JP2021045762A - Runner brick for making steel ingot - Google Patents

Runner brick for making steel ingot Download PDF

Info

Publication number
JP2021045762A
JP2021045762A JP2019168890A JP2019168890A JP2021045762A JP 2021045762 A JP2021045762 A JP 2021045762A JP 2019168890 A JP2019168890 A JP 2019168890A JP 2019168890 A JP2019168890 A JP 2019168890A JP 2021045762 A JP2021045762 A JP 2021045762A
Authority
JP
Japan
Prior art keywords
mass
less
runner
brick
runner brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019168890A
Other languages
Japanese (ja)
Inventor
喜久雄 有賀
Kikuo Ariga
喜久雄 有賀
恭介 伊佐地
Kyosuke Isaji
恭介 伊佐地
重樹 工藤
Shigeki Kudo
重樹 工藤
竜哉 西尾
Tatsuya Nishio
竜哉 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2019168890A priority Critical patent/JP2021045762A/en
Publication of JP2021045762A publication Critical patent/JP2021045762A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

To provide a runner brick for making a steel ingot having both of a satisfactory corrosion resistance property and a satisfactory thermal shock resistance property capable of coping with a heat receiving change in an operation.SOLUTION: A sintered magnesia material, a dung material and a molten quartz material obtained by being subjected to pulverization and classification to regulate size of particles, a modifier (chromium oxide, feldspar) and a molding assistant (knot clay material) are mixed at a prescribed blending ratio, thereafter, a binder is added thereto, thus surfaces of the particles of the main materials, the modifier and the molding assistant are covered with the binder, and, using the mixed composition, a runner brick for making a steel ingot is formed.SELECTED DRAWING: Figure 1

Description

本発明は、鋳造・造塊用の施設において、湯口から注がれた溶融金属を鋳型へと注入させるための湯道の形成に用いられる造塊用湯道煉瓦に関するものである。 The present invention relates to an ingot-forming runner brick used for forming a runner for injecting molten metal poured from a sprue into a mold in a casting / ingot-forming facility.

近年では、鋼材として、種々な使用条件に対応し得る特殊な鋼材が開発されており、このような特殊な鋼材の開発に対応して、二次精錬等の新しい製鋼技術も開発されている。そして、それらの鋼材や製鋼技術の開発に伴って、製鋼時の溶湯温度が次第に上昇してきているため、下注鋳造等の鋳造・造塊に用いられる湯道煉瓦に対して、耐熱性、耐食性、耐熱衝撃性の面で高い品質が求められている。 In recent years, special steel materials that can meet various usage conditions have been developed as steel materials, and new steelmaking technologies such as secondary refining have been developed in response to the development of such special steel materials. With the development of these steel materials and steelmaking technology, the molten metal temperature during steelmaking is gradually rising, so that it has heat resistance and corrosion resistance to the runner bricks used for casting and ingots such as under-order casting. High quality is required in terms of heat resistance and impact resistance.

湯道煉瓦は、従来、炭化硅素質材、含ジルコニア質材、酸化クロム質材等を添加したシャモット質材やロー石質材によって製造されていたが、必ずしも耐食性が十分とはいえなかった。それゆえ、特許文献1の如く、耐食性の高いマグネシア質材によって湯道煉瓦を製造する技術も開発されてきている。 Conventionally, runway bricks have been produced by chamotte materials or raw stone materials to which a silicon carbide material, a zirconia-containing material, a chromium oxide material, etc. are added, but the corrosion resistance is not always sufficient. Therefore, as in Patent Document 1, a technique for manufacturing a runway brick from a magnesian material having high corrosion resistance has also been developed.

特開昭54−99112号公報JP-A-54-99112

しかしながら、上記した特許文献1の如きマグネシア質材によって形成された湯道煉瓦は、良好な耐食性(耐溶損性)を発現するものの、マグネシア質材の熱間線膨張率が高いことに起因して、耐熱衝撃性が不十分であるため、操業時の受熱変化に対応することができず、使用中に亀裂や割れ等が発生して正常な操業に支障を来すことがあった。 However, although the runner brick formed of the magnesia material as described in Patent Document 1 described above exhibits good corrosion resistance (erosion resistance), it is caused by the high coefficient of linear expansion of the magnesia material. Due to insufficient thermal shock resistance, it was not possible to respond to changes in heat reception during operation, and cracks and cracks may occur during use, which may interfere with normal operation.

本発明の目的は、特許文献1の如き従来の鋼の造塊用湯道煉瓦が有する問題点を解消し、良好な耐食性と、操業時の受熱変化に対応し得る良好な耐熱衝撃性とを兼備した鋼の造塊用の湯道煉瓦を提供することにある。 An object of the present invention is to solve the problems of conventional steel ingot hot water bricks such as Patent Document 1, and to provide good corrosion resistance and good thermal shock resistance capable of responding to changes in heat reception during operation. The purpose is to provide runner bricks for ingot steel.

