JPH02302697A - Construction of shielding wall - Google Patents

Construction of shielding wall

Info

Publication number
JPH02302697A
JPH02302697A JP1121572A JP12157289A JPH02302697A JP H02302697 A JPH02302697 A JP H02302697A JP 1121572 A JP1121572 A JP 1121572A JP 12157289 A JP12157289 A JP 12157289A JP H02302697 A JPH02302697 A JP H02302697A
Authority
JP
Japan
Prior art keywords
lead
lead particles
shielding wall
concrete
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1121572A
Other languages
Japanese (ja)
Inventor
Tetsuya Nagao
哲也 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1121572A priority Critical patent/JPH02302697A/en
Publication of JPH02302697A publication Critical patent/JPH02302697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Building Environments (AREA)

Abstract

PURPOSE:To enhance a shielding effect of a radiation and to reduce a thickness of a shielding wall by kneading lead particles coated with a cladding material, such as a resin, on their surface parts, with a concrete material, and by placing the concrete kneaded with the lead particles. CONSTITUTION:Surfaces of lead particles 2 or 0.5 to 0.3mm diameter, for instance, which are spherically formed, are coated with a synthetic resin cladding material 3 consisting of a high molecular compound such as a Teflon or a polyethylene and so on. Then, the coated lead particles 2 are kneaded with a concrete material 4, are cast into a formwork through a hose and, after setting, the formwork is removed to complete a shielding wall 1 in which the lead particles 2 are scattered at almost equal distance each other. With this process, the wall thickness can be reduced as far as an extent to be able to be saved by an effect by mixing the lead particles 2 into the concrete, and, as the lead particles 2 are insulated from a water content of the concrete material 4, a corrosion of the particles is prevented and a highly shielding effect can be maintained.

Description

【発明の詳細な説明】 [産業の利用分野] 本発明は原子炉圧力容器等から発する放射線を遮蔽する
遮蔽壁の構築方法に係り、特に放射線を遮蔽する遮蔽壁
の肉厚を薄くすることのできる遮蔽壁の構築方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of constructing a shielding wall that shields radiation emitted from a nuclear reactor pressure vessel, etc., and particularly relates to a method of constructing a shielding wall that shields radiation from a nuclear reactor pressure vessel. This article concerns how to construct a shielding wall.

[従来の技術] 原子力発電所等の施設においては線源となる原子力圧力
容器から発する放射線を遮蔽するために、原子力圧力容
器の周囲には遮蔽壁が立役されている。一般には、遮蔽
壁は安価なコンクリート材を打設して構築されている。
[Prior Art] In facilities such as nuclear power plants, a shielding wall is erected around the nuclear pressure vessel in order to shield radiation emitted from the nuclear pressure vessel, which serves as a radiation source. Generally, shielding walls are constructed by pouring an inexpensive concrete material.

[発明が解決しようとする課題] ところで、放射線の主たる遮蔽の目的はγ線が主体であ
り、このγ線を減衰するためには比重の大きな遮蔽壁が
必要である。
[Problems to be Solved by the Invention] By the way, the main purpose of shielding radiation is gamma rays, and in order to attenuate these gamma rays, a shielding wall with a large specific gravity is required.

そこで、従来は放射線の強さに応じて遮蔽壁を構成する
コンクリート壁を厚くしたり、コンクリート材内に骨材
として鉄鋼石を混入した重コンクリート璧を採用してい
た。このため建屋内の有効スペースが小さくなる問題が
あった。
Therefore, in the past, the thickness of the concrete walls constituting the shielding walls was increased depending on the intensity of the radiation, or heavy concrete walls were used in which iron and steel stone was mixed as aggregate into the concrete. As a result, there was a problem in that the effective space within the building became smaller.

