JP2021043313A - λ/2-RETARDATION PLATE, OPTICAL ARTICLE AND REFLECTION TYPE PROJECTION SYSTEM - Google Patents

λ/2-RETARDATION PLATE, OPTICAL ARTICLE AND REFLECTION TYPE PROJECTION SYSTEM Download PDF

Info

Publication number
JP2021043313A
JP2021043313A JP2019164862A JP2019164862A JP2021043313A JP 2021043313 A JP2021043313 A JP 2021043313A JP 2019164862 A JP2019164862 A JP 2019164862A JP 2019164862 A JP2019164862 A JP 2019164862A JP 2021043313 A JP2021043313 A JP 2021043313A
Authority
JP
Japan
Prior art keywords
layer
positive
retardation plate
polarized light
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019164862A
Other languages
Japanese (ja)
Other versions
JP7379970B2 (en
Inventor
智樹 山肩
Tomoki Yamakata
智樹 山肩
剛志 黒田
Tsuyoshi Kuroda
剛志 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2019164862A priority Critical patent/JP7379970B2/en
Publication of JP2021043313A publication Critical patent/JP2021043313A/en
Application granted granted Critical
Publication of JP7379970B2 publication Critical patent/JP7379970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

To provide a λ/2-retardation plate that can give a preferable conversion ratio of linearly polarized light in a wide wavelength region.SOLUTION: The λ/2-retardation plate has a first positive A-layer and a second positive A-layer, in which the slow axis of the first positive A-layer and the slow axis of the second positive A-layer intersect, and the λ/2-retardation plate satisfies the following condition 1. Condition 1: a spectral transmittance of linearly polarized light in any wavelength region of 120 nm width or more of linearly polarized light incident at an incidence angle α degrees with respect to the λ/2-retardation plate is 2.0% or less in at least one 10-degree width region selected within the range from 30 to 60 degrees of the incident angle α.SELECTED DRAWING: Figure 1

Description

本発明は、λ/2位相差板、光学用品及び反射型投射システムに関する。 The present invention relates to λ / 2 retardation plates, optics and reflective projection systems.

光ピックアップ装置及び液晶プロジェクタ等の光学用品には、直線偏光の変換素子を含むものがある。直線偏光の変換素子としては、例えば、直線偏光の振動方向を90度回転するλ/2位相差板が挙げられる。直線偏光がλ/2位相差板を通過すると、P偏光はS偏光に変換され、S偏光はP偏光に変換される。 Some optical products such as optical pickup devices and liquid crystal projectors include linearly polarized light conversion elements. Examples of the linearly polarized light conversion element include a λ / 2 retardation plate that rotates the vibration direction of linearly polarized light by 90 degrees. When the linearly polarized light passes through the λ / 2 retardation plate, the P-polarized light is converted into S-polarized light, and the S-polarized light is converted into P-polarized light.

λ/2位相差板は、位相差が波長の変化に伴って変化する波長依存性を有するため、中心波長(通常は550nm)から外れた波長に関しては機能が低下し、直線偏光の変換割合が低下する。
そこで、幅広い波長域においてλ/2位相差板として機能する波長板として、特許文献1及び2のλ/2位相差板が提案されている。
Since the λ / 2 retardation plate has a wavelength dependence in which the phase difference changes as the wavelength changes, the function deteriorates for wavelengths deviating from the center wavelength (usually 550 nm), and the conversion ratio of linearly polarized light increases. descend.
Therefore, as a wave plate that functions as a λ / 2 phase difference plate in a wide wavelength range, the λ / 2 phase difference plate of Patent Documents 1 and 2 has been proposed.

特開平5−100114号公報Japanese Unexamined Patent Publication No. 5-100114 特開2004−170853号公報Japanese Unexamined Patent Publication No. 2004-170853

特許文献1及び2のλ/2位相差板は、2枚の波長板を所定の角度で積層してなるものである。しかし、特許文献1及び2のλ/2位相差板は、使用条件によっては直線偏光の変換割合が極端に低下することが頻発した。 The λ / 2 retardation plates of Patent Documents 1 and 2 are formed by laminating two wave plates at a predetermined angle. However, in the λ / 2 retardation plates of Patent Documents 1 and 2, the conversion ratio of linearly polarized light often decreases extremely depending on the usage conditions.

本発明者らは、特許文献1及び2の波長板を用いても直線偏光の変換割合が低下する原因について鋭意検討した。その結果、本発明者らは、「特許文献1及び2では、もっぱらλ/2位相差板に対して直線偏光が略垂直に入射する条件のみを想定していること」、及び、「特許文献1及び2では、λ/2位相差板に対して直線偏光が斜めに入射する条件を想定しておらず、当該条件において、中心波長から外れた直線偏光の変換割合が極端に低下すること」を見出した。
そして、本発明者らはさらに検討した結果、λ/2位相差板に対して直線偏光が斜めに入射する使用条件であっても、幅広い波長域において直線偏光の変換割合を良好にし得るλ/2位相差板を完成するに至った。
The present inventors have diligently investigated the cause of the decrease in the conversion ratio of linearly polarized light even when the wave plates of Patent Documents 1 and 2 are used. As a result, the present inventors assume that "Patent Documents 1 and 2 exclusively assume a condition in which linearly polarized light is incident substantially perpendicular to the λ / 2 retardation plate" and "Patent Documents. In 1 and 2, the condition that the linearly polarized light is obliquely incident on the λ / 2 retardation plate is not assumed, and under the condition, the conversion ratio of the linearly polarized light deviating from the center wavelength is extremely reduced. " I found.
As a result of further studies, the present inventors can improve the conversion ratio of the linearly polarized light in a wide wavelength range even under the usage condition in which the linearly polarized light is obliquely incident on the λ / 2 retardation plate. We have completed a two-phase difference plate.

すなわち、本発明は、以下の[1]〜[10]を提供する。
[1]λ/2位相差板であって、前記λ/2位相差板は、第1のポジティブA層と第2のポジティブA層とを有し、前記第1のポジティブA層の遅相軸と前記第2のポジティブA層の遅相軸とが交差してなり、下記条件1を満たす、λ/2位相差板。
<条件1>
前記λ/2位相差板に対して入射角α度で入射した直線偏光の任意の120nm以上の幅の波長域における前記直線偏光の分光透過率が、入射角αが30〜60度の範囲内から選択される少なくとも一つの10度幅の領域において2.0%以下を示す。
[2]前記条件1を満たす任意の120nm以上の幅の波長域の中心波長をλc[nm]、前記第1のポジティブA層の波長λc[nm]における面内位相差をRe1(λc)、前記第2のポジティブA層の波長λc[nm]における面内位相差をRe2(λc)と定義した際に、Re1(λc)>Re2(λc)である、[1]に記載のλ/2位相差板。
[3]前記条件1を満たす任意の120nm以上の幅の波長域の中心波長λcが、波長500〜600nmの中に位置する、[1]又は[2]に記載のλ/2位相差板。
[4]前記第1のポジティブA層の波長550nmにおける面内位相差をRe1(550)、前記第2のポジティブA層の波長550nmにおける面内位相差をRe2(550)と定義した際に、前記Re1(550)が280〜320nmであり、前記Re2(550)が230〜270nmであり、Re1(550)>Re2(550)である、[1]〜[3]の何れかに記載のλ/2位相差板。
[5]前記λ/2位相差板の面内の水平方向をD1、前記λ/2位相差板の面内の前記水平方向に直交する方向をD2と定義し、さらに、前記第1のポジティブA層の遅相軸とD2とが成す角をθ1、前記第2のポジティブA層の遅相軸とD2とが成す角をθ2と定義した際に、θ1及びθ2が下記条件2−1に示す(A1)〜(A4)の何れかの組み合わせを満たす、[1]〜[4]の何れかに記載のλ/2位相差板。
<条件2−1>
(A1)θ1が12.5〜27.5度、かつ、θ2が57.5〜72.5度
(A2)θ1が57.5〜72.5度、かつ、θ2が12.5〜27.5度
(A3)θ1が−12.5〜−27.5度、かつ、θ2が−57.5〜−72.5度
(A4)θ1が−57.5〜−72.5度、かつ、θ2が−12.5〜−27.5度
[6]第1の透明基材と第2の透明基材との間に、前記第1のポジティブA層及び前記第2のポジティブA層を有する、[1]〜[5]の何れかに記載のλ/2位相差板。
[7]前記条件1の前記直線偏光がS偏光である、[1]〜[6]の何れかに記載のλ/2位相差板。
[8][1]〜[7]の何れかに記載のλ/2位相差板を含む光学用品。
[9]反射スクリーンである、[8]に記載の光学用品。
[10][1]〜[7]の何れかに記載のλ/2位相差板を含む反射スクリーンと、光源とを備えた、反射型投射システム。
That is, the present invention provides the following [1] to [10].
[1] A λ / 2 retardation plate, wherein the λ / 2 retardation plate has a first positive A layer and a second positive A layer, and has a slow phase of the first positive A layer. A λ / 2 retardation plate in which the shaft and the slow phase shaft of the second positive A layer intersect and satisfy the following condition 1.
<Condition 1>
The spectral transmittance of the linearly polarized light in the wavelength range of any width of 120 nm or more of the linearly polarized light incident on the λ / 2 retardation plate at an incident angle α degree is within the range of an incident angle α of 30 to 60 degrees. Shows 2.0% or less in at least one 10 degree wide region selected from.
[2] The central wavelength of an arbitrary wavelength region having a width of 120 nm or more satisfying the above condition 1 is λc [nm], and the in-plane phase difference at the wavelength λc [nm] of the first positive A layer is Re1 (λc). Λ / 2 according to [1], where Re1 (λc)> Re2 (λc) when the in-plane phase difference at the wavelength λc [nm] of the second positive A layer is defined as Re2 (λc). Phase difference plate.
[3] The λ / 2 retardation plate according to [1] or [2], wherein the central wavelength λc in an arbitrary wavelength region having a width of 120 nm or more that satisfies the above condition 1 is located within a wavelength of 500 to 600 nm.
[4] When the in-plane phase difference of the first positive A layer at a wavelength of 550 nm is defined as Re1 (550), and the in-plane phase difference of the second positive A layer at a wavelength of 550 nm is defined as Re2 (550). Λ according to any one of [1] to [3], wherein Re1 (550) is 280 to 320 nm, Re2 (550) is 230 to 270 nm, and Re1 (550)> Re2 (550). / 2 phase difference plate.
[5] The horizontal direction in the plane of the λ / 2 retardation plate is defined as D1, the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate is defined as D2, and further, the first positive When the angle formed by the slow axis of the A layer and D2 is defined as θ1, and the angle formed by the slow axis of the second positive layer A and D2 is defined as θ2, θ1 and θ2 meet the following conditions 2-1. The λ / 2 retardation plate according to any one of [1] to [4], which satisfies any combination of (A1) to (A4) shown.
<Condition 2-1>
(A1) θ1 is 12.5 to 27.5 degrees, θ2 is 57.5 to 72.5 degrees, and (A2) θ1 is 57.5 to 72.5 degrees, and θ2 is 12.5 to 27. 5 degrees (A3) θ1 is -12.5 to -27.5 degrees, θ2 is -57.5 to -72.5 degrees (A4) θ1 is -57.5 to -72.5 degrees, and θ2 is -12.5 to −27.5 degrees [6] The first positive A layer and the second positive A layer are provided between the first transparent base material and the second transparent base material. , The λ / 2 retardation plate according to any one of [1] to [5].
[7] The λ / 2 retardation plate according to any one of [1] to [6], wherein the linearly polarized light under the condition 1 is S-polarized light.
[8] An optical product including the λ / 2 retardation plate according to any one of [1] to [7].
[9] The optical article according to [8], which is a reflective screen.
[10] A reflective projection system including a reflective screen including the λ / 2 retardation plate according to any one of [1] to [7] and a light source.

