JP2021051017A - Radiation shielding method, radiation shielding structure, and clay with lead balls - Google Patents

Radiation shielding method, radiation shielding structure, and clay with lead balls Download PDF

Info

Publication number
JP2021051017A
JP2021051017A JP2019174478A JP2019174478A JP2021051017A JP 2021051017 A JP2021051017 A JP 2021051017A JP 2019174478 A JP2019174478 A JP 2019174478A JP 2019174478 A JP2019174478 A JP 2019174478A JP 2021051017 A JP2021051017 A JP 2021051017A
Authority
JP
Japan
Prior art keywords
clay
lead
radiation
balls
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019174478A
Other languages
Japanese (ja)
Other versions
JP7340245B2 (en
Inventor
次郎 丸山
Jiro Maruyama
次郎 丸山
千弘 駒村
Chihiro Komamura
千弘 駒村
計美 小平
Kazuyoshi Kodaira
計美 小平
晶生 小柳
Akio Koyanagi
晶生 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RF KK
Original Assignee
RF KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF KK filed Critical RF KK
Priority to JP2019174478A priority Critical patent/JP7340245B2/en
Publication of JP2021051017A publication Critical patent/JP2021051017A/en
Application granted granted Critical
Publication of JP7340245B2 publication Critical patent/JP7340245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

To provide a radiation shielding technique involving the use of a radiation shielding member that can be easily manufactured and transported.SOLUTION: A radiation shielding method of the present invention comprises mixing a plurality of lead balls with clay to produce clay with lead balls, filling gaps between radiation shielding walls with the clay with lead balls, and curing the clay with lead balls so as to shield radiation at the gaps with the clay with lead balls.SELECTED DRAWING: Figure 3

Description

本発明は、放射線の遮蔽技術に関する。 The present invention relates to a radiation shielding technique.

各種の目的で放射線を射出する放射線装置がある。放射線装置としては、病変の画像診断のために患者にX線を照射するX線撮影装置や、患部の治療のために患部へX線やガンマ線を照射する放射線治療装置、試料の原子構造をX線回折により解析するために試料にX線を照射するX線回折装置等がある。放射線装置が設置される放射線装置室では、放射線を室内で遮蔽する必要がある。 There are radiation devices that emit radiation for various purposes. Radiation devices include X-ray imaging devices that irradiate patients with X-rays for diagnostic imaging of lesions, radiotherapy devices that irradiate affected areas with X-rays or gamma rays for treatment of affected areas, and X-rays of the atomic structure of samples. There is an X-ray diffractometer that irradiates a sample with X-rays for analysis by line diffraction. In the radiation equipment room where the radiation equipment is installed, it is necessary to shield the radiation indoors.

放射線の遮蔽方法として、内部が空洞の壁を設け、壁の内部に放射線遮蔽部材を充填する方法がある(例えば特許文献1)。 As a radiation shielding method, there is a method in which a wall having a hollow inside is provided and a radiation shielding member is filled inside the wall (for example, Patent Document 1).

特開平9−211169号公報Japanese Unexamined Patent Publication No. 9-21169

上記方法は、壁の制作にコストおよび時間が非常にかかるという問題がある。放射線の遮蔽方法としては、一般的に、放射線を遮蔽する鉛板を室内に設ける方法が知られている。 The above method has a problem that the production of the wall is very costly and time consuming. As a radiation shielding method, a method of providing a lead plate for shielding radiation in a room is generally known.

図1は、放射線を遮蔽するための鉛板21,22,100を示す斜視図である。
放射線の遮蔽のために室内に鉛板21,22を用ける場合、鉛板21,22の合わせ目に隙間23ができる。隙間23からの放射線の漏洩を防ぐため、一方の鉛板21、22上に、隙間23を覆うように鉛板100が設置される。鉛板100は、隙間23に対応する放射線の要求遮蔽量に応じて、所定の厚みの鉛板100A〜100Cが複数枚積層されて構成される。鉛板100A〜100Cは、テープ等により接着される。ベースの鉛板100Aは、積層される鉛板100B、100Cよりも幅がある。鉛板の使用量の軽減のため、上層の鉛板100Cほど短い幅のものが使用される。
FIG. 1 is a perspective view showing lead plates 21, 22, 100 for shielding radiation.
When the lead plates 21 and 22 are used indoors for shielding radiation, a gap 23 is formed at the joints of the lead plates 21 and 22. In order to prevent radiation from leaking from the gap 23, a lead plate 100 is installed on one of the lead plates 21 and 22 so as to cover the gap 23. The lead plate 100 is configured by laminating a plurality of lead plates 100A to 100C having a predetermined thickness according to the required shielding amount of radiation corresponding to the gap 23. The lead plates 100A to 100C are adhered with tape or the like. The lead plate 100A of the base is wider than the lead plates 100B and 100C to be laminated. In order to reduce the amount of lead plate used, a lead plate having a width as short as 100C of the upper layer is used.

この方法では、幅の異なる鉛板100A〜100Cを複数生産しなければならないという問題がある。 This method has a problem that a plurality of lead plates 100A to 100C having different widths must be produced.

図2は、放射線を遮蔽するための鉛板21,22,110を示す斜視図である。
隙間23からの放射線の漏洩を防ぐため、想定される最大の大きさの隙間23に対応する厚みの鉛板110を使用することが考えられる。この場合、鉛板110の重量が必要以上に大きくなり、生産および運搬に大きなデメリットが生じるという問題がある。
FIG. 2 is a perspective view showing lead plates 21, 22, 110 for shielding radiation.
In order to prevent radiation from leaking from the gap 23, it is conceivable to use a lead plate 110 having a thickness corresponding to the assumed maximum size of the gap 23. In this case, there is a problem that the weight of the lead plate 110 becomes larger than necessary, which causes a great disadvantage in production and transportation.

本発明は、生産および運搬が容易な放射線の遮蔽部材を利用した放射線の遮蔽技術を提供することを目的とする。 An object of the present invention is to provide a radiation shielding technique using a radiation shielding member that is easy to produce and transport.

