JP2021050988A - 測距装置及び電子機器 - Google Patents

測距装置及び電子機器 Download PDF

Info

Publication number
JP2021050988A
JP2021050988A JP2019173696A JP2019173696A JP2021050988A JP 2021050988 A JP2021050988 A JP 2021050988A JP 2019173696 A JP2019173696 A JP 2019173696A JP 2019173696 A JP2019173696 A JP 2019173696A JP 2021050988 A JP2021050988 A JP 2021050988A
Authority
JP
Japan
Prior art keywords
distance
segment
unit
light
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173696A
Other languages
English (en)
Inventor
一輝 大橋
Kazuteru Ohashi
一輝 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2019173696A priority Critical patent/JP2021050988A/ja
Priority to US17/753,870 priority patent/US20220373682A1/en
Priority to PCT/JP2020/027983 priority patent/WO2021059699A1/ja
Publication of JP2021050988A publication Critical patent/JP2021050988A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】エイリアス距離にある物体の測距結果を無効にし、正しい距離(真の距離)が測定されている物体の測距結果のみを出力することができる測距装置、及び、当該測距装置を有する電子機器を提供する。【解決手段】本開示の測距装置は、被写体からの光を受光する光検出部、光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、を備える。本開示の電子機器は、上記の構成の測距装置を有する。【選択図】 図9

Description

本開示は、測距装置及び電子機器に関する。
被写体までの距離情報(距離画像情報)を取得する測距装置(距離測定装置)として、ToF(Time of Flight:光飛行時間)方式を利用した装置(センサ)がある。ToF方式は、被写体(測定対象物)に対して光源から光を照射し、その照射光が被写体で反射されて光検出部に戻ってまでの光の飛行時間を検出することにより、被写体までの距離を測定する方式である。
ToF方式の一つとして、光源から発した所定の周期のパルス光が被写体で反射し、その反射光を光検出部が受光した際の周期を検出し、発光の周期と受光の周期との位相差から光飛行時間を計測することにより、被写体までの距離を測定する間接(indirect)ToF方式がある(例えば、特許文献1参照)。
特開2016−035398号公報
間接ToF方式の測距装置では、光源から出射されるレーザ光の発光周波数(発光周期)に応じて測距可能な最大距離が決まるが、その最大距離を超えると、エイリアシングと呼称される折り返しひずみ(折り返した距離)が発生してしまう。そして、エイリアシングが発生する距離(エイリアス距離)にある物体については、実際の測定距離が、本来の正しい距離(真の距離)よりも近くなる。これにより、エイリアス距離にある物体の測距結果については、誤った測距結果として出力され、当該測距結果に基づいて各種の制御を行う後段のシステムでは、誤った制御が行われることになる。
本開示は、エイリアス距離にある物体の測距結果を無効にし、正しい距離(真の距離)が測定されている物体の測距結果のみを出力することができる測距装置、及び、当該測距装置を有する電子機器を提供することを目的とする。
上記の目的を達成するための本開示の測距装置は、
被写体からの光を受光する光検出部、
光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、
深度計算部が算出した深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、
を備える。
また、上記の目的を達成するための本開示の電子機器は、上記の構成の測距装置を有する。
図1は、ToF方式の測距システムの概念図である。 図2は、本開示の技術が適用されるToF方式の測距装置の構成の一例を示すブロック図である。 図3は、測距装置における光検出部の構成の一例を示すブロック図である。 図4は、光検出部における画素の回路構成の一例を示す回路図である。 図5は、ToF方式の測距装置における距離の算出について説明するためのタイミング波形図である。 図6は、測距装置における測距部の距離画像計算部の構成の一例を示すブロック図である。 図7は、レーザ駆動周波数が100MHzのときの真の深度と測距深度との関係を示す図である。 図8Aは、真の深度1.0m、測距深度1.0mの場合の画像に映る被写体の大きさを示す図であり、図8Bは、真の深度2.5m、測距深度1.0mの場合の画像に映る被写体の大きさを示す図である。 図9は、本開示の実施形態に係る測距装置によって実行される、エイリアシング課題を解決するための処理の一例を示すフローチャートである。 図10は、本開示の実施形態の変形例を示すブロック図である。 図11Aは、本開示の電子機器の具体例1に係るスマートフォンの正面側から見た外観図であり、図11Bは、裏面側から見た外観図である。 図12Aは、本開示の電子機器の具体例2に係るデジタルスチルカメラの正面側から見た外観図であり、図12Bは、裏面側から見た外観図である。
以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の測距装置及び電子機器、全般に関する説明
