JP7340245B2 - Radiation shielding method, radiation shielding structure, clay with lead beads - Google Patents

Radiation shielding method, radiation shielding structure, clay with lead beads Download PDF

Info

Publication number
JP7340245B2
JP7340245B2 JP2019174478A JP2019174478A JP7340245B2 JP 7340245 B2 JP7340245 B2 JP 7340245B2 JP 2019174478 A JP2019174478 A JP 2019174478A JP 2019174478 A JP2019174478 A JP 2019174478A JP 7340245 B2 JP7340245 B2 JP 7340245B2
Authority
JP
Japan
Prior art keywords
clay
lead
radiation
balls
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019174478A
Other languages
Japanese (ja)
Other versions
JP2021051017A (en
Inventor
次郎 丸山
千弘 駒村
計美 小平
晶生 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RF CO., LTD.
Original Assignee
RF CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF CO., LTD. filed Critical RF CO., LTD.
Priority to JP2019174478A priority Critical patent/JP7340245B2/en
Publication of JP2021051017A publication Critical patent/JP2021051017A/en
Application granted granted Critical
Publication of JP7340245B2 publication Critical patent/JP7340245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、放射線の遮蔽技術に関する。 The present invention relates to radiation shielding technology.

各種の目的で放射線を射出する放射線装置がある。放射線装置としては、病変の画像診断のために患者にX線を照射するX線撮影装置や、患部の治療のために患部へX線やガンマ線を照射する放射線治療装置、試料の原子構造をX線回折により解析するために試料にX線を照射するX線回折装置等がある。放射線装置が設置される放射線装置室では、放射線を室内で遮蔽する必要がある。 There are radiation devices that emit radiation for various purposes. Radiology equipment includes X-ray imaging equipment that irradiates patients with X-rays for image diagnosis of lesions, radiation therapy equipment that irradiates X-rays and gamma rays to affected areas for treatment, and x-ray equipment that irradiates X-rays and gamma rays to affected areas for treatment of diseased areas. There are X-ray diffractometers and the like that irradiate a sample with X-rays for analysis by ray diffraction. In a radiation equipment room where radiation equipment is installed, it is necessary to shield the room from radiation.

放射線の遮蔽方法として、内部が空洞の壁を設け、壁の内部に放射線遮蔽部材を充填する方法がある(例えば特許文献1)。 As a radiation shielding method, there is a method of providing a wall with a hollow interior and filling the inside of the wall with a radiation shielding member (for example, Patent Document 1).

特開平9-211169号公報Japanese Patent Application Publication No. 9-211169

上記方法は、壁の制作にコストおよび時間が非常にかかるという問題がある。放射線の遮蔽方法としては、一般的に、放射線を遮蔽する鉛板を室内に設ける方法が知られている。 The above method has a problem in that the wall production is very costly and time consuming. A generally known radiation shielding method is to provide a radiation shielding lead plate indoors.

図1は、放射線を遮蔽するための鉛板21,22,100を示す斜視図である。
放射線の遮蔽のために室内に鉛板21,22を用ける場合、鉛板21,22の合わせ目に隙間23ができる。隙間23からの放射線の漏洩を防ぐため、一方の鉛板21、22上に、隙間23を覆うように鉛板100が設置される。鉛板100は、隙間23に対応する放射線の要求遮蔽量に応じて、所定の厚みの鉛板100A~100Cが複数枚積層されて構成される。鉛板100A~100Cは、テープ等により接着される。ベースの鉛板100Aは、積層される鉛板100B、100Cよりも幅がある。鉛板の使用量の軽減のため、上層の鉛板100Cほど短い幅のものが使用される。
FIG. 1 is a perspective view showing lead plates 21, 22, 100 for shielding radiation.
When the lead plates 21 and 22 are used indoors to shield radiation, a gap 23 is created between the lead plates 21 and 22. In order to prevent leakage of radiation from the gap 23, a lead plate 100 is installed on one of the lead plates 21 and 22 so as to cover the gap 23. The lead plate 100 is constructed by stacking a plurality of lead plates 100A to 100C with a predetermined thickness depending on the required shielding amount of radiation corresponding to the gap 23. The lead plates 100A to 100C are adhered with tape or the like. The base lead plate 100A is wider than the stacked lead plates 100B and 100C. In order to reduce the amount of lead plates used, the lead plates 100C in the upper layer have shorter widths.

この方法では、幅の異なる鉛板100A~100Cを複数生産しなければならないという問題がある。 This method has a problem in that a plurality of lead plates 100A to 100C having different widths must be produced.

図2は、放射線を遮蔽するための鉛板21,22,110を示す斜視図である。
隙間23からの放射線の漏洩を防ぐため、想定される最大の大きさの隙間23に対応する厚みの鉛板110を使用することが考えられる。この場合、鉛板110の重量が必要以上に大きくなり、生産および運搬に大きなデメリットが生じるという問題がある。
FIG. 2 is a perspective view showing lead plates 21, 22, 110 for shielding radiation.
In order to prevent leakage of radiation from the gap 23, it is conceivable to use a lead plate 110 having a thickness corresponding to the assumed maximum size of the gap 23. In this case, there is a problem in that the weight of the lead plate 110 becomes larger than necessary, resulting in a large disadvantage in production and transportation.

本発明は、生産および運搬が容易な放射線の遮蔽部材を利用した放射線の遮蔽技術を提供することを目的とする。 An object of the present invention is to provide a radiation shielding technique using a radiation shielding member that is easy to produce and transport.