また、一般に遮蔽材としては鉛材が知られており、この
鉛材は容易に入手できる。そこで、コンクリート壁に沿
って鉛シートを張り付けたり、鉛ブロックを積み重ねた
りしたものがあるが、張付は作業、積重ね作業がsIa
でありかつ労力を要する。また、コンクリート壁中に鉛
材をSaすることも考えられる。この場合、コンクリー
ト中の水分や骨材中から溶は出すアルカリ成分で鉛材が
腐蝕し、鉛材に空洞ができ、十分な遮蔽効果が得られな
い問題がある。
Furthermore, lead material is generally known as a shielding material, and this lead material is easily available. Therefore, there are methods of pasting lead sheets along concrete walls or stacking lead blocks, but the pasting is work and the stacking work is sIa.
and requires effort. It is also conceivable to add lead material into the concrete wall. In this case, the lead material is corroded by moisture in the concrete and alkaline components dissolved from the aggregate, creating cavities in the lead material, resulting in a problem that a sufficient shielding effect cannot be obtained.

本発明は上記事情を考慮してなされたものである。The present invention has been made in consideration of the above circumstances.

本発明は放射線を遮蔽する遮蔽壁の構築方法において、
遮蔽壁の薄肉化を可能にし、建屋の有効スペースを拡大
すると共に省労力化を達成することのできる遮蔽壁の構
築方法を提供することを目的とする。
The present invention provides a method for constructing a shielding wall for shielding radiation, comprising:
It is an object of the present invention to provide a method for constructing a shielding wall that can make the shielding wall thinner, expand the effective space of a building, and save labor.

[課題を解決するための手段] 本発明は、原子力圧力容器等から発する放射線を遮蔽す
る遮蔽壁の構築方法において、予め鉛粒体の表面部に樹
脂等の被覆材をコーティングした後、そのコーティング
された鉛粒体をコンクリート材と混練し打設してなるも
のである。
[Means for Solving the Problems] The present invention provides a method for constructing a shielding wall for shielding radiation emitted from a nuclear pressure vessel or the like, in which the surface of lead granules is coated with a coating material such as a resin in advance, and then the coating is applied. It is made by mixing lead granules with concrete material and pouring it.

[作用] このように、遮蔽壁内に鉛粒体が混入されるので、鉛粒
体が混入された分だけ遮蔽効果が高められ、遮蔽壁を薄
くすることができる。また、鉛粒体が被覆材でコーティ
ングされるので、鉛粒体はコンクリート材と絶縁され、
鉛粒体の腐食を防止できる。
[Function] In this way, since the lead particles are mixed into the shielding wall, the shielding effect is enhanced by the amount of lead particles mixed in, and the shielding wall can be made thinner. In addition, since the lead granules are coated with a coating material, the lead granules are insulated from the concrete material.
Can prevent corrosion of lead particles.

[実施例] 以下本発明の一実施例を添付図面に従って詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図、第2図および第3図は本発明の第1の実施例を
示したものである。
1, 2 and 3 show a first embodiment of the present invention.

本実施例は建屋の線量区域を区画する遮蔽壁1を示した
ものである。
This embodiment shows a shielding wall 1 that partitions the dose area of a building.

まず、遮蔽壁1を構築するに際して、第2図に示すよう
に、球状の鉛粒体2を形成する。この鉛粒体2はたとえ
ば0.511nφ〜0.3+11φの粒径を有し、その
表面部にはテフロンあるいはポリエチレン等の高分子材
料からなる合成樹脂で被覆材3がコーティングされる。
First, when constructing the shielding wall 1, as shown in FIG. 2, spherical lead particles 2 are formed. The lead particles 2 have a particle size of, for example, 0.511 nφ to 0.3+11φ, and the surface thereof is coated with a coating material 3 made of a synthetic resin made of a polymeric material such as Teflon or polyethylene.

具体的には被覆材3は1回の処理で5μの厚さに形成さ
れる。
Specifically, the coating material 3 is formed to have a thickness of 5 μm in one treatment.

このように、被覆材3でコーティングされた鉛粒体2は
第3図に示すように、コンクリート材4と混練され供給
ホース5を介して型枠6内に投入される。
As shown in FIG. 3, the lead granules 2 coated with the coating material 3 are mixed with the concrete material 4 and introduced into the formwork 6 via the supply hose 5.

コンクリート材4が凝固した後は上記型枠6を除去し、
第1図に示すように略等間隔に点在した鉛粒体2を有す
る遮蔽壁1の完成に至る。
After the concrete material 4 has solidified, the formwork 6 is removed,
As shown in FIG. 1, a shielding wall 1 having lead particles 2 scattered at approximately equal intervals is completed.