2.ToF方式の測距システム
3.本開示の技術が適用される測距装置
3−1.システム構成
3−2.光検出部の構成例
3−3.画素の回路構成例
3−4.距離画像計算部の構成例
3−5.エイリアシング課題について
4.本開示の実施形態
4−1.エイリアシング課題を解決するための処理例
4−2.セグメントのピクセル数の閾値設定
5.変形例
6.応用例
7.本開示の電子機器
7−1.具体例1(スマートフォンの例)
7−2.具体例2(デジタルスチルカメラの例)
8.本開示がとることができる構成
<本開示の測距装置及び電子機器、全般に関する説明>
本開示の測距装置及び電子機器にあっては、アーティファクト除去部について、各セグメントに対してラベル付けを行い、各ラベルについて、コンポーネントオブジェクトを作成する構成とすることができる。また、アーティファクト除去部について、近傍画素と深度情報が連続する画素に対して同じラベルを付ける処理により、セグメント毎に異なるラベルを付ける構成とすることができる。また、コンポーネントオブジェクトについて、セグメントのピクセル数及び深度平均値である構成とすることができる。
上述した好ましい構成を含む本開示の測距装置及び電子機器にあっては、アーティファクト除去部について、測距装置からのセグメントの距離に応じて所定の閾値を変更する構成とすることができる。また、アーティファクト除去部について、測距装置からのセグメントの距離が、相対的に近い近距離用の閾値を大きく設定し、相対的に遠い遠距離用の閾値を小さく設定する構成とすることができる。
<ToF方式の測距システム>
図1は、ToF方式の測距システムの概念図である。本例に係る測距装置1では、測定対象物である被写体10までの距離を測定する測定方式として、ToF方式が採用されている。ToF方式は、被写体10に向けて照射した光が、当該被写体10で反射されて戻ってくるまでの時間を測定する方式である。ToF方式による距離測定を実現するために、測距装置1は、被写体10に向けて照射する光(例えば、赤外の波長領域にピーク波長を有するレーザ光)を出射する光源20、及び、被写体10で反射されて戻ってくる反射光を検出する光検出部30を備えている。
<本開示の技術が適用される測距装置>
[システム構成]
図2は、本開示の技術が適用されるToF方式の測距装置の構成の一例を示すブロック図である。本適用例に係る測距装置1(即ち、本開示の測距装置1)は、光源20及び光検出部30の他に、光検出部30が出力する信号値に基づいて露光制御を行うAE(Automatic Exposure:自動露光)制御部40、及び、測距部50を備えている。そして、本適用例に係るToF方式の測距装置1は、光検出部30の画素毎に距離情報を検出し、高精度な距離画像(Depth Map:深度マップ)を撮像フレームの単位で取得することができる。
本適用例に係る測距装置1は、間接(Indirect)ToF方式の測距装置(所謂、間接ToF方式の距離画像センサ)である。間接ToF方式の測距装置1は、光源20から発した所定の周期のパルス光が測定対象物(被写体)で反射し、その反射光を光検出部30が受光した際の周期を検出する。そして、発光の周期と受光の周期との位相差から光飛行時間を計測することで、測定対象物までの距離を測定する。
光源20は、AE制御部40による制御の下に、オン/オフ動作を所定の周期で繰り返すことによって測定対象物に向けて光を照射する。光源20の照射光としては、例えば、850nm付近の近赤外光が利用されることが多い。光検出部30は、光源20からの照射光が測定対象物で反射されて戻ってくる光を受光し、画素毎に距離情報を検出する。光検出部30からは、画素毎に検出した距離情報を含む現フレームのRAW画像データ、及び、発光・露光設定情報が出力され、AE制御部40及び測距部50に供給される。
AE制御部40は、次フレーム発光・露光条件計算部41及び次フレーム発光・露光制御部42を有する構成となっている。次フレーム発光・露光条件計算部41は、光検出部30から供給される現フレームのRAW画像データ、及び、発光・露光設定情報に基づいて、次フレームの発光・露光条件を計算する。次フレームの発光・露光条件は、次フレームの距離画像を取得する際の光源20の発光時間や発光強度、及び、光検出部30の露光時間である。次フレーム発光・露光制御部42は、次フレーム発光・露光条件計算部41で算出された次フレームの発光・露光条件に基づいて、次フレームの光源20の発光時間や発光強度、及び、光検出部30の露光時間を制御する。
測距部50は、距離画像を計算する距離画像計算部51を有する構成となっている。距離画像計算部51は、光検出部30の画素毎に検出した距離情報を含む現フレームのRAW画像データを用いて計算を行うことによって距離画像を算出し、被写体の奥行き情報である深度、及び、光検出部30の受光情報である信頼値の各情報を含む距離画像情報として測距装置1外へ出力する。ここで、距離画像とは、例えば、画素毎に検出した距離情報に基づく距離値(深度/奥行きの値)がそれぞれ画素に反映された画像である。
[光検出部の構成例]
ここで、光検出部30の具体的な構成例について、図3を用いて説明する。図3は、光検出部30の構成の一例を示すブロック図である。
光検出部30は、センサチップ31、及び、当該センサチップ31に対して積層された回路チップ32を含む積層構造を有している。この積層構造において、センサチップ31と回路チップ32とは、ビア(VIA)やCu−Cu接合などの接続部(図示せず)を通して電気的に接続される。尚、図3では、センサチップ31の配線と回路チップ32の配線とが、上記の接続部を介して電気的に接続された状態を図示している。
センサチップ31上には、画素アレイ部33が形成されている。画素アレイ部33は、センサチップ31上に2次元のグリッドパターンで行列状(アレイ状)に配置された複数の画素34を含んでいる。画素アレイ部33において、複数の画素34はそれぞれ、入射光(例えば、近赤外光)を受光し、光電変換を行ってアナログ画素信号を出力する。画素アレイ部33には、画素列毎に、2本の垂直信号線VSL1,VSL2が配線されている。画素アレイ部33の画素列の数をM(Mは、整数)とすると、合計で(2×M)本の垂直信号線VSLが画素アレイ部33に配線されている。