本発明の要旨は以下の通りである。
(1)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を放射線遮蔽壁の隙間に充填し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記隙間において放射線を遮蔽する放射線遮蔽方法。
(2)(1)に記載の放射線遮蔽方法において、前記粘土は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである放射線遮蔽方法。
(3)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を壁部上に塗り、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
(4)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を筐体の外面における曲面部を含む領域に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
(5)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を前記物品の前記外面の全体に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
(6)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を型枠に流し入れ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
(7)(3)から(6)のいずれか一つに記載の放射線遮蔽方法において、前記粘土は、液体粘土である放射線遮蔽方法。
(8)(1)から(7)のいずれか一つに記載の放射線遮蔽方法において、前記鉛球の直径は0.1〜0.5mmである放射線遮蔽方法。
(9)隙間を有する放射線遮蔽壁と、
粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、前記隙間を埋めており、前記隙間において放射線を遮蔽する鉛球入り粘土と、
を備える放射線遮蔽構造。
(10)粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、放射線遮蔽壁の隙間に充填されて硬化することにより前記隙間において放射線を遮蔽可能な鉛球入り粘土。
(11)粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、物品の外面全体を覆った状態で硬化しており、前記物品への放射線を遮蔽する鉛球入り粘土。
(12)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を箱本体の開口部から前記箱本体に流し入れ、
前記開口部を閉塞部材で塞ぐことで、放射線を遮蔽する遮蔽部材を製造する遮蔽部材製造方法。
(13)粘土および前記粘土に混ぜられる複数の中実の鉛球を含む鉛球入り粘土と、
内部に前記鉛球入り粘土を収容する箱状部材と、を備える放射線遮蔽部材。
The gist of the present invention is as follows.
(1) Multiple lead balls are mixed with clay to produce clay containing lead balls.
The clay containing lead balls is filled in the gaps of the radiation shielding wall, and the clay is filled.
A radiation shielding method in which the lead ball-containing clay is hardened and radiation is shielded in the gap by the lead ball-containing clay.
(2) In the radiation shielding method according to (1), the clay is a radiation shielding method in which two agents, a prepolymer of an epoxy resin and a curing agent, are mixed.
(3) Multiple lead balls are mixed with clay to produce clay containing lead balls.
Apply the clay containing lead balls on the wall and
A radiation shielding method in which the lead ball-containing clay is hardened and radiation is shielded by the lead ball-containing clay.
(4) Multiple lead balls are mixed with clay to produce clay containing lead balls.
The clay containing lead balls is laminated on the outer surface of the housing including the curved surface portion, and the clay is laminated.
A radiation shielding method in which the lead ball-containing clay is hardened and the radiation to the article is shielded by the lead ball-containing clay.
(5) Multiple lead balls are mixed with clay to produce clay containing lead balls.
The clay containing lead balls was laminated over the entire outer surface of the article,
A radiation shielding method in which the lead ball-containing clay is hardened and the radiation to the article is shielded by the lead ball-containing clay.
(6) Multiple lead balls are mixed with clay to produce clay containing lead balls.
A radiation shielding method in which the clay containing lead balls is poured into a mold and radiation is shielded by the clay containing lead balls.
(7) In the radiation shielding method according to any one of (3) to (6), the clay is a liquid clay.
(8) In the radiation shielding method according to any one of (1) to (7), the radiation shielding method in which the diameter of the lead ball is 0.1 to 0.5 mm.
(9) Radiation shielding wall with a gap and
A clay containing clay and a plurality of solid lead balls mixed with the clay, filling the gaps and shielding radiation in the gaps, and a clay containing lead balls.
Radiation shielding structure with.
(10) A clay containing lead balls, which contains clay and a plurality of solid lead balls mixed with the clay, and can block radiation in the gaps by being filled in the gaps of the radiation shielding wall and cured.
(11) A clay containing a clay and a plurality of solid lead balls mixed with the clay, which is hardened while covering the entire outer surface of the article and shields radiation to the article.
(12) Multiple lead balls are mixed with clay to produce clay containing lead balls.
The clay containing lead balls is poured into the box body through the opening of the box body, and the clay is poured into the box body.
A method for manufacturing a shielding member, which manufactures a shielding member that shields radiation by closing the opening with a closing member.
(13) Clay and clay containing lead balls containing a plurality of solid lead balls mixed with the clay,
A radiation shielding member including a box-shaped member for accommodating the clay containing lead balls inside.

従来例における放射線を遮蔽するための鉛板21,22,100を示す斜視図である。It is a perspective view which shows the lead plate 21, 22, 100 for shielding the radiation in the conventional example. 従来例における放射線を遮蔽するための鉛板21,22,110を示す斜視図である。It is a perspective view which shows the lead plate 21, 22, 110 for shielding the radiation in the conventional example. 第1実施形態における鉛球入り粘土3を利用した放射線遮蔽構造1を示す図である。It is a figure which shows the radiation shielding structure 1 using the clay 3 containing a lead ball in 1st Embodiment. 第2実施形態における放射線遮蔽構造1Aを示す図である。It is a figure which shows the radiation shielding structure 1A in the 2nd Embodiment. 第3実施形態における放射線遮蔽構造1Bを示す図である。It is a figure which shows the radiation shielding structure 1B in 3rd Embodiment. 第4実施形態における放射線遮蔽構造1Cを示す図である。It is a figure which shows the radiation shielding structure 1C in 4th Embodiment. 第5実施形態における鉛球入り粘土3Dが積層する筐体41の断面図であるFIG. 5 is a cross-sectional view of a housing 41 in which clay 3D containing lead balls is laminated in the fifth embodiment. 従来例における筐体41を鉛板120〜122で覆う構成の断面図である。It is sectional drawing of the structure which covers the housing 41 in the conventional example with lead plates 120 to 122. 第6実施形態における物品42に積層される鉛球入り粘土3Eの断面図である。It is sectional drawing of the clay 3E containing a lead ball laminated on the article 42 in 6th Embodiment. 第7実施形態における放射線遮蔽部材8の断面図である。It is sectional drawing of the radiation shielding member 8 in 7th Embodiment. 第8実施形態における放射線遮蔽方法を説明するための断面図である。It is sectional drawing for demonstrating the radiation shielding method in 8th Embodiment.

以下、実施形態について図面を参照しつつ説明する。
(第1実施形態)
図3(B)に示す鉛球入り粘土3は、X線、ガンマ線、ベータ線等の放射線の遮蔽部材として利用できる。鉛球入り粘土3は、図3(A)に示すように、複数の鉛球31を粘土32に混ぜることで生成される。鉛球31は、中実であり、直径が0.1〜0.5mmの範囲内の所定値に大略揃ったものを利用する。鉛球31の直径は0.1〜0.5mmであることが好ましい。鉛球31の直径が0.5mm以下であれば、鉛球31を十分に密に配置でき、鉛球入り粘土3の放射線の遮蔽能力を良好にできる。鉛球31の直径が0.1mm以上であれば、市場に流通する鉛球31を利用できる(直径が0.1mmより小さい鉛球31は、特殊なものであるため入手しにくい)。
Hereinafter, embodiments will be described with reference to the drawings.
(First Embodiment)
The lead ball-containing clay 3 shown in FIG. 3B can be used as a shielding member for radiation such as X-rays, gamma rays, and beta rays. As shown in FIG. 3A, the lead ball-containing clay 3 is produced by mixing a plurality of lead balls 31 with the clay 32. As the lead ball 31, a solid lead ball 31 having a diameter of 0.1 to 0.5 mm and having a predetermined value within a range of 0.1 to 0.5 mm is used. The diameter of the lead ball 31 is preferably 0.1 to 0.5 mm. When the diameter of the lead ball 31 is 0.5 mm or less, the lead ball 31 can be arranged sufficiently densely, and the radiation shielding ability of the lead ball-containing clay 3 can be improved. If the diameter of the lead ball 31 is 0.1 mm or more, the lead ball 31 on the market can be used (the lead ball 31 having a diameter smaller than 0.1 mm is difficult to obtain because it is a special one).

