さ
の標準試料に対する(イ)のステップの計算コンプトン
散乱強度を分子として換算係数を算定する(ニ)。
(ハ)のステップで測定された被測定試料の実測コンプ
トン散乱強度に上記換算係数を掛ける(ホ)。(ホ)の
ステップで求まった値を(イ)のステップで求めたコン
プトン散乱強度の計算値と比較して被測定試料の面積密
度を知る(ヘ)。この面積密度を被測定試料の体積密度
で割って被測定試料の厚さを求める(ト)。
(Example) FIG. 1 is a flowchart for obtaining an outline of the method of the present invention. First, the Compton scattering intensity of a standard sample of an arbitrary substance is calculated. The Compton scattering intensity is obtained as a function of the area density of the sample (a). Next, the Compton scattering intensity is measured for a standard sample of known thickness (b). Similarly, the Compton scattering intensity is measured for the sample to be measured (C). Using the measured Compton scattering intensity of the standard sample in step (b) as the denominator, the conversion coefficient is calculated with the Compton scattering intensity of the step (a) for the standard sample having the same thickness as the measured standard sample as the numerator (d).
The measured Compton scattering intensity of the sample to be measured measured in the step (c) is multiplied by the conversion coefficient (e). The area density of the sample to be measured is known by comparing the value obtained in the step (e) with the calculated Compton scattering intensity obtained in the step (b) (f). The area density is divided by the volume density of the sample to be measured to obtain the thickness of the sample to be measured (g).

上述した実測コンプトン散乱強度の扱い方について二通
りの方法がある。その説明の前にコンプトン散乱X線の
測定方法について説明する。第2図に示すように試料S
を照射X線Xoで照射し、角度θを固定してX線分光器M
を配置し、波長走査を行うと、第3図のようなX線スペ
クトルが得られる。このX線スペクトルの横軸は分光器
MのX線検出器Dの回転角である。このスペクトルでピ
ークP1がコンプトン散乱線で、P2は照射X線自体のレー
リー散乱によるもので、照射X線と同じ波長である。照
射X線は適当なターゲット物質のKα線のような一つの
特性X線を用いるが、図のスペクトルのP3,P4は同じタ
ーゲット物質のKβ線のコンプトン散乱線およびレーリ
ー散乱線である。照射X線は連続X線を含んでいるの
で、そのコンプトン散乱やレーリー散乱がバックグラウ
ンドBを形成しており、コンプトン散乱線のピークはそ
のバックグラウンドの上に乗っている。第1図の実測コ
ンプトン線強度はこの正味のピーク強度を用いねばなら
ない。このコンプトン散乱の正味の強度を求めるのに二
つの方法がある。
There are two methods for handling the above-mentioned actually measured Compton scattering intensity. Before the description, a method of measuring Compton scattered X-rays will be described. As shown in FIG. 2, sample S
X-ray spectroscope M
Are arranged and wavelength scanning is performed, an X-ray spectrum as shown in FIG. 3 is obtained. The horizontal axis of this X-ray spectrum is the rotation angle of the X-ray detector D of the spectroscope M. In this spectrum, the peak P1 is the Compton scattered ray, and P2 is the Rayleigh scattering of the irradiated X-ray itself, and has the same wavelength as the irradiated X-ray. As the irradiation X-ray, one characteristic X-ray such as Kα ray of an appropriate target material is used, but P3 and P4 in the spectrum of the figure are Compton and Rayleigh scattering rays of Kβ ray of the same target material. Since the irradiation X-rays include continuous X-rays, the Compton scattering and Rayleigh scattering form the background B, and the peak of the Compton scattering line is on the background. The measured Compton line intensity in FIG. 1 should use this net peak intensity. There are two ways to find the net intensity of this Compton scattering.

(その1) 第3図の散乱X線のスペクトルでコンプトン散乱線ピー
クの中心位置p0とその両側のバックグラウンドレベルの
位置p1,p2の3点での散乱X線強度を測定し、バックグ
ラウンドレベルの2位置p1,p2の測定値を直線でつない
で、コンプトン散乱線ピーク中心位置p0でのバックグラ
ウンドレベルを内挿的に算出し、これをコンプトン散乱
線ピークの中心位置でのX線強度から引いてコンプトン
散乱強度を求める。下表はこの方法の一実施例を示すも
のである。実施例では試料としてポリエステルフィルム
で3種の厚さのものを用いた。標準試料としては黄銅の
塊状試料を用い、照射X線としてはRhのKα線を用い
た。表1は標準試料および上記3種の厚さのポリエステ
ルフィルム(試料A,B,C)の実測コンプトン散乱強度で
上記したバックグラウンド補正を行った値を示す。
(Part 1) In the scattered X-ray spectrum of Fig. 3, the scattered X-ray intensity was measured at the center position p0 of the Compton scattered ray peak and the background level positions p1 and p2 on both sides of it, and the background level was measured. By connecting the measured values at the two positions p1 and p2 with a straight line, the background level at the Compton scattering peak center position p0 is calculated by interpolation, and this is calculated from the X-ray intensity at the Compton scattering peak center position. Subtract the Compton scattering intensity. The table below shows an example of this method. In the examples, polyester films of three different thicknesses were used as samples. A brass lump sample was used as a standard sample, and Rh Kα ray was used as an irradiation X-ray. Table 1 shows the values obtained by performing the above background correction on the measured Compton scattering intensities of the standard sample and the above-described three types of polyester films (Samples A, B, and C).