本発明の要旨は以下の通りである。
(1)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を放射線遮蔽壁の隙間に充填し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記隙間において放射線を遮蔽する放射線遮蔽方法。
(2)(1)に記載の放射線遮蔽方法において、前記粘土は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである放射線遮蔽方法。
(3)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を壁部上に塗り、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
(4)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を筐体の外面における曲面部を含む領域に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
(5)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を前記物品の前記外面の全体に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
(6)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を型枠に流し入れ、前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
(7)(3)から(6)のいずれか一つに記載の放射線遮蔽方法において、前記粘土は、液体粘土である放射線遮蔽方法。
(8)(1)から(7)のいずれか一つに記載の放射線遮蔽方法において、前記鉛球の直径は0.1~0.5mmである放射線遮蔽方法。
(9)隙間を有する放射線遮蔽壁と、
粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、前記隙間を埋めており、前記隙間において放射線を遮蔽する鉛球入り粘土と、
を備える放射線遮蔽構造。
(10)粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、放射線遮蔽壁の隙間に充填されて硬化することにより前記隙間において放射線を遮蔽可能な鉛球入り粘土。
(11)粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、物品の外面全体を覆った状態で硬化しており、前記物品への放射線を遮蔽する鉛球入り粘土。
(12)複数の鉛球を粘土に混ぜて鉛球入り粘土を生成し、
前記鉛球入り粘土を箱本体の開口部から前記箱本体に流し入れ、
前記開口部を閉塞部材で塞ぐことで、放射線を遮蔽する遮蔽部材を製造する遮蔽部材製造方法。
(13)粘土および前記粘土に混ぜられる複数の中実の鉛球を含む鉛球入り粘土と、
内部に前記鉛球入り粘土を収容する箱状部材と、を備える放射線遮蔽部材。
The gist of the invention is as follows.
(1) Mix multiple lead balls with clay to create clay containing lead balls,
Filling the gap in the radiation shielding wall with the clay containing lead balls,
A radiation shielding method comprising curing the lead ball-containing clay and shielding radiation in the gap by the lead ball-containing clay.
(2) The radiation shielding method according to (1), wherein the clay is a mixture of two agents: an epoxy resin prepolymer and a curing agent.
(3) Mix multiple lead balls with clay to create clay containing lead balls,
Applying the clay containing lead balls on the wall,
A radiation shielding method comprising curing the lead ball-containing clay and shielding radiation by the lead ball-containing clay.
(4) Mix multiple lead balls with clay to generate lead ball-containing clay;
Laminating the lead ball-containing clay on an area including a curved surface on the outer surface of the casing,
A radiation shielding method comprising curing the lead ball-containing clay and shielding the article from radiation by the lead ball-containing clay.
(5) Mix multiple lead balls with clay to generate lead ball-containing clay;
Laminating the clay containing lead balls over the entire outer surface of the article,
A radiation shielding method comprising curing the lead ball-containing clay and shielding the article from radiation by the lead ball-containing clay.
(6) Mix multiple lead balls with clay to generate lead ball-containing clay;
A radiation shielding method comprising pouring the lead ball-containing clay into a mold and shielding radiation by the lead ball-containing clay.
(7) The radiation shielding method according to any one of (3) to (6), wherein the clay is liquid clay.
(8) The radiation shielding method according to any one of (1) to (7), wherein the lead ball has a diameter of 0.1 to 0.5 mm.
(9) a radiation shielding wall having a gap;
Clay containing lead balls, which includes clay and a plurality of solid lead balls mixed with the clay, fills the gap, and shields radiation in the gap;
A radiation shielding structure equipped with.
(10) Clay containing lead balls, which includes clay and a plurality of solid lead balls mixed with the clay, and which is capable of shielding radiation in the gap by being filled into a gap in a radiation shielding wall and hardening.
(11) A lead ball-containing clay comprising clay and a plurality of solid lead balls mixed with the clay, hardened to cover the entire outer surface of the article, and shielding the article from radiation.
(12) Mix multiple lead balls with clay to produce clay containing lead balls,
Pour the clay containing lead balls into the box body from the opening of the box body,
A shielding member manufacturing method for manufacturing a shielding member that blocks radiation by closing the opening with a closing member.
(13) Clay containing lead balls, which includes clay and a plurality of solid lead balls mixed into the clay;
A radiation shielding member comprising: a box-shaped member that accommodates the lead ball-containing clay inside.

従来例における放射線を遮蔽するための鉛板21,22,100を示す斜視図である。FIG. 3 is a perspective view showing lead plates 21, 22, and 100 for shielding radiation in a conventional example. 従来例における放射線を遮蔽するための鉛板21,22,110を示す斜視図である。It is a perspective view showing lead plates 21, 22, and 110 for shielding radiation in a conventional example. 第1実施形態における鉛球入り粘土3を利用した放射線遮蔽構造1を示す図である。It is a figure showing radiation shielding structure 1 using clay 3 containing lead balls in a 1st embodiment. 第2実施形態における放射線遮蔽構造1Aを示す図である。It is a figure showing radiation shielding structure 1A in a 2nd embodiment. 第3実施形態における放射線遮蔽構造1Bを示す図である。It is a figure showing radiation shielding structure 1B in a 3rd embodiment. 第4実施形態における放射線遮蔽構造1Cを示す図である。It is a figure showing radiation shielding structure 1C in a 4th embodiment. 第5実施形態における鉛球入り粘土3Dが積層する筐体41の断面図であるIt is a sectional view of a housing 41 in which lead ball-containing clay 3D is laminated in a fifth embodiment. 従来例における筐体41を鉛板120~122で覆う構成の断面図である。FIG. 3 is a cross-sectional view of a structure in which a housing 41 is covered with lead plates 120 to 122 in a conventional example. 第6実施形態における物品42に積層される鉛球入り粘土3Eの断面図である。It is a sectional view of clay 3E containing lead balls laminated on article 42 in a sixth embodiment. 第7実施形態における放射線遮蔽部材8の断面図である。It is a sectional view of radiation shielding member 8 in a 7th embodiment. 第8実施形態における放射線遮蔽方法を説明するための断面図である。It is a sectional view for explaining the radiation shielding method in an 8th embodiment.

以下、実施形態について図面を参照しつつ説明する。
(第1実施形態)
図3(B)に示す鉛球入り粘土3は、X線、ガンマ線、ベータ線等の放射線の遮蔽部材として利用できる。鉛球入り粘土3は、図3(A)に示すように、複数の鉛球31を粘土32に混ぜることで生成される。鉛球31は、中実であり、直径が0.1~0.5mmの範囲内の所定値に大略揃ったものを利用する。鉛球31の直径は0.1~0.5mmであることが好ましい。鉛球31の直径が0.5mm以下であれば、鉛球31を十分に密に配置でき、鉛球入り粘土3の放射線の遮蔽能力を良好にできる。鉛球31の直径が0.1mm以上であれば、市場に流通する鉛球31を利用できる(直径が0.1mmより小さい鉛球31は、特殊なものであるため入手しにくい)。
Hereinafter, embodiments will be described with reference to the drawings.
(First embodiment)
The clay 3 containing lead balls shown in FIG. 3(B) can be used as a shielding member for radiation such as X-rays, gamma rays, and beta rays. The lead ball-containing clay 3 is produced by mixing a plurality of lead balls 31 into clay 32, as shown in FIG. 3(A). The lead ball 31 is solid and has a diameter approximately equal to a predetermined value within the range of 0.1 to 0.5 mm. The diameter of the lead ball 31 is preferably 0.1 to 0.5 mm. If the diameter of the lead balls 31 is 0.5 mm or less, the lead balls 31 can be arranged sufficiently densely, and the radiation shielding ability of the lead ball-containing clay 3 can be improved. If the lead ball 31 has a diameter of 0.1 mm or more, a commercially available lead ball 31 can be used (lead balls 31 with a diameter smaller than 0.1 mm are special and difficult to obtain).