本発明の内、請求項1に記載された発明は、湯口から注がれた溶融金属を鋳型へと注入させるための湯道の形成に用いられる造塊用湯道煉瓦であって、マグネシア質材、フォルステライト質材、および溶融石英質材を主原料として形成されており、それらの主原料の含有率が80質量%以上であることを特徴とするものである。 The invention according to claim 1 of the present invention is a granulation runner brick used for forming a runner for injecting molten metal poured from a sprue into a mold, and is made of magnesia. It is formed by using a material, a forsterite material, and a fused silica material as main raw materials, and is characterized in that the content of these main raw materials is 80% by mass or more.

請求項2に記載された発明は、請求項1に記載された発明において、原料中のマグネシア質材の含有量が25質量%以上60質量%未満であることを特徴とするものである。 The invention according to claim 2 is characterized in that, in the invention according to claim 1, the content of the magnesia material in the raw material is 25% by mass or more and less than 60% by mass.

請求項3に記載された発明は、請求項1、または請求項2に記載された発明において、原料中のフォルステライト質材の含有量が25質量%以上60質量%未満であることを特徴とするものである。 The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the content of the forsterite material in the raw material is 25% by mass or more and less than 60% by mass. It is something to do.

請求項4に記載された発明は、請求項1〜3のいずれかに記載された発明において、原料中の溶融石英質材の含有量が5質量%以上25質量%未満であることを特徴とするものである。 The invention according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the content of the fused silica material in the raw material is 5% by mass or more and less than 25% by mass. It is something to do.

請求項5に記載された発明は、請求項1〜4のいずれかに記載された発明において、改質材および/または成形性助材が添加されていることを特徴とするものである。 The invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, a modifier and / or a moldable auxiliary material is added.

請求項6に記載された発明は、請求項1〜5のいずれかに記載された発明において、気孔率が15%以上30%未満であり、圧縮強さが14MPa以上40MPa未満であるとともに、1,000℃における熱間線膨張率が1.00%未満であることを特徴とするものである。 The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the porosity is 15% or more and less than 30%, the compressive strength is 14 MPa or more and less than 40 MPa, and 1 It is characterized in that the coefficient of linear thermal expansion at 000 ° C. is less than 1.00%.

請求項7に記載された発明は、請求項1〜6のいずれかに記載の鋼の造塊用湯道煉瓦を製造するための製造方法であって、溶融石英質として、粒子径が1.0mm以上の粗粒子材、粒子径が0.1mm以上の1.0mm未満の中粒子材を用いるとともに、フォルステライト質材、マグネシア質材として、粗粒子部材、中粒子部材、および粒子径が0.1mm未満の微粒子材を用いることを特徴とするものである。 The invention according to claim 7 is a manufacturing method for manufacturing the steel ingot runner brick according to any one of claims 1 to 6, wherein the molten quartz has a particle size of 1. A coarse particle material of 0 mm or more and a medium particle material having a particle size of 0.1 mm or more and less than 1.0 mm are used, and the coarse particle member, the medium particle member, and the particle size are 0 as the forsterite material and the magnesia material. It is characterized by using a fine particle material having a size of less than 1 mm.

本発明に係る鋼の造塊用湯道煉瓦は、優れた耐食性と、操業時の受熱変化に対応し得る良好な耐熱衝撃性とを兼備しているため、鋳造用の施設等において、破損することなく好適に使用することができる。また、本発明に係る鋼の造塊用湯道煉瓦の製造方法によれば、優れた耐食性と良好な耐熱衝撃性とを兼備した鋼の造塊用湯道煉瓦を、安価かつ容易に製造することができる。 The steel ingot runner brick according to the present invention has both excellent corrosion resistance and good thermal shock resistance capable of responding to changes in heat reception during operation, and thus is damaged in a casting facility or the like. It can be suitably used without any problem. Further, according to the method for producing a steel ingot canal brick according to the present invention, a steel ingot cannon brick having both excellent corrosion resistance and good thermal shock resistance can be produced inexpensively and easily. be able to.

鋼の造塊用湯道煉瓦のうち、直管形状のものの一例を示す説明図である(aは正面図であり、bは右側面図であり、cはbにおけるA−A線断面図である)。It is explanatory drawing which shows an example of the straight pipe shape among the steel ingot sluice bricks (a is a front view, b is a right side view, and c is a sectional view taken along line AA in b. is there).

以下、本発明に係る鋼の造塊用湯道煉瓦(以下、単に、湯道煉瓦という)およびその製造方法の好適な実施形態について詳細に説明する。なお、以下の説明においては、各成分の特性、含有量、添加量に関する“〜”は、原則的に、左側の数値以上右側の数値以下を意味するものとする。 Hereinafter, a preferred embodiment of a steel ingot hot water brick (hereinafter, simply referred to as a hot water brick) and a method for producing the same according to the present invention will be described in detail. In the following description, "~" regarding the characteristics, content, and addition amount of each component means, in principle, not less than the value on the left side but not more than the value on the right side.