本発明のλ/2位相差板、並びにこれを用いた光学用品及び反射型投射システムは、幅広い波長域において直線偏光の変換割合を良好にすることができる。 The λ / 2 retardation plate of the present invention, and the optical equipment and the reflection type projection system using the same, can improve the conversion ratio of linearly polarized light in a wide wavelength range.

本発明のλ/2位相差板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the λ / 2 retardation plate of this invention. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角55度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 55 degrees. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角45度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 45 degrees. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角35度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 35 degrees. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角25度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 25 degrees. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角15度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 15 degrees. 実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角5度でS偏光を入射した際のS偏光の分光透過率を示す図。The figure which shows the spectral transmittance of the S polarized light when the S polarized light is incident on the λ / 2 retardation plate of Examples 1 and 2 and the comparative example 1 and 2 at an incident angle of 5 degrees. 実施例の二重像の評価手法を説明する概略図である。It is the schematic explaining the evaluation method of the double image of an Example.

以下、本発明の実施形態を説明する。
[λ/2位相差板]
本発明のλ/2位相差板は、第1のポジティブA層と第2のポジティブA層とを有し、前記第1のポジティブA層の遅相軸と前記第2のポジティブA層の遅相軸とが交差してなり、下記条件1を満たすものである。
<条件1>
前記λ/2位相差板に対して入射角α度で入射した直線偏光の任意の120nm以上の幅の波長域における前記直線偏光の分光透過率が、入射角αが30〜60度の範囲内から選択される少なくとも一つの10度幅の領域において2.0%以下を示す。
Hereinafter, embodiments of the present invention will be described.
[Λ / 2 phase difference plate]
The λ / 2 retardation plate of the present invention has a first positive A layer and a second positive A layer, and has a slow axis of the first positive A layer and a delay of the second positive A layer. It intersects with the phase axis and satisfies the following condition 1.
<Condition 1>
The spectral transmittance of the linearly polarized light in the wavelength range of any width of 120 nm or more of the linearly polarized light incident on the λ / 2 retardation plate at an incident angle α degree is within the range of an incident angle α of 30 to 60 degrees. Shows 2.0% or less in at least one 10 degree wide region selected from.

図1は、本発明のλ/2位相差板の一実施形態を示す断面図である。図1のλ/2位相差板100は、第1のポジティブA層10と、第2のポジティブA層20とを有している。また、図1のλ/2位相差板100は、第1の透明基材50と、第2の透明基材60との間に、第1のポジティブA層10及び第2のポジティブA層20が配置されている。また、図1のλ/2位相差板100は、第1の透明基材50と第1のポジティブA層10との間、及び、第2の透明基材60と第2のポジティブA層20との間、接着剤層(30,40)を有している。 FIG. 1 is a cross-sectional view showing an embodiment of the λ / 2 retardation plate of the present invention. The λ / 2 retardation plate 100 of FIG. 1 has a first positive A layer 10 and a second positive A layer 20. Further, in the λ / 2 retardation plate 100 of FIG. 1, a first positive A layer 10 and a second positive A layer 20 are formed between the first transparent base material 50 and the second transparent base material 60. Is placed. Further, the λ / 2 retardation plate 100 of FIG. 1 is formed between the first transparent base material 50 and the first positive A layer 10 and between the second transparent base material 60 and the second positive A layer 20. It has an adhesive layer (30, 40) between the two.

本明細書において、「XXに対して入射角YY度で入射した直線偏光」とは、「XXの法線方向からYY度ずれた方向から入射した直線偏光」を意味するものとする。
また、本明細書において、「10度幅の領域」とは、基準となる角度をx度とした際に、「x〜x+10度」の領域のことを意味する。例えば、基準となる角度が40度の場合、40〜50度の領域を意味する。
また、本明細書において、「入射角αが30〜60度の範囲内から選択される少なくとも一つの10度幅の領域において、『xxx』を満たす。」とは、入射角αが30〜60度の範囲内の、少なくとも一つの10度幅の領域で『xxx』を満たせば条件を満たし、それ以外の10度幅の領域では『xxx』を満たしてもよいし、満たさなくてもよいことを意味する。例えば、入射角40〜50度の10度幅において『xxx』を満たせば、入射角30〜40度の10度幅では『xxx』を満たさなくてもよい。なお、『xxx』とは、本明細書中の入射角αに関連する各種の条件を意味する。
本明細書において、「ポジティブA層」とは、面内における遅相軸方向の屈折率をNx、面内において遅相軸方向と直交する方向の屈折率をNy、厚さ方向の屈折率をNzとしたとき、Nx>Ny≒Nzの関係であるものである。
本明細書において、面内位相差(Re)は、面内における遅相軸方向の屈折率をNx、面内においてNxに直交する方向の屈折率をNy、膜厚をd(nm)とした際に、下記式で表すことができるものであり、単位はnmである。また、本明細書において、面内位相差(Re)は、特に断りのない限り、正面方向の面内位相差(ポジティブA層に光を垂直入射した際の面内位相差)を意味する。
面内位相差(Re)=(Nx−Ny)×d
In the present specification, "linearly polarized light incident on XX at an incident angle of YY degrees" means "linearly polarized light incident on a direction deviated by YY degrees from the normal direction of XX".
Further, in the present specification, the "region having a width of 10 degrees" means a region of "x to x + 10 degrees" when the reference angle is x degrees. For example, when the reference angle is 40 degrees, it means a region of 40 to 50 degrees.
Further, in the present specification, "the incident angle α satisfies" xxx "in at least one region having a width of 10 degrees selected from the range of 30 to 60 degrees" means that the incident angle α is 30 to 60 degrees. The condition may be satisfied if "xxx" is satisfied in at least one 10-degree width region within the range of degrees, and "xxx" may or may not be satisfied in the other 10-degree width regions. Means. For example, if "xxx" is satisfied in a 10 degree width of an incident angle of 40 to 50 degrees, it is not necessary to satisfy "xxx" in a 10 degree width of an incident angle of 30 to 40 degrees. In addition, "xxx" means various conditions related to the incident angle α in this specification.
As used herein, the term "positive A layer" refers to Nx as the refractive index in the slow axis direction in the plane, Ny as the refractive index in the direction orthogonal to the slow axis direction in the plane, and Ny as the refractive index in the thickness direction. When Nz is set, the relationship is Nx> Ny≈Nz.
In the present specification, the in-plane retardation (Re) has an in-plane refractive index in the slow axis direction as Nx, an in-plane refractive index in the direction orthogonal to Nx as Ny, and a film thickness as d (nm). In this case, it can be expressed by the following formula, and the unit is nm. Further, in the present specification, the in-plane phase difference (Re) means an in-plane phase difference in the front direction (an in-plane phase difference when light is vertically incident on the positive A layer) unless otherwise specified.
In-plane phase difference (Re) = (Nx-Ny) x d

<条件1>
条件1は、λ/2位相差板に対して入射角α度で入射した直線偏光(P偏光又はS偏光)の任意の120nm以上の幅の波長域における直線偏光の分光透過率(入射光がP偏光の場合はP偏光の分光透過率であり、入射光がS偏光の場合はS偏光の分光透過率である。)が、入射角αが30〜60度の範囲内から選択される少なくとも一つの10度幅の領域において2.0%以下を示すことを規定している。
<Condition 1>
Condition 1 is the spectral transmittance (incident light) of linearly polarized light in a wavelength range of any width of 120 nm or more of linearly polarized light (P-polarized light or S-polarized light) incident on a λ / 2 retardation plate at an incident angle of α degrees. In the case of P-polarized light, it is the spectral transmittance of P-polarized light, and when the incident light is S-polarized light, it is the spectral transmittance of S-polarized light.) It is stipulated that 2.0% or less is shown in one region having a width of 10 degrees.

条件1では、「直線偏光の任意の120nm以上の幅の波長域における前記直線偏光の分光透過率が2.0%以下であること」を規定している。このことは、λ/2位相差板による直線偏光の変換割合が良好であることを示している。すなわち、条件1では、入射光がS偏光の場合はその殆どがP偏光に変換されること、及び、入射光がP偏光の場合はその殆どがS偏光に変換されることを意味している。 Condition 1 stipulates that "the spectral transmittance of the linearly polarized light in an arbitrary wavelength range of 120 nm or more is 2.0% or less". This indicates that the conversion ratio of linearly polarized light by the λ / 2 retardation plate is good. That is, under condition 1, it means that when the incident light is S-polarized light, most of it is converted to P-polarized light, and when the incident light is P-polarized light, most of it is converted to S-polarized light. ..

条件1では、「任意の120nm以上の幅の波長域」における直線偏光の分光透過率を規定している。このように広い幅の波長域において直線偏光の変換割合を良好にすることにより、後述する各種の光学用途(反射型スクリーン、センサー等)において、性能を高めたり、製品設計の自由度を高めたりしやすくできる。
条件1における任意の120nm以上の幅の波長域は、可視光領域(380〜780nm)に位置していてもよいし、可視光領域外に位置していてもよい。なお、可視光の波長域で条件1を満たす場合、λ/2位相差板を用いた反射スクリーンの色再現性を良好にし得る点で好ましい。
Condition 1 defines the spectral transmittance of linearly polarized light in "a wavelength range having an arbitrary width of 120 nm or more". By improving the conversion ratio of linearly polarized light in such a wide wavelength range, performance can be improved and the degree of freedom in product design can be increased in various optical applications (reflective screens, sensors, etc.) described later. It can be done easily.
The wavelength region having an arbitrary width of 120 nm or more under Condition 1 may be located in the visible light region (380 to 780 nm) or may be located outside the visible light region. When condition 1 is satisfied in the wavelength range of visible light, it is preferable in that the color reproducibility of the reflection screen using the λ / 2 retardation plate can be improved.

λ/2位相差板に対する直線偏光の入射角は、λ/2位相差板の使用目的等に応じた理想的な入射角が存在する。しかし、λ/2位相差板に対する直線偏光の入射角を理想的な角度に完全に一致させたとしても、振動等の環境因子によって入射角が変動する場合がある。また、理想的な入射角が狭すぎる場合には、λ/2位相差板と光源とを特定の配置関係とする必要があり、製品設計の自由度が制限されてしまう。すなわち、条件1において、「入射角αが30〜60度の範囲内から選択される“少なくとも一つの10度幅の領域”」と規定しているのは、前述した環境因子の影響により入射角が多少前後しても問題がないこと、及び、製品設計の自由度の制限を受けないことを意味している。当該効果をより良好にするためには、“少なくとも一つの15度幅の領域”において条件1と同様の条件を満たすことが好ましく、“少なくとも一つの20度幅の領域”において条件1と同様の条件を満たすことがより好ましい。 As for the incident angle of linearly polarized light with respect to the λ / 2 retardation plate, there is an ideal incident angle according to the purpose of use of the λ / 2 retardation plate and the like. However, even if the incident angle of linearly polarized light with respect to the λ / 2 retardation plate is completely matched to the ideal angle, the incident angle may fluctuate due to environmental factors such as vibration. Further, if the ideal incident angle is too narrow, it is necessary to have a specific arrangement relationship between the λ / 2 retardation plate and the light source, which limits the degree of freedom in product design. That is, in condition 1, "the incident angle α is selected from the range of 30 to 60 degrees as" at least one region having a width of 10 degrees "" is defined as the incident angle due to the influence of the above-mentioned environmental factors. It means that there is no problem even if it goes back and forth a little, and that the degree of freedom in product design is not restricted. In order to make the effect better, it is preferable to satisfy the same conditions as the condition 1 in the "at least one 15 degree wide region", and the same as the condition 1 in the "at least one 20 degree wide region". It is more preferable to satisfy the conditions.