粘土32は、鉛球31を混ぜることができ、壁の隙間や穴に充填できるとともに、該充填後に硬化するものであれば、適宜の材料を利用できる。粘土32は、接着剤、パテとも換言できる。ここでは、粘土32として、エポキシ粘土を用いる例を説明する。粘土32は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである。粘土32は、その他、ゴム材であってもよく、製造工程でゴム(粘土32)に鉛球31を入れてもよい。また、粘土32は、熱可塑性のポリエチレン樹脂等の樹脂であってもよく、ガラス転移点(融点)よりも高温時は柔らかくなり流動性を有し、ガラス転移点より低温度では固化するものであってもよい。粘土32として、適宜の材料を使用できる。本実施形態では、粘土32は、こねることができ、立体的な形状を保持できるものが使用される。 As long as the clay 32 can be mixed with lead balls 31 and can be filled in gaps and holes in the wall and hardened after the filling, an appropriate material can be used. Clay 32 can also be rephrased as an adhesive or putty. Here, an example in which epoxy clay is used as the clay 32 will be described. Clay 32 is a mixture of an epoxy resin prepolymer and a curing agent. The clay 32 may also be a rubber material, and lead balls 31 may be added to the rubber (clay 32) in the manufacturing process. Further, the clay 32 may be a resin such as a thermoplastic polyethylene resin, and is soft at a temperature higher than the glass transition point (melting point) and has fluidity, and solidifies at a temperature lower than the glass transition point. There may be. An appropriate material can be used as the clay 32. In the present embodiment, the clay 32 that can be kneaded and can maintain a three-dimensional shape is used.

粘土32に対する鉛球31の密度は、十分な放射線の遮蔽能力を確保する観点から60%以上であることが好ましい。鉛球31の密度は、鉛球入り粘土3の使用形態に応じて好ましい値に調整すればよい。例えば、鉛球入り粘土3A、3Dを壁部11に塗る場合(第2実施形態)、筐体41に積層する場合(第5実施形態)には、鉛球31の密度は、鉛球入り粘土3A、3Dを壁部11または筐体41に良好に付着する値に調整すればよい。 The density of the lead spheres 31 with respect to the clay 32 is preferably 60% or more from the viewpoint of ensuring a sufficient radiation shielding ability. The density of the lead balls 31 may be adjusted to a preferable value according to the usage pattern of the clay 3 containing lead balls. For example, when the lead ball-containing clay 3A and 3D are applied to the wall portion 11 (second embodiment) and laminated on the housing 41 (fifth embodiment), the density of the lead ball 31 is the lead ball-containing clay 3A and 3D. May be adjusted to a value that adheres well to the wall portion 11 or the housing 41.

図3(C)は、放射線遮蔽構造1を示す断面図である。
放射線遮蔽構造1は、歯科用X線撮影装置等の放射線装置が設置される放射線装置室の壁構造である。放射線遮蔽構造1では、放射線装置室の壁部11,12の室内側に、X線等の放射線の遮蔽壁として、鉛板21,22がテープによる接着等により設けられている。これにより、放射線遮蔽構造1では、室外への放射線の漏洩防止が図られている。
FIG. 3C is a cross-sectional view showing the radiation shielding structure 1.
The radiation shielding structure 1 is a wall structure of a radiation apparatus room in which a radiation apparatus such as a dental X-ray imaging apparatus is installed. In the radiation shielding structure 1, lead plates 21 and 22 are provided on the indoor side of the wall portions 11 and 12 of the radiation apparatus room as a shielding wall for radiation such as X-rays by bonding with tape or the like. As a result, the radiation shielding structure 1 is designed to prevent radiation from leaking to the outside.

ここで、壁部11,12の入隅においては、鉛板21,22は、互いに直交する姿勢で隣接している。鉛板21,22間には、図3(C)の紙面垂直方向に沿って、鉛板21,22の合わせ目等による隙間23が生じている。この場合、隙間23から室外へ放射線が漏洩する恐れがある。 Here, at the inside corners of the wall portions 11 and 12, the lead plates 21 and 22 are adjacent to each other in a posture orthogonal to each other. A gap 23 is formed between the lead plates 21 and 22 along the vertical direction of the paper surface in FIG. 3C due to the seams of the lead plates 21 and 22 and the like. In this case, radiation may leak from the gap 23 to the outside.

そこで、作業員は、現場にて、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜて粘土32を生成する。そして、作業員は、この粘土21に複数の鉛球31を混ぜて鉛球入り粘土3を生成する。 Therefore, the worker mixes the epoxy resin prepolymer and the curing agent at the site to produce clay 32. Then, the worker mixes a plurality of lead balls 31 with the clay 21 to generate the clay 3 containing lead balls.

続いて、作業員は、鉛球入り粘土3の硬化前に、鉛球入り粘土3を鉛板21,22の隙間23全域に充填する。作業員は、粘土32に設定された硬化時間、鉛球入り粘土3を放置することで、あるいは鉛球入り粘土3を設定温度まで加熱することで、鉛球入り粘土3を硬化させる。 Subsequently, the worker fills the entire gap 23 of the lead plates 21 and 22 with the lead ball-containing clay 3 before the lead ball-containing clay 3 is cured. The worker cures the lead ball-containing clay 3 by leaving the lead ball-containing clay 3 for a curing time set in the clay 32 or by heating the lead ball-containing clay 3 to a set temperature.

本実施形態では、鉛球入り粘土3により隙間23において放射線を遮蔽でき、隙間23から室外への放射線の漏洩を防止できる。本実施形態では、放射線の遮蔽部材として、鉛球入り粘土3を利用するところ、鉛球入り粘土3は、市販の粘土32および鉛球31を利用できるので、生産が容易である。 In the present embodiment, the clay 3 containing lead balls can shield the radiation in the gap 23, and can prevent the radiation from leaking from the gap 23 to the outside. In the present embodiment, the lead ball-containing clay 3 is used as the radiation shielding member. As the lead ball-containing clay 3, commercially available clay 32 and lead ball 31 can be used, so that the production is easy.

従来、隙間23の放射線遮蔽部材として、鉛板100,110(図1、図2)を設けており、鉛板100,110は、大きくて運搬が大変であった。本実施形態では、隙間23の遮蔽部材として、鉛球入り粘土3を利用するところ、鉛球入り粘土3は、隙間23を充填できればよいので、隙間23の放射線遮蔽部材としての必要体積量を従来よりも大幅に低減できる。 Conventionally, lead plates 100 and 110 (FIGS. 1 and 2) have been provided as radiation shielding members for the gap 23, and the lead plates 100 and 110 are large and difficult to transport. In the present embodiment, the lead ball-containing clay 3 is used as the shielding member of the gap 23. Since the lead ball-containing clay 3 only needs to be able to fill the gap 23, the required volume of the gap 23 as the radiation shielding member is larger than that of the conventional one. It can be significantly reduced.