本発明に係る湯道煉瓦とは、マグネシア質材、フォルステライト質材、および、溶融石英質材を主原料の必須材とするものである。すなわち、本発明に係る湯道煉瓦は、主原料として、マグネシア質材中に、熱間線膨張率の異なるフォルステライト質材(ズン岩質材等)および溶融石英質材を混合させることにより、主原料粒子の熱間での異なる挙動を利用することによって、耐熱衝撃性を飛躍的に向上させたものである。なお、本発明に係る良好な耐熱衝撃性と十分な耐食性とを兼備した湯道煉瓦を得るためには、主原料の含有率は、80質量%以上であることが必要であり、85質量%以上であるとより好ましい。 The runner brick according to the present invention is made of a magnesia material, a forsterite material, and a fused silica material as essential raw materials. That is, the runner brick according to the present invention is prepared by mixing a forsterite material (such as dung rock material) and a fused silica material having different coefficients of thermal expansion in a magnesia material as a main raw material. By utilizing the different behaviors of the main raw material particles between heat, the thermal shock resistance is dramatically improved. In addition, in order to obtain a runner brick having both good thermal shock resistance and sufficient corrosion resistance according to the present invention, the content of the main raw material needs to be 80% by mass or more, and is 85% by mass. The above is more preferable.

本発明で用いるフォルステライト質材とは、フォルステライト(2MgO?SiO)を主構成物とする耐火材であり、橄欖岩、その中でもMgOの多いズン岩、またはズン橄欖岩を主な原料とするものである。また、マグネシア質材とは、MgOを80質量%以上含有するマグネシアクリンカー(海水マグネシアクリンカー、天然マグネシアクリンカー)、電融マグネシア、軽焼マグネシア等のことである。一方、溶融石英質材とは、結晶性シリカ粉(珪石)を酸水素炎(酸素と水素を混合して燃焼させた炎)や電気炉等で溶解させた後に固化させた非晶質材のことである。 The forsterite material used in the present invention is a refractory material mainly composed of forsterite (2MgO? SiO 2 ), and peridotite, among which peridotite containing a large amount of MgO, or peridotite is used as a main raw material. Is what you do. Further, the magnesia material is a magnesia clinker (seawater magnesia clinker, natural magnesia clinker) containing 80% by mass or more of MgO, an electrofusion magnesia, a light-baked magnesia and the like. On the other hand, the fused silica material is an amorphous material in which crystalline silica powder (silica stone) is melted in an oxyhydrogen flame (a flame obtained by mixing and burning oxygen and hydrogen) or an electric furnace and then solidified. That is.

原料中のマグネシア質材の含有量は、25質量%以上60質量%未満であると好ましい。マグネシア質材の含有量が、25質量%未満であると、製造される湯道煉瓦の溶損量が大きくなり、耐食性に問題が生じるので好ましくなく、反対に、マグネシア質材の含有量が、60質量%以上であると、製造される湯道煉瓦の耐熱衝撃性が不十分となりやすく、亀裂や割れ等の発生度が高くなるので好ましくない。原料中のマグネシア質材の含有量は、30質量%以上55質量%未満であるとより好ましい。 The content of the magnesia material in the raw material is preferably 25% by mass or more and less than 60% by mass. If the content of the magnesia material is less than 25% by mass, the amount of melt damage of the produced runner brick becomes large, which causes a problem in corrosion resistance, which is not preferable. On the contrary, the content of the magnesia material is increased. If it is 60% by mass or more, the thermal shock resistance of the manufactured runner brick tends to be insufficient, and the degree of occurrence of cracks and cracks increases, which is not preferable. The content of the magnesia material in the raw material is more preferably 30% by mass or more and less than 55% by mass.

また、原料中のフォルステライト質材の含有量は、25質量%以上60質量%未満であると好ましい。フォルステライト質材の含有量が、25質量%未満であると、製造される湯道煉瓦の耐熱衝撃性が不十分となりやすく、亀裂や割れ等の発生度が高くなるので好ましくなく、反対に、フォルステライト質材の含有量が、60質量%以上であると、溶損量が大きくなり、耐食性に問題が生じるので好ましくない。原料中のフォルステライト質材の含有量は、30質量%以上55質量%未満であるとより好ましい。 The content of the forsterite material in the raw material is preferably 25% by mass or more and less than 60% by mass. If the content of the forsterite material is less than 25% by mass, the heat-resistant impact resistance of the manufactured runner brick tends to be insufficient, and the degree of occurrence of cracks and cracks increases, which is not preferable. If the content of the forsterite material is 60% by mass or more, the amount of erosion damage becomes large and a problem occurs in corrosion resistance, which is not preferable. The content of the forsterite material in the raw material is more preferably 30% by mass or more and less than 55% by mass.

一方、原料中の溶融石英質材の含有量は、5質量%以上25質量%未満であると好ましい。溶融石英質材の含有量が、5質量%未満であると、製造される湯道煉瓦の耐熱衝撃性が不十分となりやすく、亀裂や割れ等の発生度が高くなるので好ましくなく、反対に、溶融石英質材の含有量が、25質量%以上であると、溶損量が大きくなり、耐食性に問題が生じるので好ましくない。原料中の溶融石英質材の含有量は、10質量%以上20質量%未満であるとより好ましい。 On the other hand, the content of the fused silica material in the raw material is preferably 5% by mass or more and less than 25% by mass. If the content of the fused silica material is less than 5% by mass, the thermal shock resistance of the manufactured runner brick tends to be insufficient, and the degree of occurrence of cracks and cracks increases, which is not preferable. If the content of the fused silica material is 25% by mass or more, the amount of erosion damage becomes large and a problem occurs in corrosion resistance, which is not preferable. The content of the fused silica material in the raw material is more preferably 10% by mass or more and less than 20% by mass.