条件1を満たす「任意の120nm以上の幅の波長域」は、広いほど好ましい。具体的には、条件1を満たす任意の波長域の幅は130nm以上であることが好ましく、150nm以上であることがより好ましく、160nm以上であることがさらに好ましい。ただし、広い範囲に渡って条件1を満たすことは難しい。条件1を満たす任意の波長域の幅の上限は、300nm以下程度であり、好ましくは250nm以下、より好ましくは200nm以下である。 The wider the "wavelength range having an arbitrary width of 120 nm or more" satisfying the condition 1, the more preferable. Specifically, the width of an arbitrary wavelength region satisfying condition 1 is preferably 130 nm or more, more preferably 150 nm or more, and even more preferably 160 nm or more. However, it is difficult to satisfy Condition 1 over a wide range. The upper limit of the width of an arbitrary wavelength range satisfying condition 1 is about 300 nm or less, preferably 250 nm or less, and more preferably 200 nm or less.

また、条件1で規定する分光透過率は、1.7%以下であることが好ましく、1.5%以下であることがより好ましい。条件1で規定する分光透過率は低いほど好ましい。 The spectral transmittance defined in Condition 1 is preferably 1.7% or less, and more preferably 1.5% or less. The lower the spectral transmittance defined in Condition 1, the more preferable.

λ/2位相差板は、入射光がP偏光及びS偏光の少なくとも何れかの場合に条件1を満たせばよい。
λ/2位相差板の用途の一例である反射スクリーンを考慮すると、入射光がS偏光の場合に条件1を満たすことが好ましい。入射光がS偏光の場合に条件1を満たすλ/2位相差板(反射スクリーン)に対して、S偏光を入射光として投影した場合、λ/2位相差板(反射スクリーン)の表面で反射したS偏光により映像を視認することができ、かつ、λ/2位相差板(反射スクリーン)の表面で反射せずに内部に侵入したS偏光はP偏光に変換されて界面反射率が低下するため、二重像を抑制することができる。
なお、λ/2位相差板では、P偏光はS偏光に変換され、S偏光はP偏光に変換される。ブリュースター角の観点からは、P偏光はS偏光よりも界面で反射されにくく透過しやすいが、前述したように直線偏光は変換されるため、同じλ/2位相差板を用いた場合には、入射光の直線偏光の種類に関わらず分光透過率の差は微差である。よって、同じλ/2位相差板を用いた場合、入射する直線偏光の種類(P偏光又はS偏光)に応じてλ/2位相差板を適切な角度で配置すれば、何れか一方の直線偏光が条件1を満たせば、他方の直線偏光も条件1を満たす場合が多い。
The λ / 2 retardation plate may satisfy condition 1 when the incident light is at least one of P-polarized light and S-polarized light.
Considering a reflective screen, which is an example of the use of the λ / 2 retardation plate, it is preferable that condition 1 is satisfied when the incident light is S-polarized light. When S-polarized light is projected as incident light on a λ / 2 retardation plate (reflection screen) that satisfies condition 1 when the incident light is S-polarized light, it is reflected on the surface of the λ / 2 retardation plate (reflection screen). The image can be visually recognized by the S-polarized light, and the S-polarized light that has entered the inside without being reflected on the surface of the λ / 2 retardation plate (reflection screen) is converted to P-polarized light and the interfacial reflectance is lowered. Therefore, the double image can be suppressed.
In the λ / 2 retardation plate, P-polarized light is converted to S-polarized light, and S-polarized light is converted to P-polarized light. From the viewpoint of Brewster's angle, P-polarized light is less likely to be reflected at the interface and more easily transmitted than S-polarized light, but since linearly polarized light is converted as described above, when the same λ / 2 retardation plate is used, , The difference in spectral transmittance is a slight difference regardless of the type of linearly polarized light of the incident light. Therefore, when the same λ / 2 retardation plate is used, either straight can be obtained by arranging the λ / 2 retardation plate at an appropriate angle according to the type of incident linearly polarized light (P-polarized light or S-polarized light). If the polarized light satisfies the condition 1, the other linearly polarized light often satisfies the condition 1.

条件1を満たしやすくするためには、第1のポジティブA層の遅相軸と第2のポジティブA層の遅相軸とを交差して配置することが好ましい。また、第1のポジティブA層の遅相軸は、λ/2位相差板の面内の水平方向に直交する方向(D2)と、所定の角度(θ1)を成すことが好ましく、同様に、第2のポジティブA層の遅相軸は、D2と所定の角度(θ2)を成すことが好ましい。θ1及びθ2の好ましい角度については後述する。
また、条件1を満たしやすくするためには、第1のポジティブA層の位相差と、第2のポジティブA層の位相差とを異なるものとすることが好ましい。例えば、後述する「Re1(λc)>Re2(λc)」又は「Re1(550)>Re2(550)」の関係を満たすことが好ましい。
また、条件1を満たしやすくするためには、λ/2位相差板を構成する互いに隣接する層の屈折率差を小さくすることが好ましい。
In order to easily satisfy the condition 1, it is preferable that the slow axis of the first positive A layer and the slow axis of the second positive A layer are arranged so as to intersect with each other. Further, the slow axis of the first positive A layer preferably forms a predetermined angle (θ1) with a direction (D2) orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate, and similarly. The slow axis of the second positive A layer preferably forms a predetermined angle (θ2) with D2. The preferable angles of θ1 and θ2 will be described later.
Further, in order to easily satisfy the condition 1, it is preferable that the phase difference of the first positive A layer and the phase difference of the second positive A layer are different. For example, it is preferable to satisfy the relationship of "Re1 (λc)> Re2 (λc)" or "Re1 (550)> Re2 (550)" described later.
Further, in order to easily satisfy the condition 1, it is preferable to reduce the difference in refractive index between the layers adjacent to each other constituting the λ / 2 retardation plate.

λ/2位相差板内に侵入した直線偏光の波長ごとの変換割合は、下記のステップ(1)及び(2)によりシミュレーションすることができる。
(1)入射角α度における第1のポジティブA層の面内位相差Re1(α)、及び、入射角α度における第2のポジティブA層の面内位相差Re2(α)を波長ごとに算出する。
(2)上記(1)で算出したRe1(α)及びRe2(α)と、後述するθ1及びθ2とを考慮して、第1のポジティブA層及び第2のポジティブA層を通過した直線偏光が、ポアンカレ球のどの座標に変換されるかを検証する。
The conversion ratio of linearly polarized light that has penetrated into the λ / 2 retardation plate for each wavelength can be simulated by the following steps (1) and (2).
(1) The in-plane phase difference Re1 (α) of the first positive A layer at the incident angle α degree and the in-plane phase difference Re2 (α) of the second positive A layer at the incident angle α degree are set for each wavelength. calculate.
(2) Linearly polarized light that has passed through the first positive A layer and the second positive A layer in consideration of Re1 (α) and Re2 (α) calculated in (1) above and θ1 and θ2 described later. Verify which coordinates of the Poincare sphere are converted to.

上記ステップ(1)において、入射角α度におけるポジティブA層の面内位相差Re(α)は、下記式(i)で算出できる。下記式において、Re(0)は、入射角0度のポジティブA層の面内位相差を意味する。また、θは後述するθ1及びθ2の何れかを意味する。
In the above step (1), the in-plane phase difference Re (α) of the positive A layer at the incident angle α degree can be calculated by the following formula (i). In the following equation, Re (0) means the in-plane phase difference of the positive A layer having an incident angle of 0 degrees. Further, θ means any of θ1 and θ2 described later.

図2は、実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角55度でS偏光を入射した際のS偏光の分光透過率を示す図であり、図3は、実施例1〜2、比較例1〜2のλ/2位相差板に対して、入射角45度でS偏光を入射した際のS偏光の分光透過率を示す図である。図2及び図3において、実線は実施例1、一点鎖線は実施例2、ピッチが広い破線は比較例1、ピッチが狭い破線は比較例2を示す。
図2及び図3から、実施例1〜2のλ/2位相差板は、入射角45度から入射角55度の10度幅の領域において、任意の120nm以上の幅の波長域の波長幅の分光透過率が2.0%以下を示している(図2及び図3に共通して、実施例では、430nm近傍〜580nm近傍の波長域において分光透過率が2.0%以下を示している。)
FIG. 2 is a diagram showing the spectral transmittance of S-polarized light when S-polarized light is incident on the λ / 2 retardation plates of Examples 1 and 2 and Comparative Examples 1 and 2 at an incident angle of 55 degrees. FIG. 3 is a diagram showing the spectral transmittance of S-polarized light when S-polarized light is incident on the λ / 2 retardation plates of Examples 1 and 2 and Comparative Examples 1 and 2 at an incident angle of 45 degrees. In FIGS. 2 and 3, the solid line indicates Example 1, the alternate long and short dash line indicates Example 2, the dashed line with a wide pitch indicates Comparative Example 1, and the dashed line with a narrow pitch indicates Comparative Example 2.
From FIGS. 2 and 3, the λ / 2 retardation plate of Examples 1 and 2 has a wavelength width of an arbitrary width of 120 nm or more in a region having a width of 10 degrees from an incident angle of 45 degrees to an incident angle of 55 degrees. (Common to FIGS. 2 and 3, in the example, the spectral transmittance is 2.0% or less in the wavelength range from 430 nm to 580 nm. There is.)

本発明のλ/2位相差板の一実施形態は、前記条件1を満たす任意の120nm以上の幅の波長域の中心波長をλc[nm]、前記第1のポジティブA層の波長λc[nm]における面内位相差をRe1(λc)、前記第2のポジティブA層の波長λc[nm]における面内位相差をRe2(λc)と定義した際に、Re1(λc)>Re2(λc)であることが好ましい。
Re1(λc)>Re2(λc)とすることにより、条件1を満たしやすくすることができる。「Re1(λc)−Re2(λc)」の好適な範囲は、λc[nm]の値によって異なるため一概にはいえない。
λcが波長500〜600nmの中に位置する場合、「Re1(λc)−Re2(λc)」は、20〜80nmであることが好ましく、40〜60nmであることがより好ましい。
Re1(λc)及びRe2(λc)の値は、λc[nm]の1/2の前後の値で調整することができる。
In one embodiment of the λ / 2 retardation plate of the present invention, the central wavelength of an arbitrary wavelength region having a width of 120 nm or more satisfying the above condition 1 is λc [nm], and the wavelength λc [nm] of the first positive A layer is set. ], The in-plane phase difference at the wavelength λc [nm] of the second positive A layer is defined as Re1 (λc), and Re1 (λc)> Re2 (λc). Is preferable.
By setting Re1 (λc)> Re2 (λc), the condition 1 can be easily satisfied. The preferable range of "Re1 (λc) -Re2 (λc)" cannot be unequivocally determined because it depends on the value of λc [nm].
When λc is located in the wavelength of 500 to 600 nm, “Re1 (λc) −Re2 (λc)” is preferably 20 to 80 nm, more preferably 40 to 60 nm.
The values of Re1 (λc) and Re2 (λc) can be adjusted by values before and after 1/2 of λc [nm].