したがって、鉛粒体2が混入される分だけ遮蔽壁1を薄
くすることができる。また、鉛粒体2の表面部が被覆材
3でコーティングされているので、コンクリート材4の
水分から鉛粒体2が絶縁され、鉛粒体2が腐食すること
を未然に防止できる。
Therefore, the shielding wall 1 can be made thinner by the amount of lead particles 2 mixed therein. Moreover, since the surface portion of the lead granules 2 is coated with the coating material 3, the lead granules 2 are insulated from the moisture of the concrete material 4, and corrosion of the lead granules 2 can be prevented.

なお、鉛粒体2は骨材の代りとなるため、機械的強度を
高めるために鉛粒体2にはモリブデン(最大6%)が混
入されるように構成する。
Since the lead particles 2 serve as a substitute for aggregate, the lead particles 2 are configured to contain molybdenum (maximum 6%) in order to increase mechanical strength.

次に、第4図から第1O図までは本発明の第2の実施例
を示したものであり、原子力圧力容器11等の線源に対
して比較的近い位置に遮蔽壁12を構築したものである
Next, FIG. 4 to FIG. 1O show a second embodiment of the present invention, in which a shielding wall 12 is constructed at a position relatively close to a radiation source such as a nuclear pressure vessel 11. It is.

第4図に示すように、この遮蔽壁12は原子炉圧力容器
11と同一の基礎13上に立設される。
As shown in FIG. 4, this shielding wall 12 is erected on the same foundation 13 as the reactor pressure vessel 11.

また、遮蔽壁12の中心部分には鋼製の型枠14で覆わ
れた内側遮蔽壁12aと、その内側遮蔽壁12aを覆う
外側遮蔽壁12bとから構成される。
Further, the central portion of the shielding wall 12 is composed of an inner shielding wall 12a covered with a steel formwork 14, and an outer shielding wall 12b covering the inner shielding wall 12a.

具体的には型枠14は基礎13に設けられる埋込み金物
15から上方に立ち上がって設置され、その埋込み金物
15は基礎13内に挿入される複数本、の脚部16を有
すると共にこの各脚部16には基礎13の表面部に沿っ
て敷設される平板部17が接合される。
Specifically, the formwork 14 is installed rising upward from an embedded metal fitting 15 provided in the foundation 13, and the embedded metal fitting 15 has a plurality of legs 16 that are inserted into the foundation 13, and each leg has a plurality of legs 16. A flat plate part 17 laid along the surface of the foundation 13 is joined to the base 16.

また、型枠14には埋込み金物15上に互いに並行に離
間された内u18と外壁19とが設けられると共に、こ
れら内外壁18.19間には互いに相向い合うように上
向きに断面り字形に折り曲げられた防撓材20が上下方
向に等間隔に設けられる。この防撓材20にはこれを上
下方向に貫通する空隙防止孔21が形成される。また、
これら内外壁18.19の上部には蓋体22が接合され
る。
In addition, the formwork 14 is provided with an inner wall 18 and an outer wall 19 which are spaced parallel to each other on the embedded hardware 15, and the inner and outer walls 18 and 19 are arranged in cross-sections upward so as to face each other. The bent stiffeners 20 are provided at regular intervals in the vertical direction. This stiffener 20 is formed with a gap prevention hole 21 passing through it in the vertical direction. Also,
A lid 22 is joined to the upper portions of these inner and outer walls 18 and 19.

また、型枠14には上記実施例と同様に、予め表面部が
樹脂等の被覆材3でコーティングされた鉛粒体2を形成
し、その鉛粒体2がコンクリート材4と混練されて打設
される。
Further, as in the above embodiment, lead granules 2 whose surfaces are coated with a coating material 3 such as resin are formed in advance on the formwork 14, and the lead granules 2 are kneaded with concrete material 4 and cast. will be established.

また、型枠14の外側部には外側遮蔽壁12bを形成す
べくコンクリート壁層23が覆うように打設される。し
たがって、内側遮蔽壁12aを覆うように型枠14を介
してコンクリート壁層23が形成されることになる。
Further, a concrete wall layer 23 is poured to cover the outer side of the formwork 14 to form an outer shielding wall 12b. Therefore, the concrete wall layer 23 is formed via the formwork 14 so as to cover the inner shielding wall 12a.