さらに、本発明に係る湯道煉瓦は、原料中に、改質材および/または成形性助材が添加されていると好ましい。改質材としては、対耐化学反応改善材には酸化クロム質材、含ジルコニア質材、物理的特性改善材(焼結性改善材)には長石質材、陶石質材等を用いることができ、成形性助材としては、木節粘土質材等を用いることができる。 Further, in the runner brick according to the present invention, it is preferable that a modifier and / or a moldable auxiliary material is added to the raw material. As the modifier, a chromium oxide material, a zirconia-containing material, a feldspar material, a porcelain material, etc. can be used as the chemical resistance improving material, and the physical property improving material (sinterability improving material). As the moldable auxiliary material, a wood-knot clay material or the like can be used.

また、本発明に係る湯道煉瓦は、マグネシア質材、フォルステライト質材、溶融石英質材を主原料とし、必要に応じて改質材、成形性助材を混合した混合組成物中に、水および/またはバインダーを加えて混合、混練し、その混合・混練物を坏土として、鋳込み成形、押出し成形、プレス成形、あるいはそれらの組合せによって所定の形状(図1の如く、略中央に長手方向に沿った丸状溝(すなわち、長手方向と直交する方向の鉛直断面が略円形の溝)の湯道Pを設けた横長な直方体状等)に成形し、得られた成形品を乾燥させた後に、単独窯やトンネルキルン等によって、1,250℃〜1,450℃の温度で60時間〜100時間に亘って焼成することによって製造することができる。なお、本発明に係る湯道煉瓦は、図1の如く、角柱状(角筒状)のものに限定されず、円柱状(円筒状)のもの等でも良い。また、本発明に係る湯道煉瓦には、図1の如く、前後に接合用の凹凸ソケット等を設けることも可能である。 Further, the runner brick according to the present invention contains a magnesia material, a forsterite material, and a molten quartz material as main raw materials, and, if necessary, a modifier and a moldable auxiliary material mixed in a mixed composition. Water and / or binder is added and mixed and kneaded, and the mixed / kneaded product is used as clay, and is cast-molded, extruded, press-molded, or a combination thereof to give a predetermined shape (longitudinal in substantially the center as shown in FIG. A round groove along the direction (that is, a groove having a substantially circular vertical cross section in the direction orthogonal to the longitudinal direction) is formed into a horizontally long rectangular parallelepiped shape provided with a runner P, and the obtained molded product is dried. After that, it can be produced by firing in a single kiln, a tunnel kiln, or the like at a temperature of 1,250 ° C to 1,450 ° C for 60 hours to 100 hours. As shown in FIG. 1, the runner brick according to the present invention is not limited to a prismatic (square tubular) brick, and may be a cylindrical brick (cylindrical) or the like. Further, as shown in FIG. 1, the runner brick according to the present invention may be provided with an uneven socket or the like for joining in the front and rear.

さらに、本発明に係る湯道煉瓦を上記の如く製造する際には、マグネシア質材、フォルステライト質材、溶融石英質材の各主原料を、必要に応じて粉砕・分級することによって粒子の径を調整するのが望ましいが、その際には、溶融石英質として、粒子径が1.0mm以上の粗粒子材、粒子径が0.1mm以上の1.0mm未満の中粒子材を用いるとともに、フォルステライト質材、マグネシア質材として、粗粒子部材、中粒子部材、および粒子径が0.1mm未満の微粒子材を用いるのが好ましい。 Further, when the runner brick according to the present invention is produced as described above, the main raw materials of the magnesia material, the forsterite material, and the molten quartz material are crushed and classified as necessary to obtain particles. It is desirable to adjust the diameter, but in that case, a coarse particle material having a particle size of 1.0 mm or more and a medium particle material having a particle size of 0.1 mm or more and less than 1.0 mm are used as the molten quartz material. As the forsterite material and the magnesia material, it is preferable to use a coarse particle member, a medium particle member, and a fine particle material having a particle diameter of less than 0.1 mm.

一方、本発明に係る湯道煉瓦は、気孔率(成形品のもの)が15%以上30%未満であると好ましい。気孔率が15%未満であると、耐熱衝撃性が不十分となりやすいので好ましくなく、反対に、気孔率が30%以上であると、組織が粗すぎることに起因して溶損量が大きくなり、耐食性に問題が生じるので好ましくない。加えて、湯道煉瓦の気孔率は、23%以上28%未満であるとより好ましい。 On the other hand, the runner brick according to the present invention preferably has a porosity (molded product) of 15% or more and less than 30%. If the porosity is less than 15%, the thermal shock resistance tends to be insufficient, which is not preferable. On the contrary, if the porosity is 30% or more, the amount of erosion is large due to the structure being too coarse. , It is not preferable because it causes a problem in corrosion resistance. In addition, the porosity of the runner brick is more preferably 23% or more and less than 28%.