複数の画素34はそれぞれ、第1のタップA及び第2のタップB(その詳細については後述する)を有している。2本の垂直信号線VSL1,VSL2のうち、垂直信号線VSL1には、対応する画素列の画素34の第1のタップAの電荷に基づくアナログの画素信号AINP1が出力される。また、垂直信号線VSL2には、対応する画素列の画素34の第2のタップBの電荷に基づくアナログの画素信号AINP2が出力される。アナログの画素信号AINP1,AINP2については後述する。
回路チップ32上には、行選択部35、カラム信号処理部36、出力回路部37、及び、タイミング制御部38が配置されている。行選択部35は、画素アレイ部33の各画素34を画素行の単位で駆動し、画素信号AINP1,AINP2を出力させる。行選択部35による駆動の下に、選択行の画素34から出力されたアナログの画素信号AINP1,AINP2は、2本の垂直信号線VSL1,VSL2を通してカラム信号処理部36に供給される。
カラム信号処理部36は、画素アレイ部33の画素列に対応して、例えば、画素列毎に設けられた複数のアナログ−デジタル変換器(ADC)39を有する構成となっている。アナログ−デジタル変換器39は、垂直信号線VSL1,VSL2を通して供給されるアナログの画素信号AINP1,AINP2に対して、アナログ−デジタル変換処理を施し、出力回路部37に出力する。出力回路部37は、カラム信号処理部36から出力されるデジタル化された画素信号AINP1,AINP2に対してCDS(Correlated Double Sampling:相関二重サンプリング)処理などを実行し、回路チップ32外へ出力する。
タイミング制御部38は、各種のタイミング信号、クロック信号、及び、制御信号等を生成し、これらの信号を基に、行選択部35、カラム信号処理部36、及び、出力回路部37等の駆動制御を行う。
[画素の回路構成例]
図4は、光検出部30における画素34の回路構成の一例を示す回路図である。
本例に係る画素34は、光電変換部として、例えば、フォトダイオード341を有している。画素34は、フォトダイオード341の他、オーバーフロートランジスタ342、2つの転送トランジスタ343,344、2つのリセットトランジスタ345,346、2つの浮遊拡散層347,348、2つの増幅トランジスタ349、350、及び、2つの選択トランジスタ351,352を有する構成となっている。2つの浮遊拡散層347,348は、先述した図3に示す第1,第2のタップA,B(以下、単に、「タップA,B」と記述する場合がある)に相当する。
フォトダイオード341は、受光した光を光電変換して電荷を生成する。フォトダイオード341については、例えば、基板裏面側から照射される光を取り込む裏面照射型の画素構造とすることができる。但し、画素構造については、裏面照射型の画素構造に限られるものではなく、基板表面側から照射される光を取り込む表面照射型の画素構造とすることもできる。
オーバーフロートランジスタ342は、フォトダイオード341のカソード電極と電源電圧VDDの電源ラインとの間に接続されており、フォトダイオード341をリセットする機能を持つ。具体的には、オーバーフロートランジスタ342は、行選択部35から供給されるオーバーフローゲート信号OFGに応答して導通状態になることで、フォトダイオード341の電荷をシーケンシャルに電源電圧VDDの電源ラインに排出する。
2つの転送トランジスタ343,344は、フォトダイオード341のカソード電極と2つの浮遊拡散層347,348(タップA,B)のそれぞれとの間に接続されている。そして、転送トランジスタ343,344は、行選択部35から供給される転送信号TRGに応答して導通状態になることで、フォトダイオード341で生成された電荷を、浮遊拡散層347,348にそれぞれシーケンシャルに転送する。
第1,第2のタップA,Bに相当する浮遊拡散層347,348は、フォトダイオード341から転送された電荷を蓄積し、その電荷量に応じた電圧値の電圧信号に変換し、アナログの画素信号AINP1,AINP2を生成する。
2つのリセットトランジスタ345,346は、2つの浮遊拡散層347,348のそれぞれと電源電圧VDDの電源ラインとの間に接続されている。そして、リセットトランジスタ345,346は、行選択部35から供給されるリセット信号RSTに応答して導通状態になることで、浮遊拡散層347,348のそれぞれから電荷を引き抜いて、電荷量を初期化する。
2つの増幅トランジスタ349、350は、電源電圧VDDの電源ラインと2つの選択トランジスタ351,352のそれぞれとの間に接続されており、浮遊拡散層347,348のそれぞれで電荷から電圧に変換された電圧信号をそれぞれ増幅する。
2つの選択トランジスタ351,352は、2つの増幅トランジスタ349、350のそれぞれと垂直信号線VSL1,VSL2のそれぞれとの間に接続されている。そして、選択トランジスタ351,352は、行選択部35から供給される選択信号SELに応答して導通状態になることで、増幅トランジスタ349、350のそれぞれで増幅された電圧信号を、アナログの画素信号AINP1,AINP2として2本の垂直信号線VSL1,VSL2に出力する。
2本の垂直信号線VSL1,VSL2は、画素列毎に、カラム信号処理部36内の1つのアナログ−デジタル変換器39の入力端に接続されており、画素列毎に画素34から出力されるアナログの画素信号AINP1,AINP2をアナログ−デジタル変換器39に伝送する。
尚、画素34の回路構成については、光電変換によってアナログの画素信号AINP1,AINP2を生成することができる回路構成であれば、図3に例示した回路構成に限定されるものではない。
ここで、ToF方式による距離の算出について図5を用いて説明する。図5は、ToF方式の測距装置1における距離の算出について説明するためのタイミング波形図である。ToF方式の測距装置1における光源20及び光検出部30は、図5のタイミング波形図に示すタイミングで動作する。