そこで、このような遮蔽壁12を横築するにあっては先
ず、第5図に示すように、基礎13に埋込み金物15を
形成することになる。この埋込み金物15は基礎13内
に脚部16を挿入した後、これに基礎13の表面部に沿
って平板部17を接合することになる。
Therefore, in constructing such a shielding wall 12 horizontally, first, as shown in FIG. 5, embedded metal fittings 15 are formed in the foundation 13. For this embedded metal fitting 15, after the leg portion 16 is inserted into the foundation 13, a flat plate portion 17 is joined thereto along the surface portion of the foundation 13.

次いで、第6図に示すように、埋込み金物15上には鋼
製の型枠14が立設される。この場合には平板部17上
に互いに並行に離間させて内壁18と外壁19とが溶接
接合されて立脚されると共に、これら内外壁18.19
には防撓材20が互いに向かい合うように上下方向に等
間隔に取り付けられる。31は溶接部である。
Next, as shown in FIG. 6, a steel formwork 14 is erected on the embedded metal fitting 15. In this case, the inner wall 18 and the outer wall 19 are welded to each other and spaced apart from each other on the flat plate part 17, and these inner and outer walls 18, 19
The stiffeners 20 are attached at equal intervals in the vertical direction so as to face each other. 31 is a welding part.

したがって、これら内t18と外壁19との間には内側
遮蔽壁12aを形成するための中空室32が形成される
ことになる。
Therefore, a hollow chamber 32 for forming the inner shielding wall 12a is formed between the inner wall t18 and the outer wall 19.

次いで、基礎13上に内外壁18.19が立ち上がって
取り付けられた後には、内外壁18゜19の間に形成さ
れる中空室32にコンクリート材4と混練された鉛粒体
2が流し込まれる。すなわち、第7図に示すように、内
外!!18.19の上部には投入口33が形成され、こ
の投入口33には上方から鉛粒体2を含むコンクリート
材4を供給するための供給ホース34が指向され、内外
壁18.19間には連続的に鉛粒体2を含むコンクリー
ト材4が供給される。
Next, after the inner and outer walls 18 and 19 are raised and installed on the foundation 13, the lead particles 2 mixed with the concrete material 4 are poured into the hollow chamber 32 formed between the inner and outer walls 18 and 19. In other words, as shown in Figure 7, inside and outside! ! An input port 33 is formed in the upper part of 18.19, and a supply hose 34 for supplying concrete material 4 containing lead granules 2 from above is directed to this input port 33, and a supply hose 34 is directed between the inner and outer walls 18.19. Concrete material 4 containing lead particles 2 is continuously supplied.

このように鉛粒体2を含むコンクリート材4が連続的に
供給されると、第8図に示すように、内外壁18.19
間にはその底部から順次上方に投入口33に亘って充分
に鉛粒体2及びコンクリート材4が打設されることにな
る。したがって、コンクリート材4が凝固すると、内側
遮蔽壁12aが形成されることになる。
When the concrete material 4 containing the lead particles 2 is continuously supplied in this way, as shown in FIG.
In between, the lead granules 2 and the concrete material 4 are sufficiently cast from the bottom to the input port 33. Therefore, when the concrete material 4 solidifies, the inner shielding wall 12a will be formed.

鉛粒体2およびコンクリート材4を投入した際には防撓
材20には予め空隙防止孔21が形成されており、この
ため、防撓材20の取付は周辺部に空隙が形成されるこ
とを防止でき、鉛粒体2およびコンクリート材4を十分
に充填することができる。また、防撓材20は内側遮蔽
壁12a内に埋設されるので、内側遮蔽壁12aの機械
的強度を高めることにもなる。
When the lead granules 2 and the concrete material 4 are introduced, void prevention holes 21 are formed in the stiffener 20 in advance, so that when the stiffener 20 is installed, voids are formed around the periphery. , and the lead particles 2 and concrete material 4 can be sufficiently filled. Further, since the stiffener 20 is embedded within the inner shielding wall 12a, the mechanical strength of the inner shielding wall 12a is also increased.