また、本発明に係る湯道煉瓦は、圧縮強さが14МPa以上40МPa未満であると好ましい。圧縮強さが14МPa未満であると、熱間摩耗に耐えられなくなり、耐食性が不良となって機械的損耗が増大しやすいので好ましくなく、反対に、圧縮強さが40МPa以上であると、靭性が低下して耐熱衝撃性が不良となりやすいので好ましくない。圧縮強さは、19МPa以上37МPa未満であるとより好ましい。 Further, the runner brick according to the present invention preferably has a compressive strength of 14 МPa or more and less than 40 МPa. If the compressive strength is less than 14 МPa, it cannot withstand hot wear, the corrosion resistance becomes poor, and mechanical wear tends to increase, which is not preferable. On the contrary, if the compressive strength is 40 МPa or more, the toughness is increased. It is not preferable because it tends to decrease and the thermal shock resistance tends to be poor. The compressive strength is more preferably 19 МPa or more and less than 37 МPa.

さらに、本発明に係る湯道煉瓦は、熱間線膨張率(1,000℃)が1.00%以下であると好ましい。 熱間線膨張率が1.00%を上回ると、耐熱衝撃性が低下して、亀裂や割れが発生する可能性が大きくなるので好ましくない。湯道煉瓦の熱間線膨張率は、低いほど好ましい。 Further, the runner brick according to the present invention preferably has a coefficient of linear thermal expansion (1,000 ° C.) of 1.00% or less. If the coefficient of thermal expansion exceeds 1.00%, the thermal shock resistance is lowered and the possibility of cracks and cracks is increased, which is not preferable. The lower the coefficient of linear thermal expansion of the runner brick, the more preferable.

以下、本発明に係る湯道煉瓦について実施例によって詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。また、実施例・比較例における物性、特性の評価方法は以下の通りである。 Hereinafter, the runner brick according to the present invention will be described in detail with reference to Examples, but the present invention is not limited to the aspects of such Examples, and is appropriately modified without departing from the spirit of the present invention. It is possible. The methods for evaluating physical properties and characteristics in Examples and Comparative Examples are as follows.

<見掛気孔率>
JIS−R−2205(真空法)に準じた方法によって測定した。
<Apparent porosity>
The measurement was performed by a method according to JIS-R-2205 (vacuum method).

<圧縮強度>
JIS?R?2206に準じた方法によって測定した。
<Compression strength>
It was measured by a method according to JIS? R? 2206.

<熱間線膨張率>
JIS?R?2207に準じた方法によって測定した。
<Coefficient of thermal expansion>
It was measured by a method according to JIS? R? 2207.

<耐熱衝撃性>
試料を1500℃の電気炉内で30分間加熱した後に炉外に取り出し、送風機により急冷する、というサイクルを5回繰り返して行った。そして、5サイクル繰り返した後の試料の状態によって、下記の2段階で評価した。
○:5サイクル繰り返しても試料が破砕しなかった
×:5サイクル繰り返す前に試料が破砕した
<Heat-resistant impact resistance>
The cycle of heating the sample in an electric furnace at 1500 ° C. for 30 minutes, taking it out of the furnace, and rapidly cooling it with a blower was repeated 5 times. Then, the evaluation was made in the following two stages according to the state of the sample after repeating 5 cycles.
◯: The sample was not crushed even after repeating 5 cycles ×: The sample was crushed before repeating 5 cycles

<耐食性(溶損量)>
1,590℃の溶鉄で満たされた高周波誘導炉内に、直方体状(縦×横×高さ=40mm×40mm×150mm)の試料を吊り下げた状態で10時間浸漬させた。しかる後、浸漬後の試料の断面から溶損量(mm)を測定した。そして、測定された溶損量によって下記の2段階で評価した(なお、後述する表3におけるマイナスの溶損量は、試料が膨張したことを示している)。
○:溶損量が0.5mm以下であった
×:溶損量が0.5mmを上回った
<Corrosion resistance (melting loss amount)>
A rectangular parallelepiped (length x width x height = 40 mm x 40 mm x 150 mm) sample was immersed in a high-frequency induction furnace filled with molten iron at 1,590 ° C. for 10 hours in a suspended state. After that, the amount of erosion (mm) was measured from the cross section of the sample after immersion. Then, the measured erosion amount was evaluated in the following two stages (note that the negative erosion amount in Table 3 described later indicates that the sample expanded).
◯: The amount of erosion was 0.5 mm or less ×: The amount of erosion exceeded 0.5 mm

<各原料の化学組成>
実施例・比較例で用いた各主原料の化学組成を表1に示す。また、実施例・比較例で用いた改質材、成形性助材の化学組成を表2に示す。
<Chemical composition of each raw material>
Table 1 shows the chemical composition of each main raw material used in Examples and Comparative Examples. Table 2 shows the chemical compositions of the modifiers and moldable auxiliary materials used in Examples and Comparative Examples.