粘土32は、鉛球31を混ぜることができ、壁の隙間や穴に充填できるとともに、該充填後に硬化するものであれば、適宜の材料を利用できる。粘土32は、接着剤、パテとも換言できる。ここでは、粘土32として、エポキシ粘土を用いる例を説明する。粘土32は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである。粘土32は、その他、ゴム材であってもよく、製造工程でゴム(粘土32)に鉛球31を入れてもよい。また、粘土32は、熱可塑性のポリエチレン樹脂等の樹脂であってもよく、ガラス転移点(融点)よりも高温時は柔らかくなり流動性を有し、ガラス転移点より低温度では固化するものであってもよい。粘土32として、適宜の材料を使用できる。本実施形態では、粘土32は、こねることができ、立体的な形状を保持できるものが使用される。 Any suitable material can be used as the clay 32 as long as it can be mixed with the lead balls 31, can be filled into gaps and holes in the wall, and hardens after being filled. The clay 32 can also be referred to as adhesive or putty. Here, an example in which epoxy clay is used as the clay 32 will be described. The clay 32 is a mixture of two components: an epoxy resin prepolymer and a curing agent. The clay 32 may also be a rubber material, and the lead balls 31 may be added to the rubber (clay 32) during the manufacturing process. The clay 32 may also be a thermoplastic polyethylene resin or other resin, which becomes soft and fluid at temperatures higher than the glass transition point (melting point) and solidifies at temperatures lower than the glass transition point. There may be. Any suitable material can be used as the clay 32. In this embodiment, the clay 32 used is one that can be kneaded and can hold a three-dimensional shape.

粘土32に対する鉛球31の密度は、十分な放射線の遮蔽能力を確保する観点から60%以上であることが好ましい。鉛球31の密度は、鉛球入り粘土3の使用形態に応じて好ましい値に調整すればよい。例えば、鉛球入り粘土3A、3Dを壁部11に塗る場合(第2実施形態)、筐体41に積層する場合(第5実施形態)には、鉛球31の密度は、鉛球入り粘土3A、3Dを壁部11または筐体41に良好に付着する値に調整すればよい。 The density of the lead balls 31 relative to the clay 32 is preferably 60% or more from the viewpoint of ensuring sufficient radiation shielding ability. The density of the lead balls 31 may be adjusted to a preferable value depending on the usage pattern of the lead ball-containing clay 3. For example, when painting the clay containing lead balls 3A, 3D on the wall 11 (second embodiment) or when laminating it on the casing 41 (fifth embodiment), the density of the lead balls 31 is may be adjusted to a value that allows good adhesion to the wall portion 11 or the casing 41.

図3(C)は、放射線遮蔽構造1を示す断面図である。
放射線遮蔽構造1は、歯科用X線撮影装置等の放射線装置が設置される放射線装置室の壁構造である。放射線遮蔽構造1では、放射線装置室の壁部11,12の室内側に、X線等の放射線の遮蔽壁として、鉛板21,22がテープによる接着等により設けられている。これにより、放射線遮蔽構造1では、室外への放射線の漏洩防止が図られている。
FIG. 3(C) is a cross-sectional view showing the radiation shielding structure 1.
The radiation shielding structure 1 is a wall structure of a radiation device room in which a radiation device such as a dental X-ray imaging device is installed. In the radiation shielding structure 1, lead plates 21 and 22 are provided on the indoor side of the walls 11 and 12 of the radiation equipment room by adhesion with tape or the like as shielding walls for radiation such as X-rays. Thereby, in the radiation shielding structure 1, leakage of radiation to the outside is prevented.

ここで、壁部11,12の入隅においては、鉛板21,22は、互いに直交する姿勢で隣接している。鉛板21,22間には、図3(C)の紙面垂直方向に沿って、鉛板21,22の合わせ目等による隙間23が生じている。この場合、隙間23から室外へ放射線が漏洩する恐れがある。 Here, at the inner corners of the wall portions 11 and 12, the lead plates 21 and 22 are adjacent to each other in a posture perpendicular to each other. A gap 23 is formed between the lead plates 21 and 22 along the direction perpendicular to the plane of the drawing in FIG. 3(C) due to a joint between the lead plates 21 and 22. In this case, there is a risk that radiation may leak from the gap 23 to the outside.

そこで、作業員は、現場にて、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜて粘土32を生成する。そして、作業員は、この粘土21に複数の鉛球31を混ぜて鉛球入り粘土3を生成する。 Therefore, a worker mixes two agents, an epoxy resin prepolymer and a hardening agent, to produce clay 32 on site. Then, the worker mixes a plurality of lead balls 31 into this clay 21 to produce lead ball-containing clay 3.

続いて、作業員は、鉛球入り粘土3の硬化前に、鉛球入り粘土3を鉛板21,22の隙間23全域に充填する。作業員は、粘土32に設定された硬化時間、鉛球入り粘土3を放置することで、あるいは鉛球入り粘土3を設定温度まで加熱することで、鉛球入り粘土3を硬化させる。 Subsequently, the worker fills the entire gap 23 between the lead plates 21 and 22 with the clay 3 containing lead balls before hardening the clay 3 containing lead balls. The worker hardens the lead ball-containing clay 3 by leaving the lead ball-containing clay 3 for a hardening time set for the clay 32 or by heating the lead ball-containing clay 3 to a set temperature.

本実施形態では、鉛球入り粘土3により隙間23において放射線を遮蔽でき、隙間23から室外への放射線の漏洩を防止できる。本実施形態では、放射線の遮蔽部材として、鉛球入り粘土3を利用するところ、鉛球入り粘土3は、市販の粘土32および鉛球31を利用できるので、生産が容易である。 In this embodiment, the clay 3 containing lead balls can shield radiation in the gap 23 and prevent radiation from leaking from the gap 23 to the outside. In this embodiment, clay 3 containing lead balls is used as the radiation shielding member, and the clay 3 containing lead balls can be produced using commercially available clay 32 and lead balls 31.

従来、隙間23の放射線遮蔽部材として、鉛板100,110(図1、図2)を設けており、鉛板100,110は、大きくて運搬が大変であった。本実施形態では、隙間23の遮蔽部材として、鉛球入り粘土3を利用するところ、鉛球入り粘土3は、隙間23を充填できればよいので、隙間23の放射線遮蔽部材としての必要体積量を従来よりも大幅に低減できる。 Conventionally, lead plates 100 and 110 (FIGS. 1 and 2) have been provided as radiation shielding members in the gap 23, and the lead plates 100 and 110 are large and difficult to transport. In this embodiment, the lead ball-containing clay 3 is used as a shielding member for the gap 23. Since the lead ball-containing clay 3 only needs to fill the gap 23, the required volume of the gap 23 as a radiation shielding member is made smaller than before. This can be significantly reduced.

また、原材料の粘土32および鉛球31は、形状が不定であるので適当な容器に入れることができ、現場まで運搬しやすい。そして、粘土32は、鉛よりも軽量である。以上のことから、隙間23の遮蔽部材としての鉛球入り粘土3(粘土32および鉛球31)は、現場までの運搬が従来(鉛板100,110)に比べて非常に容易である。 In addition, since the raw materials clay 32 and lead balls 31 have indeterminate shapes, they can be placed in a suitable container and easily transported to the site. Furthermore, the clay 32 is lighter than lead. From the above, the lead ball-containing clay 3 (clay 32 and lead balls 31) as a shielding member for the gap 23 is much easier to transport to the site than the conventional ones (lead plates 100, 110).