次いで、第9図に示すように、内外壁18゜19の上部
に11体22を接合し、内外壁18゜19の投入口33
を閉塞することになる。
Next, as shown in FIG.
will be blocked.

したがって、内側遮蔽壁12aは型枠14からなる鋼製
の囲壁で被覆されることになる。
Therefore, the inner shielding wall 12a is covered with a steel surrounding wall made of the formwork 14.

このように、内側遮蔽壁12a及びこれを覆うように鋼
製の型枠14からなる囲壁が形成された後は第10図に
示すように、その型枠14の外周部を覆うようにコンク
リート材を打設してコンクリート壁層23を形成する。
After the inner shielding wall 12a and the surrounding wall made of the steel formwork 14 are formed to cover it, as shown in FIG. A concrete wall layer 23 is formed by pouring.

このコンクリート壁層23が型枠14の外側を被覆する
ことにより外側遮蔽壁12bが形成され、遮蔽g112
の完成に至る。
By covering the outside of the formwork 14 with this concrete wall layer 23, the outer shielding wall 12b is formed, and the shielding g112
reaches completion.

なお、第2の実施例においては型枠14内に鉛粒体2を
含むコンクリート材4を流し込む構成にしたがこれに限
るものではない、その他、型枠14内に鉛粒体2のみを
投入し充填するようにしてもよい。
In the second embodiment, the concrete material 4 containing the lead granules 2 is poured into the formwork 14, but the structure is not limited to this. In addition, only the lead granules 2 may be poured into the formwork 14. It may also be filled.

この場合、鉛の充填率を1とした場合、コンクリート材
の比重と鉛の比重との比率分だけ遮蔽壁12の厚さを薄
くできる。したがって、鉛の充填率が0,5の場合には
遮蔽効果は1/2となる。すなわち、充填率を1とした
場合の壁厚減少分の172の厚さが実際の削減可能な壁
厚となる。
In this case, when the lead filling rate is 1, the thickness of the shielding wall 12 can be reduced by the ratio of the specific gravity of the concrete material to the specific gravity of lead. Therefore, when the lead filling rate is 0.5, the shielding effect becomes 1/2. That is, when the filling factor is set to 1, the wall thickness that is reduced by 172 is the actual wall thickness that can be reduced.

また、鉛粒体2は型枠14内に形成される空隙により酸
化することになる。このように酸化した場合には鉛粒体
2の表面部に粉がふき出た状態となり、はがれ落ちて粒
径が小さくなる0本発明では鉛粒体2が予め被覆材3で
コーティングされるので、鉛粒体2の劣化(酸化)を未
然に防止できることにもなる。
Furthermore, the lead particles 2 will be oxidized due to the voids formed within the formwork 14. When oxidized in this way, powder bulges out on the surface of the lead granules 2 and falls off, reducing the particle size.In the present invention, the lead granules 2 are coated with the coating material 3 in advance. This also means that deterioration (oxidation) of the lead particles 2 can be prevented.

さらに、鉛粒#2に被覆材3によるコーティングが施さ
れているので、型枠14内に鉛粒体2を投入した際に鉛
粒体2同士が互いに衝突してもその衝撃を被覆材3で1
lnllすることができる。このため、粉塵の発生を未
然に防止でき、局所排気等の対策が不要である。
Furthermore, since the lead particles #2 are coated with the coating material 3, even if the lead particles 2 collide with each other when the lead particles 2 are introduced into the formwork 14, the impact is absorbed by the coating material 3. de1
You can lnll. Therefore, generation of dust can be prevented, and measures such as local exhaust ventilation are not required.

また、鉛粒体2は型枠14内に投入された際に落下時の
衝撃で変形する恐れがある。そこで、鉛粒体2にモリブ
デンあるいはアンチモンを加えて補強することが有効で
ある。たとえば、アンチモンの場合には最大6駕の範囲
で鉛に混入された合金とする。
Moreover, when the lead particles 2 are placed into the formwork 14, there is a risk that they may be deformed by the impact of falling. Therefore, it is effective to add molybdenum or antimony to the lead particles 2 for reinforcement. For example, in the case of antimony, it is an alloy mixed with lead in a range of up to 6 ounces.