Figure 2021045762
Figure 2021045762

Figure 2021045762
Figure 2021045762

また、実施例・比較例においては、焼結マグネシア質材、ズン岩質材(フォルステライト質材)、および溶融石英質材の各主原料を、2種類の粉砕機によって粉砕・分級することによって、粒子径が異なるものに分別して使用した。すなわち、各原料を、粉砕機としてインペラーブレーカーを用いて粉砕し、振動篩を用いて分級することによって(一次粉砕)、粒子径が1.0mm以上の粗粒子材・粒子径が0.1mm以上の1.0mm未満の中粒子材を形成した後、その一次粉砕された原料を、ボールミルを用いて粉砕することによって(二次粉砕)、粒子径が0.1mm未満の微粒子材を形成し、それらの粗粒子材、中粒子材、微粒子材を利用に供した。 Further, in the examples and comparative examples, the main raw materials of the sintered magnesia material, the dung rock material (forsterite material), and the fused silica material are crushed and classified by two types of crushers. , The particles with different particle sizes were separated and used. That is, by crushing each raw material using an impeller breaker as a crusher and classifying using a vibrating sieve (primary crushing), a coarse particle material having a particle size of 1.0 mm or more and a particle size of 0.1 mm or more. After forming a medium particle material of less than 1.0 mm, the primary pulverized raw material is pulverized using a ball mill (secondary pulverization) to form a fine particle material having a particle diameter of less than 0.1 mm. These coarse particle materials, medium particle materials, and fine particle materials were used.

[実施例1]
上記の如く粒子の大きさを調整した主原料である焼結マグネシア質材、ズン岩質材(フォルステライト質材)および溶融石英質材と、成形助材(木節粘土質材)とを、以下の配合比で混合した後、その混合組成物中に所定量の水(8〜12重量部)および所定量のバインダー(0.3〜2重量部)を添加して、混練機内で十分に混練することによって、主原料、改質材、成形助材の各粒子の表面をバインダーによって被覆させてなる坏土(半湿式用材)を得た。
・焼結マグネシア質材の中粒子材:10質量部
・焼結マグネシア質材の微粒子材:30質量部
・ズン岩質材の粗粒子材:35質量部
・ズン岩質材の中粒子材:10質量部
・溶融石英質材の粗粒子材:5質量部
・成形助材:10質量部
なお、原料の混合、混練時には、粗粒子材・中粒子材を先に混練機に投入して混合した後に、バインダーを添加してから微粒子剤を投入し、再度十分に混練した。
[Example 1]
Sintered magnesia material, dung rock material (forsterite material) and fused silica material, which are the main raw materials whose particle size is adjusted as described above, and molding auxiliary material (wooden clay material) are used. After mixing at the following compounding ratio, a predetermined amount of water (8 to 12 parts by weight) and a predetermined amount of binder (0.3 to 2 parts by weight) are added to the mixed composition, and the mixture is sufficiently in the kneader. By kneading, clay (semi-wet material) obtained by coating the surfaces of each particle of the main raw material, the modifier, and the molding aid with a binder was obtained.
・ Medium particle material of sintered magnesia material: 10 parts by mass ・ Fine particle material of sintered magnesia material: 30 parts by mass ・ Coarse particle material of dung rock material: 35 parts by mass ・ Medium particle material of dung rock material: 10 parts by mass ・ Coarse particle material of molten quartz material: 5 parts by mass ・ Molding auxiliary material: 10 parts by mass When mixing and kneading the raw materials, the coarse particle material and medium particle material are first put into the kneader and mixed. After that, a binder was added, and then a fine particle agent was added, and the mixture was sufficiently kneaded again.

そして、その坏土(半湿式用材)を用い、フリクションプレスにて加圧成形を行うことによって、図1の如き形状を有する湯道煉瓦の成形品を得た。さらに、その成形された湯道煉瓦を、トンネルキルンを用いて、約1,400℃で焼成することによって実施例1の湯道煉瓦(焼成品)を作製した。上記した方法によって評価した。また、上記の如く得られた湯道煉瓦(焼成品)を、直方体状(縦×横×長さ=40mm×40mm×150mm)に切り出すことによって、実施例1の特性評価用のサンプルを得た。そして、作製された湯道煉瓦およびサンプルの特性を、上記した方法によって評価した。実施例1の湯道煉瓦の評価結果を、原料の組成、サンプルの物性とともに表3に示す。 Then, using the clay (semi-wet material), pressure molding was performed by a friction press to obtain a molded product of a runner brick having a shape as shown in FIG. Further, the formed runner brick was fired at about 1,400 ° C. using a tunnel kiln to prepare the runner brick (fired product) of Example 1. Evaluation was made by the method described above. Further, the runner brick (fired product) obtained as described above was cut into a rectangular parallelepiped shape (length x width x length = 40 mm x 40 mm x 150 mm) to obtain a sample for characteristic evaluation of Example 1. .. Then, the characteristics of the prepared runner brick and the sample were evaluated by the above-mentioned method. The evaluation results of the runner brick of Example 1 are shown in Table 3 together with the composition of the raw material and the physical characteristics of the sample.