本実施形態では、非常に軽量の鉛球入り粘土3を隙間23に充填すればよいので、施工が従来に比べて非常に容易になる。なお、本実施形態において、後述のスラリー状の鉛球入り粘土3Aを利用してもよい。 In this embodiment, it is sufficient to fill the gap 23 with clay 3 containing lead balls, which is extremely lightweight, so construction is much easier than in the past. In this embodiment, a slurry-like clay containing lead balls 3A, which will be described later, may be used.

(第2実施形態)
図4(B)は、放射線遮蔽構造1Aを示す図である。
放射線遮蔽構造1Aでは、放射線装置室の壁部11の室内側に鉛球入り粘土3Aが塗布され、該鉛球入り粘土3Aの層により、室外への放射線の漏洩防止が図られている。
(Second embodiment)
FIG. 4(B) is a diagram showing the radiation shielding structure 1A.
In the radiation shielding structure 1A, clay containing lead balls 3A is applied to the indoor side of the wall 11 of the radiation equipment room, and the layer of clay containing lead balls 3A prevents leakage of radiation to the outside.

図4(A)に示すように、鉛球入り粘土3Aは、直径が0.1~0.5mmの範囲内の所定値に大略揃った鉛球31Aを粘土32Aに混ぜることで生成される。粘土32Aは、非水溶性の合成樹脂の微粒子が水中に分散・混合された乳液状の合成樹脂エマルション粘土である。合成樹脂エマルション粘土の可塑性は、第1実施形態のエポキシ粘土の可塑性よりも低い。なお、粘土32Aは、固化する前は流体としての性質を有する液体粘土であればよく、合成樹脂エマルション粘土の他、エポキシ樹脂系、合成樹脂系、アクリル樹脂系、ウレタン樹脂系、シリコン樹脂系、フッ素樹脂系等の液剤(液体粘土)であってもよい。該液剤(液体粘土)は、1液剤でも、主剤に硬化剤を混ぜて使用する2液剤であってもよい。以下の実施形態でも同様である。 As shown in FIG. 4(A), lead ball-containing clay 3A is produced by mixing lead balls 31A with diameters approximately equal to a predetermined value within the range of 0.1 to 0.5 mm into clay 32A. The clay 32A is a milky synthetic resin emulsion clay in which fine particles of a water-insoluble synthetic resin are dispersed and mixed in water. The plasticity of the synthetic resin emulsion clay is lower than the plasticity of the epoxy clay of the first embodiment. The clay 32A may be any liquid clay that has fluid properties before solidifying, and may include synthetic resin emulsion clay, epoxy resin, synthetic resin, acrylic resin, urethane resin, silicone resin, etc. A liquid agent (liquid clay) such as a fluororesin-based material may also be used. The liquid agent (liquid clay) may be a one-liquid agent or a two-liquid agent in which a hardening agent is mixed with the main agent. The same applies to the following embodiments.

作業員は、現場にて、例えばバケツ91に粘土32Aと鉛球31Aを入れ、粘土32Aと鉛球31Aをヘラ92等で混ぜることでスラリー状の鉛球入り粘土3Aを生成する。作業員は、図4(B)に示すように、鉛球入り粘土3Aをヘラ92等で放射線装置室の壁部11の室内側に塗る。作業員は、鉛球入り粘土3Aを放置等により乾燥させることで、鉛球入り粘土3Aを硬化させ、壁部11上に鉛球入り粘土3Aの層を形成する。層の厚みは、放射線の照射量などから、放射線の漏れをどの程度防ぎたいかにより調整すればよく、目的に応じて設定すればよい。 The worker puts the clay 32A and the lead balls 31A into a bucket 91, for example, and mixes the clay 32A and the lead balls 31A with a spatula 92 or the like at the site to generate a slurry-like clay 3A containing lead balls. As shown in FIG. 4(B), the worker applies clay 3A containing lead balls to the indoor side of the wall 11 of the radiation equipment room using a spatula 92 or the like. The worker hardens the lead ball-containing clay 3A by leaving the lead ball-containing clay 3A to dry, and forms a layer of the lead ball-containing clay 3A on the wall portion 11. The thickness of the layer may be adjusted depending on the amount of radiation irradiated and the degree to which leakage of radiation is desired to be prevented, and may be set according to the purpose.

本実施形態では、壁部11上の鉛球入り粘土3Aの層により放射線を遮蔽できる。壁部11の室内側全域に鉛球入り粘土3Aを形成することで、放射線遮蔽部材として鉛板21,22の代わりに鉛球入り粘土3Aの層を形成できる。鉛球入り粘土3Aの層の形成は、鉛球入り粘土3Aをヘラ92等で壁部11に塗布するだけでよく、施工が容易である。本実施形態も、鉛球入り粘土3Aの原材料として、市販の粘土32Aおよび鉛球31Aを利用でき、生産が容易という利点や、粘土32Aおよび鉛球31Aを現場まで運搬しやすいという利点がある。なお、放射線を遮蔽するとは、放射線を完全に遮蔽すること以外に、通過する放射線の量を低減させる意味として記載する場合がある。 In this embodiment, radiation can be shielded by the layer of clay 3A containing lead balls on the wall portion 11. By forming the lead ball-containing clay 3A over the entire indoor side of the wall portion 11, a layer of the lead ball-containing clay 3A can be formed as a radiation shielding member instead of the lead plates 21 and 22. Formation of the layer of lead ball-containing clay 3A can be done simply by applying the lead ball-containing clay 3A to the wall portion 11 using a spatula 92 or the like, and construction is easy. This embodiment also has the advantage that commercially available clay 32A and lead balls 31A can be used as raw materials for the lead ball-containing clay 3A, and that production is easy and that clay 32A and lead balls 31A are easy to transport to the site. Note that "shielding radiation" may be described as meaning reducing the amount of radiation passing through, in addition to completely shielding radiation.

(第3実施形態)
図5は、放射線遮蔽構造1Bを示す図である。
放射線遮蔽構造1Bでは、放射線装置室の壁部11として、側壁であるR状の壁部11Bを含む。鉛板21,22は、丸い曲がりや円状の物の外曲面に取り付けることができず、R状の壁部11Bに取り付けることができない。そのため、従来、R状の壁部11Bに遮蔽部材を設けることは大変であった。
(Third embodiment)
FIG. 5 is a diagram showing the radiation shielding structure 1B.
The radiation shielding structure 1B includes an R-shaped wall 11B, which is a side wall, as the wall 11 of the radiation equipment room. The lead plates 21 and 22 cannot be attached to the outer curved surface of a rounded or circular object, and cannot be attached to the R-shaped wall portion 11B. Therefore, conventionally, it has been difficult to provide a shielding member on the R-shaped wall portion 11B.