また、原材料の粘土32および鉛球31は、形状が不定であるので適当な容器に入れることができ、現場まで運搬しやすい。そして、粘土32は、鉛よりも軽量である。以上のことから、隙間23の遮蔽部材としての鉛球入り粘土3(粘土32および鉛球31)は、現場までの運搬が従来(鉛板100,110)に比べて非常に容易である。 Further, since the raw materials clay 32 and lead ball 31 have indefinite shapes, they can be put in an appropriate container and easily transported to the site. And clay 32 is lighter than lead. From the above, the lead ball-containing clay 3 (clay 32 and lead ball 31) as the shielding member of the gap 23 is much easier to transport to the site than the conventional ones (lead plates 100 and 110).

本実施形態では、非常に軽量の鉛球入り粘土3を隙間23に充填すればよいので、施工が従来に比べて非常に容易になる。なお、本実施形態において、後述のスラリー状の鉛球入り粘土3Aを利用してもよい。 In the present embodiment, the gap 23 may be filled with a very lightweight clay 3 containing lead balls, so that the construction becomes much easier than before. In this embodiment, the slurry-like clay 3A containing lead balls, which will be described later, may be used.

(第2実施形態)
図4(B)は、放射線遮蔽構造1Aを示す図である。
放射線遮蔽構造1Aでは、放射線装置室の壁部11の室内側に鉛球入り粘土3Aが塗布され、該鉛球入り粘土3Aの層により、室外への放射線の漏洩防止が図られている。
(Second Embodiment)
FIG. 4B is a diagram showing a radiation shielding structure 1A.
In the radiation shielding structure 1A, the lead ball-containing clay 3A is applied to the indoor side of the wall portion 11 of the radiation device room, and the layer of the lead ball-containing clay 3A prevents leakage of radiation to the outside.

図4(A)に示すように、鉛球入り粘土3Aは、直径が0.1〜0.5mmの範囲内の所定値に大略揃った鉛球31Aを粘土32Aに混ぜることで生成される。粘土32Aは、非水溶性の合成樹脂の微粒子が水中に分散・混合された乳液状の合成樹脂エマルション粘土である。合成樹脂エマルション粘土の可塑性は、第1実施形態のエポキシ粘土の可塑性よりも低い。なお、粘土32Aは、固化する前は流体としての性質を有する液体粘土であればよく、合成樹脂エマルション粘土の他、エポキシ樹脂系、合成樹脂系、アクリル樹脂系、ウレタン樹脂系、シリコン樹脂系、フッ素樹脂系等の液剤(液体粘土)であってもよい。該液剤(液体粘土)は、1液剤でも、主剤に硬化剤を混ぜて使用する2液剤であってもよい。以下の実施形態でも同様である。 As shown in FIG. 4 (A), the lead ball-containing clay 3A is produced by mixing lead balls 31A having a diameter within a range of 0.1 to 0.5 mm, which is roughly aligned with a predetermined value, with the clay 32A. Clay 32A is a milky liquid synthetic resin emulsion clay in which fine particles of a water-insoluble synthetic resin are dispersed and mixed in water. The plasticity of the synthetic resin emulsion clay is lower than that of the epoxy clay of the first embodiment. The clay 32A may be any liquid clay having properties as a fluid before solidification, and in addition to synthetic resin emulsion clay, epoxy resin-based, synthetic resin-based, acrylic resin-based, urethane resin-based, silicon resin-based, etc. It may be a liquid agent (liquid clay) such as a fluororesin type. The liquid agent (liquid clay) may be a one-component agent or a two-component agent used by mixing a curing agent with a main agent. The same applies to the following embodiments.

作業員は、現場にて、例えばバケツ91に粘土32Aと鉛球31Aを入れ、粘土32Aと鉛球31Aをヘラ92等で混ぜることでスラリー状の鉛球入り粘土3Aを生成する。作業員は、図4(B)に示すように、鉛球入り粘土3Aをヘラ92等で放射線装置室の壁部11の室内側に塗る。作業員は、鉛球入り粘土3Aを放置等により乾燥させることで、鉛球入り粘土3Aを硬化させ、壁部11上に鉛球入り粘土3Aの層を形成する。層の厚みは、放射線の照射量などから、放射線の漏れをどの程度防ぎたいかにより調整すればよく、目的に応じて設定すればよい。 At the site, for example, the worker puts clay 32A and lead ball 31A in a bucket 91 and mixes the clay 32A and lead ball 31A with a spatula 92 or the like to generate clay 3A containing lead balls in a slurry form. As shown in FIG. 4B, the worker applies the lead ball-containing clay 3A to the indoor side of the wall portion 11 of the radiation apparatus room with a spatula 92 or the like. The worker hardens the lead ball-containing clay 3A by drying the lead ball-containing clay 3A by leaving it to stand or the like, and forms a layer of the lead ball-containing clay 3A on the wall portion 11. The thickness of the layer may be adjusted depending on how much radiation leakage is desired from the irradiation amount of radiation and the like, and may be set according to the purpose.

本実施形態では、壁部11上の鉛球入り粘土3Aの層により放射線を遮蔽できる。壁部11の室内側全域に鉛球入り粘土3Aを形成することで、放射線遮蔽部材として鉛板21,22の代わりに鉛球入り粘土3Aの層を形成できる。鉛球入り粘土3Aの層の形成は、鉛球入り粘土3Aをヘラ92等で壁部11に塗布するだけでよく、施工が容易である。本実施形態も、鉛球入り粘土3Aの原材料として、市販の粘土32Aおよび鉛球31Aを利用でき、生産が容易という利点や、粘土32Aおよび鉛球31Aを現場まで運搬しやすいという利点がある。なお、放射線を遮蔽するとは、放射線を完全に遮蔽すること以外に、通過する放射線の量を低減させる意味として記載する場合がある。 In the present embodiment, radiation can be shielded by a layer of clay 3A containing lead balls on the wall portion 11. By forming the lead ball-containing clay 3A over the entire indoor side of the wall portion 11, a layer of lead ball-containing clay 3A can be formed as a radiation shielding member instead of the lead plates 21 and 22. To form the layer of the clay 3A containing lead balls, it is only necessary to apply the clay 3A containing lead balls to the wall portion 11 with a spatula 92 or the like, and the construction is easy. This embodiment also has the advantage that commercially available clay 32A and lead ball 31A can be used as raw materials for the clay 3A containing lead balls, and that the production is easy and that the clay 32A and lead balls 31A are easily transported to the site. In addition to completely shielding the radiation, shielding the radiation may be described as meaning to reduce the amount of passing radiation.