本発明のλ/2位相差板の一実施形態として、前記条件1を満たす任意の120nm以上の幅の波長域の中心波長λcが、波長500〜600nmの中に位置することが好ましく、波長505〜570nmの中に位置することがより好ましく、波長510〜560nmの中に位置することがさらに好ましい。
λcが波長500〜600nmの中に位置することは、人の視感度の高い波長域にλcが位置することを意味する。例えば、入射光がS偏光の場合に条件1を満たし、λcが波長500〜600nmの中に位置するλ/2位相差板を反射スクリーンとして用い、S偏光を入射光として用いた場合、λ/2位相差板(反射スクリーン)の表面で反射したS偏光により映像を視認することができ、かつ、λ/2位相差板(反射スクリーン)に侵入したS偏光はP偏光に変換されて界面反射率が低下するため、二重像を抑制することができる。
As one embodiment of the λ / 2 retardation plate of the present invention, it is preferable that the central wavelength λc of an arbitrary wavelength region having a width of 120 nm or more that satisfies the above condition 1 is located within the wavelength of 500 to 600 nm, and the wavelength 505. It is more preferably located in the wavelength range of ~ 570 nm, and further preferably located in the wavelength range of 510 to 560 nm.
The fact that λc is located in the wavelength range of 500 to 600 nm means that λc is located in the wavelength range where human visual sensitivity is high. For example, when condition 1 is satisfied when the incident light is S-polarized light, a λ / 2 retardation plate in which λc is located in a wavelength of 500 to 600 nm is used as the reflection screen, and S-polarized light is used as the incident light, λ / The image can be visually recognized by the S-polarized light reflected on the surface of the two-phase difference plate (reflection screen), and the S-polarized light that has penetrated into the λ / 2 retardation plate (reflection screen) is converted to P-polarized light and interfacially reflected. Since the rate is reduced, the double image can be suppressed.

本発明のλ/2位相差板の一実施形態として、前記第1のポジティブA層の波長550nmにおける面内位相差をRe1(550)、前記第2のポジティブA層の波長550nmにおける面内位相差をRe2(550)と定義した際に、前記Re1(550)が280〜320nmであり、前記Re2(550)が230〜270nmであり、Re1(550)>Re2(550)であることが好ましい。
当該構成を有することにより、人の視感度の高い波長域において、条件1を満たしやすくすることができる。当該構成を有する場合、第1のポジティブA層及び第2のポジティブA層は何れが光入射面側に位置してもよい。
当該構成において、Re1(550)は285〜310nmであることがより好ましく、290〜300nmであることがさらに好ましい。また、当該構成において、Re2(550)は235〜260nmであることがより好ましく、240〜250nmであることがさらに好ましい。また、当該構成において、「Re1(550)−Re2(550)」は、20〜80nmであることがより好ましく、30〜70nmであることがさらに好ましい。
As one embodiment of the λ / 2 retardation plate of the present invention, the in-plane retardation of the first positive A layer at a wavelength of 550 nm is set to Re1 (550), and the in-plane position of the second positive A layer at a wavelength of 550 nm. When the phase difference is defined as Re2 (550), it is preferable that Re1 (550) is 280 to 320 nm, Re2 (550) is 230 to 270 nm, and Re1 (550)> Re2 (550). ..
By having this configuration, it is possible to easily satisfy the condition 1 in the wavelength region where the human visual sensitivity is high. With this configuration, either the first positive A layer or the second positive A layer may be located on the light incident surface side.
In this configuration, Re1 (550) is more preferably 285-310 nm, further preferably 290-300 nm. Further, in the configuration, Re2 (550) is more preferably 235 to 260 nm, and further preferably 240 to 250 nm. Further, in the configuration, "Re1 (550) -Re2 (550)" is more preferably 20 to 80 nm, and further preferably 30 to 70 nm.

従来、人の視感度の高い波長域において直線偏光の変換割合を高めるためには、550nmの面内位相差270nmの2つのポジティブA層を積層したλ/2位相差板を用いていた。しかし、従来のλ/2位相差板は、入射光が斜めの場合に直線偏光の変換割合が大幅に低下してしまうものであった(比較例2参照)。上記の本発明のλ/2位相差板の一実施形態のように、Re1(550)とRe1(550)とを異なる値とすることにより、人の視感度の高い波長域において、条件1を満たしやすくすることができる。他の波長域の直線偏光の変換割合を高める場合も同様である。他の波長域の場合、Re1(λc)とRe1(λc)とを異なる値とすることが好ましい。 Conventionally, in order to increase the conversion ratio of linearly polarized light in the wavelength region where human visual sensitivity is high, a λ / 2 retardation plate in which two positive A layers having an in-plane retardation of 270 nm of 550 nm are laminated has been used. However, in the conventional λ / 2 retardation plate, the conversion ratio of linearly polarized light is significantly reduced when the incident light is oblique (see Comparative Example 2). By setting Re1 (550) and Re1 (550) to different values as in the above-described embodiment of the λ / 2 retardation plate of the present invention, the condition 1 can be set in the wavelength range where human visual sensitivity is high. It can be made easier to fill. The same applies when increasing the conversion ratio of linearly polarized light in other wavelength regions. In the case of other wavelength ranges, it is preferable that Re1 (λc) and Re1 (λc) have different values.

本発明のλ/2位相差板の一実施形態として、前記λ/2位相差板の面内の水平方向をD1、前記λ/2位相差板の面内の前記水平方向に直交する方向をD2と定義し、さらに、前記第1のポジティブA層の遅相軸とD2とが成す角をθ1、前記第2のポジティブA層の遅相軸とD2とが成す角をθ2と定義した際に、θ1及びθ2が下記条件2−1に示す(A1)〜(A4)の何れかの組み合わせを満たすことが好ましい。
<条件2−1>
(A1)θ1が12.5〜27.5度、かつ、θ2が57.5〜72.5度
(A2)θ1が57.5〜72.5度、かつ、θ2が12.5〜27.5度
(A3)θ1が−12.5〜−27.5度、かつ、θ2が−57.5〜−72.5度
(A4)θ1が−57.5〜−72.5度、かつ、θ2が−12.5〜−27.5度
As one embodiment of the λ / 2 retardation plate of the present invention, the horizontal direction in the plane of the λ / 2 retardation plate is D1, and the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate is defined as D1. When defined as D2, the angle formed by the slow axis of the first positive A layer and D2 is defined as θ1, and the angle formed by the slow axis of the second positive A layer and D2 is defined as θ2. In addition, it is preferable that θ1 and θ2 satisfy any combination of (A1) to (A4) shown in the following condition 2-1.
<Condition 2-1>
(A1) θ1 is 12.5 to 27.5 degrees, θ2 is 57.5 to 72.5 degrees, and (A2) θ1 is 57.5 to 72.5 degrees, and θ2 is 12.5 to 27. 5 degrees (A3) θ1 is -12.5 to -27.5 degrees, θ2 is -57.5 to -72.5 degrees (A4) θ1 is -57.5 to -72.5 degrees, and θ2 is -12.5 to -27.5 degrees

なお、水平方向とは、λ/2位相差板を基準とした際に、入射光の方位角の方向と直交する方向を意味する。後述の実施例では、地面に平行な方向を方位角0度とした際に、方位角90度の方向からλ/2位相差板に光を入射している。すなわち、後述の実施例では、水平方向は地面に平行な方向である。
条件2−1において、第1のポジティブA層及び第2のポジティブA層は何れが光入射面側に位置してもよい。
条件2−1では、D2を基準として時計回りの方向に遅相軸が存在する場合には成す角を「+」、D2を基準として反時計回りの方向に遅相軸が存在する場合には成す角を「−」としている。
The horizontal direction means a direction orthogonal to the direction of the azimuth angle of the incident light when the λ / 2 retardation plate is used as a reference. In the embodiment described later, when the direction parallel to the ground is set to an azimuth angle of 0 degrees, light is incident on the λ / 2 retardation plate from the direction of the azimuth angle of 90 degrees. That is, in the examples described later, the horizontal direction is a direction parallel to the ground.
In condition 2-1 which of the first positive A layer and the second positive A layer may be located on the light incident surface side.
In condition 2-1, when the slow axis exists in the clockwise direction with respect to D2, the angle formed is "+", and when the slow axis exists in the counterclockwise direction with respect to D2, the angle is formed. The angle formed is "-".

条件2−1を満たすことにより、条件1を満たしやすくすることができる。なお、条件2−1の前提として、第1のポジティブA層と第2のポジティブA層とは、Re1(λc)>Re2(λc)又はRe1(550)>Re2(550)の関係を満たすことが好ましい。
条件2−1に関して、θ1及びθ2は(A5)〜(A8)の何れかの組み合わせを満たすことがより好ましい。
(A5)θ1が15.5〜17.5度、かつ、θ2が59.0〜61.0度
(A6)θ1が59.0〜61.0度、かつ、θ2が15.5〜17.5度
(A7)θ1が−15.5〜−17.5度、かつ、θ2が−59.0〜−61.0度
(A8)θ1が−59.0〜−61.0度、かつ、θ2が−15.5〜−17.5度
By satisfying the condition 2-1, it is possible to easily satisfy the condition 1. As a premise of condition 2-1 the first positive A layer and the second positive A layer satisfy the relationship of Re1 (λc)> Re2 (λc) or Re1 (550)> Re2 (550). Is preferable.
With respect to condition 2-1 it is more preferable that θ1 and θ2 satisfy any combination of (A5) to (A8).
(A5) θ1 is 15.5 to 17.5 degrees, θ2 is 59.0 to 61.0 degrees, and (A6) θ1 is 59.0 to 61.0 degrees, and θ2 is 15.5 to 17. 5 degrees (A7) θ1 is -15.55 to -17.5 degrees, θ2 is -59.0 to -61.0 degrees (A8) θ1 is -59.0 to -61.0 degrees, and θ2 is -15.5--17.5 degrees

<ポジティブA層>
ポジティブA層は、面内における遅相軸方向の屈折率をNx、面内において遅相軸方向と直交する方向の屈折率をNy、厚さ方向の屈折率をNzとしたとき、Nx>Ny≒Nzの関係であるものである。
<Positive A layer>
In the positive A layer, when the refractive index in the slow-phase axial direction in the plane is Nx, the refractive index in the in-plane direction orthogonal to the slow-phase axial direction is Ny, and the refractive index in the thickness direction is Nz, Nx> Ny. The relationship is ≈Nz.

ポジティブA層は汎用性の観点から正分散性を示すものを用いることが好ましい。
正分散性とは、短波長側ほど透過光における位相差が大きい波長分散特性である。
From the viewpoint of versatility, it is preferable to use a positive A layer that exhibits positive dispersibility.
The positive dispersibility is a wavelength dispersion characteristic in which the phase difference in transmitted light is larger toward the shorter wavelength side.

ポジティブA層の主成分は液晶化合物に由来する構成単位であることが好ましい。このため、第1のポジティブA層及び第2のポジティブA層の両方に液晶化合物に由来する構成単位を含むことが好ましい。主成分とは、ポジティブA層の全固形分の50質量%以上であることを意味し、好ましくは70質量%以上である。 The main component of the positive A layer is preferably a structural unit derived from a liquid crystal compound. Therefore, it is preferable that both the first positive A layer and the second positive A layer contain a structural unit derived from a liquid crystal compound. The main component means that the total solid content of the positive A layer is 50% by mass or more, and preferably 70% by mass or more.