本実施形態では、R状の壁部11Bに、放射線の遮蔽部材として鉛球入り粘土3Bを設ける。本実施形態では、鉛球入り粘土3Bは、塗布でき、壁部11Bに容易に設けることができるよう、例えばエポキシ樹脂系の液剤である液体粘土に鉛球をまぜたスラリー状のものを利用する。なお、鉛球入り粘土3Bは、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものであってもよく、この場合も、鉛球入り粘土3Bは、壁部11Bの外面形状への追随性が良好なので、やはり容易に壁部11Bに設けることができる。本実施形態では、R状の壁部11Bにおいて、鉛球入り粘土3Bの層により、室外への放射線の漏洩を防止できる。 In this embodiment, clay containing lead balls 3B is provided on the R-shaped wall portion 11B as a radiation shielding member. In this embodiment, the lead ball-containing clay 3B is a slurry-like product in which lead balls are mixed with liquid clay, which is an epoxy resin-based liquid, for example, so that it can be applied and easily provided on the wall portion 11B. Note that the lead ball-containing clay 3B may be made by mixing lead balls in epoxy clay or the like that can maintain a three-dimensional shape. In this case, the lead ball-containing clay 3B also has the ability to follow the external shape of the wall portion 11B. Since it has a good quality, it can be easily provided on the wall portion 11B. In this embodiment, the layer of clay 3B containing lead balls in the R-shaped wall portion 11B can prevent radiation from leaking to the outside.

図5は、壁部11Bへの鉛球入り粘土3Bの設置作業の途中の様子を示している。鉛球入り粘土3Bは、鉛球と粘土とが混ざっていれば、適宜のものを利用できる。鉄球は、直径が0.1~0.5mmの範囲内の所定値に大略揃ったものを利用することが好ましい。 平坦な壁部11には、放射線の遮蔽部材として、鉛板21,22を設けてもよいし、鉛球入り粘土3,3A,3Bを設けてもよい。鉛板21,22を設ける場合、鉛板21,22の合わせ目に鉛球入り粘土3を充填してもよい。 FIG. 5 shows a state in the middle of the installation work of the lead ball-containing clay 3B on the wall portion 11B. As the lead ball-containing clay 3B, any suitable clay can be used as long as lead balls and clay are mixed. It is preferable to use iron balls whose diameters are approximately equal to a predetermined value within the range of 0.1 to 0.5 mm. The flat wall portion 11 may be provided with lead plates 21, 22 as radiation shielding members, or clay containing lead balls 3, 3A, 3B may be provided. When the lead plates 21 and 22 are provided, the joint between the lead plates 21 and 22 may be filled with clay 3 containing lead balls.

(第4実施形態)
図6は、放射線遮蔽構造1Cを示す図である。
放射線遮蔽構造1Cでは、天井の壁部11Cがドーム状となっており、該壁部11Cに放射線の遮蔽部材として鉛球入り粘土3Cが設けられている。図6は、壁部11Cへの鉛球入り粘土3Cの設置作業の途中の様子を示している。鉛球入り粘土3Cは、塗布を容易にできるよう、液体粘土に鉛球をまぜたスラリー状のものを使用する。なお、鉛球入り粘土3Cは、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用してもよい。
(Fourth embodiment)
FIG. 6 is a diagram showing the radiation shielding structure 1C.
In the radiation shielding structure 1C, a ceiling wall 11C has a dome shape, and clay containing lead balls 3C is provided on the wall 11C as a radiation shielding member. FIG. 6 shows a state in the middle of the installation work of the lead ball-containing clay 3C on the wall portion 11C. The clay containing lead balls 3C is a slurry of liquid clay mixed with lead balls so that it can be easily applied. Note that the lead ball-containing clay 3C may be a mixture of epoxy clay or the like that can maintain a three-dimensional shape with lead balls mixed therein.

本実施形態でも、ドーム状の壁部11Cにおいては、鉛球入り粘土3Cの層により、室外への放射線の漏洩を防止できる。平坦な壁部11には、放射線の遮蔽部材として、鉛板21,22や鉛球入り粘土3,3A~3Cを設けてもよい。 In this embodiment as well, in the dome-shaped wall portion 11C, the layer of clay containing lead balls 3C can prevent radiation from leaking to the outside. The flat wall portion 11 may be provided with lead plates 21, 22 or clay containing lead balls 3, 3A to 3C as radiation shielding members.

(第5実施形態)
図7は、鉛球入り粘土3Dが積層する筐体41の断面図である。
本実施形態の放射線遮蔽方法(放射線遮蔽構造の製造方法)において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Dを生成する。鉛球入り粘土3Dは、液体粘土に鉛球をまぜたスラリー状のものを使用するものとするが、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用してもよい。
(Fifth embodiment)
FIG. 7 is a cross-sectional view of the casing 41 in which the lead ball-containing clay 3D is laminated.
In the radiation shielding method (method for manufacturing a radiation shielding structure) of this embodiment, a worker first mixes a plurality of lead balls into clay to generate lead ball-containing clay 3D. The lead ball-containing clay 3D is a slurry of liquid clay mixed with lead balls, but it is also possible to use epoxy clay or the like that can hold a three-dimensional shape with lead balls mixed therein.

続いて、作業員は、鉛球入り粘土3Dを、筐体41(物品)の外面における曲面部411を含む領域に、塗布により積層する。エポキシ粘土等を使用する鉛球入り粘土3Dを用いる場合、鉛球入り粘土3Dを筐体41の外面に直接取り付けてもよいし、接着剤やテープ等を用いて筐体41の外面に取り付けてもよい。第3、第4実施形態においても、エポキシ粘土等を使用する鉛球入り粘土3B,3Cを利用する場合には同様である。 Subsequently, the worker applies and laminates the lead ball-containing clay 3D on the area including the curved surface portion 411 on the outer surface of the casing 41 (article). When using clay 3D containing lead balls using epoxy clay or the like, the clay 3D containing lead balls may be attached directly to the outer surface of the casing 41, or may be attached to the outer surface of the casing 41 using adhesive, tape, etc. . The same applies to the third and fourth embodiments when lead ball-containing clays 3B and 3C using epoxy clay or the like are used.

筐体としては、放射線装置室内での使用が想定される機器の筐体41や、放射線を放射する装置の筐体41、例えば原子炉の筐体41を例示できる。なお、鉛球入り粘土3Dは、筐体41の外面において曲面部411を含む領域に積層することが特に有効であるが、筐体41の外面において平坦部のみを含む領域に積層されてもよい。 Examples of the housing include a housing 41 of a device expected to be used in a radiation equipment room, a housing 41 of a device that emits radiation, and a housing 41 of a nuclear reactor, for example. Note that it is particularly effective to stack the lead ball-containing clay 3D on a region of the outer surface of the casing 41 that includes the curved surface portion 411, but it may also be stacked on a region of the outer surface of the casing 41 that includes only the flat portion.