光源20は、AE制御部40による制御の下に、所定の期間、例えば、パルス発光時間Tpの期間だけ、測定対象物に対して光を照射する。光源20から発せられた照射光は、測定対象物で反射されて戻ってくる。この反射光(active光)が、フォトダイオード341によって受光される。測定対象物への照射光の照射が開始されてから、フォトダイオード341が反射光を受光する時間、即ち、光飛行時間は、測距装置1から測定対象物までの距離に応じた時間となる。
図4において、フォトダイオード341は、照射光の照射が開始された時点から、パルス発光時間Tpの期間だけ、測定対象物からの反射光を受光する。このとき、フォトダイオード341が受光する光には、測定対象物に照射された光が、当該測定対象物で反射されて戻ってくる反射光(active光)の他に、物体や大気などで反射・散乱された環境光(ambient光)も含まれている。
1回の受光の際に、フォトダイオード341で光電変換された電荷が、タップA(浮遊拡散層347)に転送され、蓄積される。そして、タップAから、浮遊拡散層347に蓄積した電荷量に応じた電圧値の信号n0が取得される。タップAの蓄積タイミングが終了した時点で、フォトダイオード341で光電変換された電荷が、タップB(浮遊拡散層348)に転送され、蓄積される。そして、タップBから、浮遊拡散層348に蓄積した電荷量に応じた電圧値の信号n1が取得される。
このように、タップA及びタップBに対して、蓄積タイミングの位相を180度異ならせた駆動(位相を全く逆にした駆動)が行われることで、信号n0及び信号n1がそれぞれ取得される。そして、このような駆動が複数回繰り返され、信号n0及び信号n1の蓄積、積算が行われることで、蓄積信号N0及び蓄積信号N1がそれぞれ取得される。
例えば、1つの画素34について、1つのフェーズに2回受光が行われ、タップA及びタップBに4回ずつ、即ち、0度、90度、180度、270度の信号が蓄積される。このようにして取得した蓄積信号N0及び蓄積信号N1を基に、測距装置1から測定対象物までの距離Dが算出される。
蓄積信号N0及び蓄積信号N1には、測定対象物で反射されて戻ってくる反射光(active光)の成分の他に、物体や大気などで反射・散乱された環境光(ambient光)の成分も含まれている。従って、上述した動作では、この環境光(ambient光)の成分の影響を除き、反射光(active光)の成分を残すため、環境光に基づく信号n2に関しても蓄積、積算が行われ、環境光成分についての蓄積信号N2が取得される。
このようにして取得された、環境光成分を含む蓄積信号N0及び蓄積信号N1、並びに、環境光成分についての蓄積信号N2を用いて、以下の式(1)及び式(2)に基づく演算処理により、測距装置1から測定対象物までの距離Dを算出することができる。
Figure 2021050988
Figure 2021050988
式(1)及び式(2)において、Dは測距装置1から測定対象物までの距離を表し、cは光速を表し、Tpはパルス発光時間を表している。
図2に示した距離画像計算部51は、環境光成分を含む蓄積信号N0及び蓄積信号N1、並びに、環境光成分についての蓄積信号N2を用いて、光検出部30から出力される、上記した式(1)及び式(2)に基づく演算処理により、測距装置1から測定対象物までの距離Dを算出し、距離画像情報として出力する。距離画像情報としては、例えば、距離Dに応じた濃度の色で色付けされた画像情報を例示することができる。尚、ここでは、算出した距離Dを距離画像情報として出力するとしたが、算出した距離Dをそのまま距離情報として出力するようにしてもよい。
[距離画像計算部の構成例]
測距装置1における測距部50の距離画像計算部51の構成の一例を図6に示す。本例に係る距離画像計算部51は、深度計算部511、較正部512、ノイズ低減部513、及び、アーティファクト除去部514を有する構成となっている。
上記の構成の距離画像計算部51において、深度計算部511は、光検出部30から与えられるRAW画像データを用いて、光源20から出射された光が被写体で反射し、その反射光の光検出部30への到達位相差から深度情報及び信頼値情報を計算する。ここで、「深度」とは、被写体の奥行き情報(距離情報)のことであり、「信頼値」とは、光検出部30の受光情報であり、光源20から出射された光が、被写体で反射されて光検出部30に戻ってくる反射光の量(度合い)のことである。
較正部512は、例えば、光源20から出射された光と光検出部30に入射する光との位相を合わせたり、波形補正や温度補正等の較正処理を行ったりする。ノイズ低減部513は、例えば、ローパスフィルタから成り、ノイズを低減する処理を行う。アーティファクト除去部514は、種々のフィルタ機能を備えており、ノイズ低減部513を経た深度及び信頼値の各情報について、測距が間違っているものや、光検出部30の受光の信頼値の低いものを排除する処理を行う。
尚、ここでは、較正部512、ノイズ低減部513、及び、アーティファクト除去部514について、その順番で配置された構成を例示しているが、その配置の順番については任意である、即ち、変更してもよい。
[エイリアシング課題について]
ところで、上述した間接ToF方式の測距装置では、光源20から出射されるレーザ光の発光周波数(発光周期)に応じて測距可能な最大距離が決まる。一例として、光源20のレーザ駆動周波数(発光周波数)が100MHzのときの真の深度と測距深度との関係を図7に示す。この例の場合、測距可能な最大距離は1.5mである。
間接ToF方式の測距装置では、位相差に基づく測距であり、1周すると同じ位相に戻ることから、被写体までの距離が測距可能な最大距離を超えると、エイリアシング(折り返した距離)が発生してしまう。エイリアシング課題は、金属やガラスなど、鏡面反射成分が大きい高反射率な被写体で特に発生しやすい。
そして、エイリアス距離(エイリアシングが発生する距離)にある物体については、実際の測定距離(測距深度)が、本来の正しい距離(真の深度)よりも近くなる。例えば、2.5mの距離にある被写体の実際の測定距離(測距深度)が1.0mとなる。このように、エイリアス距離にある物体の測距結果については、誤った測距結果として測距装置1から出力されることになる。