(第3実施形態)
図5は、放射線遮蔽構造1Bを示す図である。
放射線遮蔽構造1Bでは、放射線装置室の壁部11として、側壁であるR状の壁部11Bを含む。鉛板21,22は、丸い曲がりや円状の物の外曲面に取り付けることができず、R状の壁部11Bに取り付けることができない。そのため、従来、R状の壁部11Bに遮蔽部材を設けることは大変であった。
(Third Embodiment)
FIG. 5 is a diagram showing a radiation shielding structure 1B.
In the radiation shielding structure 1B, the wall portion 11 of the radiation apparatus room includes an R-shaped wall portion 11B which is a side wall. The lead plates 21 and 22 cannot be attached to the outer curved surface of a round bend or a circular object, and cannot be attached to the R-shaped wall portion 11B. Therefore, conventionally, it has been difficult to provide a shielding member on the R-shaped wall portion 11B.

本実施形態では、R状の壁部11Bに、放射線の遮蔽部材として鉛球入り粘土3Bを設ける。本実施形態では、鉛球入り粘土3Bは、塗布でき、壁部11Bに容易に設けることができるよう、例えばエポキシ樹脂系の液剤である液体粘土に鉛球をまぜたスラリー状のものを利用する。なお、鉛球入り粘土3Bは、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものであってもよく、この場合も、鉛球入り粘土3Bは、壁部11Bの外面形状への追随性が良好なので、やはり容易に壁部11Bに設けることができる。本実施形態では、R状の壁部11Bにおいて、鉛球入り粘土3Bの層により、室外への放射線の漏洩を防止できる。 In the present embodiment, the lead ball-containing clay 3B is provided on the R-shaped wall portion 11B as a radiation shielding member. In the present embodiment, the lead ball-containing clay 3B is made into a slurry in which lead balls are mixed with liquid clay, which is an epoxy resin-based liquid agent, so that it can be applied and easily provided on the wall portion 11B. The lead ball-containing clay 3B may be made by mixing lead balls with epoxy clay or the like that can maintain a three-dimensional shape. In this case as well, the lead ball-containing clay 3B follows the outer surface shape of the wall portion 11B. Is good, so it can be easily provided on the wall portion 11B. In the present embodiment, in the R-shaped wall portion 11B, the leakage of radiation to the outside can be prevented by the layer of the clay 3B containing lead balls.

図5は、壁部11Bへの鉛球入り粘土3Bの設置作業の途中の様子を示している。鉛球入り粘土3Bは、鉛球と粘土とが混ざっていれば、適宜のものを利用できる。鉄球は、直径が0.1〜0.5mmの範囲内の所定値に大略揃ったものを利用することが好ましい。 平坦な壁部11には、放射線の遮蔽部材として、鉛板21,22を設けてもよいし、鉛球入り粘土3,3A,3Bを設けてもよい。鉛板21,22を設ける場合、鉛板21,22の合わせ目に鉛球入り粘土3を充填してもよい。 FIG. 5 shows a state in the middle of the installation work of the clay 3B containing lead balls on the wall portion 11B. As the clay 3B containing lead balls, an appropriate one can be used as long as the lead balls and clay are mixed. It is preferable to use iron balls having a diameter approximately equal to a predetermined value within the range of 0.1 to 0.5 mm. Lead plates 21 and 22 may be provided on the flat wall portion 11 as radiation shielding members, or clays 3, 3A and 3B containing lead balls may be provided. When the lead plates 21 and 22 are provided, the clay 3 containing lead balls may be filled at the joints of the lead plates 21 and 22.

(第4実施形態)
図6は、放射線遮蔽構造1Cを示す図である。
放射線遮蔽構造1Cでは、天井の壁部11Cがドーム状となっており、該壁部11Cに放射線の遮蔽部材として鉛球入り粘土3Cが設けられている。図6は、壁部11Cへの鉛球入り粘土3Cの設置作業の途中の様子を示している。鉛球入り粘土3Cは、塗布を容易にできるよう、液体粘土に鉛球をまぜたスラリー状のものを使用する。なお、鉛球入り粘土3Cは、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用してもよい。
(Fourth Embodiment)
FIG. 6 is a diagram showing a radiation shielding structure 1C.
In the radiation shielding structure 1C, the wall portion 11C of the ceiling has a dome shape, and the clay 3C containing lead balls is provided on the wall portion 11C as a radiation shielding member. FIG. 6 shows a state in the middle of the installation work of the clay 3C containing lead balls on the wall portion 11C. As the clay 3C containing lead balls, a slurry in which lead balls are mixed with liquid clay is used so that it can be easily applied. As the clay 3C containing lead balls, a mixture of epoxy clay or the like capable of maintaining a three-dimensional shape and lead balls may be used.

本実施形態でも、ドーム状の壁部11Cにおいては、鉛球入り粘土3Cの層により、室外への放射線の漏洩を防止できる。平坦な壁部11には、放射線の遮蔽部材として、鉛板21,22や鉛球入り粘土3,3A〜3Cを設けてもよい。 Also in this embodiment, in the dome-shaped wall portion 11C, the leakage of radiation to the outside can be prevented by the layer of clay 3C containing lead balls. Lead plates 21 and 22 and clays 3, 3A to 3C containing lead balls may be provided on the flat wall portion 11 as radiation shielding members.

(第5実施形態)
図7は、鉛球入り粘土3Dが積層する筐体41の断面図である。
本実施形態の放射線遮蔽方法(放射線遮蔽構造の製造方法)において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Dを生成する。鉛球入り粘土3Dは、液体粘土に鉛球をまぜたスラリー状のものを使用するものとするが、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用してもよい。
(Fifth Embodiment)
FIG. 7 is a cross-sectional view of the housing 41 in which the clay 3D containing lead balls is laminated.
In the radiation shielding method (method for manufacturing a radiation shielding structure) of the present embodiment, the worker first mixes a plurality of lead balls with clay to produce clay 3D containing lead balls. As the clay 3D containing lead balls, a slurry in which lead balls are mixed with liquid clay is used, but a clay in which lead balls are mixed with epoxy clay or the like capable of maintaining a three-dimensional shape may be used.

続いて、作業員は、鉛球入り粘土3Dを、筐体41(物品)の外面における曲面部411を含む領域に、塗布により積層する。エポキシ粘土等を使用する鉛球入り粘土3Dを用いる場合、鉛球入り粘土3Dを筐体41の外面に直接取り付けてもよいし、接着剤やテープ等を用いて筐体41の外面に取り付けてもよい。第3、第4実施形態においても、エポキシ粘土等を使用する鉛球入り粘土3B,3Cを利用する場合には同様である。 Subsequently, the worker stacks the lead ball-containing clay 3D on the outer surface of the housing 41 (article) by coating on the region including the curved surface portion 411. When the lead ball-containing clay 3D using epoxy clay or the like is used, the lead ball-containing clay 3D may be directly attached to the outer surface of the housing 41, or may be attached to the outer surface of the housing 41 using an adhesive, tape, or the like. .. The same applies to the third and fourth embodiments when the lead ball-containing clays 3B and 3C using epoxy clay or the like are used.