続いて、作業員は、鉛球入り粘土3Dを乾燥等により硬化させ、筐体41上に鉛球入り粘土3Dの層を形成する。本実施形態では、この鉛球入り粘土3Dにより筐体41への放射線を遮蔽する。 Subsequently, the worker hardens the lead ball-containing clay 3D by drying or the like to form a layer of the lead ball-containing clay 3D on the casing 41. In this embodiment, the clay 3D containing lead balls blocks radiation to the housing 41.

図8に示すように、従来、筐体41を鉛板120~122で覆う場合、筐体41の外面に鉛板120~122を貼付することとなる。隣り合う鉛板120~122同士の継ぎ目部分では、放射線漏洩防止のため、例えば鉛板120~122の端部同士が重ねられる。例えば、曲面部411上の鉛板122の端部が、両隣の鉛板120、121の端部上に重ねられる。この構成では、曲面部411上の鉛板122は、曲面部411への追従性が悪く、凹凸形状となって曲面部411との間に隙間ができ、放射線の遮蔽能力が低下する。 As shown in FIG. 8, conventionally, when covering the casing 41 with lead plates 120 to 122, the lead plates 120 to 122 are attached to the outer surface of the casing 41. At the joints between adjacent lead plates 120 to 122, for example, the ends of the lead plates 120 to 122 are overlapped to prevent radiation leakage. For example, the ends of the lead plate 122 on the curved surface portion 411 are stacked on the ends of the lead plates 120 and 121 on both sides. In this configuration, the lead plate 122 on the curved surface portion 411 has poor followability to the curved surface portion 411, has an uneven shape, and a gap is created between the lead plate 122 and the curved surface portion 411, and the radiation shielding ability is reduced.

本実施形態では、鉛球入り粘土3Dを放射線遮蔽部材として用いるので、前述したように生産性および運搬性が良好である。そのうえ、鉛球入り粘土3Dは、曲面部411への追従性が良好であるため、鉛板120~122を設置するよりも、鉛球入り粘土3Dを施工したほうが放射線を良好に遮蔽できる。 In this embodiment, since clay 3D containing lead balls is used as a radiation shielding member, productivity and transportability are good as described above. Furthermore, since the lead ball-containing clay 3D has good followability to the curved surface portion 411, radiation can be shielded better by constructing the lead ball-containing clay 3D than by installing the lead plates 120 to 122.

(第6実施形態)
図9(A)は、物品42に積層される鉛球入り粘土3Eの断面図であり、図9(B)は、物品42に積層される鉛球入り粘土3Eの断面斜視図である。
本実施形態の放射線遮蔽方法において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Eを生成する。
(Sixth embodiment)
9(A) is a cross-sectional view of the lead ball-containing clay 3E laminated on the article 42, and FIG. 9(B) is a cross-sectional perspective view of the lead ball-containing clay 3E laminated on the article 42.
In the radiation shielding method of this embodiment, a worker first mixes a plurality of lead balls into clay to produce lead ball-containing clay 3E.

続いて、作業員は、鉛球入り粘土3Eを物品42の外面全体に積層する。物品42は、本実施形態では、球状のものを例示するが、適宜のものを使用できる。鉛球入り粘土3Eとして、液体粘土に鉛球をまぜたスラリー状のものを使用する場合、容器内の鉛球入り粘土3Eに物品42を浸すことで、物品42の外面全体に鉛球入り粘土3Eを積層できる。鉛球入り粘土3Eとして、立体的な形状を保持できるエポキシ粘土等に鉛球をまぜたものを使用する場合、鉛球入り粘土3Eを、物品42の外面上に、取り付け、貼り付け等により積層する。 Subsequently, the worker laminates the lead ball-containing clay 3E over the entire outer surface of the article 42. The article 42 is exemplified as having a spherical shape in this embodiment, but any appropriate article can be used. When using a slurry of liquid clay mixed with lead balls as the lead ball-containing clay 3E, by immersing the article 42 in the lead ball-containing clay 3E in a container, the lead ball-containing clay 3E can be laminated on the entire outer surface of the article 42. . When using epoxy clay or the like which can maintain a three-dimensional shape with lead balls mixed therein as the lead ball-containing clay 3E, the lead ball-containing clay 3E is laminated on the outer surface of the article 42 by attaching, pasting, or the like.

続いて、作業員は、鉛球入り粘土3Eを乾燥等により硬化させ、物品42の外面全体に鉛球入り粘土3Eの層を形成する。このようにして物品42に積層される鉛球入り粘土3Eは、粘土および粘土に混ぜられる複数の中実の鉛球を含み、物品42の外面全体を覆った状態で硬化している。本実施形態では、この鉛球入り粘土3Eにより物品42への放射線を遮蔽する。 Subsequently, the worker hardens the lead ball-containing clay 3E by drying or the like to form a layer of the lead ball-containing clay 3E on the entire outer surface of the article 42. The lead ball-containing clay 3E laminated on the article 42 in this manner includes clay and a plurality of solid lead balls mixed into the clay, and is hardened while covering the entire outer surface of the article 42. In this embodiment, the clay 3E containing lead balls shields the article 42 from radiation.

本実施形態では、物品42を覆う放射線遮蔽部材として、表面形状への追従性が良好な鉛球入り粘土3Eを利用する。そのため、物品42全面に鉛球入り粘土3Eを密着させて積層させることができ、放射線を良好に遮蔽できる。 In this embodiment, as a radiation shielding member that covers the article 42, lead ball-containing clay 3E, which has good followability to the surface shape, is used. Therefore, the lead ball-containing clay 3E can be laminated in close contact with the entire surface of the article 42, and radiation can be shielded well.

(第7実施形態)
図10(A)は、放射線遮蔽部材8の断面図である。
放射線遮蔽部材8は、運搬でき、希望の箇所に設置できる。例えば放射線装置室の内壁に沿って積むことで、放射線遮蔽部材8を放射線遮蔽壁として利用できる。また、放射線遮蔽部材8を、放射線遮蔽壁で覆えない部位や、放射線遮蔽壁の隙間を覆うのに利用できる。
(Seventh embodiment)
FIG. 10(A) is a sectional view of the radiation shielding member 8.
The radiation shielding member 8 can be transported and installed at a desired location. For example, by stacking them along the inner wall of a radiation equipment room, the radiation shielding member 8 can be used as a radiation shielding wall. Furthermore, the radiation shielding member 8 can be used to cover areas that cannot be covered by the radiation shielding wall or gaps in the radiation shielding wall.