ポジティブA層を形成する液晶化合物は、分子内に重合性官能基を有する重合性液晶化合物を含むことが好ましい。重合性官能基を有することにより、液晶化合物を重合して固定することが可能になるため、配列安定性に優れ、位相差性の経時変化が生じにくくなる。また、重合性液晶化合物は、分子内に重合性官能基を2つ以上有することがより好ましい。重合性官能基を2つ以上有することにより、液晶化合物の三次元的な配向を、より安定させることができる。
重合性官能基としては、例えば、紫外線、電子線等の電離放射線、あるいは熱の作用によって重合するものを挙げることができる。これら重合性官能基としては、ラジカル重合性官能基が挙げられる。ラジカル重合性官能基の代表例としては、少なくとも1つの付加重合可能なエチレン性不飽和二重結合を持つ官能基が挙げられ、具体例として、置換基を有する若しくは有さないビニル基、アクリレート基(アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基を包含する総称)等が挙げられる。
また、重合性官能基として、一般的に知られているカチオン重合性官能基を使用してもよく、具体的には、脂環式エーテル基(エポキシ基、オキセタニル基等)、環状アセタール基、環状ラクトン基、環状イミノエーテル基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基等が挙げられる。これらの中でも、脂環式エーテル基、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、ビニルオキシ基がより好ましい。
The liquid crystal compound forming the positive A layer preferably contains a polymerizable liquid crystal compound having a polymerizable functional group in the molecule. By having a polymerizable functional group, it becomes possible to polymerize and fix the liquid crystal compound, so that the arrangement stability is excellent and the phase difference property with time is less likely to change. Further, it is more preferable that the polymerizable liquid crystal compound has two or more polymerizable functional groups in the molecule. By having two or more polymerizable functional groups, the three-dimensional orientation of the liquid crystal compound can be made more stable.
Examples of the polymerizable functional group include those that polymerize by the action of ultraviolet rays, ionizing radiation such as an electron beam, or heat. Examples of these polymerizable functional groups include radically polymerizable functional groups. Representative examples of the radically polymerizable functional group include a functional group having at least one addition-polymerizable ethylenically unsaturated double bond, and specific examples thereof include a vinyl group and an acrylate group having or not having a substituent. (A generic term including an acryloyl group, a methacryloyl group, an acryloyloxy group, and a methacryloyloxy group) and the like.
Further, as the polymerizable functional group, a generally known cationically polymerizable functional group may be used, and specifically, an alicyclic ether group (epoxy group, oxetanyl group, etc.), a cyclic acetal group, etc. Examples thereof include a cyclic lactone group, a cyclic iminoether group, a cyclic thioether group, a spirolethoester group, a vinyloxy group and the like. Among these, an alicyclic ether group and a vinyloxy group are preferable, and an epoxy group, an oxetanyl group and a vinyloxy group are more preferable.

また、液晶化合物は、末端に重合性官能基を有するものが特に好ましい。このような液晶化合物を用いることにより、例えば、液晶化合物の末端同士が互いに重合して、三次元的に配向した状態にすることができるため、安定性を備え、かつ、光学特性の発現性に優れた位相差層とすることができる。液晶化合物は、1種単独で又は2種以上を混合して用いることができる。 Further, the liquid crystal compound is particularly preferably one having a polymerizable functional group at the terminal. By using such a liquid crystal compound, for example, the ends of the liquid crystal compound can be polymerized with each other to form a three-dimensionally oriented state, so that the liquid crystal compound has stability and exhibits optical characteristics. It can be an excellent retardation layer. The liquid crystal compound may be used alone or in combination of two or more.

液晶化合物は、1種単独で又は2種以上を組み合わせて用いることができる。1種単独の場合、該1種の液晶化合物は重合性液晶化合物であることが好ましい。また、2種以上を組み合わせて用いる場合、少なくとも1種が重合性液晶化合物であることが好ましく、全てが重合性液晶化合物であることがより好ましい。 The liquid crystal compound may be used alone or in combination of two or more. In the case of one type alone, the one type of liquid crystal compound is preferably a polymerizable liquid crystal compound. When two or more kinds are used in combination, it is preferable that at least one kind is a polymerizable liquid crystal compound, and it is more preferable that all of them are polymerizable liquid crystal compounds.

ポジティブA層は、ホモジニアス配向する液晶化合物を用いてポジティブA層を形成することが好ましい。モジニアス配向とは、液晶化合物の分子長軸が水平方向に配向している状態を意味する。ポジティブA層は、スメクチック相を示すことが好ましい。ここで、スメクチック相とは、一方向にそろった分子が相構造を有している状態をいう。 For the positive A layer, it is preferable to form the positive A layer using a liquid crystal compound that is homogenically oriented. The molecular orientation means a state in which the molecular major axis of the liquid crystal compound is oriented in the horizontal direction. The positive A layer preferably exhibits a smectic phase. Here, the smectic phase refers to a state in which molecules aligned in one direction have a phase structure.

ポジティブA層の液晶化合物としては、円盤状液晶材料(ディスコティック液晶材料)と、棒状液晶材料とが挙げられる。
ポジティブA層の液晶化合物は汎用の材料を用いることができ、例えば、特開2008−297210号公報に記載の一般式(I)で表される化合物、特開2010−84032号公報に記載の一般式(1)で表される化合物、特開2016−53709号公報に記載の液晶化合物A0等が挙げられる。ポジティブA層の液晶化合物は、下記式(1)〜(17)に示す化合物を用いることもできる。
Examples of the positive A layer liquid crystal compound include a disk-shaped liquid crystal material (discotic liquid crystal material) and a rod-shaped liquid crystal material.
As the liquid crystal compound of the positive A layer, a general-purpose material can be used. For example, a compound represented by the general formula (I) described in JP-A-2008-297210, and a compound represented by the general formula (I) described in JP-A-2010-84032 can be used. Examples thereof include the compound represented by the formula (1), the liquid crystal compound A0 described in JP-A-2016-53709, and the like. As the liquid crystal compound of the positive A layer, the compounds represented by the following formulas (1) to (17) can also be used.

ポジティブA層は、例えば、透明基材上に、ポジティブA層を構成する成分及び溶剤を含むポジティブA層形成用インキを塗布、乾燥、硬化等することにより形成することができる。
ポジティブA層形成用インキ中における液晶化合物の含有量としては、特に限定されないが、該インキ中に5質量%以上40質量%以下の割合で含まれていることが好ましく、10質量%以上30質量%以下の割合で含まれていることがより好ましい。液晶化合物の量が5質量%未満であると、透明基材上に多量にインキを塗布する必要があるため、製造し難いとともに、多量の溶剤除去が必要となり、溶剤残存に起因する信頼性の悪化が生じやすい。一方で、40質量%を超えると、その重合性液晶組成物の粘度が高くなりすぎるために、ポジティブA層の作製の作業性が悪くなる。
また、ポジティブA層形成用インキの固形分質量(溶剤を除いた質量)に対する液晶化合物の含有量は、好ましくは75〜99.9質量%、より好ましくは80〜99質量%、更に好ましくは85〜98質量%である。
The positive A layer can be formed, for example, by applying, drying, curing, or the like, an ink for forming a positive A layer containing a component and a solvent constituting the positive A layer on a transparent base material.
The content of the liquid crystal compound in the positive A layer forming ink is not particularly limited, but is preferably contained in the ink in a proportion of 5% by mass or more and 40% by mass or less, and 10% by mass or more and 30% by mass or more. It is more preferable that it is contained in a proportion of% or less. If the amount of the liquid crystal compound is less than 5% by mass, it is necessary to apply a large amount of ink on the transparent base material, which makes it difficult to manufacture and requires removal of a large amount of solvent. Deterioration is likely to occur. On the other hand, if it exceeds 40% by mass, the viscosity of the polymerizable liquid crystal composition becomes too high, so that the workability of producing the positive A layer deteriorates.
The content of the liquid crystal compound with respect to the solid content mass (mass excluding the solvent) of the positive A layer forming ink is preferably 75 to 99.9% by mass, more preferably 80 to 99% by mass, and further preferably 85. ~ 98% by mass.

ポジティブA層形成用インキ中には、重合開始剤、レベリング剤及び配向促進剤等を含んでいてもよい。
第1のポジティブA層及び第2のポジティブA層の厚みは、付与する位相差値を考慮して適宜調整することができ、通常は0.1〜10μm程度である。
The positive A layer forming ink may contain a polymerization initiator, a leveling agent, an orientation accelerator and the like.
The thickness of the first positive A layer and the second positive A layer can be appropriately adjusted in consideration of the applied retardation value, and is usually about 0.1 to 10 μm.

<透明基材>
本発明のλ/2位相差板の一実施形態は、透明基材を有することが好ましい。また、本発明のλ/2位相差板の一実施形態は、第1の透明基材と第2の透明基材との間に、前記第1のポジティブA層及び前記第2のポジティブA層を有することがより好ましい。
透明基材は、ポジティブA層等を形成する際の支持体としての役割、あるいは、ポジティブA層等を保護する役割等を有する。
<Transparent base material>
One embodiment of the λ / 2 retardation plate of the present invention preferably has a transparent substrate. Further, in one embodiment of the λ / 2 retardation plate of the present invention, the first positive A layer and the second positive A layer are sandwiched between the first transparent base material and the second transparent base material. It is more preferable to have.
The transparent base material has a role as a support when forming the positive A layer or the like, a role of protecting the positive A layer or the like, or the like.

透明基材は、ポリマーから形成したものでもよいし、ガラスから形成したものであってもよい。
ポリマーとしては、セルロースアシレート、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー等を利用することができる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又はこれらポリマーの混合物等が挙げられる。
ガラスは、ソーダ石灰ガラス、ホウケイ酸ガラス及び石英ガラス等が挙げられる。
The transparent substrate may be formed of a polymer or glass.
Examples of the polymer include cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, and styrene polymer such as polystyrene and acrylonitrile / styrene copolymer (AS resin). Etc. can be used. Further, polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamides, imide polymers, sulfone polymers, and polyether sulfone polymers. , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, allylate polymer, polyoxymethylene polymer, epoxy polymer, or a mixture of these polymers. Be done.
Examples of the glass include soda-lime glass, borosilicate glass and quartz glass.

透明基材は、光学的等方性のものが好ましい。本明細書において、光学的等方性とは、550nmの面内位相差が5nm以下であるものをいう。 The transparent substrate is preferably optically isotropic. In the present specification, the optical isotropic property means that the in-plane phase difference at 550 nm is 5 nm or less.

本発明のλ/2位相差板の一実施形態は、上述したように、第1の透明基材と第2の透明基材との間に、前記第1のポジティブA層及び前記第2のポジティブA層を有することが好ましい。その際、第1の透明基材と第2の透明基材とは、同一であってもよいし、異なるものであってもよい。例えば、第1の透明基材の屈折率をn1、第2の透明基材の屈折率をn2とした場合、n1=n2の関係であってもよいし、n1≠n2の関係であってもよい。また、n1≠n2の関係の場合において、第1の透明基材と第2の透明基材のうち、屈折率の高い方を直線偏光の光入射面側となるように用いることにより、光入射面側の反射率を高めつつ、出射側界面の反射率を低くすることができ、反射スクリーンの視認性を良好にすることができる。 In one embodiment of the λ / 2 retardation plate of the present invention, as described above, between the first transparent base material and the second transparent base material, the first positive A layer and the second transparent base material It is preferable to have a positive A layer. At that time, the first transparent base material and the second transparent base material may be the same or different. For example, when the refractive index of the first transparent base material is n1 and the refractive index of the second transparent base material is n2, the relationship may be n1 = n2 or n1 ≠ n2. Good. Further, in the case of the relationship of n1 ≠ n2, the light incident is performed by using the one having the higher refractive index among the first transparent base material and the second transparent base material so as to be on the light incident surface side of linearly polarized light. While increasing the reflectance on the surface side, the reflectance on the exit side interface can be lowered, and the visibility of the reflective screen can be improved.