筐体としては、放射線装置室内での使用が想定される機器の筐体41や、放射線を放射する装置の筐体41、例えば原子炉の筐体41を例示できる。なお、鉛球入り粘土3Dは、筐体41の外面において曲面部411を含む領域に積層することが特に有効であるが、筐体41の外面において平坦部のみを含む領域に積層されてもよい。 Examples of the housing include a housing 41 of a device that is expected to be used indoors in a radiation device, a housing 41 of a device that emits radiation, for example, a housing 41 of a nuclear reactor. It is particularly effective to laminate the lead ball-containing clay 3D on the outer surface of the housing 41 in the region including the curved surface portion 411, but the clay 3D may be laminated on the outer surface of the housing 41 in the region including only the flat portion.

続いて、作業員は、鉛球入り粘土3Dを乾燥等により硬化させ、筐体41上に鉛球入り粘土3Dの層を形成する。本実施形態では、この鉛球入り粘土3Dにより筐体41への放射線を遮蔽する。 Subsequently, the worker hardens the lead ball-containing clay 3D by drying or the like to form a layer of the lead ball-containing clay 3D on the housing 41. In the present embodiment, the radiation to the housing 41 is shielded by the clay 3D containing lead balls.

図8に示すように、従来、筐体41を鉛板120〜122で覆う場合、筐体41の外面に鉛板120〜122を貼付することとなる。隣り合う鉛板120〜122同士の継ぎ目部分では、放射線漏洩防止のため、例えば鉛板120〜122の端部同士が重ねられる。例えば、曲面部411上の鉛板122の端部が、両隣の鉛板120、121の端部上に重ねられる。この構成では、曲面部411上の鉛板122は、曲面部411への追従性が悪く、凹凸形状となって曲面部411との間に隙間ができ、放射線の遮蔽能力が低下する。 As shown in FIG. 8, conventionally, when the housing 41 is covered with the lead plates 120 to 122, the lead plates 120 to 122 are attached to the outer surface of the housing 41. At the joint portion between the adjacent lead plates 120 to 122, for example, the ends of the lead plates 120 to 122 are overlapped with each other in order to prevent radiation leakage. For example, the ends of the lead plates 122 on the curved surface portion 411 are overlapped on the ends of the lead plates 120 and 121 on both sides. In this configuration, the lead plate 122 on the curved surface portion 411 has poor followability to the curved surface portion 411, becomes an uneven shape, creates a gap between the lead plate 122 and the curved surface portion 411, and reduces the radiation shielding ability.

本実施形態では、鉛球入り粘土3Dを放射線遮蔽部材として用いるので、前述したように生産性および運搬性が良好である。そのうえ、鉛球入り粘土3Dは、曲面部411への追従性が良好であるため、鉛板120〜122を設置するよりも、鉛球入り粘土3Dを施工したほうが放射線を良好に遮蔽できる。 In the present embodiment, since the clay 3D containing lead balls is used as the radiation shielding member, the productivity and transportability are good as described above. Moreover, since the lead ball-containing clay 3D has good followability to the curved surface portion 411, radiation can be better shielded by installing the lead ball-containing clay 3D than by installing the lead plates 120 to 122.

(第6実施形態)
図9(A)は、物品42に積層される鉛球入り粘土3Eの断面図であり、図9(B)は、物品42に積層される鉛球入り粘土3Eの断面斜視図である。
本実施形態の放射線遮蔽方法において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Eを生成する。
(Sixth Embodiment)
FIG. 9A is a cross-sectional view of the lead ball-containing clay 3E laminated on the article 42, and FIG. 9B is a cross-sectional perspective view of the lead ball-containing clay 3E laminated on the article 42.
In the radiation shielding method of the present embodiment, the worker first mixes a plurality of lead balls with clay to produce clay 3E containing lead balls.

続いて、作業員は、鉛球入り粘土3Eを物品42の外面全体に積層する。物品42は、本実施形態では、球状のものを例示するが、適宜のものを使用できる。鉛球入り粘土3Eとして、液体粘土に鉛球をまぜたスラリー状のものを使用する場合、容器内の鉛球入り粘土3Eに物品42を浸すことで、物品42の外面全体に鉛球入り粘土3Eを積層できる。鉛球入り粘土3Eとして、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用する場合、鉛球入り粘土3Eを、物品42の外面上に、取り付け、貼り付け等により積層する。 Subsequently, the worker stacks the lead ball-containing clay 3E on the entire outer surface of the article 42. In the present embodiment, the article 42 is a spherical article, but an appropriate article 42 can be used. When a slurry of lead balls mixed with liquid clay is used as the lead ball-containing clay 3E, the lead ball-containing clay 3E can be laminated on the entire outer surface of the article 42 by immersing the article 42 in the lead ball-containing clay 3E in the container. .. When a lead ball-containing clay 3E obtained by mixing lead balls with an epoxy clay or the like capable of maintaining a three-dimensional shape is used, the lead ball-containing clay 3E is laminated on the outer surface of the article 42 by attaching, pasting, or the like.

続いて、作業員は、鉛球入り粘土3Eを乾燥等により硬化させ、物品42の外面全体に鉛球入り粘土3Eの層を形成する。このようにして物品42に積層される鉛球入り粘土3Eは、粘土および粘土に混ぜられる複数の中実の鉛球を含み、物品42の外面全体を覆った状態で硬化している。本実施形態では、この鉛球入り粘土3Eにより物品42への放射線を遮蔽する。 Subsequently, the worker hardens the lead ball-containing clay 3E by drying or the like to form a layer of the lead ball-containing clay 3E on the entire outer surface of the article 42. The clay 3E containing lead balls laminated on the article 42 in this way contains clay and a plurality of solid lead balls mixed with the clay, and is cured in a state of covering the entire outer surface of the article 42. In the present embodiment, the lead ball-containing clay 3E shields the radiation to the article 42.

本実施形態では、物品42を覆う放射線遮蔽部材として、表面形状への追従性が良好な鉛球入り粘土3Eを利用する。そのため、物品42全面に鉛球入り粘土3Eを密着させて積層させることができ、放射線を良好に遮蔽できる。 In the present embodiment, the lead ball-containing clay 3E having good followability to the surface shape is used as the radiation shielding member for covering the article 42. Therefore, the clay 3E containing lead balls can be adhered to and laminated on the entire surface of the article 42, and radiation can be well shielded.

(第7実施形態)
図10(A)は、放射線遮蔽部材8の断面図である。
放射線遮蔽部材8は、運搬でき、希望の箇所に設置できる。例えば放射線装置室の内壁に沿って積むことで、放射線遮蔽部材8を放射線遮蔽壁として利用できる。また、放射線遮蔽部材8を、放射線遮蔽壁で覆えない部位や、放射線遮蔽壁の隙間を覆うのに利用できる。
(7th Embodiment)
FIG. 10A is a cross-sectional view of the radiation shielding member 8.
The radiation shielding member 8 can be transported and installed at a desired location. For example, the radiation shielding member 8 can be used as a radiation shielding wall by stacking along the inner wall of the radiation apparatus room. Further, the radiation shielding member 8 can be used to cover a portion that cannot be covered by the radiation shielding wall or a gap in the radiation shielding wall.