放射線遮蔽部材8は、粘土および粘土に混ぜられる複数の中実の鉛球を含む鉛球入り粘土3Fと、内部に鉛球入り粘土3Fを収容する箱状部材43と、を備える。鉛球入り粘土3Fとして、例えば、液体粘土を使用したスラリー状のものを用いることができる。箱状部材43は、上端に開口部4311がある箱本体431と、開口部4311を閉塞する閉塞部材432とを備える。 The radiation shielding member 8 includes a lead ball-containing clay 3F that includes clay and a plurality of solid lead balls mixed with the clay, and a box-shaped member 43 that accommodates the lead ball-containing clay 3F inside. As the lead ball-containing clay 3F, for example, a slurry of liquid clay can be used. The box-shaped member 43 includes a box body 431 having an opening 4311 at the upper end, and a closing member 432 that closes the opening 4311.

本実施形態の放射線遮蔽方法において、作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Fを生成し、図10(B)に示すように、鉛球入り粘土3Fを箱本体431の開口部4311から箱本体431に流し入れる。そして、作業員は、図10(A)に示すように、開口部4311を閉塞部材432で塞ぐことで、放射線を遮蔽する放射線遮蔽部材8を製造できる。 In the radiation shielding method of this embodiment, the worker first mixes a plurality of lead balls with clay to produce lead ball-containing clay 3F, and as shown in FIG. Pour into the box body 431 through the opening 4311. Then, as shown in FIG. 10A, the worker can manufacture the radiation shielding member 8 that shields radiation by closing the opening 4311 with the closing member 432.

(第8実施形態)
図11は、放射線遮蔽方法を説明するための断面図である。
作業員は、まず、複数の鉛球を粘土に混ぜて鉛球入り粘土3Gを生成する。球入り粘土3Gとして、例えば、液体粘土を使用したスラリー状のものを用いることができる。
(Eighth embodiment)
FIG. 11 is a cross-sectional view for explaining the radiation shielding method.
The worker first mixes a plurality of lead balls into clay to generate lead ball-containing clay 3G. As the spherical clay 3G, for example, a slurry using liquid clay can be used.

続いて、作業員は、鉛球入り粘土3Gを型枠44に流し入れ、鉛球入り粘土3Gにより放射線を遮蔽する。型枠44は、例えば放射線装置室の内壁や、原子炉の外側に設置できる。型枠44は、内部が空洞の壁状のものを指す。鉛球入り粘土3Gと型枠44を含んで放射線遮蔽構造1Gが構成される。 Subsequently, the worker pours the lead ball-containing clay 3G into the formwork 44, and shields radiation with the lead ball-containing clay 3G. The formwork 44 can be installed, for example, on the inner wall of a radiation equipment room or on the outside of a nuclear reactor. The formwork 44 refers to a wall-like structure with a hollow interior. A radiation shielding structure 1G is configured including the lead ball-containing clay 3G and the formwork 44.

本実施形態では、型枠44にスラリー状の球入り粘土3Gを流すことで球入り粘土3Gを設置するので、放射線遮蔽壁に球入り粘土3Gを厚く設置できる。 In this embodiment, the clay balls 3G are installed by pouring the slurry clay balls 3G into the formwork 44, so that the clay balls 3G can be thickly installed on the radiation shielding wall.

(変形例)
鉛球31,31Aの直径は、0.1mmより小さくてもよいし、0.5mmより大きくてもよく、例えば0.05mmや1mm、2mmや5mmであってもよい。鉛球31の直径は所定値に揃っていなくてもよい。鉛球31Aの直径も、所定値に揃っていなくてもよい。
(Modified example)
The diameter of the lead balls 31, 31A may be smaller than 0.1 mm or larger than 0.5 mm, for example, 0.05 mm, 1 mm, 2 mm, or 5 mm. The diameters of the lead balls 31 do not have to be uniform to a predetermined value. The diameter of the lead ball 31A also does not have to be equal to a predetermined value.

鉛球入り粘土3,3A~3Gの粘土32,32Aとして、水と練り合わせることで硬化が始まる石膏系の粘土を使用したり、乾燥することで硬化する炭酸カルシウム系の粘土を使用したり、ポリエステル樹脂のプレポリマーと硬化剤の2剤を混ぜて生成するポリエステル系の粘土を使用したりしてもよい。鉛球入り粘土3,3A~3Gとして、塗るまたは積層する対象領域のサイズや場所、形状によって、スラリー状の塗りやすいものを利用するか、形状を維持して硬化させる事が出来るものを利用するかを決めればよい。また、鉛球入り粘土3,3A~3Gの固化前の硬さ、および固化後の硬さも、粘土32,32Aの材料によって適宜に設定できる。 As clay 32, 32A for clay containing lead balls 3, 3A to 3G, gypsum-based clay that hardens when mixed with water, calcium carbonate-based clay that hardens when dried, or polyester Polyester clay produced by mixing two agents, a resin prepolymer and a curing agent, may also be used. Depending on the size, location, and shape of the target area to be painted or laminated, whether to use a slurry-like clay that is easy to apply, or one that can be hardened while maintaining its shape as lead ball clay 3, 3A to 3G. All you have to do is decide. Furthermore, the hardness before solidification and the hardness after solidification of the lead ball-containing clays 3, 3A to 3G can be appropriately set depending on the material of the clays 32, 32A.

鉛球入り粘土3,3A~3Gは、放射線の遮蔽能力の向上のために鉛板21,22等の適宜の放射線遮蔽壁上に設けられてもよい。鉛球入り粘土3,3A~3Gは、放射線装置室の壁部11,11B,11Cの外側に設けられてもよい。 The clay containing lead balls 3, 3A to 3G may be provided on an appropriate radiation shielding wall such as lead plates 21, 22 in order to improve the radiation shielding ability. The clay containing lead balls 3, 3A to 3G may be provided outside the walls 11, 11B, 11C of the radiation equipment room.

3,3A~3G…鉛球入り粘土、11,11B,11C…壁部、21,22…鉛板(放射線遮蔽壁)、23…隙間、31,31A…鉛球、41…筐体、42…物品、43…箱状部材、44…型枠、411…曲面部、431…箱本体、4311…開口部。 3, 3A to 3G... Clay containing lead balls, 11, 11B, 11C... Wall portion, 21, 22... Lead plate (radiation shielding wall), 23... Gap, 31, 31A... Lead ball, 41... Housing, 42... Article, 43... Box-shaped member, 44... Formwork, 411... Curved surface portion, 431... Box body, 4311... Opening.