第1の透明基材と第2の透明基材との間に、第1のポジティブA層及び第2のポジティブA層を有するλ/2位相差板を反射スクリーンとして用いる場合、光入射面側の透明基材の屈折率は、1.1〜1.9であることが好ましく、1.3〜1.7であることがより好ましい。また、この場合、光出射面側の透明基材の屈折率は、光入射面側の透明基材の屈折率と同一であってもよいが、光入射面側の透明基材の屈折率未満であることが好ましい。 When a λ / 2 retardation plate having a first positive A layer and a second positive A layer between the first transparent base material and the second transparent base material is used as a reflection screen, the light incident surface side. The refractive index of the transparent substrate of No. 1 is preferably 1.1 to 1.9, more preferably 1.3 to 1.7. Further, in this case, the refractive index of the transparent base material on the light emitting surface side may be the same as the refractive index of the transparent base material on the light incident surface side, but is less than the refractive index of the transparent base material on the light incident surface side. Is preferable.

透明基材の厚みは、ポリマーから形成した透明基材の場合は、通常25〜125μm程度であり、ガラスから形成した透明基材の場合は、通常100μm〜5mm程度である。 The thickness of the transparent base material is usually about 25 to 125 μm in the case of a transparent base material formed of a polymer, and usually about 100 μm to 5 mm in the case of a transparent base material formed of glass.

<その他の層>
本発明のλ/2位相差板の一実施形態は、その他の層を有していてもよい。
その他の層としては、ポジティブA層を配向させやすくするための配向膜、紫外線吸収層、中間膜及び接着剤層等が挙げられる。中間膜は、λ/2位相差板に耐衝撃性及び飛散防止性等を付与するために形成される層であり、例えば、ポリビニルブチラール等から形成することができる。
なお、条件1を満たしやすくするためには、λ/2位相差板を構成する互いに隣接する層の屈折率差を小さくすることが好ましい。また、その他の層は 光学的等方性のものが好ましい。
<Other layers>
One embodiment of the λ / 2 retardation plate of the present invention may have other layers.
Examples of other layers include an alignment film for facilitating the orientation of the positive A layer, an ultraviolet absorbing layer, an intermediate film, an adhesive layer, and the like. The interlayer film is a layer formed to impart impact resistance, anti-scattering property, etc. to the λ / 2 retardation plate, and can be formed from, for example, polyvinyl butyral or the like.
In order to easily satisfy the condition 1, it is preferable to reduce the difference in refractive index between the layers adjacent to each other constituting the λ / 2 retardation plate. The other layers are preferably optically isotropic.

<光学物性>
本発明のλ/2位相差板の一実施形態は、JIS K7361−1:1997に準拠して測定される全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。このため、本発明のλ/2位相差板は偏光子を有さないことが好ましい。
また、本発明のλ/2位相差板の一実施形態は、JIS K7136:2000に準拠して測定されるヘイズが2.0%以下であることが好ましく、1.0%以下であることがより好ましい。
<Optical characteristics>
In one embodiment of the λ / 2 retardation plate of the present invention, the total light transmittance measured in accordance with JIS K7361-1: 1997 is preferably 60% or more, and more preferably 70% or more. It is preferably 80% or more, and more preferably 80% or more. Therefore, it is preferable that the λ / 2 retardation plate of the present invention does not have a polarizer.
Further, in one embodiment of the λ / 2 retardation plate of the present invention, the haze measured in accordance with JIS K7136: 2000 is preferably 2.0% or less, and preferably 1.0% or less. More preferred.

本発明のλ/2位相差板は、例えば、第1の透明基材上に第1のポジティブA層を形成してなる積層体1と、第2の透明基材上に第2のポジティブA層を形成してなる積層体2とを、接着剤層を介して貼り合わせることにより製造することができる。 The λ / 2 retardation plate of the present invention is, for example, a laminate 1 formed by forming a first positive A layer on a first transparent base material and a second positive A on a second transparent base material. It can be manufactured by laminating the laminated body 2 formed with a layer via an adhesive layer.

<用途>
本発明のλ/2位相差板は、例えば、各種の光学用品として用いることができる。
光学用品としては、光学センサ、光学測定器、光ピックアップ装置及び液晶プロジェクタ等に組み込まれる部品(直線偏光変換部材)が挙げられる。
別の光学用品として反射スクリーンが挙げられる。入射光がS偏光の場合に条件1を満たすλ/2位相差板に対して、S偏光を入射光として投影した場合、λ/2位相差板(反射スクリーン)の表面で反射したS偏光により映像を視認することができ、かつ、λ/2位相差板(反射スクリーン)の表面で反射されず内部に侵入したS偏光はP偏光に変換されて界面反射率が低下するため、二重像を抑制することができる。なお、λ/2位相差板を反射スクリーンとして用いる場合、λcが波長500〜600nmの中に位置することが好ましい。反射スクリーンのより具体的な例として、ヘッドアップディスプレイが挙げられる。
別の光学用品として、偏光サングラス、カメラ用のフィルタ等の偏光フィルタが挙げられる。偏光フィルタは、本発明のλ/2位相差板と、偏光子とを有するものである。偏光サングラス等の偏光フィルタに入射する反射光は、偏光フィルタに対して斜め方向から入射するものが殆どであり、また、反射光はS偏光の割合が多い。よって、本発明のλ/2位相差板と、P偏光をカットする偏光子とを有する偏光フィルタは、反射光に多く含まれるS偏光をλ/2位相差板でP偏光に変換し、変換したP偏光を偏光子で吸収する一方で、反射光中のP偏光をλ/2位相差板でS偏光に変換して透過するため、反射光をカットする特性に優れている。
<Use>
The λ / 2 retardation plate of the present invention can be used, for example, as various optical products.
Examples of optical supplies include parts (linearly polarized light conversion members) incorporated in optical sensors, optical measuring instruments, optical pickup devices, liquid crystal projectors, and the like.
Another optical fixture is a reflective screen. When S-polarized light is projected as incident light on a λ / 2 retardation plate that satisfies condition 1 when the incident light is S-polarized light, the S-polarized light reflected on the surface of the λ / 2 retardation plate (reflection screen) The image can be visually recognized, and the S-polarized light that is not reflected by the surface of the λ / 2 retardation plate (reflection screen) and penetrates inside is converted to P-polarized light, which reduces the interfacial reflectance, resulting in a double image. Can be suppressed. When the λ / 2 retardation plate is used as the reflection screen, it is preferable that λc is located in the wavelength of 500 to 600 nm. A more specific example of a reflective screen is a head-up display.
Other optical supplies include polarizing filters such as polarized sunglasses and filters for cameras. The polarizing filter has a λ / 2 retardation plate of the present invention and a polarizer. Most of the reflected light incident on a polarizing filter such as polarized sunglasses is incident on the polarizing filter from an oblique direction, and the reflected light has a large proportion of S-polarized light. Therefore, the polarizing filter having the λ / 2 retardation plate of the present invention and the polarizer that cuts P-polarized light converts S-polarized light, which is abundantly contained in the reflected light, into P-polarized light by the λ / 2 retardation plate. While the P-polarized light is absorbed by the polarizer, the P-polarized light in the reflected light is converted into S-polarized light by the λ / 2 retardation plate and transmitted, so that the reflected light is cut off.

[反射型投射システム]
本発明の反射型投射システムは、上述した本発明のλ/2位相差板と、光源とを備えてなるものである。
[Reflective projection system]
The reflection type projection system of the present invention comprises the above-mentioned λ / 2 retardation plate of the present invention and a light source.

光源は特に限定されない。光源から投射される光としては、非偏光、直線偏光及び円偏光が挙げられる。
直線偏光を投射可能な光源としては、有機EL等の表示素子上に偏光子を配置したもの、及び、液晶プロジェクタが挙げられる。円偏光を投射可能な光源としては、直線偏光を投射可能な光源に位相差層を付加したものが挙げられる。
光源から投射される光が直線偏光以外の場合、λ/2位相差板と光源との間に偏光子を配置し、直線偏光に変換してからλ/2位相差板に入射すればよい。
The light source is not particularly limited. Examples of the light projected from the light source include non-polarized light, linearly polarized light, and circularly polarized light.
Examples of the light source capable of projecting linearly polarized light include a light source in which a polarizer is arranged on a display element such as an organic EL, and a liquid crystal projector. Examples of the light source capable of projecting circularly polarized light include a light source capable of projecting linearly polarized light with a retardation layer added.
When the light projected from the light source is other than linearly polarized light, a polarizer may be arranged between the λ / 2 retardation plate and the light source, converted to linearly polarized light, and then incident on the λ / 2 retardation plate.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、「部」及び「%」は特に断りのない限り質量基準とする。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples. Unless otherwise specified, "parts" and "%" are based on mass.

1.ポジティブA層を有する積層体の作製
<積層体1>
厚み80μmのPETフィルム上に、ポリシンナメート系化合物を含有する配向膜形成組成物(固形分4%、プロピレングリコールモノメチルエーテル希釈)を、塗布し、塗膜を形成した。得られた塗膜を120℃で1分間乾燥して、偏光露光20mJ/cm(310nm)照射を行い、膜厚が200nmの配向膜を形成した。
次いで、配向膜上に、下記組成のポジティブA層形成用インキをバーコーターで塗布、乾燥、硬化し、PETフィルム、配向膜及びポジティブA層(第1のポジティブA層)をこの順に備えた積層体1を得た。乾燥条件は、温度120℃、時間60秒とした。硬化条件(紫外線照射量)は200mJ/cmとした。なお、積層体1のポジティブA層(第1のポジティブA層)の厚みは、Re(550)が295nmとなるように調整した。また、ポジティブA層(第1のポジティブA層)は正分散性を示し、Re(450)/Re(550)が1.09であった。
<ポジティブA層形成用インキ>
上記式(11)で表される液晶化合物を25質量%、光重合開始剤(BASF社製、商品名:イルガキュア907)を5質量%、フッ素系界面活性剤(DIC社製、商品名:メガファックF554)を0.4質量%含み、残部が溶剤(MEK:MIBK=1:1の混合溶剤)である、組成物。
1. 1. Fabrication of Laminated Body with Positive A Layer <Laminated Body 1>
An alignment film-forming composition (solid content 4%, propylene glycol monomethyl ether dilution) containing a polycinnamate compound was applied onto a PET film having a thickness of 80 μm to form a coating film. The obtained coating film was dried at 120 ° C. for 1 minute and irradiated with polarized light exposure of 20 mJ / cm 2 (310 nm) to form an alignment film having a film thickness of 200 nm.
Next, an ink for forming a positive A layer having the following composition is applied on the alignment film with a bar coater, dried, and cured, and a PET film, an alignment film, and a positive A layer (first positive A layer) are laminated in this order. I got body 1. The drying conditions were a temperature of 120 ° C. and a time of 60 seconds. The curing condition (ultraviolet irradiation amount) was 200 mJ / cm 2 . The thickness of the positive A layer (first positive A layer) of the laminated body 1 was adjusted so that Re (550) was 295 nm. The positive A layer (first positive A layer) showed positive dispersibility, and Re (450) / Re (550) was 1.09.
<Ink for forming positive A layer>
25% by mass of the liquid crystal compound represented by the above formula (11), 5% by mass of the photopolymerization initiator (manufactured by BASF, trade name: Irgacure 907), fluorine-based surfactant (manufactured by DIC, trade name: mega). A composition containing 0.4% by mass of Fuck F554) and the balance being a solvent (MEK: MIBK = 1: 1 mixed solvent).