放射線遮蔽部材8は、粘土および粘土に混ぜられる複数の中実の鉛球を含む鉛球入り粘土3Fと、内部に鉛球入り粘土3Fを収容する箱状部材43と、を備える。鉛球入り粘土3Fとして、例えば、液体粘土を使用したスラリー状のものを用いることができる。箱状部材43は、上端に開口部4311がある箱本体431と、開口部4311を閉塞する閉塞部材432とを備える。 The radiation shielding member 8 includes clay and a clay containing lead balls 3F containing a plurality of solid lead balls mixed with clay, and a box-shaped member 43 containing the clay 3F containing lead balls inside. As the lead ball-containing clay 3F, for example, a slurry using liquid clay can be used. The box-shaped member 43 includes a box main body 431 having an opening 4311 at the upper end, and a closing member 432 that closes the opening 4311.

本実施形態の放射線遮蔽方法において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Fを生成し、図10(B)に示すように、鉛球入り粘土3Fを箱本体431の開口部4311から箱本体431に流し入れる。そして、作業員は、図10(A)に示すように、開口部4311を閉塞部材432で塞ぐことで、放射線を遮蔽する放射線遮蔽部材8を製造できる。 In the radiation shielding method of the present embodiment, the worker first mixes a plurality of lead balls with clay to generate clay 3F containing lead balls, and as shown in FIG. 10 (B), the clay 3F containing lead balls is used in the box body 431. Pour into the box body 431 through the opening 4311. Then, as shown in FIG. 10A, the worker can manufacture the radiation shielding member 8 that shields radiation by closing the opening 4311 with the closing member 432.

(第8実施形態)
図11は、放射線遮蔽方法を説明するための断面図である。
作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Gを生成する。球入り粘土3Gとして、例えば、液体粘土を使用したスラリー状のものを用いることができる。
(8th Embodiment)
FIG. 11 is a cross-sectional view for explaining a radiation shielding method.
The worker first mixes a plurality of lead balls with clay to produce clay 3G containing lead balls. As the ball-filled clay 3G, for example, a slurry using liquid clay can be used.

続いて、作業員は、鉛球入り粘土3Gを型枠44に流し入れ、鉛球入り粘土3Gにより放射線を遮蔽する。型枠44は、例えば放射線装置室の内壁や、原子炉の外側に設置できる。型枠44は、内部が空洞の壁状のものを指す。鉛球入り粘土3Gと型枠44を含んで放射線遮蔽構造1Gが構成される。 Subsequently, the worker pours the lead ball-containing clay 3G into the mold 44 and shields the radiation with the lead ball-containing clay 3G. The formwork 44 can be installed, for example, on the inner wall of the radiation equipment room or on the outside of the nuclear reactor. The formwork 44 refers to a wall-like structure having a hollow inside. A radiation shielding structure 1G is formed by including a lead ball-containing clay 3G and a mold 44.

本実施形態では、型枠44にスラリー状の球入り粘土3Gを流すことで球入り粘土3Gを設置するので、放射線遮蔽壁に球入り粘土3Gを厚く設置できる。 In the present embodiment, since the ball-filled clay 3G is installed by flowing the slurry-shaped ball-filled clay 3G through the mold 44, the ball-filled clay 3G can be thickly installed on the radiation shielding wall.

(変形例)
鉛球31,31Aの直径は、0.1mmより小さくてもよいし、0.5mmより大きくてもよく、例えば0.05mmや1mm、2mmや5mmであってもよい。鉛球31の直径は所定値に揃っていなくてもよい。鉛球31Aの直径も、所定値に揃っていなくてもよい。
(Modification example)
The diameters of the lead balls 31, 31A may be smaller than 0.1 mm, larger than 0.5 mm, and may be, for example, 0.05 mm, 1 mm, 2 mm, or 5 mm. The diameter of the lead ball 31 does not have to be uniform to a predetermined value. The diameter of the lead ball 31A does not have to be uniform to a predetermined value.

鉛球入り粘土3,3A〜3Gの粘土32,32Aとして、水と練り合わせることで硬化が始まる石膏系の粘土を使用したり、乾燥することで硬化する炭酸カルシウム系の粘土を使用したり、ポリエステル樹脂のプレポリマーと硬化剤の2剤を混ぜて生成するポリエステル系の粘土を使用したりしてもよい。鉛球入り粘土3,3A〜3Gとして、塗るまたは積層する対象領域のサイズや場所、形状によって、スラリー状の塗りやすいものを利用するか、形状を維持して硬化させる事が出来るものを利用するかを決めればよい。また、鉛球入り粘土3,3A〜3Gの固化前の硬さ、および固化後の硬さも、粘土32,32Aの材料によって適宜に設定できる。 As lead ball-containing clays 3,3A to 3G clays 32,32A, gypsum-based clays that start to harden when kneaded with water are used, calcium carbonate-based clays that harden when dried are used, or polyester. Polyester-based clay produced by mixing two agents, a resin prepolymer and a curing agent, may be used. As clays 3, 3A to 3G containing lead balls, depending on the size, location, and shape of the target area to be painted or laminated, use a slurry-like clay that is easy to apply, or one that can maintain its shape and be cured. You just have to decide. Further, the hardness of the lead ball-containing clays 3, 3A to 3G before solidification and the hardness after solidification can be appropriately set depending on the material of the clays 32 and 32A.

鉛球入り粘土3,3A〜3Gは、放射線の遮蔽能力の向上のために鉛板21,22等の適宜の放射線遮蔽壁上に設けられてもよい。鉛球入り粘土3,3A〜3Gは、放射線装置室の壁部11,11B,11Cの外側に設けられてもよい。 The lead ball-containing clays 3, 3A to 3G may be provided on an appropriate radiation shielding wall such as lead plates 21 and 22 in order to improve the radiation shielding ability. The lead ball-containing clays 3, 3A to 3G may be provided outside the wall portions 11, 11B, 11C of the radiation apparatus room.

3,3A〜3G…鉛球入り粘土、11,11B,11C…壁部、21,22…鉛板(放射線遮蔽壁)、23…隙間、31,31A…鉛球、41…筐体、42…物品、43…箱状部材、44…型枠、411…曲面部、431…箱本体、4311…開口部。 3,3A-3G ... Clay with lead ball, 11,11B, 11C ... Wall part, 21,22 ... Lead plate (radiation shielding wall), 23 ... Gap, 31,31A ... Lead ball, 41 ... Housing, 42 ... Article, 43 ... Box-shaped member, 44 ... Formwork, 411 ... Curved surface, 431 ... Box body, 4311 ... Opening.