[実施例2〜7]
湯道煉瓦の成形品の原料の組成を、それぞれ、表3のように変更した以外は実施例1と同様にして、実施例2〜7の湯道煉瓦および物性評価用サンプルを得た。なお、実施例3においては、成形用の坏土(半湿式用材)を調製する際に混合組成物中に改質材としてCr質材を3重量部添加し、実施例4においては、成形用の坏土(半湿式用材)を調製する際に混合組成物中に改質材として長石を5重量部添加した。そして、それらの湯道煉瓦の特性およびサンプルの物性を、上記した方法によって評価した。実施例2〜7の湯道煉瓦の評価結果を、原料の組成、サンプルの物性とともに表3に示す。
[Examples 2 to 7]
The runner bricks of Examples 2 to 7 and the samples for evaluation of physical properties were obtained in the same manner as in Example 1 except that the composition of the raw materials of the molded product of the runner brick was changed as shown in Table 3. In Example 3, the Cr 2 O 3 quality material 3 parts by weight was added as a modifier to the mixture composition when preparing the clay for molding (semi wet timber) In Example 4 When preparing the clay for molding (semi-wet material), 5 parts by weight of feldspar was added as a modifier to the mixed composition. Then, the characteristics of these runner bricks and the physical characteristics of the samples were evaluated by the above-mentioned method. The evaluation results of the runner bricks of Examples 2 to 7 are shown in Table 3 together with the composition of the raw material and the physical characteristics of the sample.

[比較例1〜5]
湯道煉瓦の成形品の原料の組成を、それぞれ、表3のように変更した以外は実施例1と同様にして、比較例1〜5の湯道煉瓦および物性評価用サンプルを得た。そして、それらの湯道煉瓦の特性およびサンプルの物性を、上記した方法によって評価した。比較例1〜5の湯道煉瓦の評価結果を、原料の組成、サンプルの物性とともに表3に示す。
[Comparative Examples 1 to 5]
The runner bricks of Comparative Examples 1 to 5 and the samples for evaluation of physical properties were obtained in the same manner as in Example 1 except that the compositions of the raw materials of the molded products of the runner bricks were changed as shown in Table 3. Then, the characteristics of these runner bricks and the physical characteristics of the samples were evaluated by the above-mentioned method. The evaluation results of the runner bricks of Comparative Examples 1 to 5 are shown in Table 3 together with the composition of the raw material and the physical characteristics of the sample.

Figure 2021045762
Figure 2021045762

表3から、実施例1〜7で得られた湯道煉瓦は、いずれも、耐食性に優れているとともに、耐熱衝撃性が良好であることが分かる。これに対して、フォルステライト質材・溶融石英質材を含有していない原料によって製造された比較例1の湯道煉瓦、および、溶融石英質材を含有していない原料によって製造された比較例2,3の湯道煉瓦は、いずれも、耐熱衝撃性が不良であることが分かる。また、溶融石英の含有量が多すぎる原料によって製造された比較例5の湯道煉瓦は、耐食性が不十分であることが分かる。さらに、マグネシア質材・溶融石英質材を含有していない原料によって製造された比較例4の湯道煉瓦は、耐食性が不十分である上、耐熱衝撃性が不良であることが分かる。 From Table 3, it can be seen that the runner bricks obtained in Examples 1 to 7 are all excellent in corrosion resistance and heat impact resistance. On the other hand, the runner brick of Comparative Example 1 produced by a raw material not containing forsterite material and fused silica material, and a comparative example produced by a raw material not containing fused silica material. It can be seen that all of the few runner bricks have poor thermal shock resistance. Further, it can be seen that the runner brick of Comparative Example 5 produced by a raw material having an excessively high content of fused silica has insufficient corrosion resistance. Further, it can be seen that the runner brick of Comparative Example 4 produced by a raw material containing no magnesia material or fused silica material has insufficient corrosion resistance and poor thermal shock resistance.

本発明に係る湯道煉瓦は、上記の如く優れた効果を奏するものであるので、各種の造塊・鋳造用の施設で用いる湯道煉瓦として好適に用いることができる。 Since the runner brick according to the present invention exerts an excellent effect as described above, it can be suitably used as a runner brick used in various ingot-forming and casting facilities.

1・・湯道煉瓦
P・・湯道
1 ... Yudo Brick P ... Yudo

Claims (7)