その結果、測距装置1の測距結果(深度及び信頼値を含む距離画像情報)に基づいて各種の制御を行う後段のシステムでは、測距装置1の誤った測距結果に基づいて誤った制御が行われることになる。一例として、測距装置1の測距結果を、自動的にカメラの焦点(ピント)を合わせるオートフォーカスに応用する場合には、正確なフォーカス制御が行われないことになる。
ここで、画像に映る被写体の大きさについて考察する。真の深度1.0m、測距深度1.0mの場合の画像に映る被写体の大きさを図8Aに示し、真の深度2.5m、測距深度1.0mの場合の画像に映る被写体の大きさを図8Bに示す。図8Bは、エイリアス距離にある被写体の場合の例である。
図8Aの場合も、図8Bの場合も、測距距離(測距深度)が同じ1.0mである。図8Aと図8Bとの対比から明らかなように、同じ1.0mの距離として測距されるが、被写体の映る大きさが異なる。すなわち、真の深度2.5mの場合(図8B)の方が、真の深度1.0mの場合(図8A)よりも、画像に映る被写体の大きさが小さくなる。これは、画像に映る被写体の大きさが、測距装置1からの被写体の距離によって異なることを意味する。
<本開示の実施形態>
本開示の実施形態では、上記のように、画像に映る被写体の大きさが、測距装置1からの被写体の距離によって変化する性質を利用して、間接ToF方式の測距装置特有の課題であるエイリアシング課題を解決するようにする。このエイリアシング課題を解決する処理は、本実施形態にあっては、測距部50の距離画像計算部51内のアーティファクト除去部514において、フィルタ機能の一つとして実行される。
[エイリアシング課題を解決するための処理例]
以下に、アーティファクト除去部514において実行される、エイリアシング課題を解決するための処理の一例について、図9のフローチャートを用いて説明する。
以下では、アーティファクト除去部514の機能をプロセッサによって実現する構成の場合において、アーティファクト除去部514を構成するプロセッサによる制御の下に、エイリアシング課題を解決するための一連の処理が実行されることとする。
アーティファクト除去部514を構成するプロセッサ(以下、単に「プロセッサ」と記述する)は、図6の深度計算部511で算出された深度情報を基に、画像を各セグメント(部分/物体)に分けるセグメント化処理を行う(ステップS11)。このセグメント化処理では、一例として、図8A、図8Bの場合を例に挙げると、背景の大きい部分と、真ん中の丸い部分とをそれぞれセグメントとして分ける処理が行われる。
次に、プロセッサは、各セグメントに対してラベル1〜n(nは2以上の整数)を付けるラベル付け処理を行う(ステップS12)。このラベル付け処理では、画像を1行ずつ走査し、近傍画素と深度情報が連続する画素に対して同じラベルを付ける処理により、セグメント(部分/物体)毎に異なるラベルを付与する処理が行われる。
次に、プロセッサは、各ラベル1〜nについて、コンポーネントオブジェクトを作成する(ステップS13)。ここで、「コンポーネントオブジェクト」とは、セグメントのピクセル数、及び、深度平均値(距離平均値)のことである。
次に、プロセッサは、ラベルカウンタiをインクリメントし(ステップS14)、次いで、ラベル1(i=1)について深度平均値から、セグメントのピクセル数の閾値を決定する(ステップS15)。ステップS15の処理では、各セグメント毎に距離を考慮してセグメントのピクセル数の閾値を決定する、より具体的には、測距装置1からのセグメントの距離が、相対的に近い近距離用の閾値を大きく設定し、相対的に遠い遠距離用の閾値を小さく設定する。
近距離/遠距離については、所定の距離(例えば、1m)を基準(閾値)として定義することができる。但し、セグメントのピクセル数の閾値については、近距離/遠距離の2パターンに限られるものではなく、更に細分化して3パターン以上に増やすようにしてもよい。セグメントのピクセル数の閾値設定の詳細については後述する。
続いて、プロセッサは、ラベル1のセグメントについてピクセル数が閾値を超えるか否かを判断する(ステップS16)。この判断処理において、プロセッサは、ピクセル数が閾値を超えると判断した場合には(S16のYES)、そのセグメントを有効とし(ステップS17)、ピクセル数が閾値以下であると判断した場合には(S16のNO)、そのセグメントを無効とする(ステップS18)。
ステップS17の処理、又は、ステップS18の処理の終了後、プロセッサは、全ラベル1〜nについて、セグメントの有効/無効の処理が終了したか否かを判断し(ステップS19)、終了していれば(S19のYES)、エイリアシング課題を解決するための上述した一連の処理を終了する。また、プロセッサは、全ラベル1〜nについて終了していなければ(S19のNO)、ステップS14に戻ってラベルカウンタiをインクリメントし、以降、ステップS15〜ステップS19の処理を、全ラベル1〜nについて、セグメントの有効/無効の処理が終了したと判断するまで繰り返して実行する。
上述したように、本実施形態に係る測距装置1では、光検出部30から与えられるRAW画像データに基づいて深度計算部511で被写体の深度情報を算出し、当該深度情報を基にセグメント化処理を行い、ピクセル数が閾値よりも小さいセグメントを無効にする処理が行われる。この処理により、間接ToF方式の測距装置特有の課題であるエイリアシング課題を解決することができる。すなわち、エイリアス距離にある物体の測距結果については、誤った測距結果として測距装置1から出力されることはなく、正しい距離(真の距離)が測定されている物体の測距結果のみを出力することができる。
[セグメントのピクセル数の閾値設定]
ここで、セグメントの有効/無効の判断基準となる、セグメントのピクセル数の閾値設定について説明する。
測距対象の被写体(物体)の大きさを定義し、光検出部30の焦点距離や画素ピッチから、距離毎に撮像されるセグメントのピクセル数を算出し、この算出したピクセル数を閾値とすることができる。
・測距対象の被写体については、エイリアシング課題が特に発生しやすい物体、例えば、金属やガラスなど、鏡面反射成分が大きい高反射率な物体から選ぶようにする。
・エイリアシング課題は、エイリアシング課題が発生しやすい物体全体で発生する訳ではなく、レーザ光が正対する領域付近で発生しやすい。そのため、大きなる物体(被写体)であっても、エイリアシング課題が発生する領域の大きさを設定する場合もある。