<積層体2>
ポジティブA層の厚みを変更し、ポジティブA層(第2のポジティブA層)のRe(550)を245nmとした以外は、積層体1と同様にして、PETフィルム、配向膜及びポジティブA層(第1のポジティブA層)をこの順に備えた積層体2を得た。
<Laminated body 2>
The PET film, the alignment film, and the positive A layer (similar to the laminated body 1) except that the thickness of the positive A layer was changed and the Re (550) of the positive A layer (second positive A layer) was set to 245 nm. A laminated body 2 provided with the first positive A layer) in this order was obtained.

<積層体3>
ポジティブA層の厚みを変更し、Re(550)を270nmとした以外は、積層体1と同様にして、PETフィルム、配向膜及びポジティブA層をこの順に備えた積層体3を得た。
<Laminated body 3>
A laminate 3 having a PET film, an alignment film, and a positive A layer in this order was obtained in the same manner as the laminate 1 except that the thickness of the positive A layer was changed and Re (550) was set to 270 nm.

2.λ/2位相差板の作製
[実施例1]
光学的等方性を有する厚み1mmのガラス板(屈折率1.51)上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を形成し、さらに該粘着剤層上に、上記積層体1のポジティブA層(第1のポジティブA層)側の面を貼り合わせ、積層体Aを得た。
積層体AのPETフィルム及び配向膜を剥離し、該剥離面上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を形成した。次いで、該アクリル系粘着剤層上に、上記積層体2のポジティブA層(第2のポジティブA層)側の面を貼り合わせ、積層体Bを得た。
積層体BのPETフィルム及び配向膜を剥離し、該剥離面上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)及び光学的等方性を有するTACフィルム(鹸化処理品、厚み80μm)を積層した。
以上の工程により、ガラス板、アクリル系粘着剤層、ポジティブA層(第1のポジティブA層)、アクリル系粘着剤層、ポジティブA層(第2のポジティブA層)、アクリル系粘着剤層、TACフィルムをこの順に有する、実施例1のλ/2位相差板(縦50mm、横(水平方向)50mm)を得た。この際、実施例1のλ/2位相差板は、θ1が16.5度、θ2が60.0度となるようにした。なお、λ/2位相差板の面内の水平方向をD1、λ/2位相差板の面内の前記水平方向に直交する方向をD2と定義した際に、θ1とは、第1のポジティブA層の遅相軸とD2とが成す角のことを意味し、θ2とは、第2のポジティブA層の遅相軸とD2とが成す角のことを意味する。
2. Fabrication of λ / 2 Phase Difference Plate [Example 1]
An acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on a glass plate (refractive index 1.51) having a thickness of 1 mm having optical isotropic property, and further, an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on the pressure-sensitive adhesive layer. The surfaces of the laminate 1 on the positive A layer (first positive A layer) side were bonded together to obtain a laminate A.
The PET film and the alignment film of the laminate A were peeled off, and an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic properties was formed on the peeled surface. Next, the surface of the laminate 2 on the positive A layer (second positive A layer) side was bonded onto the acrylic pressure-sensitive adhesive layer to obtain a laminate B.
The PET film and alignment film of the laminate B are peeled off, and on the peeled surface, an acrylic adhesive layer (thickness 25 μm) having optical isotropic property and a TAC film having optical isotropic property (sacination-treated product, A thickness of 80 μm) was laminated.
Through the above steps, a glass plate, an acrylic pressure-sensitive adhesive layer, a positive A layer (first positive A layer), an acrylic pressure-sensitive adhesive layer, a positive A layer (second positive A layer), an acrylic pressure-sensitive adhesive layer, A λ / 2 retardation plate (length 50 mm, width (horizontal direction) 50 mm) of Example 1 having a TAC film in this order was obtained. At this time, in the λ / 2 retardation plate of Example 1, θ1 was set to 16.5 degrees and θ2 was set to 60.0 degrees. When the horizontal direction in the plane of the λ / 2 retardation plate is defined as D1 and the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate is defined as D2, θ1 is the first positive. It means the angle formed by the slow axis of the A layer and D2, and θ2 means the angle formed by the slow axis of the second positive A layer and D2.

[実施例2]
θ1を22.5度、θ2を67.5度に変更した以外は、実施例1と同様にして、実施例2のλ/2位相差板を得た。
[Example 2]
A λ / 2 retardation plate of Example 2 was obtained in the same manner as in Example 1 except that θ1 was changed to 22.5 degrees and θ2 was changed to 67.5 degrees.

[比較例1]
光学的等方性を有する厚み1mmのガラス板(屈折率1.51)上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を形成し、さらに該粘着剤層上に、上記積層体3のポジティブA層側の面を貼り合わせ、積層体Cを得た。
積層体CのPETフィルム及び配向膜を剥離し、該剥離面上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)及び光学的等方性を有するTACフィルム(鹸化処理品、厚み80μm)を積層した。
以上の工程により、ガラス板、アクリル系粘着剤層、ポジティブA層、アクリル系粘着剤層、TACフィルムをこの順に有する、比較例1のλ/2位相差板(縦50mm、横(水平方向)50mm)を得た。この際、比較例1のλ/2位相差板は、ポジティブA層の遅相軸と、D2(λ/2位相差板の面内の水平方向に直交する方向)との成す角が45.0度となるようにした。
[Comparative Example 1]
An acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on a glass plate (refractive index 1.51) having a thickness of 1 mm having optical isotropic property, and further, an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on the pressure-sensitive adhesive layer. The surfaces of the laminate 3 on the positive A layer side were bonded together to obtain a laminate C.
The PET film and alignment film of the laminate C are peeled off, and on the peeled surface, an acrylic adhesive layer (thickness 25 μm) having optical isotropic property and a TAC film having optical isotropic property (sacination-treated product, A thickness of 80 μm) was laminated.
By the above steps, the λ / 2 retardation plate of Comparative Example 1 having a glass plate, an acrylic pressure-sensitive adhesive layer, a positive A layer, an acrylic pressure-sensitive adhesive layer, and a TAC film in this order (length 50 mm, width (horizontal direction)) 50 mm) was obtained. At this time, the λ / 2 retardation plate of Comparative Example 1 has an angle formed by the slow axis of the positive A layer and D2 (the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate) of 45. It was set to 0 degrees.

[比較例2]
上記の積層体3を2つ準備した。一方の積層体3を積層体3i、他方の積層体3を積層体3iiとする。また、積層体3iの層構成は、PETフィルムi、配向膜i及びポジティブA層iとして、積層体3iiの層構成は、PETフィルムii、配向膜ii及びポジティブA層iiとする。
光学的等方性を有する厚み1mmのガラス板(屈折率1.51)上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を形成し、さらに該粘着剤層上に、積層体3iのポジティブA層i側の面を貼り合わせ、積層体Aを得た。
積層体AのPETフィルムi及び配向膜iを剥離し、該剥離面上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を形成した。次いで、該アクリル系粘着剤層上に、積層体3iiのポジティブA層ii側の面を貼り合わせ、積層体Bを得た。
積層体BのPETフィルムii及び配向膜iiを剥離し、該剥離面上に、光学的等方性を有するアクリル系粘着剤層(厚み25μm)及び光学的等方性を有するTACフィルム(鹸化処理品、厚み80μm)を積層した。
以上の工程により、ガラス板、アクリル系粘着剤層、ポジティブA層i、アクリル系粘着剤層、ポジティブA層ii、アクリル系粘着剤層、TACフィルムをこの順に有する、比較例1のλ/2位相差板(縦50mm、横(水平方向)50mm)を得た。この際、比較例2のλ/2位相差板は、ポジティブA層iの遅相軸と、D2(λ/2位相差板の面内の水平方向に直交する方向)との成す角を22.5度、ポジティブA層iiの遅相軸と、D2(λ/2位相差板の面内の水平方向に直交する方向)との成す角を67.5度とした。
[Comparative Example 2]
Two of the above laminated bodies 3 were prepared. One laminated body 3 is referred to as a laminated body 3i, and the other laminated body 3 is referred to as a laminated body 3ii. Further, the layer structure of the laminated body 3i is PET film i, the alignment film i and the positive A layer i, and the layer structure of the laminated body 3ii is the PET film ii, the alignment film ii and the positive A layer ii.
An acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on a glass plate (refractive index 1.51) having a thickness of 1 mm having optical isotropic property, and further, an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property is formed on the pressure-sensitive adhesive layer. The surfaces of the laminated body 3i on the positive A layer i side were bonded together to obtain a laminated body A.
The PET film i and the alignment film i of the laminate A were peeled off, and an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic properties was formed on the peeled surface. Next, the surface of the laminated body 3ii on the positive A layer ii side was bonded onto the acrylic pressure-sensitive adhesive layer to obtain a laminated body B.
The PET film ii and the alignment film ii of the laminate B are peeled off, and an acrylic pressure-sensitive adhesive layer (thickness 25 μm) having optical isotropic property and a TAC film having optical isotropic property (sacination treatment) are peeled off on the peeled surface. The product, thickness 80 μm) was laminated.
By the above steps, λ / 2 of Comparative Example 1 having a glass plate, an acrylic pressure-sensitive adhesive layer, a positive A layer i, an acrylic pressure-sensitive adhesive layer, a positive A layer ii, an acrylic pressure-sensitive adhesive layer, and a TAC film in this order. A retardation plate (length 50 mm, width (horizontal direction) 50 mm) was obtained. At this time, the λ / 2 retardation plate of Comparative Example 2 has an angle formed by the slow axis of the positive A layer i and D2 (the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate) of 22. At 5.5 degrees, the angle formed by the slow axis of the positive A layer ii and D2 (the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate) was set to 67.5 degrees.

3.測定、評価
3−1.分光透過率
実施例及び比較例のλ/2位相差板に対して、所定の入射角でS偏光を入射し、S偏光の分光透過率を測定した。λ/2位相差板は、λ/2位相差板の横方向(水平方向)が地面と平行となるように配置した。分光透過率は、日本分光社製のV7100を用いて測定した。入射角5〜55度の範囲で10度ごとに変更した。結果を図2〜7に示す。また、各入射角において、分光透過率が2.0%以下を示す波長の幅を表1に示す。
3. 3. Measurement and evaluation 3-1. Spectral Transmittance S-polarized light was incident on the λ / 2 retardation plates of Examples and Comparative Examples at a predetermined angle of incidence, and the spectral transmittance of S-polarized light was measured. The λ / 2 retardation plate was arranged so that the lateral direction (horizontal direction) of the λ / 2 retardation plate was parallel to the ground. The spectral transmittance was measured using V7100 manufactured by JASCO Corporation. The angle of incidence was changed every 10 degrees in the range of 5 to 55 degrees. The results are shown in FIGS. 2-7. Table 1 shows the wavelength widths at which the spectral transmittance is 2.0% or less at each incident angle.

3−2.全光線透過率
ヘイズメーター(HM−150、村上色彩技術研究所製)を用いて、実施例及び比較例のλ/2位相差板の全光線透過率(JISK7361−1:1997)を測定した。全光線透過率が60%以上のものを「A」、60%未満のものを「C」とした。
3-2. The total light transmittance (JISK7361-1: 1997) of the λ / 2 retardation plates of Examples and Comparative Examples was measured using a total light transmittance haze meter (HM-150, manufactured by Murakami Color Technology Research Institute). Those having a total light transmittance of 60% or more were designated as "A", and those having a total light transmittance of less than 60% were designated as "C".