表1 試料 黄銅 A B C 強度KCPS 2.81651 2.10186 0.97320 0.43136 上記標準試料のコンプトン散乱強度の実測値を分母、実
算値を分子とする換算係数はコンプトン散乱強度の計算
値が421,565であったので、 換算係数=421,565/2.81651=149.7 であった。表2は試料A,B,Cの実測コンプトン散乱強度
に上記換算係数を掛けた値で 表2 A B C 314.599 145.665 64.565 この結果から各試料の面積密度およびそれを体積密度1.
39g/cm2で割った厚さの値および各試料の厚さの直接測
定値を表3に示す。
Table 1 Sample brass ABC strength KCPS 2.81651 2.10186 0.97320 0.43136 The conversion factor using the measured Compton scattering intensity of the above standard sample as the denominator and the actual calculated value as the numerator was calculated as 421,565. The coefficient was 421,565 / 2.81651 = 149.7. Table 2 shows the values obtained by multiplying the measured Compton scattering intensities of Samples A, B and C by the above conversion coefficient. Table 2 ABC C 314.599 145.665 64.565 From these results, the area density of each sample and its volume density 1.
Table 3 shows the thickness values divided by 39 g / cm 2 and the direct thickness measurements of each sample.

この結果より本発明方法による測定値が略々真の厚さと
一致していることが認められる。
From this result, it can be seen that the measured value by the method of the present invention substantially coincides with the true thickness.

(その2) これはコンプトン散乱線ピークの中心位置におけるバッ
クグラウンドをも計算によって求めるものである。上記
その1の方法ではバックグラウンドを直線補間法で求め
ているが、実際のバックグラウンド分布は複雑な曲りを
呈しているから直線補間法では精度が十分でない。従っ
てバックグラウンドも計算によって求めて補正を行う方
が精度が良くなる。バックグラウンドは照射X線の連続
X線とX線管のターゲット物質の特性X線とが重なった
ものであることにより、連続X線成分のコンプトン散乱
とレーリー散乱との重なったものとなっている。このレ
ーリー散乱についても理論計算可能で、前掲文献に記載
されている。計算値と実測値との換算係数は任意標準試
料について、使用する特性X線波長におけるコンプトン
散乱強度とバックグラウンド強度とを計算してその合計
値を、標準試料のバックグラウンド込みのコンプトン散
乱ピーク中心の強度で割算して求められる。他方被測定
試料について、コンプトン散乱線のピーク中心における
バックグラウンドも含めた実測強度に上記換算係数を掛
けて、それから試料の面積密度を求める。この方法によ
ると、コンプトン散乱線のピーク両側のバックグラウン
ドの測定を行う必要がなくなって、測定操作は却って簡
単になる。下表にこの方法の実施例を示す。この実施例
では標準試料も被測定試料も使用X線管も全て前例と同
じである。標準試料のバックグラウンドの計算値は38.6
3となり、コンプトン散乱強度の計算値421.565(前例と
同じ)を加えて、コンプトン散乱線のピーク中心におけ
る実測X線強度4.42439で割ると 換算係数=(421.565+38.63)/4.42439=104.01 となる。表4は試料A,B,Cのコンプトン散乱線のピーク
中心におけるX線強度(バックグラウンドを含めたも
の)の実測値、それに換算係数を掛けた値、面積密度、
厚さを示す。
(Part 2) In this, the background at the center position of the Compton scattered ray peak is also calculated. In the method of the above-mentioned 1), the background is obtained by the linear interpolation method, but since the actual background distribution has a complicated bend, the accuracy is not sufficient with the linear interpolation method. Therefore, it is more accurate if the background is calculated and corrected. The background is the overlap of Compton scattering and Rayleigh scattering of the continuous X-ray component because the continuous X-rays of the irradiation X-rays and the characteristic X-rays of the target material of the X-ray tube overlap. . This Rayleigh scattering can also be theoretically calculated and is described in the above-mentioned literature. The conversion factor between the calculated value and the actual measured value is the Compton scattering peak center with the background of the standard sample calculated by calculating the Compton scattering intensity and background intensity at the characteristic X-ray wavelength used for the arbitrary standard sample. It is calculated by dividing by the strength of. On the other hand, for the sample to be measured, the measured intensity including the background at the center of the peak of Compton scattered rays is multiplied by the above conversion coefficient, and the area density of the sample is obtained from it. According to this method, it is not necessary to measure the background on both sides of the peak of Compton scattered rays, and the measurement operation is rather simple. The table below shows examples of this method. In this embodiment, the standard sample, the sample to be measured, and the X-ray tube used are all the same as in the previous example. Calculated background of standard sample is 38.6
It becomes 3, and when the calculated value of Compton scattering intensity of 421.565 (same as the previous example) is added and divided by the measured X-ray intensity of 4.42439 at the peak center of Compton scattering line, the conversion factor = (421.565 + 38.63) /4.42439 = 104.01. Table 4 shows the measured values of the X-ray intensity (including the background) at the peak center of the Compton scattered rays of Samples A, B, and C, the value obtained by multiplying it by the conversion coefficient, the areal density,
Indicates the thickness.