このように本発明は鉛粒体2をコンクリート材4と混練
して遮蔽壁1.12を構築するので、遮蔽壁1.12内
に鉛粒体2が混入される分だけ遮蔽効果が高くなり、遮
蔽壁1,12の厚さを減することができる。したがって
、遮蔽壁1.12で区画される建屋内の有効スペースを
拡大することができる。また、鉛粒#2の表面部に被覆
材3によりコーティングが施されているので、鉛粒#2
がコンクリート材4から絶縁され、鉛粒体2の腐食を未
然に防止でき、高い遮蔽効果を維持できる。
In this way, in the present invention, the shielding wall 1.12 is constructed by kneading the lead particles 2 with the concrete material 4, so the shielding effect is increased by the amount of lead particles 2 mixed into the shielding wall 1.12. , the thickness of the shielding walls 1, 12 can be reduced. Therefore, the effective space within the building divided by the shielding wall 1.12 can be expanded. In addition, since the surface of lead grain #2 is coated with coating material 3, lead grain #2
are insulated from the concrete material 4, corrosion of the lead particles 2 can be prevented, and a high shielding effect can be maintained.

さらに、鉛粒体2およびコンクリート材4は流動化され
するので、その移送が容易であり、作業労力を低減でき
る。
Furthermore, since the lead granules 2 and the concrete material 4 are fluidized, they can be easily transported and the work effort can be reduced.

[発明の効果] 以上要するに本発明によれば、次の如き優れた効果を発
揮する。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved.

(1)鉛粒体をコンクリート材と混練して遮蔽壁を形成
するので、遮蔽壁の厚さを減することができ、有効スペ
ースを拡大することができる。
(1) Since the shielding wall is formed by kneading lead particles with concrete material, the thickness of the shielding wall can be reduced and the effective space can be expanded.

(2)鉛粒体を被覆材でコーティングするので、鉛粒体
の腐食を防止でき、高い遮蔽効果を維持できる。
(2) Since the lead particles are coated with a coating material, corrosion of the lead particles can be prevented and a high shielding effect can be maintained.

(3)鉛粒体・コンクリート材の移送が容易なので、作
業労力を低減できる。
(3) Since lead particles and concrete materials can be easily transferred, work effort can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の遮蔽壁を示す平断面図、
第2図は鉛粒体を示す断面図、第3図は鉛粒体およびコ
ンクリート材の投入状態を示す図、第4図は原子力施設
を示す断面図、第5図は埋込み金物を示す断面図、第6
図は型枠の設置段階を示す断面図、第7図は鉛粒体およ
びコンクリート材の投入状態を示す断面図、第8図は鉛
粒体およびコンクリート材の充填状態を示す断面図、第
9図は内側遮蔽壁が形成された状態を示す断面図、第1
0図は遮蔽壁が完成した状態の断面図である。 図中、1,12は遮蔽壁、2は鉛粒体、3は被覆材、4
はコンクリート材である。 特許出願人  石川島播!1重工業株式会社代理人弁理
士  絹   谷   信   雄(外1名) 13・) 第4図 第5図 第1○図
FIG. 1 is a plan sectional view showing a shielding wall according to a first embodiment of the present invention;
Figure 2 is a sectional view showing lead granules, Figure 3 is a diagram showing the state of lead granules and concrete material, Figure 4 is a sectional view showing a nuclear facility, and Figure 5 is a sectional view showing embedded metal fittings. , 6th
The figure is a cross-sectional view showing the stage of installing the formwork, Figure 7 is a cross-sectional view showing the charging state of lead granules and concrete material, Figure 8 is a cross-sectional view showing the filling state of lead grains and concrete material, and Figure 9 The figure is a sectional view showing the state in which the inner shielding wall is formed.
Figure 0 is a sectional view of the completed shielding wall. In the figure, 1 and 12 are shielding walls, 2 is lead particles, 3 is coating material, and 4
is concrete material. Patent applicant Ishikawajima Ban! 1 Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani (1 other person) 13.) Figure 4 Figure 5 Figure 1 ○

Claims (1)