<変形例>
以上、本開示の技術について、好ましい実施形態に基づき説明したが、本開示の技術は当該実施形態に限定されるものではない。上記の各実施形態において説明した測距装置の構成、構造は例示であり、適宜、変更することができる。例えば、上記の実施形態では、セグメントのピクセル数の閾値について、深度平均値を基に決定するとしたが、これに限られるものではなく、次のような構成をとることもできる。
例えば、図10に示すように、RGBカメラ61を用いるとともに、各被写体毎の閾値を予め設定しておく。そして、RGBカメラ61の撮像出力を基に、物体認識部62で被写体認識を行い、その認識結果を基にパラメータ制御部63によって、予め設定した閾値を決めるようにする。但し、被写体認識については、RGBカメラ61の出力を基に行うのではなく、測距装置1の最終出力、即ち、深度及び信頼値の各情報を含む距離画像情報を基に行うようにしてもよいし、RGBカメラ61の出力、及び、測距装置1の最終出力の両方を基に行うようにしてもよい。
<応用例>
本開示の測距装置は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)等のいずれかの種類の移動体に搭載される測距装置として用いることができる。また、上記の実施形態では、本開示の測距装置について、距離画像(深度マップ)を取得する手段として用いる場合を例に挙げて説明したが、単に距離画像を取得する手段として用いるだけでなく、自動的にカメラの焦点(ピント)を合わせるオートフォーカスに応用することができる。
<本開示の電子機器>
以上説明した本開示の測距装置は、種々の電子機器に搭載される測距装置として用いることができる。測距装置を搭載する電子機器としては、例えば、スマートフォン、デジタルカメラ、タブレット等のモバイル機器を例示することができる。但し、モバイル機器に限定されるものではない。
以下に、本開示の測距装置を用いる電子機器の具体例として、スマートフォン及びデジタルスチルカメラを例示する。スマートフォン及びデジタルスチルカメラに搭載される測距装置の距離画像情報(深度情報)は、オートフォーカスのためのレンズ駆動情報として用いられる。但し、ここで例示する具体例は一例に過ぎず、これらの具体例に限られるものではない。
[具体例1:スマートフォンの例]
本開示の電子機器の具体例1に係るスマートフォンについて、正面側から見た外観図を図11Aに示し、背面側から見た外観図を図11Bに示す。本具体例に係るスマートフォン100は、筐体110の正面側に表示部120を備えている。また、スマートフォン100は、例えば、筐体110の裏面側の上方部に撮像部130を備えている。
先述した本開示の実施形態に係る測距装置1は、例えば、上記の構成のモバイル機器の一例であるスマートフォン100に搭載して用いることができる。この場合、測距装置1の光源20及び光検出部30については、例えば図11Bに示すように、撮像部130の近傍に配置することができる。但し、図11Bに示す光源20及び光検出部30の配置例は、一例であって、この配置例に限られるものではない。
上述したように、具体例1に係るスマートフォン100は、本開示の実施形態に係る測距装置1を搭載することによって作製される。そして、具体例1に係るスマートフォン100は、上記の測距装置1を搭載することにより、エイリアシング課題を解決しつつ正確な測距結果を得ることができるため、当該測距結果に基づいてピントの合った撮像画像を得ることができる。
[具体例2:デジタルスチルカメラの例]
本開示の電子機器の具体例2に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラについて、正面側から見た外観図であり、図12Bは、裏面側から見た外観図である。
レンズ交換式一眼レフレックスタイプのデジタルスチルカメラ200は、例えば、カメラ本体部(カメラボディ)211の正面右側に交換式の撮影レンズユニット(交換レンズ)212を有し、正面左側に撮影者が把持するためのグリップ部213を有している。そして、カメラ本体部211の背面略中央にはモニター214が設けられている。モニター214の上部には、ビューファインダ(接眼窓)215が設けられている。撮影者は、ビューファインダ215を覗くことによって、撮影レンズユニット212によって導かれた被写体の光像を視認して構図決定を行うことが可能である。
先述した本開示の実施形態に係る測距装置1は、例えば、上記の構成のモバイル機器の一例であるデジタルスチルカメラ200に搭載して用いることができる。この場合、測距装置1の光源20及び光検出部30については、例えば図12Aに示すように、撮影レンズユニット212の近傍に配置することができる。但し、図12Aに示す光源20及び光検出部30の配置例は、一例であって、この配置例に限られるものではない。
上述したように、具体例2に係るデジタルスチルカメラ200は、本開示の実施形態に係る測距装置1を搭載することによって作製される。そして、具体例2に係るデジタルスチルカメラ200は、上記の測距装置1を搭載することにより、エイリアシング課題を解決しつつ正確な測距結果を得ることができるため、当該測距結果に基づいてピントの合った撮像画像を得ることができる。
<本開示がとることができる構成>
尚、本開示は、以下のような構成をとることもできる。
≪A.測距装置≫
[A−1]被写体からの光を受光する光検出部、
光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、
深度計算部が算出した深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、
を備える測距装置。
[A−2]アーティファクト除去部は、各セグメントに対してラベル付けを行い、各ラベルについて、コンポーネントオブジェクトを作成する、
上記[A−1]に記載の測距装置。
[A−3]アーティファクト除去部は、近傍画素と深度情報が連続する画素に対して同じラベルを付ける処理により、セグメント毎に異なるラベルを付与する、
上記[A−2]に記載の測距装置。
[A−4]コンポーネントオブジェクトは、セグメントのピクセル数及び深度平均値である、