この結果は前例より真値に近い値が出て精度が上ってい
ることが判る。
This result shows that the value is closer to the true value and the accuracy is higher than in the previous example.

(発明の効果) 本発明によれば、試料と同種の標準試料を必要とせず、
入手可能な任意形態の適宜物質を標準試料として被測定
物質の実測値を較正できるので、コンプトン散乱を用い
た測定の適用範囲が著しく拡大される。
(Effect of the invention) According to the present invention, a standard sample of the same kind as the sample is not required,
Since the actually measured value of the substance to be measured can be calibrated using an appropriate substance in any available form as a standard sample, the applicable range of the measurement using Compton scattering is significantly expanded.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の概要を説明するフローチャート、第2
図はコンプトン散乱測定装置の平面図、第3図はコンプ
トン散乱スペクトルの図である。 S……試料、M……X線分光器。
FIG. 1 is a flow chart for explaining the outline of the present invention, and FIG.
FIG. 3 is a plan view of the Compton scattering measuring device, and FIG. 3 is a view of Compton scattering spectrum. S: sample, M: X-ray spectroscope.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】任意物質の任意厚さの標準試料についてコ
ンプトン散乱強度を計算し、上記標準試料と被測定試料
とについてコンプトン散乱強度を実測し、標準試料のコ
ンプトン散乱強度の計算値と実測値との比を被測定試料
の実測コンプトン散乱強度に掛算して、その値と上記標
準試料のコンプトン散乱強度の計算値とから被測定試料
の厚さを求めることを特徴とする薄膜の膜厚測定方法。
1. Compton scattering intensity is calculated for a standard sample having an arbitrary thickness of an arbitrary substance, Compton scattering intensity is measured for the standard sample and the sample to be measured, and a calculated value and measured value of Compton scattering intensity for the standard sample are calculated. The thickness of the thin film is measured by multiplying the measured Compton scattering intensity of the sample to be measured by the ratio with the calculated value of the Compton scattering intensity of the standard sample. Method.
JP2071516A 1990-03-20 1990-03-20 Thin film thickness measurement method Expired - Lifetime JPH0682049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071516A JPH0682049B2 (en) 1990-03-20 1990-03-20 Thin film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071516A JPH0682049B2 (en) 1990-03-20 1990-03-20 Thin film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH03272411A JPH03272411A (en) 1991-12-04
JPH0682049B2 true JPH0682049B2 (en) 1994-10-19

Family

ID=13462959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071516A Expired - Lifetime JPH0682049B2 (en) 1990-03-20 1990-03-20 Thin film thickness measurement method

Country Status (1)

Country Link
JP (1) JPH0682049B2 (en)

Also Published As

Publication number Publication date
JPH03272411A (en) 1991-12-04

Similar Documents

Publication Publication Date Title
Chantler et al. Measurement of the x-ray mass attenuation coefficient of copper using 8.85–20 keV synchrotron radiation
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
US5113421A (en) Method and apparatus for measuring the thickness of a coating on a substrate
US3056027A (en) Apparatus for measuring the thickness of a deposit
JP2008309807A (en) Method of determining background corrected count of radiation quantum in x-ray energy spectrum
de Jonge et al. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of molybdenum over the 13.5–41.5− keV energy range
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
Davis et al. Moisture content in drying wood using direct scanning gamma-ray densitometry
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
EP3064932B1 (en) Quantitative x-ray analysis
JP2005513478A5 (en)
JP2820440B2 (en) Method and apparatus for analyzing tissue
JPH0682049B2 (en) Thin film thickness measurement method
JP6838754B1 (en) X-ray fluorescence analyzer
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
JPH11287643A (en) Method and device for measuring thickness by use of transmitted x-ray and method for measuring percentage of specific component by use of transmitted x-ray
US2890344A (en) Analysis of materials by x-rays
JP3399861B2 (en) X-ray analyzer
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
Ekinci et al. Determination of the coating thicknesses due to the scattered radiation in energy dispersive X-ray fluorescence spectrometry
WO1992016819A1 (en) Dynamic alloy correction gauge
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP3018043B2 (en) Calibration curve creation method for film thickness measurement
JP2004503771A (en) X-ray reflectivity apparatus and method
Boman et al. Time and position dependent artefacts in X-ray spectra from a Si (Li) detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 16