【特許請求の範囲】[Claims] 1、原子力圧力容器等から発する放射線を遮蔽する遮蔽
壁の構築方法において、予め鉛粒体の表面部に樹脂等の
被覆材をコーティングした後、該コーティングされた鉛
粒体をコンクリート材と混練し打設してなることを特徴
とする遮蔽壁の構築方法。
1. In a method for constructing a shielding wall to shield radiation emitted from nuclear pressure vessels, etc., the surface of lead particles is coated with a coating material such as resin in advance, and then the coated lead particles are kneaded with concrete material. A method for constructing a shielding wall, characterized in that it is constructed by pouring.
JP1121572A 1989-05-17 1989-05-17 Construction of shielding wall Pending JPH02302697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121572A JPH02302697A (en) 1989-05-17 1989-05-17 Construction of shielding wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121572A JPH02302697A (en) 1989-05-17 1989-05-17 Construction of shielding wall

Publications (1)

Publication Number Publication Date
JPH02302697A true JPH02302697A (en) 1990-12-14

Family

ID=14814554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121572A Pending JPH02302697A (en) 1989-05-17 1989-05-17 Construction of shielding wall

Country Status (1)

Country Link
JP (1) JPH02302697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124499U (en) * 1991-04-26 1992-11-12 大成建設株式会社 radiation shield
JP2008203194A (en) * 2007-02-22 2008-09-04 Ihi Corp Radiation shielding structure
JP2019184443A (en) * 2018-04-11 2019-10-24 株式会社アールエフ Lead ball sheet, lead ball sheet manufacturing method, lead ball sheet installation method
JP2020076732A (en) * 2018-07-04 2020-05-21 ロールス・ロイス・ピーエルシーRolls−Royce Public Limited Company Nuclear power plant
JP2021051017A (en) * 2019-09-25 2021-04-01 株式会社アールエフ Radiation shielding method, radiation shielding structure, and clay with lead balls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124499U (en) * 1991-04-26 1992-11-12 大成建設株式会社 radiation shield
JP2008203194A (en) * 2007-02-22 2008-09-04 Ihi Corp Radiation shielding structure
JP2019184443A (en) * 2018-04-11 2019-10-24 株式会社アールエフ Lead ball sheet, lead ball sheet manufacturing method, lead ball sheet installation method
JP2020076732A (en) * 2018-07-04 2020-05-21 ロールス・ロイス・ピーエルシーRolls−Royce Public Limited Company Nuclear power plant
JP2021051017A (en) * 2019-09-25 2021-04-01 株式会社アールエフ Radiation shielding method, radiation shielding structure, and clay with lead balls

Similar Documents

Publication Publication Date Title
US8042314B2 (en) Construction for buildings protected against radiation
JP2008232845A (en) Precast block for radiation shield, radiation shielding structure and method for constructing it
JPH02302697A (en) Construction of shielding wall
JP6322359B2 (en) Radiation shielding wall, radiation shielding wall construction method, and radiation shielding wall repair method
US6046374A (en) Cellular grout radiation barrier
JP2007155497A (en) Neutron beam shielding structure and its building method
KR19990007116A (en) Method and container for manufacturing containers
JP5885324B2 (en) Method for producing waste solidified body and method for treating radioactive waste
JP7340245B2 (en) Radiation shielding method, radiation shielding structure, clay with lead beads
JP2001305275A (en) Radioactive material storage facility
JP4074088B2 (en) Nuclear power plant construction method
JP4643193B2 (en) Construction method of shielding concrete considering activation
JP2001296392A (en) Radioactive material storage facility
EP3206210A1 (en) Concrete container and manufacturing method thereof
JP3020874B2 (en) Module structure of nuclear power plant and diaphragm floor and method of constructing nuclear power plant
JP6925181B2 (en) Box-shaped containers and box-shaped structures that contain radiation shielding materials and radioactive waste
JPH02257095A (en) Method for constructing body for nuclear installations
JP2001116881A (en) Radiation shield
JPH04370797A (en) Constuction of lined tank
JP5219252B2 (en) Construction method of concrete structure
JPS62280695A (en) Structure of weir for preventing increase of leakage of liquid
JPS6145745B2 (en)
JPS6019385B2 (en) Mortar filling construction method for wide, flat, closed gaps
JPS62157591A (en) Construction structure and method of container for nuclear reactor
Barish Practical high-density shielding materials for medical linear accelerator rooms