上記[A−2]又は上記[A−3]に記載の測距装置。
[A−5]アーティファクト除去部は、測距装置からのセグメントの距離に応じて所定の閾値を変更する、
上記[A−1]乃至上記[A−4]のいずれかに記載の測距装置。
[A−6]アーティファクト除去部は、測距装置からのセグメントの距離が、相対的に近い近距離用の閾値を大きく設定し、相対的に遠い遠距離用の閾値を小さく設定する、
上記[A−5]に記載の測距装置。
≪B.電子機器≫
[B−1]被写体からの光を受光する光検出部、
光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、
深度計算部が算出した深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、
を備える測距装置を有する電子機器。
[B−2]アーティファクト除去部は、各セグメントに対してラベル付けを行い、各ラベルについて、コンポーネントオブジェクトを作成する、
上記[B−1]に記載の電子機器。
[B−3]アーティファクト除去部は、近傍画素と深度情報が連続する画素に対して同じラベルを付ける処理により、セグメント毎に異なるラベルを付与する、
上記[B−2]に記載の電子機器。
[B−4]コンポーネントオブジェクトは、セグメントのピクセル数及び深度平均値である、
上記[B−2]又は上記[B−3]に記載の電子機器。
[B−5]アーティファクト除去部は、測距装置からのセグメントの距離に応じて所定の閾値を変更する、
上記[B−1]乃至上記[B−4]のいずれかに記載の電子機器。
[B−6]アーティファクト除去部は、測距装置からのセグメントの距離が、相対的に近い近距離用の閾値を大きく設定し、相対的に遠い遠距離用の閾値を小さく設定する、
上記[B−5]に記載の電子機器。
1・・・測距装置、10・・・被写体(測定対象物)、20・・・光源、30・・・光検出部、40・・・AE制御部、41・・・次フレーム発光・露光条件計算部、42・・・次フレーム発光・露光制御部、50・・・測距部、51・・・距離画像計算部、61・・・RGBカメラ、62・・・物体認識部、63・・・パラメータ制御部

Claims (7)

  1. 被写体からの光を受光する光検出部、
    光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、
    深度計算部が算出した深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、
    を備える測距装置。
  2. アーティファクト除去部は、各セグメントに対してラベル付けを行い、各ラベルについて、コンポーネントオブジェクトを作成する、
    請求項1に記載の測距装置。
  3. アーティファクト除去部は、近傍画素と深度情報が連続する画素に対して同じラベルを付ける処理により、セグメント毎に異なるラベルを付与する、
    請求項2に記載の測距装置。
  4. コンポーネントオブジェクトは、セグメントのピクセル数及び深度平均値である、
    請求項2に記載の測距装置。
  5. アーティファクト除去部は、測距装置からのセグメントの距離に応じて所定の閾値を変更する、
    請求項1に記載の測距装置。
  6. アーティファクト除去部は、測距装置からのセグメントの距離が、相対的に近い近距離用の閾値を大きく設定し、相対的に遠い遠距離用の閾値を小さく設定する、
    請求項5に記載の測距装置。
  7. 被写体からの光を受光する光検出部、
    光検出部の出力に基づいて、被写体の深度情報を計算する深度計算部、及び、
    深度情報を基に画像を各セグメントに分け、各セグメントのピクセル数が所定の閾値を超えるセグメントを有効とし、所定の閾値以下のセグメントを無効とするアーティファクト除去部、
    を備える測距装置を有する電子機器。
JP2019173696A 2019-09-25 2019-09-25 測距装置及び電子機器 Pending JP2021050988A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019173696A JP2021050988A (ja) 2019-09-25 2019-09-25 測距装置及び電子機器
US17/753,870 US20220373682A1 (en) 2019-09-25 2020-07-20 Distance measurement device, method of controlling distance measurement device, and electronic apparatus
PCT/JP2020/027983 WO2021059699A1 (ja) 2019-09-25 2020-07-20 測距装置及び測距装置の制御方法、並びに、電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173696A JP2021050988A (ja) 2019-09-25 2019-09-25 測距装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2021050988A true JP2021050988A (ja) 2021-04-01

Family

ID=75157671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173696A Pending JP2021050988A (ja) 2019-09-25 2019-09-25 測距装置及び電子機器

Country Status (3)

Country Link
US (1) US20220373682A1 (ja)
JP (1) JP2021050988A (ja)
WO (1) WO2021059699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202325A1 (ja) 2021-03-25 2022-09-29 株式会社巴川製紙所 吸着シート及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337197B2 (ja) * 1997-04-04 2002-10-21 富士重工業株式会社 車外監視装置