湯口から注がれた溶融金属を鋳型へと注入させるための湯道の形成に用いられる造塊用湯道煉瓦であって、
マグネシア質材、フォルステライト質材、および溶融石英質材を主原料として形成されており、それらの主原料の含有率が80質量%以上であることを特徴とする鋼の造塊用湯道煉瓦。
Brick for ingots used to form a runner for injecting molten metal poured from a sprue into a mold.
Steel ingot-making runner bricks formed from magnesia, forsterite, and fused silica as the main raw materials, and the content of these main raw materials is 80% by mass or more. ..
原料中のマグネシア質材の含有量が25質量%以上60質量%未満であることを特徴とする請求項1に記載の造塊用湯道煉瓦。 The runner brick for ingot according to claim 1, wherein the content of the magnesia material in the raw material is 25% by mass or more and less than 60% by mass. 原料中のフォルステライト質材の含有量が25質量%以上60質量%未満であることを特徴とする請求項1、または請求項2に記載の造塊用湯道煉瓦。 The runner brick for ingot according to claim 1 or 2, wherein the content of the forsterite material in the raw material is 25% by mass or more and less than 60% by mass. 原料中の溶融石英質材の含有量が5質量%以上25質量%未満であることを特徴とする請求項1〜3のいずれかに記載の造塊用湯道煉瓦。 The runner brick for ingot according to any one of claims 1 to 3, wherein the content of the fused silica material in the raw material is 5% by mass or more and less than 25% by mass. 改質材および/または成形性助材が添加されていることを特徴とする請求項1〜4のいずれかに記載の鋼の造塊用湯道煉瓦。 The steel ingot runner brick according to any one of claims 1 to 4, wherein a modifier and / or a formable auxiliary material is added. 気孔率が15%以上30%未満であり、圧縮強さが14MPa以上40MPa未満であるとともに、1,000℃における熱間線膨張率が1.00%未満であることを特徴とする請求項1〜5のいずれかに記載の鋼の造塊用湯道煉瓦。 Claim 1 is characterized in that the porosity is 15% or more and less than 30%, the compressive strength is 14 MPa or more and less than 40 MPa, and the coefficient of linear thermal expansion at 1,000 ° C. is less than 1.00%. The steel ingot hot runway brick according to any one of ~ 5. 請求項1〜6のいずれかに記載の鋼の造塊用湯道煉瓦を製造するための製造方法であって、
溶融石英質として、粒子径が1.0mm以上の粗粒子材、粒子径が0.1mm以上の1.0mm未満の中粒子材を用いるとともに、フォルステライト質材、マグネシア質材として、粗粒子部材、中粒子部材、および粒子径が0.1mm未満の微粒子材を用いることを特徴とする鋼の造塊用湯道煉瓦。
A manufacturing method for manufacturing a steel ingot runner brick according to any one of claims 1 to 6.
As the molten quartz material, a coarse particle material having a particle size of 1.0 mm or more and a medium particle material having a particle size of 0.1 mm or more and less than 1.0 mm are used, and as a forsterite material and a magnesia material, a coarse particle member. , A medium particle member, and a runner brick for ingot steel, characterized in that a fine particle material having a particle size of less than 0.1 mm is used.
JP2019168890A 2019-09-17 2019-09-17 Runner brick for making steel ingot Pending JP2021045762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019168890A JP2021045762A (en) 2019-09-17 2019-09-17 Runner brick for making steel ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168890A JP2021045762A (en) 2019-09-17 2019-09-17 Runner brick for making steel ingot

Publications (1)

Publication Number Publication Date
JP2021045762A true JP2021045762A (en) 2021-03-25

Family

ID=74877282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168890A Pending JP2021045762A (en) 2019-09-17 2019-09-17 Runner brick for making steel ingot

Country Status (1)

Country Link
JP (1) JP2021045762A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109510A (en) * 1977-03-08 1978-09-25 Shinagawa Refractories Co Basic bricks for sprue
JPS5523011A (en) * 1978-08-03 1980-02-19 Tokyo Yogyo Kk Nonnburned refractories
JPS5523010A (en) * 1978-08-03 1980-02-19 Tokyo Yogyo Kk Nonnburned refractories

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109510A (en) * 1977-03-08 1978-09-25 Shinagawa Refractories Co Basic bricks for sprue
JPS5523011A (en) * 1978-08-03 1980-02-19 Tokyo Yogyo Kk Nonnburned refractories
JPS5523010A (en) * 1978-08-03 1980-02-19 Tokyo Yogyo Kk Nonnburned refractories

Similar Documents

Publication Publication Date Title
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
JP5879414B2 (en) Sintered refractories with improved thermal shock resistance
JP5927287B2 (en) Composition for refractory or kiln tools of regular or irregular shape
KR20080099216A (en) Refractory repairing material for equipment of iron/steel making, method for preparing thereof and composition comprising the same
JP2007303011A (en) Inorganic fiber and monolithic refractory using the same
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN113233908A (en) Regenerated carbon-free brick and preparation method thereof
JP6498515B2 (en) Refractory composition and refractory concrete block using the same
US20090114365A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2021045762A (en) Runner brick for making steel ingot
KR101489381B1 (en) Refractory composition and furnace runner cover of using it
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP6441684B2 (en) Castable refractories for lids of molten metal containers
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP6100197B2 (en) Ceramic aggregate for refractory and method for producing the same
CN105016747B (en) A kind of anti-thermal shock fire resisting zircon corundum brick
JP6386317B2 (en) Silica brick for hot repair
JP7228733B1 (en) Magnesia carbon brick and its manufacturing method
JP6975027B2 (en) Amorphous refractory
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
KR20040049586A (en) A burned magnesia-chrome firebrick using broken Mg-Cr brick
JP2022184504A (en) Shaped refractory for lining induction furnace and construction method of induction furnace using lining shaped refractory
JPS6121968A (en) Manufacture of zirconia refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240606