3−3.二重像
実施例及び比較例のλ/2位相差板に対して、入射角45度でS偏光を光源とする映像光を入射し、図8の位置関係から目視で観察した。二重像が気にならないものを「A」、二重像が気になるものを「C」とした。結果を表1に示す。
3-3. Duplex image Image light using S-polarized light as a light source was incident on the λ / 2 retardation plates of Examples and Comparative Examples at an incident angle of 45 degrees, and was visually observed from the positional relationship shown in FIG. The one that does not bother the double image is designated as "A", and the one that does not care about the double image is designated as "C". The results are shown in Table 1.

図2〜7及び表1の結果から、実施例のλ/2位相差板は、30〜60度の入射角が大きい範囲の少なくとも一つの10度幅の領域において、120nm以上の幅広い波長域で直線偏光の変換割合を良好にし得ることが確認できる。また、実施例のλ/2位相差板は、可視光の波長域で前述した効果を奏するため、実施例のλ/2位相差板を用いた反射スクリーンは色再現性を良好にし得るものである。さらに、図2〜7及び表1の結果から、実施例のλ/2位相差板は、前述した効果を奏する入射角30〜60度の中心である入射角45度において、二重像が生じることを抑制できることが確認できる。 From the results of FIGS. 2 to 7 and Table 1, the λ / 2 retardation plate of the embodiment has a wide wavelength range of 120 nm or more in at least one 10-degree width region in which the incident angle of 30 to 60 degrees is large. It can be confirmed that the conversion ratio of linearly polarized light can be improved. Further, since the λ / 2 retardation plate of the embodiment exerts the above-mentioned effect in the wavelength range of visible light, the reflection screen using the λ / 2 retardation plate of the embodiment can improve the color reproducibility. is there. Further, from the results of FIGS. 2 to 7 and Table 1, the λ / 2 retardation plate of the embodiment produces a double image at an incident angle of 45 degrees, which is the center of the incident angle of 30 to 60 degrees, which exerts the above-mentioned effect. It can be confirmed that this can be suppressed.

10:第1のポジティブA層
20:第2のポジティブA層
30,40:接着剤層
50:第1の透明基材
60:第2の透明基材
100:λ/2位相差板
200:光源
10: First positive A layer 20: Second positive A layer 30, 40: Adhesive layer 50: First transparent base material 60: Second transparent base material 100: λ / 2 retardation plate 200: Light source

Claims (10)

λ/2位相差板であって、
前記λ/2位相差板は、第1のポジティブA層と第2のポジティブA層とを有し、前記第1のポジティブA層の遅相軸と前記第2のポジティブA層の遅相軸とが交差してなり、
下記条件1を満たす、λ/2位相差板。
<条件1>
前記λ/2位相差板に対して入射角α度で入射した直線偏光の任意の120nm以上の幅の波長域における前記直線偏光の分光透過率が、入射角αが30〜60度の範囲内から選択される少なくとも一つの10度幅の領域において2.0%以下を示す。
λ / 2 retardation plate
The λ / 2 retardation plate has a first positive A layer and a second positive A layer, and has a slow axis of the first positive A layer and a slow axis of the second positive A layer. Crossed with
A λ / 2 retardation plate that satisfies the following condition 1.
<Condition 1>
The spectral transmittance of the linearly polarized light in the wavelength range of any width of 120 nm or more of the linearly polarized light incident on the λ / 2 retardation plate at an incident angle α degree is within the range of an incident angle α of 30 to 60 degrees. Shows 2.0% or less in at least one 10 degree wide region selected from.
前記条件1を満たす任意の120nm以上の幅の波長域の中心波長をλc[nm]、前記第1のポジティブA層の波長λc[nm]における面内位相差をRe1(λc)、前記第2のポジティブA層の波長λc[nm]における面内位相差をRe2(λc)と定義した際に、Re1(λc)>Re2(λc)である、請求項1に記載のλ/2位相差板。 The central wavelength of an arbitrary wavelength region having a width of 120 nm or more satisfying the above condition 1 is λc [nm], the in-plane phase difference at the wavelength λc [nm] of the first positive A layer is Re1 (λc), and the second. The λ / 2 retardation plate according to claim 1, wherein Re1 (λc)> Re2 (λc) when the in-plane phase difference at the wavelength λc [nm] of the positive A layer is defined as Re2 (λc). .. 前記条件1を満たす任意の120nm以上の幅の波長域の中心波長λcが、波長500〜600nmの中に位置する、請求項1又は2に記載のλ/2位相差板。 The λ / 2 retardation plate according to claim 1 or 2, wherein the central wavelength λc in an arbitrary wavelength region having a width of 120 nm or more that satisfies the above condition 1 is located within a wavelength of 500 to 600 nm. 前記第1のポジティブA層の波長550nmにおける面内位相差をRe1(550)、前記第2のポジティブA層の波長550nmにおける面内位相差をRe2(550)と定義した際に、前記Re1(550)が280〜320nmであり、前記Re2(550)が230〜270nmであり、Re1(550)>Re2(550)である、請求項1〜3の何れか1項に記載のλ/2位相差板。 When the in-plane retardation of the first positive A layer at a wavelength of 550 nm is defined as Re1 (550) and the in-plane retardation of the second positive A layer at a wavelength of 550 nm is defined as Re2 (550), the Re1 ( The λ / 2 position according to any one of claims 1 to 3, wherein 550) is 280 to 320 nm, Re2 (550) is 230 to 270 nm, and Re1 (550)> Re2 (550). Phase difference plate. 前記λ/2位相差板の面内の水平方向をD1、前記λ/2位相差板の面内の前記水平方向に直交する方向をD2と定義し、さらに、前記第1のポジティブA層の遅相軸とD2とが成す角をθ1、前記第2のポジティブA層の遅相軸とD2とが成す角をθ2と定義した際に、θ1及びθ2が下記条件2−1に示す(A1)〜(A4)の何れかの組み合わせを満たす、請求項1〜4の何れか1項に記載のλ/2位相差板。
<条件2−1>
(A1)θ1が12.5〜27.5度、かつ、θ2が57.5〜72.5度
(A2)θ1が57.5〜72.5度、かつ、θ2が12.5〜27.5度
(A3)θ1が−12.5〜−27.5度、かつ、θ2が−57.5〜−72.5度
(A4)θ1が−57.5〜−72.5度、かつ、θ2が−12.5〜−27.5度
The horizontal direction in the plane of the λ / 2 retardation plate is defined as D1, the direction orthogonal to the horizontal direction in the plane of the λ / 2 retardation plate is defined as D2, and further, the first positive A layer. When the angle formed by the slow axis and D2 is defined as θ1 and the angle formed by the slow axis of the second positive A layer and D2 is defined as θ2, θ1 and θ2 are shown in the following condition 2-1 (A1). ) To (A4), the λ / 2 retardation plate according to any one of claims 1 to 4.
<Condition 2-1>
(A1) θ1 is 12.5 to 27.5 degrees, θ2 is 57.5 to 72.5 degrees, and (A2) θ1 is 57.5 to 72.5 degrees, and θ2 is 12.5 to 27. 5 degrees (A3) θ1 is -12.5 to -27.5 degrees, θ2 is -57.5 to -72.5 degrees (A4) θ1 is -57.5 to -72.5 degrees, and θ2 is -12.5 to -27.5 degrees
第1の透明基材と第2の透明基材との間に、前記第1のポジティブA層及び前記第2のポジティブA層を有する、請求項1〜5の何れか1項に記載のλ/2位相差板。 The λ according to any one of claims 1 to 5, which has the first positive A layer and the second positive A layer between the first transparent base material and the second transparent base material. / 2 phase difference plate. 前記条件1の前記直線偏光がS偏光である、請求項1〜6の何れか1項に記載のλ/2位相差板。 The λ / 2 retardation plate according to any one of claims 1 to 6, wherein the linearly polarized light of the condition 1 is S-polarized light. 請求項1〜7の何れか1項に記載のλ/2位相差板を含む光学用品。 An optical product comprising the λ / 2 retardation plate according to any one of claims 1 to 7. 反射スクリーンである、請求項8に記載の光学用品。 The optical article according to claim 8, which is a reflective screen. 請求項1〜7の何れか1項に記載のλ/2位相差板を含む反射スクリーンと、光源とを備えた、反射型投射システム。 A reflection type projection system including a reflection screen including the λ / 2 retardation plate according to any one of claims 1 to 7 and a light source.
JP2019164862A 2019-09-10 2019-09-10 λ/2 retardation plates, optical supplies and reflective projection systems Active JP7379970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019164862A JP7379970B2 (en) 2019-09-10 2019-09-10 λ/2 retardation plates, optical supplies and reflective projection systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164862A JP7379970B2 (en) 2019-09-10 2019-09-10 λ/2 retardation plates, optical supplies and reflective projection systems

Publications (2)

Publication Number Publication Date
JP2021043313A true JP2021043313A (en) 2021-03-18
JP7379970B2 JP7379970B2 (en) 2023-11-15

Family

ID=74862296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164862A Active JP7379970B2 (en) 2019-09-10 2019-09-10 λ/2 retardation plates, optical supplies and reflective projection systems

Country Status (1)

Country Link
JP (1) JP7379970B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2016090862A (en) * 2014-11-06 2016-05-23 スタンレー電気株式会社 Liquid crystal display device
WO2017169168A1 (en) * 2016-03-30 2017-10-05 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025065A (en) 2011-07-21 2013-02-04 Seiko Epson Corp Wave plate, polarization conversion element, polarization conversion unit and projection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2016090862A (en) * 2014-11-06 2016-05-23 スタンレー電気株式会社 Liquid crystal display device
WO2017169168A1 (en) * 2016-03-30 2017-10-05 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same

Also Published As

Publication number Publication date
JP7379970B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
TWI487957B (en) Polarizing plate
TW528882B (en) Optically compensatory polarizer and liquid-crystal display device
TWI647492B (en) Optical laminate and graphic display device
JP6757424B2 (en) Decorative film
CN105637393A (en) Polarizing plate set and front-plate-integrating liquid-crystal display panel
KR20030007220A (en) Optical film, polarizer and display device
KR20170028848A (en) Polarizing plate, anti-reflective laminate, and image display system
KR102060795B1 (en) Anti-reflection layer and anti-mirroring layer-attached polarizing plate and manufacturing method thereof
KR102576989B1 (en) Polarizing plate and optical display apparatus comprising the same
JP6586882B2 (en) Retardation film, method for producing retardation film, polarizing plate and image display device using this retardation film, and 3D image display system using this image display device
JP6969141B2 (en) Phase difference film, polarizing plate compensation film, and external light reflection prevention film
KR20090101630A (en) Polarizing film for 3 dimensional liquid crystal display
JP2020038370A (en) Polarizing plate and liquid crystal display device having the same
JP7379970B2 (en) λ/2 retardation plates, optical supplies and reflective projection systems
CN113614597B (en) Polarizing plate and optical display device including the same
JP6287371B2 (en) Optical film, optical film transfer body, and image display device
JP6521007B2 (en) Polarizing plate, image display device, and method for improving light contrast in image display device
JP2019040199A (en) Optical film and organic light-emitting display device comprising the same
JP7259482B2 (en) Reflective screen and projection system using it
JP2014130352A (en) Optical film and organic light emitting display device having the same
WO2023054463A1 (en) Laminate film, optical laminate and image display device
WO2023054595A1 (en) Optical laminate, and image display device
WO2023127471A1 (en) Polarizing plate and organic el display device
WO2023176659A1 (en) Lens unit and laminated film
WO2023176661A1 (en) Display system and lamination film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7379970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150