Claims (13)

複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を放射線遮蔽壁の隙間に充填し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記隙間において放射線を遮蔽する放射線遮蔽方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
The clay containing lead balls is filled in the gaps of the radiation shielding wall, and the clay is filled.
A radiation shielding method in which the lead ball-containing clay is hardened and radiation is shielded in the gap by the lead ball-containing clay.
請求項1に記載の放射線遮蔽方法において、前記粘土は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである放射線遮蔽方法。 The radiation shielding method according to claim 1, wherein the clay is a mixture of a prepolymer of an epoxy resin and a curing agent. 複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を壁部上に塗り、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
Apply the clay containing lead balls on the wall and
A radiation shielding method in which the lead ball-containing clay is hardened and radiation is shielded by the lead ball-containing clay.
複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を筐体の外面における曲面部を含む領域に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記筐体への放射線を遮蔽する放射線遮蔽方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
The clay containing lead balls is laminated on the outer surface of the housing including the curved surface portion, and the clay is laminated.
A radiation shielding method in which the lead ball-containing clay is hardened and the radiation to the housing is shielded by the lead ball-containing clay.
複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を前記物品の前記外面の全体に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
The clay containing lead balls was laminated over the entire outer surface of the article,
A radiation shielding method in which the lead ball-containing clay is hardened and the radiation to the article is shielded by the lead ball-containing clay.
複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を型枠に流し入れ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
A radiation shielding method in which the clay containing lead balls is poured into a mold and radiation is shielded by the clay containing lead balls.
請求項3から請求項6のいずれか一つに記載の放射線遮蔽方法において、前記粘土は、液体粘土である放射線遮蔽方法。 The radiation shielding method according to any one of claims 3 to 6, wherein the clay is a liquid clay. 請求項1から請求項7のいずれか一つに記載の放射線遮蔽方法において、前記鉛球の直径は0.1〜0.5mmである放射線遮蔽方法。 The radiation shielding method according to any one of claims 1 to 7, wherein the lead ball has a diameter of 0.1 to 0.5 mm. 隙間を有する放射線遮蔽壁と、
粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、前記隙間を埋めており、前記隙間において放射線を遮蔽する鉛球入り粘土と、
を備える放射線遮蔽構造。
Radiation shielding walls with gaps and
A clay containing clay and a plurality of solid lead balls mixed with the clay, filling the gaps and shielding radiation in the gaps, and a clay containing lead balls.
Radiation shielding structure with.
粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、放射線遮蔽壁の隙間に充填されて硬化することにより前記隙間において放射線を遮蔽可能な鉛球入り粘土。 A clay containing a clay and a plurality of solid lead balls mixed with the clay, and the clay containing the lead balls capable of shielding radiation in the gaps by filling and hardening the gaps of the radiation shielding wall. 粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、物品の外面全体を覆った状態で硬化しており、前記物品への放射線を遮蔽する鉛球入り粘土。 A clay containing clay and a plurality of solid lead balls mixed with the clay, which is hardened while covering the entire outer surface of the article and shields radiation to the article. 複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を箱本体の開口部から前記箱本体に流し入れ、
前記開口部を閉塞部材で塞ぐことで、放射線を遮蔽する遮蔽部材を製造する遮蔽部材製造方法。
Multiple lead balls are mixed with clay to produce lead ball-containing clay.
The clay containing lead balls is poured into the box body through the opening of the box body, and the clay is poured into the box body.
A method for manufacturing a shielding member, which manufactures a shielding member that shields radiation by closing the opening with a closing member.
粘土および前記粘土に混ぜられる複数の中実の鉛球を含む鉛球入り粘土と、
内部に前記鉛球入り粘土を収容する箱状部材と、を備える放射線遮蔽部材。
Clay and clay containing lead balls containing multiple solid lead balls mixed with the clay,
A radiation shielding member including a box-shaped member for accommodating the clay containing lead balls inside.
JP2019174478A 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads Active JP7340245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019174478A JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174478A JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Publications (2)

Publication Number Publication Date
JP2021051017A true JP2021051017A (en) 2021-04-01
JP7340245B2 JP7340245B2 (en) 2023-09-07

Family

ID=75157608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174478A Active JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Country Status (1)

Country Link
JP (1) JP7340245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202020A1 (en) 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216298A (en) * 1984-03-23 1985-10-29 日立金属株式会社 Shielding material for radiation
JPH02302697A (en) * 1989-05-17 1990-12-14 Ishikawajima Harima Heavy Ind Co Ltd Construction of shielding wall
JP2003255081A (en) * 2002-03-04 2003-09-10 National Maritime Research Institute Radiation shield material composition
JP2011007510A (en) * 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
JP2015064312A (en) * 2013-09-26 2015-04-09 株式会社 広仁社 Radiation shield substance
US20150206608A1 (en) * 2012-09-03 2015-07-23 Helse Stavanger Hf Radiation absorbing composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216298A (en) * 1984-03-23 1985-10-29 日立金属株式会社 Shielding material for radiation
JPH02302697A (en) * 1989-05-17 1990-12-14 Ishikawajima Harima Heavy Ind Co Ltd Construction of shielding wall
JP2003255081A (en) * 2002-03-04 2003-09-10 National Maritime Research Institute Radiation shield material composition
JP2011007510A (en) * 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
US20150206608A1 (en) * 2012-09-03 2015-07-23 Helse Stavanger Hf Radiation absorbing composition
JP2015064312A (en) * 2013-09-26 2015-04-09 株式会社 広仁社 Radiation shield substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202020A1 (en) 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint

Also Published As

Publication number Publication date
JP7340245B2 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP5687393B2 (en) Floor panel
JP2008232845A (en) Precast block for radiation shield, radiation shielding structure and method for constructing it
JP7340245B2 (en) Radiation shielding method, radiation shielding structure, clay with lead beads
JP6322359B2 (en) Radiation shielding wall, radiation shielding wall construction method, and radiation shielding wall repair method
US20150206608A1 (en) Radiation absorbing composition
KR101730502B1 (en) Floor space noise prevention structure for apart and thereof
JP6820669B2 (en) Radiation shield
US3438903A (en) Plastic radiation and acoustic barrier compositions containing a thixotropic agent
JP7121974B2 (en) Lead ball sheet, lead ball sheet manufacturing method, lead ball sheet installation method
JP2007155497A (en) Neutron beam shielding structure and its building method
JP2017207370A (en) Radiation shielding body
JPH02302697A (en) Construction of shielding wall
JP7014369B2 (en) Radiation shielding board and manufacturing method of radiation shielding board
KR20180092043A (en) Noise preventing materials and noise peventing construction method thereof
CN104658625B (en) Proton waste beam station construction technique
JP2012194118A (en) Underwater adhesion repairing method
JP4481521B2 (en) Opening closing method and opening closing structure
JPS60236051A (en) Inspecting method of gap generated in outside wall of concrete structure
KR102629320B1 (en) Radiation shield of the welded pipe for radiography and a manufacturing method thereof
JP6754586B2 (en) Radioactive material-containing waste storage container
JP2011247856A5 (en) Radiation shielding panel, radiation shielding wall and construction method thereof
KR100733791B1 (en) radiation shielding wall
KR101667024B1 (en) Tile construction method for building floor
JP2023051166A (en) Filler, Structure Containing Filler, and Method for Manufacturing Structure Containing Filler
JP2023085238A (en) Anticorrosive composition, and concrete structure protection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7340245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150