Claims (8)

複数の鉛球(ホウ化物がコーティングされた鉛球を除く)を粘土に混ぜて鉛球入り粘土を生成し、
部屋の壁部の室内側に鉛板を隣接して取り付け、
隣接する前記鉛板の間の隙間に前記鉛球入り粘土を充填し、
前記鉛球入り粘土を硬化させて、前記鉛球入り粘土により前記隙間において放射線を遮蔽する放射線遮蔽構造の構築方法。
Mix multiple lead balls (excluding boride-coated lead balls) with clay to produce clay with lead balls;
Attach lead plates adjacent to the indoor side of the wall of the room,
filling the gap between the adjacent lead plates with the lead ball-containing clay;
A method for constructing a radiation shielding structure in which the lead ball-containing clay is hardened and radiation is shielded in the gap by the lead ball-containing clay.
請求項1に記載の放射線遮蔽構造の構築方法において、前記粘土は、エポキシ樹脂のプレポリマーと硬化剤の2剤を混ぜたものである放射線遮蔽構造の構築方法。 2. The method for constructing a radiation shielding structure according to claim 1, wherein the clay is a mixture of two components: an epoxy resin prepolymer and a curing agent. 請求項1または請求項2に記載の放射線遮蔽構造の構築方法において、前記鉛球の直径は0.1~0.5mmである放射線遮蔽構造の構築方法。The method of constructing a radiation shielding structure according to claim 1 or 2, wherein the lead ball has a diameter of 0.1 to 0.5 mm. 複数の鉛球を液体粘土に混ぜてスラリー状の鉛球入り粘土を生成し、
前記鉛玉入り粘土に物品を浸し、前記物品を前記鉛玉入り粘土から取り出すことで、前記鉛球入り粘土を前記物品の外面の全体に積層し、
前記鉛球入り粘土を硬化させ、前記鉛球入り粘土により前記物品への放射線を遮蔽する放射線遮蔽方法。
Mix multiple lead balls with liquid clay to create slurry-like clay containing lead balls.
Laminating the clay containing lead balls over the entire outer surface of the article by immersing the article in the clay containing lead balls and taking out the article from the clay containing lead balls ,
A radiation shielding method comprising curing the lead ball-containing clay and shielding the article from radiation by the lead ball-containing clay.
複数の鉛球を液体粘土に混ぜてスラリー状の鉛球入り粘土を生成し、
前記鉛球入り粘土を、内面の開口端部に段差部を有する型枠に流し入れ、
放射線装置室の内壁側に設けられた前記型枠、内の前記鉛球入り粘土により放射線を遮蔽する放射線遮蔽方法。
Mix multiple lead balls with liquid clay to create slurry-like clay containing lead balls.
Pour the lead ball-containing clay into a mold having a stepped portion at the open end of the inner surface ,
A radiation shielding method in which radiation is shielded by the lead ball-containing clay inside the formwork provided on the inner wall side of a radiation equipment room .
請求項4または請求項5に記載の放射線遮蔽方法において、前記鉛球の直径は0.1~0.5mmである放射線遮蔽方法。 The radiation shielding method according to claim 4 or 5 , wherein the lead ball has a diameter of 0.1 to 0.5 mm. 部屋の壁部の室内側に取り付けられ、互いに隣接し、互いの間に隙間が生じる鉛板と、
粘土および前記粘土に混ぜられる複数の中実の鉛球(ホウ化物がコーティングされた鉛球を除く)を含み、前記隙間を埋めており、前記隙間において放射線を遮蔽する鉛球入り粘土と、
を備える放射線遮蔽構造。
Lead plates attached to the indoor side of the wall of the room, adjacent to each other with gaps between them ;
a lead ball-filled clay that includes clay and a plurality of solid lead balls (excluding boride-coated lead balls) mixed into the clay, filling the gap and shielding radiation in the gap;
A radiation shielding structure equipped with.
粘土および前記粘土に混ぜられる複数の中実の鉛球を含み、物品の外面全体を均等な厚さで覆った状態で硬化しており、前記物品への放射線を遮蔽する鉛玉球入り粘土。 A lead ball-containing clay comprising clay and a plurality of solid lead balls mixed in the clay, which is hardened to cover the entire outer surface of the article with an even thickness , and shields radiation to the article.
JP2019174478A 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads Active JP7340245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019174478A JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174478A JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Publications (2)

Publication Number Publication Date
JP2021051017A JP2021051017A (en) 2021-04-01
JP7340245B2 true JP7340245B2 (en) 2023-09-07

Family

ID=75157608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174478A Active JP7340245B2 (en) 2019-09-25 2019-09-25 Radiation shielding method, radiation shielding structure, clay with lead beads

Country Status (1)

Country Link
JP (1) JP7340245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265752A4 (en) 2021-03-25 2024-05-22 Nippon Steel Corporation Steel sheet and welded joint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255081A (en) 2002-03-04 2003-09-10 National Maritime Research Institute Radiation shield material composition
JP2011007510A (en) 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
JP2015064312A (en) 2013-09-26 2015-04-09 株式会社 広仁社 Radiation shield substance
US20150206608A1 (en) 2012-09-03 2015-07-23 Helse Stavanger Hf Radiation absorbing composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216298A (en) * 1984-03-23 1985-10-29 日立金属株式会社 Shielding material for radiation
JPH02302697A (en) * 1989-05-17 1990-12-14 Ishikawajima Harima Heavy Ind Co Ltd Construction of shielding wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255081A (en) 2002-03-04 2003-09-10 National Maritime Research Institute Radiation shield material composition
JP2011007510A (en) 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
US20150206608A1 (en) 2012-09-03 2015-07-23 Helse Stavanger Hf Radiation absorbing composition
JP2015064312A (en) 2013-09-26 2015-04-09 株式会社 広仁社 Radiation shield substance

Also Published As

Publication number Publication date
JP2021051017A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US3570208A (en) Method of forming fireproof layers outside steel skeletons and beams
JP7340245B2 (en) Radiation shielding method, radiation shielding structure, clay with lead beads
JP6820669B2 (en) Radiation shield
JP6322359B2 (en) Radiation shielding wall, radiation shielding wall construction method, and radiation shielding wall repair method
TWI686456B (en) Masking adhesive with neutron masking function
JP7121974B2 (en) Lead ball sheet, lead ball sheet manufacturing method, lead ball sheet installation method
JP6253930B2 (en) Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container
US20150206608A1 (en) Radiation absorbing composition
JP4590536B2 (en) Construction method of neutron beam shielding structure
CA3187617A1 (en) Building elements and structures having materials with shielding properties
US3438903A (en) Plastic radiation and acoustic barrier compositions containing a thixotropic agent
JPH02302697A (en) Construction of shielding wall
JP7014369B2 (en) Radiation shielding board and manufacturing method of radiation shielding board
KR20180092043A (en) Noise preventing materials and noise peventing construction method thereof
JP6895320B2 (en) Method for measuring the penetration depth of β-ray nuclide radioactive cesium
JP4586199B2 (en) Construction method of neutron beam shielding structure
KR102629320B1 (en) Radiation shield of the welded pipe for radiography and a manufacturing method thereof
KR100733791B1 (en) radiation shielding wall
GB2195374A (en) Reinforced concrete dwelling with radiation shield
JP6257204B2 (en) Radiation shielding panel
JP2007195714A (en) Radiation field formation material, unit and method, and radiation shielding device
JP2019039717A (en) Radioactive material-containing waste storage container
KR200394990Y1 (en) radiation shielding wall
JP5387932B1 (en) Manufacturing method of wave-dissipating structure using radioactively contaminated aggregate in the center
JP2015064315A (en) Radiation shielding tool and radiation shielding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7340245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150