JP4414054B2 (ja) * 2000-03-27 2010-02-10 本田技研工業株式会社 物体認識装置
JP5164351B2 (ja) * 2006-09-07 2013-03-21 富士重工業株式会社 物体検出装置および物体検出方法
US20110063437A1 (en) * 2008-08-20 2011-03-17 Tatsumi Watanabe Distance estimating device, distance estimating method, program, integrated circuit, and camera
JP5743390B2 (ja) * 2009-09-15 2015-07-01 本田技研工業株式会社 測距装置、及び測距方法
JP5371725B2 (ja) * 2009-12-16 2013-12-18 富士重工業株式会社 物体検出装置
US20140049767A1 (en) * 2012-08-15 2014-02-20 Microsoft Corporation Methods and systems for geometric phase unwrapping in time of flight systems
JP5904069B2 (ja) * 2012-09-13 2016-04-13 オムロン株式会社 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
JP6742157B2 (ja) * 2016-06-06 2020-08-19 株式会社デンソーアイティーラボラトリ 物体検出装置、物体検出システム、物体検出方法、およびプログラム
US10021372B2 (en) * 2016-09-16 2018-07-10 Qualcomm Incorporated Systems and methods for improved depth sensing
JP6814053B2 (ja) * 2017-01-19 2021-01-13 株式会社日立エルジーデータストレージ 物体位置検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202325A1 (ja) 2021-03-25 2022-09-29 株式会社巴川製紙所 吸着シート及びその製造方法

Also Published As

Publication number Publication date
WO2021059699A1 (ja) 2021-04-01
US20220373682A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP5979500B2 (ja) 立体撮像装置
US10277827B2 (en) Imaging apparatus and electronic apparatus
US20170117310A1 (en) Solid-state image sensor, electronic apparatus, and imaging method
WO2017150246A1 (ja) 撮像装置、及びそれに用いられる固体撮像素子
JP2010071976A (ja) 距離推定装置、距離推定方法、プログラム、集積回路およびカメラ
US20170302859A1 (en) Light detecting apparatus, image capturing apparatus and image sensor
SE514859C2 (sv) Förfarande och anordning för undersökning av objekt på ett substrat genom att ta bilder av substratet och analysera dessa
CN112534474A (zh) 纵深取得装置、纵深取得方法以及程序
CN114600116A (zh) 对象识别系统、对象识别系统的信号处理方法、以及电子装置
US20210041539A1 (en) Method and apparatus for determining malfunction, and sensor system
JP2004126574A (ja) 電子撮像装置のフォーカシング
TR201808247T4 (tr) Bir numunenin çoklu derinliklerinde görüntü verisinin eşzamanlı yakalanması için yöntem ve cihaz.
WO2020170969A1 (ja) 測距装置及び測距装置の制御方法、並びに、電子機器
JP2024019613A (ja) 撮像装置、情報処理装置、撮像方法およびプログラム
WO2021059699A1 (ja) 測距装置及び測距装置の制御方法、並びに、電子機器
JP2023101522A (ja) 撮像装置、情報処理装置、撮像方法、およびプログラム
JP2017158018A (ja) 画像処理装置およびその制御方法、撮像装置
US20230154135A1 (en) Object recognition system and electronic apparatus
US20160063307A1 (en) Image acquisition device and control method therefor
CN114424522A (zh) 图像处理装置、电子设备、图像处理方法与程序
CN113597567A (zh) 距离图像的获得方法、以及距离检测装置
JP7237450B2 (ja) 画像処理装置、画像処理方法、プログラム、記憶媒体及び撮像装置
WO2021059698A1 (ja) 測距装置及び測距装置の制御方法、並びに、電子機器
WO2021084891A1 (ja) 移動量推定装置、移動量推定方法、移動量推定プログラム、及び移動量推定システム
JP2015014788A (ja) 測距装置、撮像装置及び測距装置の制御方法